Announcements. Unit 1 homework due tomorrow 11:59 PM Quiz 1 on 3:00P Unit 1. Units 2 & 3 homework sets due 11:59 PM

Size: px
Start display at page:

Download "Announcements. Unit 1 homework due tomorrow 11:59 PM Quiz 1 on 3:00P Unit 1. Units 2 & 3 homework sets due 11:59 PM"

Transcription

1 Announcements Unit 1 homework due tomorrow 11:59 PM Quiz 1 on 3:00P Unit 1 Ø First 12 minutes of class: be on time!!! Units 2 & 3 homework sets due 11:59 PM Ø Most homework sets now due on Sunday Ø Check smartphysics Schedule!!! Mechanics Lecture 2, Slide 1

2 PhET Interactive Simulations Go to Supplementary Material page on Canvas Click on Motion under PhET Simulations Ø Vector Addition Ø Projectile Motion Ø Calculus Grapher Mechanics Lecture 2, Slide 2

3 Classical Mechanics Lecture 2: Vectors and 2-D Kinematics a) Vectors Today's Concepts: b) Projectile motion Mechanics Lecture 2, Slide 3

4 Unit 2 Learning Objectives If you master this unit, you should: be able to use the principle of superposition to separate the horizontal and vertical motion of a projectile in free fall. be able to identify the qualitative and quantitative relationship between a projectile s maximum height, time of flight, and initial velocity. be able to determine the horizontal and vertical position of a projectile at any point in time (equations of motion) given sufficient information about its trajectory (e.g., initial velocity, maximum height, ). be able to combine the horizontal and vertical equations of motion into a single vector equation (and vice versa). Mechanics Lecture 2, Slide 4

5 Projectile Motion In this class, a projectile is an object that moves only under the influence of uniform gravity (e.g., neglect air resistance; variations in gravity, etc.) Projectiles follow parabolic paths. The velocity of a projectile changes constantly during flight: it is ALWAYS accelerating. Mechanics Lecture 2, Slide 5

6 Projectile Motion & Frames of Reference We talked about both of these cases in Unit 1: state line Bonnie Cop 30 m/s Constant v Constant a d =1000 m Mechanics Lecture 2, Slide 6

7 Superposition v train car Since gravity acts downward only, motion along x and y are independent: Total motion is the superposition of motion along x and y solve each part separately! Mechanics Lecture 2, Slide 7

8 ACT A flatbed railroad car is moving along a track at constant velocity. A passenger at the center of the car throws a ball straight up. Neglecting air resistance, where will the ball land? A) Forward of the center of the car B) At the center of the car C) Backward of the center of the car v train car Since a x = 0, the ball and the center of car have the same x position and x velocity throughout the motion!!! Mechanics Lecture 2, Slide 8

9 Equations of motion for a projectile gt 1 2 gt2 For projectile motion: Can arrange coordinate system to eliminate z Can align y-axis with gravity (vertical: up is + ) Ø a x = 0 Ø a y = -g = m/s 2 Mechanics Lecture 2, Slide 9

10 Example Problem (from Exam #1, Spring 2012) Lionel Messi kicks a soccer ball across a level field. The ball spends 3 seconds in the air and lands 60 m from the point where it was kicked. (Ignore air resistance.) What is the height of the ball at the peak of its trajectory? 1. Understand the Problem Read the problem carefully. Construct a mental image. Determine the question. Summarize the given information. 2. Describe the Physics Draw a useful diagram. Assign symbols to known and unknown quantities. Label relevant quantities on the diagram. Declare the target variable. State the relevant physical principles. Mechanics Lecture 2, Slide 10

11 Steps 1 & 2: Understand problem, describe physics Lionel Messi kicks a soccer ball across a level field. The ball spends 3 seconds in the air and lands 60 m from the point where it was kicked. (Ignore air resistance.) What is the height of the ball at the peak of its trajectory? t = 0 v 0 v 0y H t = 3 s v 0x 60m Mechanics Lecture 2, Slide 11

12 Step 2: (Physical Principles) Independent horizontal and vertical motion Ø Horizontal: constant velocity (a x = 0) Ø Vertical: constant acceleration (a y = -g) Horizontal distance traveled is determined by horizontal speed and time of flight Max height (at peak) is determined by initial vertical speed and acceleration due to gravity Time of flight usually due to vertical motion Mechanics Lecture 2, Slide 12

13 Vertical Motion 0 v y = v 0y + a y t = v 0y gt At peak height, what is v y? At peak: v 0y = gt =) t up = v 0 y g Max height: 0 y y 0 = v 0y t a yt 2 apple v0y =) H = v 0y g 1 2 g Time up/down depends only on initial vertical velocity! 1 =) H 0=v 0y t up 2 gt2 up apple v0y g 2 = v2 0 y 2g Max height also depends only on initial vertical velocity! Mechanics Lecture 2, Slide 13

14 Checkpoint: Three Ships (part 2) A destroyer fires two shells with different ini5al speeds at two different enemy ships. The shells follow the trajectories shown. Which enemy ship gets hit first? Destroyer Enemy 1 Enemy 2 A) Enemy 1 B) Enemy 2 C) They are both hit at the same time Time up/down will be the same for objects traveling the same ver5cal distance!!! Mechanics Lecture 2, Slide 14

