1-D and 2-D Motion Test Friday 9/8

Size: px
Start display at page:

Download "1-D and 2-D Motion Test Friday 9/8"

Transcription

1 1-D and -D Motion Test Frida 9/8 3-1 Vectors and Scalars A vector has magnitude as well as direction. Some vector quantities: displacement, velocit, force, momentum A scalar has onl a magnitude. Some scalar quantities: mass, time, temperature 1

2 3- Addition of Vectors Graphical Methods For vectors in one dimension, simple addition and subtraction are all that is needed. You do need to be careful about the signs, as the figure indicates. 3- Addition of Vectors Graphical Methods Even if the vectors are not at right angles, the can be added graphicall b using the tail-to-tip method.

3 3-4 Adding Vectors b Components An vector can be epressed as the sum of two other vectors, which are called its components. Usuall the other vectors are chosen so that the are perpendicular to each other. 3-4 Adding Vectors b Components If the components are perpendicular, the can be found using trigonometric functions. 3

4 Sample Problem You run in a straight line at a velocit of 5.0 m/s in a direction that is 40 o south of west. a) What is the -component of the velocit? b) What is the -component of the velocit? -component 40 o -component 5.0m/s a)5.0m / s(cos 40 b)5.0m / s(sin 40 o o ) 3.8m / s ) 3.m / s Assignment Vector Activit on the class website Read pg. 4

5 1-D and -D Motion Test Frida 9/8 5

6 6

7 7

8 You are adding vectors of length 0 and 40 units. What is the onl possible resultant magnitude that ou can obtain out of the following choices? A) 18 B) 37 C) 64 D) 100 A small cart is rolling at constant velocit on a flat track. It fires a ball straight up into the air as it moves. After it is fired, what happens to the ball? A) it depends on how fast the cart is moving B) it falls behind the cart C) it falls in front of the cart D) it falls right back into the cart E) it remains at rest 8

9 Now the cart is being pulled along a horizontal track b an eternal force (a weight hanging over the table edge) and accelerating. It fires a ball straight out of the cannon as it moves. After it is fired, what happens to the ball? A) it falls behind the cart B) it falls in front of the cart C) it falls right back into the cart D) it remains at rest You drop a package from a plane fling at constant speed in a straight line. Without air resistance, the package will: A) quickl lag behind the plane while falling B) remain verticall under the plane while falling C) move ahead of the plane while falling D) not fall at all 9

10 -Dimensional Motion Definition: motion that occurs with both and components. Eample: Plaing pool. Throwing a ball to another person. Each dimension of the motion can obe different equations of motion. Solving -D Problems Resolve all vectors into components -component Y-component Work the problem as two one-dimensional problems. Each dimension can obe different equations of motion. Re-combine the results for the two components at the end of the problem. 10

11 Equations of Kinematics v v 1 o v at o v t v vo a vot 1 at v 1 v a t v v t o o v o t 1 at v vo a 11

12 v v o a t 1 v t o at t 1 v o v v vo a The part of the motion occurs eactl as it would if the part did not occur at all, and vice versa. 1

13 Eample In the direction, the spacecraft has an initial velocit component of + m/s and an acceleration of +4 m/s. In the direction, the analogous quantities are +14 m/s and an acceleration of +1 m/s. Find the final velocit of the spacecraft at time 7.0 s. v o a t 7.0s v v o 4 at 1 v 6.1m / s (6.8m / s v 14m / s m / s 6.8m / s )(7.0s) Sample Problem A roller coaster rolls down a 0 o incline with an acceleration of 5.0 m/s. a) How far horizontall has the coaster traveled in 10 seconds? b) How far verticall has the coaster traveled in 10 seconds? a a (5.0m / s )cos 0 4.7m / s (5.0m / s )sin 0 1.7m / s a) v 0 b) v 0 o 1 o t 1 t 1 1 a t a (4.7)(10 ) 35m t (1.7)(10 ) 35m 13

14 Projectiles Projectile Motion Something is fired, thrown, shot, or hurled near the earth s surface. Horizontal velocit is constant. Vertical velocit is accelerated. Air resistance is ignored. 14

15 1-Dimensional Projectile Definition: A projectile that moves in a vertical direction onl, subject to acceleration b gravit. Eamples: Drop something off a cliff. Throw something straight up and catch it. You calculate vertical motion onl. The motion has no horizontal component. -Dimensional Projectile Definition: A projectile that moves both horizontall and verticall, subject to acceleration b gravit in vertical direction. Eamples: Throw a softball to someone else. Fire a cannon horizontall off a cliff. Shoot a monke with a blowgun. You calculate vertical and horizontal motion. 15

16 Horizontal Component of Velocit Is constant Not accelerated Not influenced b gravit Follows equation: = V o t Horizontal Component of Velocit 16

17 Vertical Component of Velocit Undergoes accelerated motion Accelerated b gravit (9.8 m/s down) V = V o + gt = V o t + 1/gt V = V o + g Horizontal and Vertical 17

18 Solving -D Problems Resolve all vectors into components -component Y-component Work the problem as two one-dimensional problems. Each dimension can obe different equations of motion. Re-combine the results for the two components at the end of the problem. Equations of Kinematics v v 1 o v at o v t v vo a vot 1 at 18

19 The part of the motion occurs eactl as it would if the part did not occur at all, and vice versa. Eample In the direction, the spacecraft has an initial velocit component of + m/s and an acceleration of +4 m/s. In the direction, the analogous quantities are +14 m/s and an acceleration of +1 m/s. Find the final velocit of the spacecraft at time 7.0 s. v o a t 7.0s v v o 4 at 1 v 6.1m / s (6.8m / s v 14m / s m / s 6.8m / s )(7.0s) 19

20 Zero Launch Angle Projectiles Launch angle Definition: The angle at which a projectile is launched. The launch angle determines what the trajector of the projectile will be. Launch angles can range from -90 o (throwing something straight down) to +90 o (throwing something straight up) and everthing in between. 0

21 Zero Launch angle A zero launch angle implies a perfectl horizontal launch. v o Sample Problem The Zambezi River flows over Victoria Falls in Africa. The falls are approimatel 108 m high. If the river is flowing horizontall at 3.6 m/s just before going over the falls, what is the speed of the water when it hits the bottom? How far horizontall does the water travel? Assume the water is in freefall as it drops. v t v o 3.6m / s v speed g o (108m) 9.8m / s 4.7s gt 0 9.8(4.7) 46m / s m / s horizontal v t (3.6)(4.7) 16.9m 1

