Motion in Two Dimensions Reading Notes

Size: px
Start display at page:

Download "Motion in Two Dimensions Reading Notes"

Transcription

1 Motion in Two Dimensions Reading Notes Name: Section 3-1: Vectors and Scalars What typeface do we use to indicate a vector? Test Your Understanding: Circle the quantities that are vectors. Acceleration Atomic Number Density Displacement Distance Energy Force Mass Money Position Speed Temperature Time Velocity Volume Section 3-2: Addition of Vectors Graphical Methods In the statement D R = D 1 + D 2, what is the vector D R called? When two vectors are, we just use addition to find the resultant. When two vectors are, we just use subtraction to find the resultant. When two vectors are, we use the Pythagorean Theorem to find the resultant. What does the statement D R D 1 + D 2 mean? When does the equal to part apply to that statement? Test Your Understanding: In the three examples below, a set of vectors is shown on the top grid. Using the tail-to-tip method, show how to add those vectors in the bottom grid, and then draw the resultant.

2 Section 3-3: Subtraction of Vectors, and Multiplication by a Scalar Test Your Understanding: The vectors A and B are shown below. Show the resultant of each of the operations indicated. A B B A 2B ½B ½B Section 3-4: Adding Vectors by Components Explain what the components of a vector are. What do the components tell you? Write the equations that give the components V x and V y of a vector V in terms of the vector s magnitude V and its direction.

3 The direction of a vector,, is always measured relative to what axis/direction? Which rotation direction is considered a positive direction? Write the equations that give the magnitude V and direction of a vector V in terms of its components V x and V y. Example: The vector V shown starts with components (40, 30) at time t = 0. Each second, the vertical component decreases by 10. Answer the following: When is V the shortest? What is V s shortest length? When is V again the same length that it was at time t = 0? Is vector V ever zero? Explain: Section 3-5: Projectile Motion In Figure 3-17 on page 58, at what times is the ball considered a projectile? When an object is a projectile, what is the shape of the path that it travels? What is Figure 3-19 on page 59 trying to convey? Look at Figure 3-18 and Figure 3-20 on pages 58 and 59. Explain the following in words: How is the direction of velocity related to the parabolic path at each point? (Starts with a T.) What happens to the horizontal component of velocity as the projectile travels? What happens to the vertical component of the velocity as the projectile travels? At what point in the path is the vertical component of the velocity zero?

4 At what point in the path is the speed of the projectile zero? A person throws a ball in such a way that its speed is zero at one particular point in its path. How did the person throw the ball? When an object travels as a projectile, what type of motion occurs in the horizontal direction? When an object travels as a projectile, what type of motion occurs in the vertical direction? Test Your Understanding: A projectile travels from point A to point G as shown below. Find the components of the velocity vector at point A. Then determine the components of velocity at every other point; use the fact that each point occurs 1 second after the previous point. Also use g = 10 m/s 2. Section 3-6: Solving Problems Involving Projectile Motion Write the equation for horizontal position as a function of time for projectile motion: Write the equation for vertical position as a function of time for projectile motion: Write the equation for vertical velocity as a function of time for projectile motion: Identify all the symbols that you used above: x = v 0x = y 0 = g = y = v 0y = v y = t =

5 Example 1: A student throws a ball horizontally off of the roof of the Chase Bank Building, 125 m above the ground. The ball strikes the ground 100 m away from the base of the building. How fast did the student throw the ball? (Use g = 10 m/s 2.) Draw a Diagram Here! Solution: Sketch a graph of each of the following as a function of time: Important Points To Remember About Horizontal Launch: The horizontal initial velocity is equal to. The vertical initial velocity is equal to. The projectile motion equations simplify to and. Example 2: A student on the 0-m line of a metric football field kicks a football at an angle of 53 with an initial velocity of 25 m/s. Using g = 10 m/s 2, find: Draw a Diagram Here!

6 (a) the time the football is in the air (b) how far the football lands from the student (c) the highest height the football reaches Sketch a graph of each of the following as a function of time: Important Points To Remember About Ground-To-Ground Launch: The final velocity is equal to. Use this to find the time by.

7 Example 3: It is November 22, 1963 in an alternate universe. The motorcade transporting President Kennedy is traveling down Main Street when Kennedy spots Oswald in a much taller Book Depository window. Kennedy immediately draws a crossbow and, at time t = 0, fires an arrow directly at Oswald. The air does not affect the arrow in any way. Oswald tries to dodge the arrow by jumping out the window from rest at exactly time t = 0. What are the components of the arrow s initial velocity? At what time does the arrow reach the plane of the building? At what height above the launch point does the arrow reach the building? At what height above the launch point is Oswald when the arrow reaches the building? Section 3-8: Relative Velocity Example: A boat starts from House O on a river that is 200 m wide. House A is 200 meters downstream (in the direction the river flows) and on the same side of the river as O. House B is 200 meters upstream (in the opposite direction the river flows) and on the same side of the river as O. House C is directly across the river from O. A boat leaving House O can travel 5 m/s if the river is still. However, today the river has a current speed of 3 m/s as shown in the diagrams.