15 Checkpoint: Three Ships (part 1) A destroyer simultaneously fires two shells with the same ini5al speed at two different enemy ships. The shells follow the trajectories shown. Which ship gets hit first. Destroyer Enemy 1 Enemy 2 A) Enemy 1 B) Enemy 2 C) They are both hit at the same 5me Time up/down and height depend only initial vertical speed: Higher è longer time of flight Mechanics Lecture 2, Slide 15

16 General Problem Solving Framework 1. Understand the Problem Read the problem carefully. Construct a mental image. Determine the question. Summarize the given information. 2. Describe the Physics Draw a useful diagram. Assign symbols to known and unknown quantities. Label relevant quantities on the diagram. Declare the target variable. State the relevant physical principles. 3. Plan the Solution Write down relevant equations. Write down relevant constraints. State the necessary approximations. Outline how to use the equations to determine the target variable. 4. Execute the Plan Solve for the target variable symbolically. Check the units of the equation. Substitute numerical values of known quantities. Calculate the value of the target variable. Answer the question. 5. Evaluate the Solution Is the answer properly stated? Is the answer reasonable? Is the answer complete? Mechanics Lecture 2, Slide 16

17 What is H? Step 3: Plan Solution t = 0 v 0 v 0y H t = 3 s v 0x Equations: v y = v 0y + a y t =) t up = v 0 y g Constraints: y y 0 = v 0y t a yt 2 =) H = v2 0 y 2g Time of flight = 3 s =) t up =1.5 s Approximations: Neglect drag (air resistance): gravity only force Outline: Find H in terms of t up and then plug in values (with units) Mechanics Lecture 2, Slide 17

18 General Problem Solving Framework 1. Understand the Problem Read the problem carefully. Construct a mental image. Determine the question. Summarize the given information. 2. Describe the Physics Draw a useful diagram. Assign symbols to known and unknown quantities. Label relevant quantities on the diagram. Declare the target variable. State the relevant physical principles. 3. Plan the Solution Write down relevant equations. Write down relevant constraints. State the necessary approximations. Outline how to use the equations to determine the target variable. 4. Execute the Plan Solve for the target variable symbolically. Check the units of the equation. Substitute numerical values of known quantities. Calculate the value of the target variable. Answer the question. 5. Evaluate the Solution Is the answer properly stated? Is the answer reasonable? Is the answer complete? Mechanics Lecture 2, Slide 18

19 Step 4: Execute the Plan t = 0 v 0 v 0x v 0y H t = 3 s Solve for target variable: Check units: Substitute numerical value: Calculate value and answer question: What is the value of H? A. 5 meters B. 7 meters C. 9 meters D. 11 meters E. 13 meters Mechanics Lecture 2, Slide 19

20 What is H? Step 4: Execute the Plan t = 0 v 0 v 0y H t = 3 s v 0x Solve for target variable: t up = v 0 y g =) v 0y = gt up Check units: [H] Substitute numerical value: H = v2 0 y 2g h m/s 2i s 2 [m] H =0.5 = g2 t 2 up 2g = gt2 up m/s 2 (1.5 s) 2 Calculate value and answer question: H = 11 m Mechanics Lecture 2, Slide 20

21 What is H? t = 0 Step 5: Evaluate the Solution v 0 v 0y v 0x H = 11 m t = 3 s Is the answer properly stated? Is the answer reasonable? Is the answer complete? Mechanics Lecture 2, Slide 21

22 y Equations of Motion t = 0 v 0 v Horizontal: v 0y H = 11 m t = 3 s 60m v x (t) =v 0x + a x t = v 0x x(t) =x 0 + v 0x t a xt 2 = v 0x t x Vertical: v y (t) =v 0y + a y t = v 0y y(t) =y 0 + v 0y t a yt 2 1 = v 0y t 2 gt2 To complete the equations of motion, we need to find initial velocity components. -g 0 -g gt Mechanics Lecture 2, Slide 22

23 ACT! Lionel Messi kicks a soccer ball across a level field. The ball spends 3 seconds in the air and lands 60 m from the point where it was kicked. (Ignore air resistance.) t = 0 v 0 v 0y H = 11 m t = 3 s v 0x 60m What is the horizontal speed of the ball just after being kicked? A. v 0x = 20.0 m/s B. v 0x = 14.7 m/s C. v 0x = 24.8 m/s D. v 0x = 34.7 m/s x(t) =v 0x t =) x(t =3s)=v 0x (3 s) = 60 m =) v 0x = 60 m = 20 m/s 3s Mechanics Lecture 2, Slide 23

24 ACT! Lionel Messi kicks a soccer ball across a level field. The ball spends 3 seconds in the air and lands 60 m from the point where it was kicked. (Ignore air resistance.) t = 0 v 0 v 0y H = 11 m t = 3 s v 0x 60m What is the vertical speed of the ball just after being kicked? A. v 0y = 20.0 m/s B. v 0y = 14.7 m/s C. v 0y = 24.8 m/s D. v 0y = 34.7 m/s H = v2 0 y 2g =) v 0 y = p 2gH q = 2(9.8 m/s 2 )(11 m) = 14.7 m/s Mechanics Lecture 2, Slide 24