22 Assignment Pg Problems #1,,4,9,13,17,18,0 1-D and -D Motion Test Frida 9/8

23 Complete the following statement: In projectile motion, a) the horizontal motion depends on the vertical motion. b) the vertical motion depends on the horizontal motion. c) the horizontal acceleration depends on the vertical acceleration. d) the horizontal motion and the vertical motion are independent of each other. e) the vertical acceleration depends on the horizontal acceleration. A football is kicked at an angle 5 with respect to the horizontal. Which one of the following statements best describes the acceleration of the football during this event if air resistance is neglected? a) The acceleration is zero m/s at all times. b) The acceleration is zero m/s when the football has reached the highest point in its trajector. c) The acceleration is positive as the football rises, and it is negative as the football falls. d) The acceleration starts at 9.8 m/s and drops to some constant lower value as the ball approaches the ground. e) The acceleration is 9.8 m/s at all times. 3

24 Which one of the following statements concerning the range of a football is true if the football is kicked at an angle with an initial speed v 0? a) The range is independent of initial speed v 0. b) The range is onl dependent on the initial speed v 0. c) The range is independent of the angle. d) The range is onl dependent on the angle. e) The range is dependent on both the initial speed v 0 and the angle. Balls A, B, and C are identical. From the top of a tall building, ball A is launched with a velocit of 0 m/s at an angle of 45 above the horizontal direction, ball B is launched with a velocit of 0 m/s in the horizontal direction, and ball C is launched with a velocit of 0 m/s at an angle of 45 below the horizontal direction. Which of the following choices correctl relates the magnitudes of the velocities of the balls just before the hit the ground below? Ignore an effects of air resistance. a) v A = v C > v B b) v A = v C = v B c) v A > v C > v B d) v A < v C < v B e) v A > v C < v B 4

25 Zero Launch Angle Projectiles Launch angle Definition: The angle at which a projectile is launched. The launch angle determines what the trajector of the projectile will be. Launch angles can range from -90 o (throwing something straight down) to +90 o (throwing something straight up) and everthing in between. 5

26 Zero Launch angle A zero launch angle implies a perfectl horizontal launch. v o Sample Problem The Zambezi River flows over Victoria Falls in Africa. The falls are approimatel 108 m high. If the river is flowing horizontall at 3.6 m/s just before going over the falls, what is the speed of the water when it hits the bottom? How far horizontall does the water travel? Assume the water is in freefall as it drops. v t v o 3.6m / s v speed g o (108m) 9.8m / s 4.7s gt 0 9.8(4.7) 46m / s m / s horizontal v t (3.6)(4.7) 16.9m 6

27 You need to work on the projectile pre lab and must finish it b the start of class tomorrow. 1-D and -D Motion Test Frida 9/8 7

28 A baseball is hit upward and travels along a parabolic arc before it strikes the ground. Which one of the following statements is necessaril true? a) The velocit of the ball is a maimum when the ball is at the highest point in the arc. b) The -component of the velocit of the ball is the same throughout the ball's flight. c) The acceleration of the ball decreases as the ball moves upward. d) The velocit of the ball is zero m/s when the ball is at the highest point in the arc. e) The acceleration of the ball is zero m/s when the ball is at the highest point in the arc. 8

29 A ball is launched with an initial velocit v 0 as shown. Which one of the following arrows best represents the direction of the acceleration at point A? a) b) c) d) e) The acceleration at point A is zero m/s. General Launch Angle Projectiles 9

30 General launch angle v o Projectile motion is more complicated when the launch angle is not straight up or down (90 o or 90 o ), or perfectl horizontal (0 o ). General launch angle v o You must begin problems like this b resolving the velocit vector into its components. 30

31 Resolving the velocit Use speed and the launch angle to find horizontal and vertical velocit components V o V o = V o sin V o = V o cos Resolving the velocit Then proceed to work problems just like ou did with the zero launch angle problems. V o V o = V o sin V o = V o cos 31

32 Projectiles launched over level ground These projectiles have highl smmetric characteristics of motion. It is hand to know these characteristics, since a knowledge of the smmetr can help in working problems and predicting the motion. Lets take a look at projectiles launched over level ground. Trajector of a -D Projectile Definition: The trajector is the path traveled b an projectile. It is plotted on an - graph. 3

33 Trajector of a -D Projectile Mathematicall, the path is defined b a parabola. Trajector of a -D Projectile For a projectile launched over level ground, the smmetr is apparent. 33

34 Range of a -D Projectile Range Definition: The RANGE of the projectile is how far it travels horizontall. Maimum height of a projectile Maimum Height Range The MAXIMUM HEIGHT of the projectile occurs when it stops moving upward. 34

35 Maimum height of a projectile Maimum Height Range The vertical velocit component is zero at maimum height. Maimum height of a projectile Maimum Height Range For a projectile launched over level ground, the maimum height occurs halfwa through the flight of the projectile. 35

36 Acceleration of a projectile g g g g g Acceleration points down at 9.8 m/s for the entire trajector of all projectiles. Velocit of a projectile v v v v o vf Velocit is tangent to the path for the entire trajector. 36

37 Velocit of a projectile v v v v v v v v v The velocit can be resolved into components all along its path. Velocit of a projectile v v v v v v v v v Notice how the vertical velocit changes while the horizontal velocit remains constant. 37

38 Velocit of a projectile v v v v v v v v v Maimum speed is attained at the beginning, and again at the end, of the trajector if the projectile is launched over level ground. Velocit of a projectile v o Launch angle is smmetric with landing angle for a projectile launched over level ground. v o - 38

39 Time of flight for a projectile t t o = 0 The projectile spends half its time traveling upward Time of flight for a projectile t t o = 0 t and the other half traveling down. 39

40 Sample problem A projectile fired from a gun has initial horizontal and vertical components of velocit equal to 30 m/s and 40 m/s, respectivel. Determine the initial speed of the projectile and determine the angle is the projectile fired (measured with respect to the horizontal). v m/s 40 tan o tan 53.1 Sample problem A soccer ball is kicked with a speed of 9.50 m/s at an angle of 5 o above the horizontal. If the ball lands at the same level from which is was kicked, how long was it in the air and how far did it travel? v v o 9.5sin m/s 4.01 m/s a 9.8 m/s v v at o ( 9.8) t t t 0.8 sec o v o 9.5cos m/s t 0.8 sec a 0 m/s v t (8.61)(0.8) 7.1 m o 40