8 If the boat goes to House A, how much time will that trip take? If the boat goes to House B, how much time will that trip take?

9 If the boat points directly across the river to House C, will the boat reach House C? Why or why not? What must the boat do to reach House C without being swept downstream? If the boat does go directly toward House C, how long will that trip take?

Kinematics in Two Dimensions; Vectors

Kinematics in Two Dimensions; Vectors Kinematics in Two Dimensions; Vectors Vectors & Scalars!! Scalars They are specified only by a number and units and have no direction associated with them, such as time, mass, and temperature.!! Vectors

More information

Chapter 3 Kinematics in Two Dimensions; Vectors

Chapter 3 Kinematics in Two Dimensions; Vectors Chapter 3 Kinematics in Two Dimensions; Vectors Vectors and Scalars Units of Chapter 3 Addition of Vectors Graphical Methods Subtraction of Vectors, and Multiplication of a Vector by a Scalar Adding Vectors

More information

Vector and Relative motion discussion/ in class notes. Projectile Motion discussion and launch angle problem. Finish 2 d motion and review for test

Vector and Relative motion discussion/ in class notes. Projectile Motion discussion and launch angle problem. Finish 2 d motion and review for test AP Physics 1 Unit 2: 2 Dimensional Kinematics Name: Date In Class Homework to completed that evening (before coming to next class period) 9/6 Tue (B) 9/7 Wed (C) 1D Kinematics Test Unit 2 Video 1: Vectors

More information

Vector Quantities A quantity such as force, that has both magnitude and direction. Examples: Velocity, Acceleration

Vector Quantities A quantity such as force, that has both magnitude and direction. Examples: Velocity, Acceleration Projectile Motion Vector Quantities A quantity such as force, that has both magnitude and direction. Examples: Velocity, Acceleration Scalar Quantities A quantity such as mass, volume, and time, which

More information

CHAPTER 3 KINEMATICS IN TWO DIMENSIONS; VECTORS

CHAPTER 3 KINEMATICS IN TWO DIMENSIONS; VECTORS CHAPTER 3 KINEMATICS IN TWO DIMENSIONS; VECTORS OBJECTIVES After studying the material of this chapter, the student should be able to: represent the magnitude and direction of a vector using a protractor

More information

Kinematics Multiple- Choice Questions (answers on page 16)

Kinematics Multiple- Choice Questions (answers on page 16) Kinematics Multiple- Choice Questions (answers on page 16) 1. An object moves around a circular path of radius R. The object starts from point A, goes to point B and describes an arc of half of the circle.

More information

Lecture PowerPoints. Chapter 3 Physics for Scientists & Engineers, with Modern Physics, 4 th edition Giancoli

Lecture PowerPoints. Chapter 3 Physics for Scientists & Engineers, with Modern Physics, 4 th edition Giancoli Lecture PowerPoints Chapter 3 Physics for Scientists & Engineers, with Modern Physics, 4 th edition Giancoli 2009 Pearson Education, Inc. This work is protected by United States copyright laws and is provided

More information

Physics 12 Unit 1: Kinematics Notes. Name: What you will be able to do by the end of this unit:

Physics 12 Unit 1: Kinematics Notes. Name: What you will be able to do by the end of this unit: Physics 12 Unit 1: Kinematics Notes. Name: What you will be able to do by the end of this unit: B1. Perform vector analysis in one or two dimensions identify scalars and vectors resolve a vector into two

More information

Problem: Projectile (CM-1998) Justify your answer: Problem: Projectile (CM-1998) 5 10 m/s 3. Show your work: 3 m/s 2

Problem: Projectile (CM-1998) Justify your answer: Problem: Projectile (CM-1998) 5 10 m/s 3. Show your work: 3 m/s 2 Physics C -D Kinematics Name: AP Review Packet Vectors have both magnitude and direction displacement, velocity, acceleration Scalars have magnitude only distance, speed, time, mass Unit vectors Specify

More information

Kinematics in Two Dimensions; 2D- Vectors

Kinematics in Two Dimensions; 2D- Vectors Kinematics in Two Dimensions; 2D- Vectors Addition of Vectors Graphical Methods Below are two example vector additions of 1-D displacement vectors. For vectors in one dimension, simple addition and subtraction

More information

Adding Vectors in Two Dimensions

Adding Vectors in Two Dimensions Slide 37 / 125 Adding Vectors in Two Dimensions Return to Table of Contents Last year, we learned how to add vectors along a single axis. The example we used was for adding two displacements. Slide 38

More information

Welcome back to Physics 215

Welcome back to Physics 215 Welcome back to Physics 215 Lecture 2-2 02-2 1 Last time: Displacement, velocity, graphs Today: Constant acceleration, free fall 02-2 2 2-2.1: An object moves with constant acceleration, starting from

More information

Name: Class: Date: Solution x 1 = units y 1 = 0. x 2 = d 2 cos = = tan 1 y

Name: Class: Date: Solution x 1 = units y 1 = 0. x 2 = d 2 cos = = tan 1 y Assessment Chapter Test B Teacher Notes and Answers Two-Dimensional Motion and Vectors CHAPTER TEST B (ADVANCED) 1. b 2. d 3. d x 1 = 3.0 10 1 cm east y 1 = 25 cm north x 2 = 15 cm west x tot = x 1 + x

More information

Projectile motion. Objectives. Assessment. Assessment. Equations. Physics terms 5/20/14. Identify examples of projectile motion.