25 y Equations of Motion t = 0 v 0 v v 0y H = 11 m 60m t = 3 s x Horizontal: v x (t) = 20 m/s x(t) = (20 m/s) t Vertical: v y (t) = (14.7 m/s) y(t) = (14.7 m/s) t gt 1 2 gt2 Mechanics Lecture 2, Slide 25

26 Projectile motion and vectors During its flight, a projectile s velocity vector will change continuously: it undergoes constant (uniform) acceleration At any point in time, the velocity vector will point in its direction of motion The velocity vector can be broken into two independent components: horizontal and vertical We need to review a little about vectors Mechanics Lecture 2, Slide 26

27 Vectors A y A! A x Think of a vector as an arrow. (An object having both magnitude and direc5on) Mechanics Lecture 2, Slide 27

28 Vectors θ A = A A A x y = Acosθ = Asinθ tanθ = A y / A x Think of a vector as an arrow. (An object having both magnitude and direc5on) The object is the same no ma:er how we chose to describe it Mechanics Lecture 2, Slide 28

29 Computing the magnitude of a vector ~V To find the magnitude of a vector, use the quadratic formula: V y V x V = ~ V = q Vx 2 + Vy 2 + Vz 2 The magnitude of the velocity vector is called speed. (We don t have a special name for the magnitude of acceleration or position/displacement) Mechanics Lecture 2, Slide 29

30 ACT! Lionel Messi kicks a soccer ball across a level field. The ball spends 3 seconds in the air and lands 60 m from the point where it was kicked. (Ignore air resistance.) t = 0 v 0 v 0y H = 11 m t = 3 s v 0x 60m What is the total speed of the ball just after being kicked? A. v 0 = 20.0 m/s B. v 0 = 14.7 m/s C. v 0 = 24.8 m/s D. v 0 = 34.7 m/s v 0 = q v 2 0 x + v 2 0 y = 24.8 m/s Mechanics Lecture 2, Slide 30

31 ACT! Lionel Messi kicks a soccer ball across a level field. The ball spends 3 seconds in the air and lands 60 m from the point where it was kicked. (Ignore air resistance.) t = 0 v 0 v 0x v 0y H t = 3 s 60m What is the initial launch angle of the ball with respect to the ground? A B C = tan 1 v 0y /v 0x = 36.3 D Mechanics Lecture 2, Slide 31

32 Vector Addition Mechanics Lecture 2, Slide 32

33 General Properties of Vectors ~A = ha x,a y,a z i ~ B = hbx,b y,b z i Vector addition: ~C = ~ A + ~ B hc x,c y,c z i = ha x + B x,a y + B y,a z + B z i Product of a scalar and vector: M ~ A = M ha x,a y,a z i = hma x,ma y,ma z i Dot product (scalar product) of two vectors: ~A ~B = A x B x + A y B y + A z B z Mechanics Lecture 2, Slide 33

34 A! ACT: Vector Addition B! A! B! A! B! Vectors and are shown to the right. Which of the following best describes +? Add vectors 5p to tail: A B C D E Mechanics Lecture 2, Slide 34

35 A! ACT: Vector Subtraction B! A! B! A! B! Vectors and are shown to the right. Which of the following best describes -? Add vectors 5p to tail: A B C D E Mechanics Lecture 2, Slide 35

36 A! ACT: Vector Addition, part II B! A! 2B! A! B! Vectors and are shown to the right. Which of the following best describes +? Add vectors 5p to tail: A B C D E Mechanics Lecture 2, Slide 36

37 ACT: Monkey Troubles You are a vet trying to shoot a tranquilizer dart into a monkey hanging from a branch in a distant tree. You know that the monkey is very nervous, and will let go of the branch and start to fall as soon as your gun goes off. In order to hit the monkey with the dart, where should you point the gun before shoo5ng? A) Right at the monkey B) Below the monkey C) Above the monkey Mechanics Lecture 2, Slide 37

38 Hitting the Ball Bullet x = v o t 1 y = gt 2 2 Ball x = x o 1 y = gt 2 2 Mechanics Lecture 2, Slide 38

39 Shooting the Cougar S5ll works even if you shoot upwards! Cougar x = x 0 1 y = y 0 2 gt2 Bullet x = v 0x t y = v 0y t 1 2 gt2 Bullet hits Cougar!! Mechanics Lecture 2, Slide 39

40 ACT: Monkey Troubles You are a vet trying to shoot a tranquilizer dart into a monkey hanging from a branch in a distant tree. You know that the monkey is very nervous, and will let go of the branch and start to fall as soon as your gun goes off. In order to hit the monkey with the dart, where should you point the gun before shoo5ng? A) Right at the monkey B) Below the monkey C) Above the monkey Mechanics Lecture 2, Slide 40