41 Sample problem Snowballs are thrown with a speed of 13 m/s from a roof 7.0 m above the ground. Snowball A is thrown straight downward; snowball B is thrown in a direction 5 o above the horizontal. When the snowballs land, is the speed of A greater than, less than, or the same speed of B? The land with the same speed Position graphs for -D projectiles t t 41

42 Velocit graphs for -D projectiles V V t t Acceleration graphs for -D projectiles a a t t 4

43 The Range Equation Derivation is an important part of phsics. Your book has man more equations than our formula sheet. The Range Equation is in our tetbook, but not on our formula sheet. You can use it if ou can memorize it or derive it! The Range Equation R = v o sin( )/g. R: range of projectile fired over level ground v o : initial velocit g: acceleration due to gravit : launch angle 43

44 Assignment Do pg Questions #4,6,1 Problems #,4,6,31 44

Introduction to 2-Dimensional Motion

Introduction to 2-Dimensional Motion Introduction to 2-Dimensional Motion 2-Dimensional Motion! Definition: motion that occurs with both x and y components.! Example:! Playing pool.! Throwing a ball to another person.! Each dimension of the

More information

Chapter 2. Kinematics in One Dimension. continued

Chapter 2. Kinematics in One Dimension. continued Chapter 2 Kinematics in One Dimension continued 2.6 Freely Falling Bodies Example 10 A Falling Stone A stone is dropped from the top of a tall building. After 3.00s of free fall, what is the displacement

More information

PSI AP Physics 1 Kinematics. Free Response Problems

PSI AP Physics 1 Kinematics. Free Response Problems PSI AP Physics 1 Kinematics Free Response Problems 1. A car whose speed is 20 m/s passes a stationary motorcycle which immediately gives chase with a constant acceleration of 2.4 m/s 2. a. How far will

More information

Chapter 3 Kinematics in Two Dimensions; Vectors

Chapter 3 Kinematics in Two Dimensions; Vectors Chapter 3 Kinematics in Two Dimensions; Vectors Vectors and Scalars Addition of Vectors Graphical Methods (One and Two- Dimension) Multiplication of a Vector by a Scalar Subtraction of Vectors Graphical

More information

Kinematics in Two Dimensions; Vectors

Kinematics in Two Dimensions; Vectors Kinematics in Two Dimensions; Vectors Vectors & Scalars!! Scalars They are specified only by a number and units and have no direction associated with them, such as time, mass, and temperature.!! Vectors

More information

Kinematics Multiple- Choice Questions (answers on page 16)

Kinematics Multiple- Choice Questions (answers on page 16) Kinematics Multiple- Choice Questions (answers on page 16) 1. An object moves around a circular path of radius R. The object starts from point A, goes to point B and describes an arc of half of the circle.

More information

Chapter 4 MOTION IN TWO AND THREE DIMENSIONS

Chapter 4 MOTION IN TWO AND THREE DIMENSIONS Chapter 4 MTIN IN TW AND THREE DIMENSINS Section 4-5, 4-6 Projectile Motion Projectile Motion Analzed Important skills from this lecture: 1. Identif the projectile motion and its velocit and acceleration

More information

Chapter 4. Motion in Two Dimensions

Chapter 4. Motion in Two Dimensions Chapter 4 Motion in Two Dimensions Projectile Motion An object may move in both the x and y directions simultaneously. This form of two-dimensional motion we will deal with is called projectile motion.

More information

Unit 1, Lessons 2-5: Vectors in Two Dimensions

Unit 1, Lessons 2-5: Vectors in Two Dimensions Unit 1, Lessons 2-5: Vectors in Two Dimensions Textbook Sign-Out Put your name in it and let s go! Check-In Any questions from last day s homework? Vector Addition 1. Find the resultant displacement

More information

Vector and Relative motion discussion/ in class notes. Projectile Motion discussion and launch angle problem. Finish 2 d motion and review for test

Vector and Relative motion discussion/ in class notes. Projectile Motion discussion and launch angle problem. Finish 2 d motion and review for test AP Physics 1 Unit 2: 2 Dimensional Kinematics Name: Date In Class Homework to completed that evening (before coming to next class period) 9/6 Tue (B) 9/7 Wed (C) 1D Kinematics Test Unit 2 Video 1: Vectors

More information

Vectors. Graphical Method. Graphical Method. SEEMS SIMPLE? = 30.5 m/s. Graphical Method. Graphical Method (TIP TO TAIL) S

Vectors. Graphical Method. Graphical Method. SEEMS SIMPLE? = 30.5 m/s. Graphical Method. Graphical Method (TIP TO TAIL) S Vectors Graphical Method General discussion. Vector - A quantity which has magnitude and direction. Velocity, acceleration, Force, E Field, Mag Field, calar - A quantity which has magnitude only. (temp,

More information

Chapter 3. Kinematics in Two Dimensions

Chapter 3. Kinematics in Two Dimensions Chapter 3 Kinematics in Two Dimensions 3.1 Trigonometry 3.1 Trigonometry sin! = h o h cos! = h a h tan! = h o h a 3.1 Trigonometry tan! = h o h a tan50! = h o 67.2m h o = tan50! ( 67.2m) = 80.0m 3.1 Trigonometry!