Projectile motion. Objectives. Assessment. Assessment. Equations. Physics terms 5/20/14. Identify examples of projectile motion. Projectile motion Objectives Identify examples of projectile motion. Solve projectile motion problems. problems Graph the motion of a projectile. 1. Which of the events described below cannot be an example

More information

Vectors and Kinematics Notes 1 Review

Vectors and Kinematics Notes 1 Review Velocity is defined as the change in displacement with respect to time. Vectors and Kinematics Notes 1 Review Note that this formula is only valid for finding constant velocity or average velocity. Also,

More information

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. PHYS 101 Fall 2013 (Purcell), Fake Midterm #1 MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) The figure shows the graph of the position x as a

More information

9/29/2014. Chapter 3 Kinematics in Two Dimensions; Vectors. 3-1 Vectors and Scalars. Contents of Chapter Addition of Vectors Graphical Methods

9/29/2014. Chapter 3 Kinematics in Two Dimensions; Vectors. 3-1 Vectors and Scalars. Contents of Chapter Addition of Vectors Graphical Methods Lecture PowerPoints Chapter 3 Physics: Principles with Applications, 7 th edition Giancoli Chapter 3 Kinematics in Two Dimensions; Vectors This work is protected by United States copyright laws and is

More information

Physics Chapter 3 Notes. Section 3-1: Introduction to Vectors (pages 80-83)

Physics Chapter 3 Notes. Section 3-1: Introduction to Vectors (pages 80-83) Physics Chapter 3 Notes Section 3-1: Introduction to Vectors (pages 80-83) We can use vectors to indicate both the magnitude of a quantity, and the direction. Vectors are often used in 2- dimensional problems.

More information

Problem: Projectile (CM-1998)

Problem: Projectile (CM-1998) Physics C -D Kinematics Name: ANSWER KEY AP Review Packet Vectors have both magnitude and direction displacement, velocity, acceleration Scalars have magnitude only distance, speed, time, mass Unit vectors

More information

Planar Motion with Constant Acceleration

Planar Motion with Constant Acceleration Planar Motion with Constant Acceleration 1. If the acceleration vector of an object is perpendicular to its velocity vector, which of the following must be true? (a) The speed is changing. (b) The direction

More information

UNIT I: MECHANICS Chapter 5: Projectile Motion

UNIT I: MECHANICS Chapter 5: Projectile Motion IMPORTANT TERMS: Component Projectile Resolution Resultant Satellite Scalar quantity Vector Vector quantity UNIT I: MECHANICS Chapter 5: Projectile Motion I. Vector and Scalar Quantities (5-1) A. Vector

More information

Trigonometry Basics. Which side is opposite? It depends on the angle. θ 2. Y is opposite to θ 1 ; Y is adjacent to θ 2.

Trigonometry Basics. Which side is opposite? It depends on the angle. θ 2. Y is opposite to θ 1 ; Y is adjacent to θ 2. Trigonometry Basics Basic Terms θ (theta) variable for any angle. Hypotenuse longest side of a triangle. Opposite side opposite the angle (θ). Adjacent side next to the angle (θ). Which side is opposite?

More information

Relative Motion. David Teichrob UBC Physics 2006

Relative Motion. David Teichrob UBC Physics 2006 Relative Motion David Teichrob UBC Physics 2006 What is Relative Motion? First of all the physics concept involved is KINEMATICS (the study of motion of objects - the relation among displacement, velocity,

More information

Physics 1-2 Mr. Chumbley

Physics 1-2 Mr. Chumbley Physics 1-2 Mr. Chumbley Physical quantities can be categorized into one of two types of quantities A scalar is a physical quantity that has magnitude, but no direction A vector is a physical quantity

More information

Unit 1, Lessons 2-5: Vectors in Two Dimensions

Unit 1, Lessons 2-5: Vectors in Two Dimensions Unit 1, Lessons 2-5: Vectors in Two Dimensions Textbook Sign-Out Put your name in it and let s go! Check-In Any questions from last day s homework? Vector Addition 1. Find the resultant displacement

More information

Physics 12. Chapter 1: Vector Analysis in Two Dimensions

Physics 12. Chapter 1: Vector Analysis in Two Dimensions Physics 12 Chapter 1: Vector Analysis in Two Dimensions 1. Definitions When studying mechanics in Physics 11, we have realized that there are two major types of quantities that we can measure for the systems