41 General Problem Solving Framework 1. Understand the Problem Read the problem carefully. Construct a mental image. Determine the question. Summarize the given information. 2. Describe the Physics Draw a useful diagram. Assign symbols to known and unknown quantities. Label relevant quantities on the diagram. Declare the target variable. State the relevant physical principles. 3. Plan the Solution Write down relevant equations. Write down relevant constraints. State the necessary approximations. Outline how to use the equations to determine the target variable. 4. Execute the Plan Solve for the target variable symbolically. Check the units of the equation. Substitute numerical values of known quantities. Calculate the value of the target variable. Answer the question. 5. Evaluate the Solution Is the answer properly stated? Is the answer reasonable? Is the answer complete? Mechanics Lecture 2, Slide 41

Lecture 02: 2D Kinematics. Physics 2210 Fall Semester 2014

Lecture 02: 2D Kinematics. Physics 2210 Fall Semester 2014 Lecture 02: 2D Kinematics Physics 2210 Fall Semester 2014 Announcements Note that all Prelectures, Checkpoint Quizzes, and Homeworks are available one week before due date. You should have done Prelecture

More information

Classical Mechanics Lecture 2

Classical Mechanics Lecture 2 Classical Mechanics Lecture 2 Today's Concepts: a) Vectors b) Projec@le mo@on c) Reference frames Mechanics Lecture 2, Slide 1 Unit 6 Activity Guide Today Name Date (YY/MM/DD) / / SFU e-mail @sfu.ca Section

More information

Classical Mechanics Lecture 2

Classical Mechanics Lecture 2 Classical Mechanics Lecture 2 Today's Concepts: a) Vectors b) Projec@le mo@on c) Reference frames Mechanics Lecture 2, Slide 1 Unit 6 Activity Guide Today Not everyone is doing the pre-lecture This is

More information

Welcome back to Physics 211

Welcome back to Physics 211 Welcome back to Physics 211 The room is very full please move toward the center and help others find a seat. Be patient. The registration database is only updated twice per week. Get to know the people

More information

Bell Ringer. x- direction: Ball and car start with same position and velocity, a=0, so always have same position

Bell Ringer. x- direction: Ball and car start with same position and velocity, a=0, so always have same position Objectives Students should be able to add, subtract, and resolve displacement and velocity vectors so they can: Determine the components of a vector along two specified, mutually perpendicular axes. Determine

More information

Chapter 3. Kinematics in Two Dimensions

Chapter 3. Kinematics in Two Dimensions Chapter 3 Kinematics in Two Dimensions 3.1 Trigonometry 3.1 Trigonometry sin! = h o h cos! = h a h tan! = h o h a 3.1 Trigonometry tan! = h o h a tan50! = h o 67.2m h o = tan50! ( 67.2m) = 80.0m 3.1 Trigonometry!

More information

2. Two Dimensional Kinematics

2. Two Dimensional Kinematics . Two Dimensional Kinematics A) Overview We will begin by introducing the concept of vectors that will allow us to generalize what we learned last time in one dimension to two and three dimensions. In

More information

Projectile Motion. v a = -9.8 m/s 2. Good practice problems in book: 3.23, 3.25, 3.27, 3.29, 3.31, 3.33, 3.43, 3.47, 3.51, 3.53, 3.

Projectile Motion. v a = -9.8 m/s 2. Good practice problems in book: 3.23, 3.25, 3.27, 3.29, 3.31, 3.33, 3.43, 3.47, 3.51, 3.53, 3. v a = -9.8 m/s 2 A projectile is anything experiencing free-fall, particularly in two dimensions. 3.23, 3.25, 3.27, 3.29, 3.31, 3.33, 3.43, 3.47, 3.51, 3.53, 3.55 Projectile Motion Good practice problems

More information

Topic 1: 2D Motion PHYSICS 231

Topic 1: 2D Motion PHYSICS 231 Topic 1: 2D Motion PHYSICS 231 Current Assignments Homework Set 1 due this Thursday, Jan 20, 11 pm Homework Set 2 due Thursday, Jan 27, 11pm Reading: Chapter 4,5 for next week 2/1/11 Physics 231 Spring

More information

Projectile Motion trajectory Projectile motion

Projectile Motion trajectory Projectile motion Projectile Motion The path that a moving object follows is called its trajectory. An object thrown horizontally is accelerated downward under the influence of gravity. Gravitational acceleration is only

More information

Circular motion. Announcements:

Circular motion. Announcements: Circular motion Announcements: Clicker scores through Wednesday are now posted on DL. Scoring is points for a wrong answer, 3 points for a right answer. 13 clicker questions so far, so max is 39 points.

More information

Vocabulary Preview. Oct 21 9:53 AM. Projectile Motion. An object shot through the air is called a projectile.

Vocabulary Preview. Oct 21 9:53 AM. Projectile Motion. An object shot through the air is called a projectile. Projectile Trajectory Range Launch angle Vocabulary Preview Projectile Motion Projectile Motion An object shot through the air is called a projectile. A projectile can be a football, a bullet, or a drop

More information

GALILEAN RELATIVITY. Projectile motion. The Principle of Relativity

GALILEAN RELATIVITY. Projectile motion. The Principle of Relativity GALILEAN RELATIVITY Projectile motion The Principle of Relativity When we think of the term relativity, the person who comes immediately to mind is of course Einstein. Galileo actually understood what

More information

Physics Chapter 3 Notes. Section 3-1: Introduction to Vectors (pages 80-83)

Physics Chapter 3 Notes. Section 3-1: Introduction to Vectors (pages 80-83) Physics Chapter 3 Notes Section 3-1: Introduction to Vectors (pages 80-83) We can use vectors to indicate both the magnitude of a quantity, and the direction. Vectors are often used in 2- dimensional problems.