More information

5 Projectile Motion. Projectile motion can be described by the horizontal and vertical components of motion.

5 Projectile Motion. Projectile motion can be described by the horizontal and vertical components of motion. Projectile motion can be described by the horizontal and vertical components of motion. In the previous chapter we studied simple straight-line motion linear motion. Now we extend these ideas to nonlinear

More information

Planar Motion with Constant Acceleration

Planar Motion with Constant Acceleration Planar Motion with Constant Acceleration 1. If the acceleration vector of an object is perpendicular to its velocity vector, which of the following must be true? (a) The speed is changing. (b) The direction

More information

Problem: Projectile (CM-1998)

Problem: Projectile (CM-1998) Physics C -D Kinematics Name: ANSWER KEY AP Review Packet Vectors have both magnitude and direction displacement, velocity, acceleration Scalars have magnitude only distance, speed, time, mass Unit vectors

More information

Kinematics. UCVTS AIT Physics

Kinematics. UCVTS AIT Physics Kinematics UCVTS AIT Physics Kinematics Kinematics the branch of mechanics that deals with the study of the motion of objects without regard to the forces that cause the motion Displacement A vector that

More information

Relative Velocity. Exercise

Relative Velocity. Exercise PHYSICS 0 Lecture 06 Projectile Motion Tetbook Sections 4. Lecture 6 Purdue Universit, Phsics 0 1 Relative Velocit We often assume that our reference frame is attached to the Earth. What happen when the

More information

Adding Vectors in Two Dimensions

Adding Vectors in Two Dimensions Slide 37 / 125 Adding Vectors in Two Dimensions Return to Table of Contents Last year, we learned how to add vectors along a single axis. The example we used was for adding two displacements. Slide 38

More information

When we throw a ball :

When we throw a ball : PROJECTILE MOTION When we throw a ball : There is a constant velocity horizontal motion And there is an accelerated vertical motion These components act independently of each other PROJECTILE MOTION A

More information

PHY 1114: Physics I. Quick Question 1. Quick Question 2. Quick Question 3. Quick Question 4. Lecture 5: Motion in 2D

PHY 1114: Physics I. Quick Question 1. Quick Question 2. Quick Question 3. Quick Question 4. Lecture 5: Motion in 2D PHY 1114: Physics I Lecture 5: Motion in D Fall 01 Kenny L. Tapp Quick Question 1 A child throws a ball vertically upward at the school playground. Which one of the following quantities is (are) equal

More information

Problem: Projectile (CM-1998) Justify your answer: Problem: Projectile (CM-1998) 5 10 m/s 3. Show your work: 3 m/s 2

Problem: Projectile (CM-1998) Justify your answer: Problem: Projectile (CM-1998) 5 10 m/s 3. Show your work: 3 m/s 2 Physics C -D Kinematics Name: AP Review Packet Vectors have both magnitude and direction displacement, velocity, acceleration Scalars have magnitude only distance, speed, time, mass Unit vectors Specify

More information

Bill s ball goes up and comes back down to Bill s level. At that point, it is

Bill s ball goes up and comes back down to Bill s level. At that point, it is ConcepTest 2.1 Up in the Air Alice and Bill are at the top of a cliff of height H.. Both throw a ball with initial speed v 0, Alice straight down and Bill straight up. The speeds of the balls when they

More information

Unit 1 Test Review Physics Basics, Movement, and Vectors Chapters 2-3

Unit 1 Test Review Physics Basics, Movement, and Vectors Chapters 2-3 A.P. Physics B Unit 1 Test Review Physics Basics, Movement, and Vectors Chapters - 3 * In studying for your test, make sure to study this review sheet along with your quizzes and homework assignments.

More information

Review! Kinematics: Free Fall, A Special Case. Review! A Few Facts About! Physics 101 Lecture 3 Kinematics: Vectors and Motion in 1 Dimension

Review! Kinematics: Free Fall, A Special Case. Review! A Few Facts About! Physics 101 Lecture 3 Kinematics: Vectors and Motion in 1 Dimension Phsics 101 Lecture 3 Kinematics: Vectors and Motion in 1 Dimension What concepts did ou find most difficult, or what would ou like to be sure we discuss in lecture? Acceleration vectors. Will ou go over

More information

Progressive Science Initiative. Click to go to website:

Progressive Science Initiative. Click to go to website: Slide 1 / 246 New Jersey Center for Teaching and Learning Progressive Science Initiative This material is made freely available at www.njctl.org and is intended for the non-commercial use of students and

More information

CHAPTER 3: Kinematics in Two Dimensions; Vectors

CHAPTER 3: Kinematics in Two Dimensions; Vectors HAPTER 3: Kinematics in Two Dimensions; Vectors Solution Guide to WebAssign Problems 3.1 [] The truck has a displacement of 18 + (16) blocks north and 1 blocks east. The resultant has a magnitude of +

More information

CHAPTER 3 KINEMATICS IN TWO DIMENSIONS; VECTORS

CHAPTER 3 KINEMATICS IN TWO DIMENSIONS; VECTORS CHAPTER 3 KINEMATICS IN TWO DIMENSIONS; VECTORS OBJECTIVES After studying the material of this chapter, the student should be able to: represent the magnitude and direction of a vector using a protractor

More information

Honors Physics Acceleration and Projectile Review Guide

Honors Physics Acceleration and Projectile Review Guide Honors Physics Acceleration and Projectile Review Guide Major Concepts 1 D Motion on the horizontal 1 D motion on the vertical Relationship between velocity and acceleration Difference between constant

More information

Methods of Integration

Methods of Integration U96-b)! Use the substitution u = - to evaluate U95-b)! 4 Methods of Integration d. Evaluate 9 d using the substitution u = + 9. UNIT MATHEMATICS (HSC) METHODS OF INTEGRATION CSSA «8» U94-b)! Use the substitution

More information

CHAPTER-OPENING QUESTION

CHAPTER-OPENING QUESTION g B This snowboarder fling through the air shows an eample of motion in two dimensions. In the absence of air resistance, the path would be a perfect parabola. The gold arrow represents the downward acceleration

More information

GALILEAN RELATIVITY. Projectile motion. The Principle of Relativity

GALILEAN RELATIVITY. Projectile motion. The Principle of Relativity GALILEAN RELATIVITY Projectile motion The Principle of Relativity When we think of the term relativity, the person who comes immediately to mind is of course Einstein. Galileo actually understood what

More information

For use only in [the name of your school] 2014 M2 Note. M2 Notes (Edexcel)

For use only in [the name of your school] 2014 M2 Note. M2 Notes (Edexcel) For use onl in [the name of our school] 014 M Note M Notes (Edecel) Copright www.pgmaths.co.uk - For AS, A notes and IGCSE / GCSE worksheets 1 For use onl in [the name of our school] 014 M Note Copright

More information

Physics Chapter 3 Notes. Section 3-1: Introduction to Vectors (pages 80-83)

Physics Chapter 3 Notes. Section 3-1: Introduction to Vectors (pages 80-83) Physics Chapter 3 Notes Section 3-1: Introduction to Vectors (pages 80-83) We can use vectors to indicate both the magnitude of a quantity, and the direction. Vectors are often used in 2- dimensional problems.