More information

AP* PHYSICS B DESCRIBING MOTION: KINEMATICS IN TWO DIMENSIONS &VECTORS

AP* PHYSICS B DESCRIBING MOTION: KINEMATICS IN TWO DIMENSIONS &VECTORS AP* PHYSICS B DESCRIBING MOTION: KINEMATICS IN TWO DIMENSIONS &VECTORS The moment of truth has arrived! To discuss objects that move in something other than a straight line we need vectors. VECTORS Vectors

More information

Vector Addition and Subtraction: Graphical Methods

Vector Addition and Subtraction: Graphical Methods Vector Addition and Subtraction: Graphical Methods Bởi: OpenStaxCollege Displacement can be determined graphically using a scale map, such as this one of the Hawaiian Islands. A journey from Hawai i to

More information

1-D and 2-D Motion Test Friday 9/8

1-D and 2-D Motion Test Friday 9/8 1-D and -D Motion Test Frida 9/8 3-1 Vectors and Scalars A vector has magnitude as well as direction. Some vector quantities: displacement, velocit, force, momentum A scalar has onl a magnitude. Some scalar

More information

Two Dimensional Kinematics Challenge Problems

Two Dimensional Kinematics Challenge Problems Two Dimensional Kinematics Challenge Problems Problem 1: Suppose a MIT student wants to row across the Charles River. Suppose the water is moving downstream at a constant rate of 1.0 m/s. A second boat

More information

Chapter 3. Vectors and. Two-Dimensional Motion Vector vs. Scalar Review

Chapter 3. Vectors and. Two-Dimensional Motion Vector vs. Scalar Review Chapter 3 Vectors and Two-Dimensional Motion Vector vs. Scalar Review All physical quantities encountered in this text will be either a scalar or a vector A vector quantity has both magnitude (size) and

More information

Demo: x-t, v-t and a-t of a falling basket ball.

Demo: x-t, v-t and a-t of a falling basket ball. Demo: x-t, v-t and a-t of a falling basket ball. I-clicker question 3-1: A particle moves with the position-versus-time graph shown. Which graph best illustrates the velocity of the particle as a function

More information

Chapter 3 Kinematics in Two Dimensions; Vectors

Chapter 3 Kinematics in Two Dimensions; Vectors Chapter 3 Kinematics in Two Dimensions; Vectors Vectors and Scalars Addition of Vectors Graphical Methods (One and Two- Dimension) Multiplication of a Vector by a Scalar Subtraction of Vectors Graphical

More information

3 Vectors and Two- Dimensional Motion

3 Vectors and Two- Dimensional Motion May 25, 1998 3 Vectors and Two- Dimensional Motion Kinematics of a Particle Moving in a Plane Motion in two dimensions is easily comprehended if one thinks of the motion as being made up of two independent

More information

Chapter 3 Homework Packet. Conceptual Questions

Chapter 3 Homework Packet. Conceptual Questions Chapter 3 Homework Packet Conceptual Questions 1) Which one of the following is an example of a vector quantity? A) mass B) area C) distance D) velocity A vector quantity has both magnitude and direction.

More information

(a) On the diagram above, draw an arrow showing the direction of velocity of the projectile at point A.

(a) On the diagram above, draw an arrow showing the direction of velocity of the projectile at point A. QUESTION 1 The path of a projectile in a uniform gravitational field is shown in the diagram below. When the projectile reaches its maximum height, at point A, its speed v is 8.0 m s -1. Assume g = 10

More information

Multiple-Choice Questions

Multiple-Choice Questions Multiple-Choice Questions 1. A rock is thrown straight up from the edge of a cliff. The rock reaches the maximum height of 15 m above the edge and then falls down to the bottom of the cliff 35 m below

More information

Chapter 2: 2-Dimensional Motion

Chapter 2: 2-Dimensional Motion Chapter 2: 2-Dimensional Motion Chapter 2: 2-Dimensional Motion Chapter 2: 2-Dimensional Motion 2.1 Position 2.2 Distance and Displacement 2.3 Average Speed and Average Velocity 2.4 Instant Speed and Instant

More information

Vectors and Scalars. Scalar: A quantity specified by its magnitude only Vector: A quantity specified both by its magnitude and direction.

Vectors and Scalars. Scalar: A quantity specified by its magnitude only Vector: A quantity specified both by its magnitude and direction. Vectors and Scalars Scalar: A quantity specified by its magnitude only Vector: A quantity specified both by its magnitude and direction. To distinguish a vector from a scalar quantity, it is usually written

More information

Quiz No. 1: Tuesday Jan. 31. Assignment No. 2, due Thursday Feb 2: Problems 8.4, 8.13, 3.10, 3.28 Conceptual questions: 8.1, 3.6, 3.12, 3.