More information

Unit 1, Lessons 2-5: Vectors in Two Dimensions

Unit 1, Lessons 2-5: Vectors in Two Dimensions Unit 1, Lessons 2-5: Vectors in Two Dimensions Textbook Sign-Out Put your name in it and let s go! Check-In Any questions from last day s homework? Vector Addition 1. Find the resultant displacement

More information

Chapter 3 Kinematics in Two Dimensions; Vectors

Chapter 3 Kinematics in Two Dimensions; Vectors Chapter 3 Kinematics in Two Dimensions; Vectors Vectors and Scalars Addition of Vectors Graphical Methods (One and Two- Dimension) Multiplication of a Vector by a Scalar Subtraction of Vectors Graphical

More information

Chapter 2. Kinematics in One Dimension. continued

Chapter 2. Kinematics in One Dimension. continued Chapter 2 Kinematics in One Dimension continued 2.6 Freely Falling Bodies Example 10 A Falling Stone A stone is dropped from the top of a tall building. After 3.00s of free fall, what is the displacement

More information

Vectors and Scalars. Scalar: A quantity specified by its magnitude only Vector: A quantity specified both by its magnitude and direction.

Vectors and Scalars. Scalar: A quantity specified by its magnitude only Vector: A quantity specified both by its magnitude and direction. Vectors and Scalars Scalar: A quantity specified by its magnitude only Vector: A quantity specified both by its magnitude and direction. To distinguish a vector from a scalar quantity, it is usually written

More information

Projectile Motion. Practice test Reminder: test Feb 8, 7-10pm! me if you have conflicts! Your intuitive understanding of the Physical world

Projectile Motion. Practice test Reminder: test Feb 8, 7-10pm!  me if you have conflicts! Your intuitive understanding of the Physical world v a = -9.8 m/s Projectile Motion Good practice problems in book: 3.3, 3.5, 3.7, 3.9, 3.31, 3.33, 3.43, 3.47, 3.51, 3.53, 3.55 Practice test Reminder: test Feb 8, 7-10pm! Email me if you have conflicts!

More information

Kinematics in Two Dimensions; Vectors

Kinematics in Two Dimensions; Vectors Kinematics in Two Dimensions; Vectors Vectors & Scalars!! Scalars They are specified only by a number and units and have no direction associated with them, such as time, mass, and temperature.!! Vectors

More information

PHYS 1114, Lecture 10, February 8 Contents:

PHYS 1114, Lecture 10, February 8 Contents: PHYS 1114, Lecture 10, February 8 Contents: 1 Example of projectile motion: Man shooting a gun firing a bullet horizontally. 2 Example of projectile motion: Man shooting an arrow at a monkey in a tree.

More information

physics Chapter 4 Lecture a strategic approach randall d. knight FOR SCIENTISTS AND ENGINEERS Chapter 4_Lecture1 THIRD EDITION

physics Chapter 4 Lecture a strategic approach randall d. knight FOR SCIENTISTS AND ENGINEERS Chapter 4_Lecture1 THIRD EDITION Chapter 4 Lecture physics FOR SCIENTISTS AND ENGINEERS a strategic approach THIRD EDITION randall d. knight Chapter 4_Lecture1 1 Chapter 4 Kinematics in 2D: Projectile Motion (Sec. 4.2) Which fountain

More information

Announcement. Quiz on Friday (Graphing and Projectile Motion) No HW due Wednesday

Announcement. Quiz on Friday (Graphing and Projectile Motion) No HW due Wednesday Going over HW3.05 Announcement Quiz on Friday (Graphing and Projectile Motion) No HW due Wednesday As the red ball rolls off the edge, a green ball is dropped from rest from the same height at the same

More information

Example problem: Free Fall

Example problem: Free Fall Example problem: Free Fall A ball is thrown from the top of a building with an initial velocity of 20.0 m/s straight upward, at an initial height of 50.0 m above the ground. The ball just misses the edge

More information

Physics 231. Topic 3: Vectors and two dimensional motion. Alex Brown September MSU Physics 231 Fall

Physics 231. Topic 3: Vectors and two dimensional motion. Alex Brown September MSU Physics 231 Fall Physics 231 Topic 3: Vectors and two dimensional motion Alex Brown September 14-18 2015 MSU Physics 231 Fall 2014 1 What s up? (Monday Sept 14) 1) Homework set 01 due Tuesday Sept 15 th 10 pm 2) Learning

More information

The centripetal acceleration for a particle moving in a circle is a c = v 2 /r, where v is its speed and r is its instantaneous radius of rotation.