More information

3.4 Projectile Motion

3.4 Projectile Motion 3.4 Projectile Motion Projectile Motion A projectile is anything launched, shot or thrown---i.e. not self-propelled. Examples: a golf ball as it flies through the air, a kicked soccer ball, a thrown football,

More information

Projectile Motion. v = v 2 + ( v 1 )

Projectile Motion. v = v 2 + ( v 1 ) What do the following situations have in common? Projectile Motion A monkey jumps from the branch of one tree to the branch of an adjacent tree. A snowboarder glides at top speed off the end of a ramp

More information

(a) On the diagram above, draw an arrow showing the direction of velocity of the projectile at point A.

(a) On the diagram above, draw an arrow showing the direction of velocity of the projectile at point A. QUESTION 1 The path of a projectile in a uniform gravitational field is shown in the diagram below. When the projectile reaches its maximum height, at point A, its speed v is 8.0 m s -1. Assume g = 10

More information

9/7/11. Which of the following is not a vector? Physics 101 Tuesday 9/6/11 Class 4

9/7/11. Which of the following is not a vector? Physics 101 Tuesday 9/6/11 Class 4 Reading Quiz Which of the following is not a vector? Physics 101 Tuesday 9/6/11 Class 4 Chapter 3 Sections 3.1 3.4 Free fall Components of a Vector Adding and Subtracting Vectors Unit Vectors A: speed

More information

Lecture PowerPoints. Chapter 3 Physics for Scientists & Engineers, with Modern Physics, 4 th edition Giancoli

Lecture PowerPoints. Chapter 3 Physics for Scientists & Engineers, with Modern Physics, 4 th edition Giancoli Lecture PowerPoints Chapter 3 Physics for Scientists & Engineers, with Modern Physics, 4 th edition Giancoli 2009 Pearson Education, Inc. This work is protected by United States copyright laws and is provided

More information

PHYS-2010: General Physics I Course Lecture Notes Section IV

PHYS-2010: General Physics I Course Lecture Notes Section IV PHYS-010: General Phsics I Course Lecture Notes Section IV Dr. Donald G. Luttermoser East Tennessee State Universit Edition.3 Abstract These class notes are designed for use of the instructor and students

More information

Vector Quantities A quantity such as force, that has both magnitude and direction. Examples: Velocity, Acceleration

Vector Quantities A quantity such as force, that has both magnitude and direction. Examples: Velocity, Acceleration Projectile Motion Vector Quantities A quantity such as force, that has both magnitude and direction. Examples: Velocity, Acceleration Scalar Quantities A quantity such as mass, volume, and time, which

More information

Projectile motion. Objectives. Assessment. Assessment. Equations. Physics terms 5/20/14. Identify examples of projectile motion.

Projectile motion. Objectives. Assessment. Assessment. Equations. Physics terms 5/20/14. Identify examples of projectile motion. Projectile motion Objectives Identify examples of projectile motion. Solve projectile motion problems. problems Graph the motion of a projectile. 1. Which of the events described below cannot be an example

More information

Exam 2--PHYS 101--Fall 2014

Exam 2--PHYS 101--Fall 2014 Class: Date: Exam 2--PHYS 101--Fall 2014 Multiple Choice Identify the choice that best completes the statement or answers the question. 1. Consider these vectors. What is A-B? a. a c. c b. b d. d 2. Consider

More information

Projectile Motion. Chin- Sung Lin STEM GARAGE SCIENCE PHYSICS

Projectile Motion. Chin- Sung Lin STEM GARAGE SCIENCE PHYSICS Projectile Motion Chin- Sung Lin Introduction to Projectile Motion q What is Projectile Motion? q Trajectory of a Projectile q Calculation of Projectile Motion Introduction to Projectile Motion q What

More information

Vocabulary Preview. Oct 21 9:53 AM. Projectile Motion. An object shot through the air is called a projectile.

Vocabulary Preview. Oct 21 9:53 AM. Projectile Motion. An object shot through the air is called a projectile. Projectile Trajectory Range Launch angle Vocabulary Preview Projectile Motion Projectile Motion An object shot through the air is called a projectile. A projectile can be a football, a bullet, or a drop

More information

physics Chapter 4 Lecture a strategic approach randall d. knight FOR SCIENTISTS AND ENGINEERS Chapter 4_Lecture1 THIRD EDITION

physics Chapter 4 Lecture a strategic approach randall d. knight FOR SCIENTISTS AND ENGINEERS Chapter 4_Lecture1 THIRD EDITION Chapter 4 Lecture physics FOR SCIENTISTS AND ENGINEERS a strategic approach THIRD EDITION randall d. knight Chapter 4_Lecture1 1 Chapter 4 Kinematics in 2D: Projectile Motion (Sec. 4.2) Which fountain

More information

Two Dimensional Kinematics Challenge Problems

Two Dimensional Kinematics Challenge Problems Two Dimensional Kinematics Challenge Problems Problem 1: Suppose a MIT student wants to row across the Charles River. Suppose the water is moving downstream at a constant rate of 1.0 m/s. A second boat

More information

Bell Ringer. x- direction: Ball and car start with same position and velocity, a=0, so always have same position

Bell Ringer. x- direction: Ball and car start with same position and velocity, a=0, so always have same position Objectives Students should be able to add, subtract, and resolve displacement and velocity vectors so they can: Determine the components of a vector along two specified, mutually perpendicular axes. Determine

More information

Physics 12 Unit 1: Kinematics Notes. Name: What you will be able to do by the end of this unit:

Physics 12 Unit 1: Kinematics Notes. Name: What you will be able to do by the end of this unit: Physics 12 Unit 1: Kinematics Notes. Name: What you will be able to do by the end of this unit: B1. Perform vector analysis in one or two dimensions identify scalars and vectors resolve a vector into two

More information

UNIT I: MECHANICS Chapter 5: Projectile Motion

UNIT I: MECHANICS Chapter 5: Projectile Motion IMPORTANT TERMS: Component Projectile Resolution Resultant Satellite Scalar quantity Vector Vector quantity UNIT I: MECHANICS Chapter 5: Projectile Motion I. Vector and Scalar Quantities (5-1) A. Vector

More information

Kinematics 2. What equation relates the known quantities to what is being asked?