Quiz No. 1: Tuesday Jan. 31. Assignment No. 2, due Thursday Feb 2: Problems 8.4, 8.13, 3.10, 3.28 Conceptual questions: 8.1, 3.6, 3.12, 3. Quiz No. 1: Tuesday Jan. 31 Assignment No. 2, due Thursday Feb 2: Problems 8.4, 8.13, 3.10, 3.28 Conceptual questions: 8.1, 3.6, 3.12, 3.20 Chapter 3 Vectors and Two-Dimensional Kinematics Properties of

More information

CHAPTER 3 TEST REVIEW Answer Key

CHAPTER 3 TEST REVIEW Answer Key PRE-DP PHYSICS Name: DEVIL PHYSICS Period: Date: # Marks: XX Raw Score: IB Curve: BADDEST CLASS ON CAMPUS 1. State the difference between a vector and a scalar CHAPTER 3 TEST REVIEW Answer Key A scalar

More information

Motion in two dimensions: vertical projectile motion *

Motion in two dimensions: vertical projectile motion * OpenStax-CNX module: m39546 1 Motion in two dimensions: vertical projectile motion * Free High School Science Texts Project This work is produced by OpenStax-CNX and licensed under the Creative Commons

More information

Chapter 3 Kinematics in Two Dimensions; Vectors

Chapter 3 Kinematics in Two Dimensions; Vectors Chapter 3 Kinematics in Two Dimensions; Vectors Vectors and Scalars Addition of Vectors Graphical Methods (One and Two- Dimension) Multiplication of a Vector by a Scalar Subtraction of Vectors Graphical

More information

Student Exploration: Vectors

Student Exploration: Vectors Name: Date: Student Exploration: Vectors Vocabulary: component, dot product, magnitude, resultant, scalar, unit vector notation, vector Prior Knowledge Question (Do this BEFORE using the Gizmo.) An airplane

More information

Vectors. Vector Practice Problems: Odd-numbered problems from

Vectors. Vector Practice Problems: Odd-numbered problems from Vectors Vector Practice Problems: Odd-numbered problems from 3.1-3.21 After today, you should be able to: Understand vector notation Use basic trigonometry in order to find the x and y components of a

More information

Each dot represents an object moving, between constant intervals of time. Describe the motion that you see. equation symbol: units: Velocity

Each dot represents an object moving, between constant intervals of time. Describe the motion that you see. equation symbol: units: Velocity What is displacement, velocity and acceleration? what units do they have? vector vs scalar? One dimensional motion, and graphing Moving man worksheet moving man doc - todo Introduction to simple graphing

More information

Graphical Vector Addition

Graphical Vector Addition Vectors Chapter 4 Vectors and Scalars Measured quantities can be of two types Scalar quantities: only require magnitude (and proper unit) for description. Examples: distance, speed, mass, temperature,

More information

Progressive Science Initiative. Click to go to website:

Progressive Science Initiative. Click to go to website: Slide 1 / 246 New Jersey Center for Teaching and Learning Progressive Science Initiative This material is made freely available at www.njctl.org and is intended for the non-commercial use of students and

More information

Chapter 2 Mechanical Equilibrium

Chapter 2 Mechanical Equilibrium Chapter 2 Mechanical Equilibrium I. Force (2.1) A. force is a push or pull 1. A force is needed to change an object s state of motion 2. State of motion may be one of two things a. At rest b. Moving uniformly

More information

Unit 1: Math Toolbox Math Review Guiding Light #1

Unit 1: Math Toolbox Math Review Guiding Light #1 Unit 1: Math Toolbox Math Review Guiding Light #1 Academic Physics Unit 1: Math Toolbox Math Review Guiding Light #1 Table of Contents Topic Slides Algebra Review 2 8 Trigonometry Review 9 16 Scalar &

More information

The Science of Physics

The Science of Physics Assessment The Science of Physics Chapter Test B MULTIPLE CHOICE In the space provided, write the letter of the term or phrase that best completes each statement or best answers each question. 1. A hiker

More information

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Optional Problems for Quiz 2 Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) The components of vectors B and C are given as follows: 1) Bx

More information

Bell Ringer. x- direction: Ball and car start with same position and velocity, a=0, so always have same position

Bell Ringer. x- direction: Ball and car start with same position and velocity, a=0, so always have same position Objectives Students should be able to add, subtract, and resolve displacement and velocity vectors so they can: Determine the components of a vector along two specified, mutually perpendicular axes. Determine

More information

Vectors. Chapter 3. Arithmetic. Resultant. Drawing Vectors. Sometimes objects have two velocities! Sometimes direction matters!

Vectors. Chapter 3. Arithmetic. Resultant. Drawing Vectors. Sometimes objects have two velocities! Sometimes direction matters! Vectors Chapter 3 Vector and Vector Addition Sometimes direction matters! (vector) Force Velocity Momentum Sometimes it doesn t! (scalar) Mass Speed Time Arithmetic Arithmetic works for scalars. 2 apples

More information

10.1 Vectors. c Kun Wang. Math 150, Fall 2017

10.1 Vectors. c Kun Wang. Math 150, Fall 2017 10.1 Vectors Definition. A vector is a quantity that has both magnitude and direction. A vector is often represented graphically as an arrow where the direction is the direction of the arrow, and the magnitude