The centripetal acceleration for a particle moving in a circle is a c = v 2 /r, where v is its speed and r is its instantaneous radius of rotation. skiladæmi 1 Due: 11:59pm on Wednesday, September 9, 2015 You will receive no credit for items you complete after the assignment is due. Grading Policy Problem 3.04 The horizontal coordinates of a in a

More information

Introduction to 2-Dimensional Motion

Introduction to 2-Dimensional Motion Introduction to 2-Dimensional Motion 2-Dimensional Motion! Definition: motion that occurs with both x and y components.! Example:! Playing pool.! Throwing a ball to another person.! Each dimension of the

More information

Relative Velocity. Exercise

Relative Velocity. Exercise PHYSICS 0 Lecture 06 Projectile Motion Tetbook Sections 4. Lecture 6 Purdue Universit, Phsics 0 1 Relative Velocit We often assume that our reference frame is attached to the Earth. What happen when the

More information

UNIT I: MECHANICS Chapter 5: Projectile Motion

UNIT I: MECHANICS Chapter 5: Projectile Motion IMPORTANT TERMS: Component Projectile Resolution Resultant Satellite Scalar quantity Vector Vector quantity UNIT I: MECHANICS Chapter 5: Projectile Motion I. Vector and Scalar Quantities (5-1) A. Vector

More information

3.4 Projectile Motion

3.4 Projectile Motion 3.4 Projectile Motion Projectile Motion A projectile is anything launched, shot or thrown---i.e. not self-propelled. Examples: a golf ball as it flies through the air, a kicked soccer ball, a thrown football,

More information

Projectile Motion. Chin- Sung Lin STEM GARAGE SCIENCE PHYSICS

Projectile Motion. Chin- Sung Lin STEM GARAGE SCIENCE PHYSICS Projectile Motion Chin- Sung Lin Introduction to Projectile Motion q What is Projectile Motion? q Trajectory of a Projectile q Calculation of Projectile Motion Introduction to Projectile Motion q What

More information

Chapter 3 Acceleration

Chapter 3 Acceleration Chapter 3 Acceleration Slide 3-1 Chapter 3: Acceleration Chapter Goal: To extend the description of motion in one dimension to include changes in velocity. This type of motion is called acceleration. Slide

More information

Chapter 4. Two-Dimensional Motion

Chapter 4. Two-Dimensional Motion Chapter 4. Two-Dimensional Motion 09/1/003 I. Intuitive (Understanding) Review Problems. 1. If a car (object, body, truck) moves with positive velocity and negative acceleration, it means that its a) speed

More information

Vectors. Graphical Method. Graphical Method. SEEMS SIMPLE? = 30.5 m/s. Graphical Method. Graphical Method (TIP TO TAIL) S

Vectors. Graphical Method. Graphical Method. SEEMS SIMPLE? = 30.5 m/s. Graphical Method. Graphical Method (TIP TO TAIL) S Vectors Graphical Method General discussion. Vector - A quantity which has magnitude and direction. Velocity, acceleration, Force, E Field, Mag Field, calar - A quantity which has magnitude only. (temp,

More information

Components of a Vector

Components of a Vector Vectors (Ch. 1) A vector is a quantity that has a magnitude and a direction. Examples: velocity, displacement, force, acceleration, momentum Examples of scalars: speed, temperature, mass, length, time.

More information

Chapter 3 Acceleration

Chapter 3 Acceleration Chapter 3 Acceleration Slide 3-1 PackBack The first answer gives a good physical picture. The video was nice, and worth the second answer. https://www.youtube.com/w atch?v=m57cimnj7fc Slide 3-2 Slide 3-3

More information

Projectile motion. Objectives. Assessment. Assessment. Equations. Physics terms 5/20/14. Identify examples of projectile motion.

Projectile motion. Objectives. Assessment. Assessment. Equations. Physics terms 5/20/14. Identify examples of projectile motion. Projectile motion Objectives Identify examples of projectile motion. Solve projectile motion problems. problems Graph the motion of a projectile. 1. Which of the events described below cannot be an example

More information

Bell Ringer: What is constant acceleration? What is projectile motion?

Bell Ringer: What is constant acceleration? What is projectile motion? Bell Ringer: What is constant acceleration? What is projectile motion? Can we analyze the motion of an object on the y-axis independently of the object s motion on the x-axis? NOTES 3.2: 2D Motion: Projectile

More information

Write these equations in your notes if they re not already there. You will want them for Exam 1 & the Final.

Write these equations in your notes if they re not already there. You will want them for Exam 1 & the Final. Tuesday January 24 Assignment 3: Due Friday, 11:59pm.like every Friday Pre-Class Assignment: 15min before class like every class Office Hours: Wed. 10-11am, 204 EAL Help Room: Wed. & Thurs. 6-9pm, here

More information

Physic 231 Lecture 5. Main points of today s lecture: Addition i of velocities. Newton s 1 st law: Newton s 2 nd law: F = ma

Physic 231 Lecture 5. Main points of today s lecture: Addition i of velocities. Newton s 1 st law: Newton s 2 nd law: F = ma Physic 3 Lecture 5 Main points of today s lecture: Addition i of velocities i v = v + vt v is the velocity in the "stationary" frame v is the velocity in the " moving"frame v t is the velocity of the "