Kinematics 2. What equation relates the known quantities to what is being asked? Physics R Date: 1. A cheetah goes from rest to 60 miles per hour (26.8 m/s) in 3 seconds. Calculate the acceleration of the cheetah. Kinematics Equations Kinematics 2 How to solve a Physics problem: List

More information

Chapter 3 Kinematics in Two Dimensions; Vectors

Chapter 3 Kinematics in Two Dimensions; Vectors Chapter 3 Kinematics in Two Dimensions; Vectors Vectors and Scalars Units of Chapter 3 Addition of Vectors Graphical Methods Subtraction of Vectors, and Multiplication of a Vector by a Scalar Adding Vectors

More information

PS 11 GeneralPhysics I for the Life Sciences

PS 11 GeneralPhysics I for the Life Sciences PS 11 GeneralPhysics I for the Life Sciences M E C H A N I C S I D R. B E N J A M I N C H A N A S S O C I A T E P R O F E S S O R P H Y S I C S D E P A R T M E N T N O V E M B E R 0 1 3 Definition Mechanics

More information

Trigonometry Basics. Which side is opposite? It depends on the angle. θ 2. Y is opposite to θ 1 ; Y is adjacent to θ 2.

Trigonometry Basics. Which side is opposite? It depends on the angle. θ 2. Y is opposite to θ 1 ; Y is adjacent to θ 2. Trigonometry Basics Basic Terms θ (theta) variable for any angle. Hypotenuse longest side of a triangle. Opposite side opposite the angle (θ). Adjacent side next to the angle (θ). Which side is opposite?

More information

Physics 11 Chapter 3: Kinematics in Two Dimensions. Problem Solving

Physics 11 Chapter 3: Kinematics in Two Dimensions. Problem Solving Physics 11 Chapter 3: Kinematics in Two Dimensions The only thing in life that is achieved without effort is failure. Source unknown "We are what we repeatedly do. Excellence, therefore, is not an act,

More information

Motion in Two Dimensions Reading Notes

Motion in Two Dimensions Reading Notes Motion in Two Dimensions Reading Notes Name: Section 3-1: Vectors and Scalars What typeface do we use to indicate a vector? Test Your Understanding: Circle the quantities that are vectors. Acceleration

More information

1. (P2.1A) The picture below shows a ball rolling along a table at 1 second time intervals. What is the object s average velocity after 6 seconds?

1. (P2.1A) The picture below shows a ball rolling along a table at 1 second time intervals. What is the object s average velocity after 6 seconds? PHYSICS FINAL EXAM REVIEW FIRST SEMESTER (01/2017) UNIT 1 Motion P2.1 A Calculate the average speed of an object using the change of position and elapsed time. P2.1B Represent the velocities for linear

More information

Physics 231. Topic 3: Vectors and two dimensional motion. Alex Brown September MSU Physics 231 Fall

Physics 231. Topic 3: Vectors and two dimensional motion. Alex Brown September MSU Physics 231 Fall Physics 231 Topic 3: Vectors and two dimensional motion Alex Brown September 14-18 2015 MSU Physics 231 Fall 2014 1 What s up? (Monday Sept 14) 1) Homework set 01 due Tuesday Sept 15 th 10 pm 2) Learning

More information

Chapter 3: Vectors and Projectile Motion

Chapter 3: Vectors and Projectile Motion Chapter 3: Vectors and Projectile Motion Vectors and Scalars You might remember from math class the term vector. We define a vector as something with both magnitude and direction. For example, 15 meters/second

More information

PHYSICS MIDTERM REVIEW PACKET

PHYSICS MIDTERM REVIEW PACKET PHYSICS MIDTERM REVIEW PACKET PERIOD: TIME: DATE: ROOM: YOU NEED TO BRING: 1. #2 PENCIL W/ ERASER. 2. CALCULATOR (YOUR OWN). YOU WILL NOT BE ALLOWED TO SHARE OR BORROW!!! YOU WILL BE GIVEN: 1. FORMULA

More information

Chapter 4. Two-Dimensional Motion

Chapter 4. Two-Dimensional Motion Chapter 4. Two-Dimensional Motion 09/1/003 I. Intuitive (Understanding) Review Problems. 1. If a car (object, body, truck) moves with positive velocity and negative acceleration, it means that its a) speed

More information

AP Physics First Nine Weeks Review

AP Physics First Nine Weeks Review AP Physics First Nine Weeks Review 1. If F1 is the magnitude of the force exerted by the Earth on a satellite in orbit about the Earth and F2 is the magnitude of the force exerted by the satellite on the

More information

C) D) 2. The diagram below shows a worker using a rope to pull a cart.

C) D) 2. The diagram below shows a worker using a rope to pull a cart. 1. Which graph best represents the relationship between the acceleration of an object falling freely near the surface of Earth and the time that it falls? 2. The diagram below shows a worker using a rope

More information

Projectile Motion trajectory Projectile motion

Projectile Motion trajectory Projectile motion Projectile Motion The path that a moving object follows is called its trajectory. An object thrown horizontally is accelerated downward under the influence of gravity. Gravitational acceleration is only

More information

ISSUED BY K V - DOWNLOADED FROM KINEMATICS

ISSUED BY K V - DOWNLOADED FROM   KINEMATICS KINEMATICS *rest and Motion are relative terms, nobody can exist in a state of absolute rest or of absolute motion. *One dimensional motion:- The motion of an object is said to be one dimensional motion

More information

3.2 Projectile Motion

3.2 Projectile Motion Motion in 2-D: Last class we were analyzing the distance in two-dimensional motion and revisited the concept of vectors, and unit-vector notation. We had our receiver run up the field then slant Northwest.

More information

Demo: x-t, v-t and a-t of a falling basket ball.

Demo: x-t, v-t and a-t of a falling basket ball. Demo: x-t, v-t and a-t of a falling basket ball. I-clicker question 3-1: A particle moves with the position-versus-time graph shown. Which graph best illustrates the velocity of the particle as a function

More information

1-D Motion: Free Falling Objects

1-D Motion: Free Falling Objects v (m/s) a (m/s^2) 1-D Motion: Free Falling Objects So far, we have only looked at objects moving in a horizontal dimension. Today, we ll look at objects moving in the vertical. Then, we ll look at both

More information

INTRODUCTION AND KINEMATICS. Physics Unit 1 Chapters 1-3

INTRODUCTION AND KINEMATICS. Physics Unit 1 Chapters 1-3 INTRODUCTION AND KINEMATICS Physics Unit 1 Chapters 1-3 This Slideshow was developed to accompany the textbook OpenStax Physics Available for free at https://openstaxcollege.org/textbooks/college-physics

More information

Bell Ringer: What is constant acceleration? What is projectile motion?