More information

Physics 1110: Mechanics

Physics 1110: Mechanics Physics 1110: Mechanics Announcements: Tutorials Thursday and Friday in G2B60, G2B75, & G2B77 Students on wait list should attend lectures and tutorials. CAPA assignments are in bins in G2B hallway. No

More information

Chapter 2 Motion in One Dimension

Chapter 2 Motion in One Dimension Chapter 2 Motion in One Dimension Multiple Choice 1. The position of a particle moving along the x axis is given by 2 x = ( 21+ 22t 6 0. t )m, where t is in s. What is the average velocity during the time

More information

Unit 1: Mechanical Equilibrium

Unit 1: Mechanical Equilibrium Unit 1: Mechanical Equilibrium Chapter: Two Mechanical Equilibrium Big Idea / Key Concepts Student Outcomes 2.1: Force 2.2: Mechanical Equilibrium 2.3: Support Force 2.4: Equilibrium for Moving Objects

More information

Vectors and 2D Kinematics. AIT AP Physics C

Vectors and 2D Kinematics. AIT AP Physics C Vectors and 2D Kinematics Coordinate Systems Used to describe the position of a point in space Coordinate system consists of a fixed reference point called the origin specific axes with scales and labels

More information

PSI AP Physics 1 Kinematics. Free Response Problems

PSI AP Physics 1 Kinematics. Free Response Problems PSI AP Physics 1 Kinematics Free Response Problems 1. A car whose speed is 20 m/s passes a stationary motorcycle which immediately gives chase with a constant acceleration of 2.4 m/s 2. a. How far will

More information

Need to have some new mathematical techniques to do this: however you may need to revise your basic trigonometry. Basic Trigonometry

Need to have some new mathematical techniques to do this: however you may need to revise your basic trigonometry. Basic Trigonometry Kinematics in Two Dimensions Kinematics in 2-dimensions. By the end of this you will 1. Remember your Trigonometry 2. Know how to handle vectors 3. be able to handle problems in 2-dimensions 4. understand

More information

Position and Displacement

Position and Displacement Position and Displacement Ch. in your text book Objectives Students will be able to: ) Explain the difference between a scalar and a vector quantity ) Explain the difference between total distance traveled

More information

1-D Motion: Free Falling Objects

1-D Motion: Free Falling Objects v (m/s) a (m/s^2) 1-D Motion: Free Falling Objects So far, we have only looked at objects moving in a horizontal dimension. Today, we ll look at objects moving in the vertical. Then, we ll look at both

More information

Chapter 3 2-D Motion

Chapter 3 2-D Motion Chapter 3 2-D Motion We will need to use vectors and their properties a lot for this chapter. .. Pythagorean Theorem: Sample problem: First you hike 100 m north. Then hike 50 m west. Finally

More information

Physics 3214 Unit 1 Motion. Vectors and Frames of Reference

Physics 3214 Unit 1 Motion. Vectors and Frames of Reference Physics 3214 Unit 1 Motion Vectors and Frames of Reference Review Significant Digits 1D Vector Addition BUT First. Diagnostic QuizTime Rules for Significant DigitsRule #1 All non zero digits are ALWAYS

More information

Chapter 3. Vectors. θ that the vector forms with i ˆ is 15. I. Vectors and Scalars

Chapter 3. Vectors. θ that the vector forms with i ˆ is 15. I. Vectors and Scalars Chapter 3. Vectors I. Vectors and Scalars 1. What type of quantity does the odometer of a car measure? a) vector; b) scalar; c) neither scalar nor vector; d) both scalar and vector. 2. What type of quantity

More information

INTRODUCTION AND KINEMATICS. Physics Unit 1 Chapters 1-3

INTRODUCTION AND KINEMATICS. Physics Unit 1 Chapters 1-3 INTRODUCTION AND KINEMATICS Physics Unit 1 Chapters 1-3 This Slideshow was developed to accompany the textbook OpenStax Physics Available for free at https://openstaxcollege.org/textbooks/college-physics

More information

Chapter 3: Vectors and Projectile Motion

Chapter 3: Vectors and Projectile Motion Chapter 3: Vectors and Projectile Motion Vectors and Scalars You might remember from math class the term vector. We define a vector as something with both magnitude and direction. For example, 15 meters/second

More information

AP Physics 1 Summer Assignment 2018 Mrs. DeMaio

AP Physics 1 Summer Assignment 2018 Mrs. DeMaio AP Physics 1 Summer Assignment 2018 Mrs. DeMaio demaiod@middletownk12.org Welcome to AP Physics 1 for the 2018-2019 school year. AP Physics 1 is an algebra based, introductory college-level physics course.

More information

Projectile Motion and 2-D Dynamics

Projectile Motion and 2-D Dynamics Projectile Motion and 2-D Dynamics Vector Notation Vectors vs. Scalars In Physics 11, you learned the difference between vectors and scalars. A vector is a quantity that includes both direction and magnitude

More information

Chapter 3. Kinematics in Two Dimensions

Chapter 3. Kinematics in Two Dimensions Chapter 3 Kinematics in Two Dimensions 3.1 Trigonometry 3.1 Trigonometry sin! = h o h cos! = h a h tan! = h o h a 3.1 Trigonometry tan! = h o h a tan50! = h o 67.2m h o = tan50! ( 67.2m) = 80.0m 3.1 Trigonometry!