More information

1-D and 2-D Motion Test Friday 9/8

1-D and 2-D Motion Test Friday 9/8 1-D and -D Motion Test Frida 9/8 3-1 Vectors and Scalars A vector has magnitude as well as direction. Some vector quantities: displacement, velocit, force, momentum A scalar has onl a magnitude. Some scalar

More information

MOTION OF A PROJECTILE

MOTION OF A PROJECTILE MOTION OF A PROJECTILE Today s Objectives: Students will be able to: 1. Analyze the free-flight motion of a projectile. In-Class Activities: Check Homework Reading Quiz Applications Kinematic Equations

More information

3 Vectors and Two- Dimensional Motion

3 Vectors and Two- Dimensional Motion May 25, 1998 3 Vectors and Two- Dimensional Motion Kinematics of a Particle Moving in a Plane Motion in two dimensions is easily comprehended if one thinks of the motion as being made up of two independent

More information

3.2 Projectile Motion

3.2 Projectile Motion Motion in 2-D: Last class we were analyzing the distance in two-dimensional motion and revisited the concept of vectors, and unit-vector notation. We had our receiver run up the field then slant Northwest.

More information

Chapter 3 Motion in two or three dimensions

Chapter 3 Motion in two or three dimensions Chapter 3 Motion in two or three dimensions Lecture by Dr. Hebin Li Announcements As requested by the Disability Resource Center: In this class there is a student who is a client of Disability Resource

More information

PH Fall - Section 04 - Version A DRAFT

PH Fall - Section 04 - Version A DRAFT 1. A truck (traveling in a straight line), starts from rest and accelerates to 30 m/s in 20 seconds. It cruises along at that constant speed for one minute, then brakes, coming to a stop in 25 m. Determine

More information

Physics 111. Lecture 8 (Walker: 4.3-5) 2D Motion Examples. Projectile - General Launch Angle. In general, v 0x = v 0 cos θ and v 0y = v 0 sin θ

Physics 111. Lecture 8 (Walker: 4.3-5) 2D Motion Examples. Projectile - General Launch Angle. In general, v 0x = v 0 cos θ and v 0y = v 0 sin θ Physics 111 Lecture 8 (Walker: 4.3-5) D Motion Examples February 13, 009 Lecture 8 1/ Projectile - General Launch Angle In general, v 0x = v 0 cos θ and v 0y = v 0 sin θ (This ASSUMES θ is measured CCW

More information

PHY131H1F - Class 7. Clicker Question

PHY131H1F - Class 7. Clicker Question PHY131H1F - Class 7 Today, Chapter 4, sections 4.1-4.4: Kinematics in One Dimension Kinematics in Two Dimensions Projectile Motion Relative Motion Test Tomorrow night at 6pm [Image from http://www.nap.edu/jhp/oneuniverse/motion_22-23.html

More information

9/7/11. Which of the following is not a vector? Physics 101 Tuesday 9/6/11 Class 4

9/7/11. Which of the following is not a vector? Physics 101 Tuesday 9/6/11 Class 4 Reading Quiz Which of the following is not a vector? Physics 101 Tuesday 9/6/11 Class 4 Chapter 3 Sections 3.1 3.4 Free fall Components of a Vector Adding and Subtracting Vectors Unit Vectors A: speed

More information

In this activity, we explore the application of differential equations to the real world as applied to projectile motion.

In this activity, we explore the application of differential equations to the real world as applied to projectile motion. Applications of Calculus: Projectile Motion ID: XXXX Name Class In this activity, we explore the application of differential equations to the real world as applied to projectile motion. Open the file CalcActXX_Projectile_Motion_EN.tns

More information

Topic 2 Revision questions Paper

Topic 2 Revision questions Paper Topic 2 Revision questions Paper 1 3.1.2018 1. [1 mark] The graph shows the variation of the acceleration a of an object with time t. What is the change in speed of the object shown by the graph? A. 0.5

More information

Chapter 3: Vectors and Projectile Motion

Chapter 3: Vectors and Projectile Motion Chapter 3: Vectors and Projectile Motion Vectors and Scalars You might remember from math class the term vector. We define a vector as something with both magnitude and direction. For example, 15 meters/second

More information

INTRODUCTION & RECTILINEAR KINEMATICS: CONTINUOUS MOTION

INTRODUCTION & RECTILINEAR KINEMATICS: CONTINUOUS MOTION INTRODUCTION & RECTILINEAR KINEMATICS: CONTINUOUS MOTION (Sections 12.1-12.2) Today s Objectives: Students will be able to find the kinematic quantities (position, displacement, velocity, and acceleration)

More information

PHY 1114: Physics I. Quick Question 1. Quick Question 2. Quick Question 3. Quick Question 4. Lecture 5: Motion in 2D

PHY 1114: Physics I. Quick Question 1. Quick Question 2. Quick Question 3. Quick Question 4. Lecture 5: Motion in 2D PHY 1114: Physics I Lecture 5: Motion in D Fall 01 Kenny L. Tapp Quick Question 1 A child throws a ball vertically upward at the school playground. Which one of the following quantities is (are) equal

More information

Physics 1A. Lecture 3B. "More than anything else... any guy here would love to have a monkey. A pet monkey." -- Dane Cook