Bell Ringer: What is constant acceleration? What is projectile motion? Bell Ringer: What is constant acceleration? What is projectile motion? Can we analyze the motion of an object on the y-axis independently of the object s motion on the x-axis? NOTES 3.2: 2D Motion: Projectile

More information

Chapter 3. Table of Contents. Section 1 Introduction to Vectors. Section 2 Vector Operations. Section 3 Projectile Motion. Section 4 Relative Motion

Chapter 3. Table of Contents. Section 1 Introduction to Vectors. Section 2 Vector Operations. Section 3 Projectile Motion. Section 4 Relative Motion Two-Dimensional Motion and Vectors Table of Contents Section 1 Introduction to Vectors Section 2 Vector Operations Section 3 Projectile Motion Section 4 Relative Motion Section 1 Introduction to Vectors

More information

Chapter 3 Homework Packet. Conceptual Questions

Chapter 3 Homework Packet. Conceptual Questions Chapter 3 Homework Packet Conceptual Questions 1) Which one of the following is an example of a vector quantity? A) mass B) area C) distance D) velocity A vector quantity has both magnitude and direction.

More information

Solutions to Physics: Principles with Applications, 5/E, Giancoli Chapter 3 CHAPTER 3

Solutions to Physics: Principles with Applications, 5/E, Giancoli Chapter 3 CHAPTER 3 Solutions to Phsics: Principles with Applications, 5/E, Giancoli Chapter 3 CHAPTE 3 1. We choose the west and south coordinate sstem shown. For the components of the resultant we have W W = D 1 + D cos

More information

Graphing Motion Part 2

Graphing Motion Part 2 Kinematics 2: Motion Graphs & Free Fall Sep 5 10:34 AM Sep 5 1:25 PM Graphing Motion Part 2 How do you calculate the slope of a line? What would the slope of a distance vs time graph represent? What would

More information

2 MOTION ALONG A STRAIGHT LINE

2 MOTION ALONG A STRAIGHT LINE MOTION ALONG A STRAIGHT LINE Download full Solution manual for Universit phsics with modern phsics 14t http://testbankcollection.com/download/solution-manual-for-universit-phsics-withmodern-phsics-14th.1.

More information

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. PHYS 101 Fall 2013 (Purcell), Fake Midterm #1 MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) The figure shows the graph of the position x as a

More information

Skills Practice Skills Practice for Lesson 1.1

Skills Practice Skills Practice for Lesson 1.1 Skills Practice Skills Practice for Lesson. Name Date Lots and Projectiles Introduction to Quadratic Functions Vocabular Give an eample of each term.. quadratic function 9 0. vertical motion equation s

More information

Two-Dimensional Motion Worksheet

Two-Dimensional Motion Worksheet Name Pd Date Two-Dimensional Motion Worksheet Because perpendicular vectors are independent of each other we can use the kinematic equations to analyze the vertical (y) and horizontal (x) components of

More information

LAB 05 Projectile Motion

LAB 05 Projectile Motion LAB 5 Projectile Motion CONTENT: 1. Introduction. Projectile motion A. Setup B. Various characteristics 3. Pre-lab: A. Activities B. Preliminar info C. Quiz 1. Introduction After introducing one-dimensional

More information

Giancoli: PHYSICS. Notes: Ch. 1 Introduction, Measurement, Estimating

Giancoli: PHYSICS. Notes: Ch. 1 Introduction, Measurement, Estimating Giancoli: PHYSICS Name: Notes: Ch. 1 Introduction, Measurement, Estimating Skim read this chapter and record important concepts that you need to remember here. Guided Notes: Ch. 2 Describing Motion: Kinematics

More information

Main points of today s lecture: Example: addition of velocities Trajectories of objects in 2 dimensions: Physic 231 Lecture 5 ( )

Main points of today s lecture: Example: addition of velocities Trajectories of objects in 2 dimensions: Physic 231 Lecture 5 ( ) Main points of toda s lecture: Eample: addition of elocities Trajectories of objects in dimensions: Phsic 31 Lecture 5 ( ) t g gt t t gt o 1 1 downwards 9.8 m/s g Δ Δ Δ + Δ Motion under Earth s graitational

More information

Regents Physics. Physics Midterm Review - Multiple Choice Problems

Regents Physics. Physics Midterm Review - Multiple Choice Problems Name Physics Midterm Review - Multiple Choice Problems Regents Physics 1. A car traveling on a straight road at 15.0 meters per second accelerates uniformly to a speed of 21.0 meters per second in 12.0

More information

MOTION IN A PLANE. Chapter Four MCQ I. (a) 45 (b) 90 (c) 45 (d) 180

MOTION IN A PLANE. Chapter Four MCQ I. (a) 45 (b) 90 (c) 45 (d) 180 Chapter Four MOTION IN A PLANE MCQ I 4.1 The angle between A = ˆi + ˆj and B = ˆi ˆj is (a) 45 (b) 90 (c) 45 (d) 180 4.2 Which one of the following statements is true? (a) A scalar quantity is the one

More information

Announcement. Quiz on Friday (Graphing and Projectile Motion) No HW due Wednesday

Announcement. Quiz on Friday (Graphing and Projectile Motion) No HW due Wednesday Going over HW3.05 Announcement Quiz on Friday (Graphing and Projectile Motion) No HW due Wednesday As the red ball rolls off the edge, a green ball is dropped from rest from the same height at the same

More information

2-D Kinematics. In general, we have the following 8 equations (4 per dimension): Notes Page 1 of 7

2-D Kinematics. In general, we have the following 8 equations (4 per dimension): Notes Page 1 of 7 2-D Kinematics The problem we run into with 1-D kinematics, is that well it s one dimensional. We will now study kinematics in two dimensions. Obviously the real world happens in three dimensions, but

More information

Midterm Prep. 1. Which combination correctly pairs a vector quantity with its corresponding unit?