More information

ONE-DIMENSIONAL KINEMATICS

ONE-DIMENSIONAL KINEMATICS ONE-DIMENSIONAL KINEMATICS Chapter 2 Units of Chapter 2 Position, Distance, and Displacement Average Speed and Velocity Instantaneous Velocity Acceleration Motion with Constant Acceleration Applications

More information

PHYSICS MIDTERM REVIEW PACKET

PHYSICS MIDTERM REVIEW PACKET PHYSICS MIDTERM REVIEW PACKET PERIOD: TIME: DATE: ROOM: YOU NEED TO BRING: 1. #2 PENCIL W/ ERASER. 2. CALCULATOR (YOUR OWN). YOU WILL NOT BE ALLOWED TO SHARE OR BORROW!!! YOU WILL BE GIVEN: 1. FORMULA

More information

8.1 THE LANGUAGE OF MOTION

8.1 THE LANGUAGE OF MOTION Unit 3 Motion 8.1 THE LANGUAGE OF MOTION 8.1 LEARNING OUTCOMES Vector quantities, such as displacement and velocity, have both a magnitude and a direction. An object in uniform motion will travel equal

More information

Main Ideas in Class Today

Main Ideas in Class Today Main Ideas in Class Today After today, you should be able to: Understand vector notation Use basic trigonometry in order to find the x and y components of a vector (only right triangles) Add and subtract

More information

Objectives and Essential Questions

Objectives and Essential Questions VECTORS Objectives and Essential Questions Objectives Distinguish between basic trigonometric functions (SOH CAH TOA) Distinguish between vector and scalar quantities Add vectors using graphical and analytical

More information

Graphical Analysis; and Vectors

Graphical Analysis; and Vectors Graphical Analysis; and Vectors Graphs Drawing good pictures can be the secret to solving physics problems. It's amazing how much information you can get from a diagram. We also usually need equations

More information

Lab 5: Projectile Motion

Lab 5: Projectile Motion Concepts to explore Scalars vs. vectors Projectiles Parabolic trajectory As you learned in Lab 4, a quantity that conveys information about magnitude only is called a scalar. However, when a quantity,

More information

MOTION IN A PLANE. Chapter Four MCQ I. (a) 45 (b) 90 (c) 45 (d) 180

MOTION IN A PLANE. Chapter Four MCQ I. (a) 45 (b) 90 (c) 45 (d) 180 Chapter Four MOTION IN A PLANE MCQ I 4.1 The angle between A = ˆi + ˆj and B = ˆi ˆj is (a) 45 (b) 90 (c) 45 (d) 180 4.2 Which one of the following statements is true? (a) A scalar quantity is the one

More information

Chapter 6 Motion in Two Dimensions

Chapter 6 Motion in Two Dimensions Conceptual Physics/ PEP Name: Date: Chapter 6 Motion in Two Dimensions Section Review 6.1 1. What is the word for the horizontal distance a projectile travels? 2. What does it mean to say a projectile

More information

Describing motion: Kinematics in two dimension

Describing motion: Kinematics in two dimension Describing motion: Kinematics in two dimension Scientist Galileo Galilei Issac Newton Vocabulary Vector scalars Resultant Displacement Components Resolving vectors Unit vector into its components Average

More information

What is Relative Motion

What is Relative Motion RELATIVE MOTION What is Relative Motion Strictly speaking all motion is relative to something. Usually that something is a reference point that is assumed to be at rest (i.e. the earth). Motion can be

More information

AP Physics First Nine Weeks Review

AP Physics First Nine Weeks Review AP Physics First Nine Weeks Review 1. If F1 is the magnitude of the force exerted by the Earth on a satellite in orbit about the Earth and F2 is the magnitude of the force exerted by the satellite on the

More information

Example problem: Free Fall

Example problem: Free Fall Example problem: Free Fall A ball is thrown from the top of a building with an initial velocity of 20.0 m/s straight upward, at an initial height of 50.0 m above the ground. The ball just misses the edge

More information

RELATIVE MOTION ANALYSIS (Section 12.10)

RELATIVE MOTION ANALYSIS (Section 12.10) RELATIVE MOTION ANALYSIS (Section 1.10) Today s Objectives: Students will be able to: a) Understand translating frames of reference. b) Use translating frames of reference to analyze relative motion. APPLICATIONS

More information

1. (P2.1A) The picture below shows a ball rolling along a table at 1 second time intervals. What is the object s average velocity after 6 seconds?

1. (P2.1A) The picture below shows a ball rolling along a table at 1 second time intervals. What is the object s average velocity after 6 seconds? PHYSICS FINAL EXAM REVIEW FIRST SEMESTER (01/2017) UNIT 1 Motion P2.1 A Calculate the average speed of an object using the change of position and elapsed time. P2.1B Represent the velocities for linear

More information

Understanding. 28. Given:! d inital. = 1750 m [W];! d final Required:!! d T Analysis:!! d T. Solution:!! d T

Understanding. 28. Given:! d inital. = 1750 m [W];! d final Required:!! d T Analysis:!! d T. Solution:!! d T Unit 1 Review, pages 100 107 Knowledge 1. (c). (c) 3. (b) 4. (d) 5. (b) 6. (c) 7. (d) 8. (b) 9. (d) 10. (b) 11. (b) 1. True 13. True 14. False. The average velocity of an object is the change in displacement

More information

Review Session 1. Page 1

Review Session 1. Page 1 Review Session 1 1. Which combination of fundamental units can be used to express the amount of work done on an object? 2. The height of a typical kitchen table is approximately A) 10-2 m B) 10 0 m C)

More information

Chapter 3. Table of Contents. Section 1 Introduction to Vectors. Section 2 Vector Operations. Section 3 Projectile Motion. Section 4 Relative Motion

Chapter 3. Table of Contents. Section 1 Introduction to Vectors. Section 2 Vector Operations. Section 3 Projectile Motion. Section 4 Relative Motion Two-Dimensional Motion and Vectors Table of Contents Section 1 Introduction to Vectors Section 2 Vector Operations Section 3 Projectile Motion Section 4 Relative Motion Section 1 Introduction to Vectors

More information

PHYS.1410 Physics I Exam 1 Spring 2016 (version A)

PHYS.1410 Physics I Exam 1 Spring 2016 (version A) PHYS.1410 Physics I Exam 1 Spring 016 (version A) Recitation Section Number Name (PRINT) / LAST FIRST Last 3 Digits of Student ID Number: Fill out the above section of this page and print your last name

More information

SPH3U UNIVERSITY PHYSICS

SPH3U UNIVERSITY PHYSICS SPH3U UNIVERSITY PHYSICS KINEMATICS L (P.76-81) Projectile & The motion experienced by a dirt bike jumper is identical to that of a ball thrown up in the air at an angle. Both travel through a twodimensional

More information

Measuring Microscopic Objects

Measuring Microscopic Objects Physics 100 In-Class Worksheet Name: Tutorial Section: Measuring Microscopic Objects An exercise in proportional reasoning St. No. (last 2 digits) Last 2 digits used for sorting. Video Camera Microscope

More information

GENERAL PHYSICS (101 PHYS)

GENERAL PHYSICS (101 PHYS) INAYA MEDICAL COLLEGE (IMC) PHYS 101- LECTURE 1 GENERAL PHYSICS (101 PHYS) DR. MOHAMMED MOSTAFA EMAM LECTURES & CLASS ACTIVITIES https://inayacollegedrmohammedemam.wordpress.com/ Password: drmohammedemam

More information

3.3 Acceleration An example of acceleration Definition of acceleration Acceleration Figure 3.16: Steeper hills

3.3 Acceleration An example of acceleration Definition of acceleration Acceleration Figure 3.16: Steeper hills 3.3 Acceleration Constant speed is easy to understand. However, almost nothing moves with constant speed for long. When the driver steps on the gas pedal, the speed of the car increases. When the driver

More information

AP Physics C Mechanics Vectors

AP Physics C Mechanics Vectors 1 AP Physics C Mechanics Vectors 2015 12 03 www.njctl.org 2 Scalar Versus Vector A scalar has only a physical quantity such as mass, speed, and time. A vector has both a magnitude and a direction associated

More information

Grade 6 Math Circles October 9 & Visual Vectors

Grade 6 Math Circles October 9 & Visual Vectors Faculty of Mathematics Waterloo, Ontario N2L 3G1 Centre for Education in Mathematics and Computing Grade 6 Math Circles October 9 & 10 2018 Visual Vectors Introduction What is a vector? How does it differ

More information

Significant Figures & Vectors

Significant Figures & Vectors You have to complete this reading Booklet before you attempt the Substantive Assignment. Significant Figures Significant Figures & Vectors There are two kinds of numbers in the world Exact: o Example:

More information

Worksheet for Exploration 6.1: An Operational Definition of Work

Worksheet for Exploration 6.1: An Operational Definition of Work Worksheet for Exploration 6.1: An Operational Definition of Work This Exploration allows you to discover how work causes changes in kinetic energy. Restart. Drag "handy" to the front and/or the back of

More information

Grade 6 Math Circles October 9 & Visual Vectors

Grade 6 Math Circles October 9 & Visual Vectors Faculty of Mathematics Waterloo, Ontario N2L 3G1 Centre for Education in Mathematics and Computing Grade 6 Math Circles October 9 & 10 2018 Visual Vectors Introduction What is a vector? How does it differ

More information

Unit 1 Motion. Projectile Motion

Unit 1 Motion. Projectile Motion Unit 1 Motion Projectile Motion Motion to Date Uniform Motion Accelerated Motion Relative Motion Uniform Motion Motion with a constant velocity - Constant speed - Same direction Equation: v d t Problems

More information