Midterm Prep. 1. Which combination correctly pairs a vector quantity with its corresponding unit? Name: ate: 1. Which combination correctly pairs a vector quantity with its corresponding unit?. weight and kg. velocity and m/s. speed and m/s. acceleration and m 2 /s 2. 12.0-kilogram cart is moving at

More information

Solve Quadratic Equations by Graphing

Solve Quadratic Equations by Graphing 0.3 Solve Quadratic Equations b Graphing Before You solved quadratic equations b factoring. Now You will solve quadratic equations b graphing. Wh? So ou can solve a problem about sports, as in Eample 6.

More information

AP* PHYSICS B DESCRIBING MOTION: KINEMATICS IN TWO DIMENSIONS &VECTORS

AP* PHYSICS B DESCRIBING MOTION: KINEMATICS IN TWO DIMENSIONS &VECTORS AP* PHYSICS B DESCRIBING MOTION: KINEMATICS IN TWO DIMENSIONS &VECTORS The moment of truth has arrived! To discuss objects that move in something other than a straight line we need vectors. VECTORS Vectors

More information

2. KINEMATICS. By Liew Sau Poh

2. KINEMATICS. By Liew Sau Poh 2. KINEMATICS By Liew Sau Poh 1 OBJECTIVES 2.1 Linear motion 2.2 Projectiles 2.3 Free falls and air resistance 2 OUTCOMES Derive and use equations of motion with constant acceleration Sketch and use the

More information

Motion in Two Dimensions. 1.The Position, Velocity, and Acceleration Vectors 2.Two-Dimensional Motion with Constant Acceleration 3.

Motion in Two Dimensions. 1.The Position, Velocity, and Acceleration Vectors 2.Two-Dimensional Motion with Constant Acceleration 3. Motion in Two Dimensions 1.The Position, Velocity, and Acceleration Vectors 2.Two-Dimensional Motion with Constant Acceleration 3.Projectile Motion The position of an object is described by its position

More information

Chapter 3 2-D Motion

Chapter 3 2-D Motion Chapter 3 2-D Motion We will need to use vectors and their properties a lot for this chapter. .. Pythagorean Theorem: Sample problem: First you hike 100 m north. Then hike 50 m west. Finally

More information

2-D Vector Equations have the same form as 1-D Kinematics. f i i

2-D Vector Equations have the same form as 1-D Kinematics. f i i 2-D Vector Equations have the same form as 1-D Kinematics v = v + at f i 1 r = r + v t+ at f i i 2 2 2-D Vector Equations have the same form as 1-D Kinematics v = viˆ+ v ˆj f x y = ( v + ati ) ˆ+ ( v +

More information

Announcements. Unit 1 homework due tomorrow 11:59 PM Quiz 1 on 3:00P Unit 1. Units 2 & 3 homework sets due 11:59 PM

Announcements. Unit 1 homework due tomorrow 11:59 PM Quiz 1 on 3:00P Unit 1. Units 2 & 3 homework sets due 11:59 PM Announcements Unit 1 homework due tomorrow (Tuesday) @ 11:59 PM Quiz 1 on Wednesday @ 3:00P Unit 1 Ø First 12 minutes of class: be on time!!! Units 2 & 3 homework sets due Sunday @ 11:59 PM Ø Most homework

More information

Exam 2--PHYS 101--F17

Exam 2--PHYS 101--F17 Name: Exam 2--PHYS 0--F7 Multiple Choice Identify the choice that best completes the statement or answers the question.. A ball is thrown in the air at an angle of 30 to the ground, with an initial speed

More information

( ) ( ) A i ˆj. What is the unit vector  that points in the direction of A? 1) The vector A is given by = ( 6.0m ) ˆ ( 8.0m ) Solution A D) 6 E) 6

( ) ( ) A i ˆj. What is the unit vector  that points in the direction of A? 1) The vector A is given by = ( 6.0m ) ˆ ( 8.0m ) Solution A D) 6 E) 6 A i ˆj. What is the unit vector  that points in the direction of A? 1) The vector A is given b ( 6.m ) ˆ ( 8.m ) A ˆ i ˆ ˆ j A ˆ i ˆ ˆ j C) A ˆ ( 1 ) ( i ˆ ˆ j) D) Aˆ.6 iˆ+.8 ˆj E) Aˆ.6 iˆ.8 ˆj A) (.6m

More information

Page 1. Name: Section This assignment is due at the first class in 2019 Part I Show all work!

Page 1. Name: Section This assignment is due at the first class in 2019 Part I Show all work! Name: Section This assignment is due at the first class in 2019 Part I Show all work! 7164-1 - Page 1 1) A car travels at constant speed around a section of horizontal, circular track. On the diagram provided

More information

Lab 5: Projectile Motion

Lab 5: Projectile Motion Concepts to explore Scalars vs. vectors Projectiles Parabolic trajectory As you learned in Lab 4, a quantity that conveys information about magnitude only is called a scalar. However, when a quantity,

More information

Mechanics 2. Douglas Quadling. Series editor Hugh Neill

Mechanics 2. Douglas Quadling. Series editor Hugh Neill Mechanics 2 Douglas Quadling Series editor Hugh Neill PUBLISHED BY THE PRESS SYNDICATE OF THE UNIVERSITY OF CAMBRIDGE The Pitt Building, Trumpington Street, Cambridge, United Kingdom CAMBRIDGE UNIVERSITY

More information

A scalar quantity has just magnitude A vector quantity has both magnitude and direction

A scalar quantity has just magnitude A vector quantity has both magnitude and direction Name Date Mods REVIEW FOR MIDYEAR ASSESSMENT 1. Physics is the most basic science because Physics supports chemistry, chemistry supports biology. The ideas of physics are fundamental to these more complicated

More information

Quadratic Functions Objective: To be able to graph a quadratic function and identify the vertex and the roots.

Quadratic Functions Objective: To be able to graph a quadratic function and identify the vertex and the roots. Name: Quadratic Functions Objective: To be able to graph a quadratic function and identif the verte and the roots. Period: Quadratic Function Function of degree. Usuall in the form: We are now going to

More information

Topic 2 Revision questions Paper

Topic 2 Revision questions Paper Topic 2 Revision questions Paper 1 3.1.2018 1. [1 mark] The graph shows the variation of the acceleration a of an object with time t. What is the change in speed of the object shown by the graph? A. 0.5

More information