Physics 1A. Lecture 3B. More than anything else... any guy here would love to have a monkey. A pet monkey. -- Dane Cook Physics 1A Lecture 3B "More than anything else... any guy here would love to have a monkey. A pet monkey." -- Dane Cook Trajectories Since there is no horizontal acceleration (a x = 0) the horizontal position,

More information

Adding Vectors in Two Dimensions

Adding Vectors in Two Dimensions Slide 37 / 125 Adding Vectors in Two Dimensions Return to Table of Contents Last year, we learned how to add vectors along a single axis. The example we used was for adding two displacements. Slide 38

More information

Physics 201 Homework 1

Physics 201 Homework 1 Physics 201 Homework 1 Jan 9, 2013 1. (a) What is the magnitude of the average acceleration of a skier who, starting (a) 1.6 m/s 2 ; (b) 20 meters from rest, reaches a speed of 8.0 m/s when going down

More information

Vector and Relative motion discussion/ in class notes. Projectile Motion discussion and launch angle problem. Finish 2 d motion and review for test

Vector and Relative motion discussion/ in class notes. Projectile Motion discussion and launch angle problem. Finish 2 d motion and review for test AP Physics 1 Unit 2: 2 Dimensional Kinematics Name: Date In Class Homework to completed that evening (before coming to next class period) 9/6 Tue (B) 9/7 Wed (C) 1D Kinematics Test Unit 2 Video 1: Vectors

More information

Motion in Two or Three Dimensions

Motion in Two or Three Dimensions Chapter 3 Motion in Two or Three Dimensions PowerPoint Lectures for University Physics, Thirteenth Edition Hugh D. Young and Roger A. Freedman Lectures by Wayne Anderson Goals for Chapter 3 To use vectors

More information

PS 11 GeneralPhysics I for the Life Sciences

PS 11 GeneralPhysics I for the Life Sciences PS 11 GeneralPhysics I for the Life Sciences M E C H A N I C S I D R. B E N J A M I N C H A N A S S O C I A T E P R O F E S S O R P H Y S I C S D E P A R T M E N T N O V E M B E R 0 1 3 Definition Mechanics

More information

Two-Dimensional Motion Worksheet

Two-Dimensional Motion Worksheet Name Pd Date Two-Dimensional Motion Worksheet Because perpendicular vectors are independent of each other we can use the kinematic equations to analyze the vertical (y) and horizontal (x) components of

More information

Physics 11 Chapter 3: Kinematics in Two Dimensions. Problem Solving

Physics 11 Chapter 3: Kinematics in Two Dimensions. Problem Solving Physics 11 Chapter 3: Kinematics in Two Dimensions The only thing in life that is achieved without effort is failure. Source unknown "We are what we repeatedly do. Excellence, therefore, is not an act,

More information

Chapter 3: Kinematics in Two Dimensions

Chapter 3: Kinematics in Two Dimensions Chapter 3: Kinematics in Two Dimensions Vectors and Scalars A scalar is a number with units. It can be positive, negative, or zero. Time: 100 s Distance and speed are scalars, although they cannot be negative

More information

Experiment 4: Projectile Motion

Experiment 4: Projectile Motion Experiment 4: Projectile Motion EQUIPMENT Figure 4.1: Ballistic Pendulum (Spring Gun) Pasco Ballistic Pendulum (Spring Gun) 2-Meter Stick Meter Stick Ruler Plumb Bob Carbon Paper Target Paper Launch Platform

More information

Demo: x-t, v-t and a-t of a falling basket ball.

Demo: x-t, v-t and a-t of a falling basket ball. Demo: x-t, v-t and a-t of a falling basket ball. I-clicker question 3-1: A particle moves with the position-versus-time graph shown. Which graph best illustrates the velocity of the particle as a function

More information

Kinematics 2D ~ Lab. Part 1: Type 1 Projectile Launch. BCLN PHYSICS - Rev. Sept/2011

Kinematics 2D ~ Lab. Part 1: Type 1 Projectile Launch. BCLN PHYSICS - Rev. Sept/2011 Kinematics 2D ~ Lab Name: Instructions: Using a pencil, answer the following questions. The lab is marked based on clarity of responses, completeness, neatness, and accuracy. Do your best! Part 1: Type

More information

Physics 8 Friday, October 2, 2015

Physics 8 Friday, October 2, 2015 Physics 8 Friday, October 2, 2015 Turn in HW4. On Monday, I ll hand out HW5 (due two weeks from today, on Oct. 16). I actually did a careful job writing up the box hanging from spring inside elevator problem

More information

When we throw a ball :

When we throw a ball : PROJECTILE MOTION When we throw a ball : There is a constant velocity horizontal motion And there is an accelerated vertical motion These components act independently of each other PROJECTILE MOTION A

More information

Kinematics and Dynamics

Kinematics and Dynamics AP PHYS 1 Test Review Kinematics and Dynamics Name: Other Useful Site: http://www.aplusphysics.com/ap1/ap1- supp.html 2015-16 AP Physics: Kinematics Study Guide The study guide will help you review all

More information

General Physics (PHY 170) Chap 2. Acceleration motion with constant acceleration. Tuesday, January 15, 13

General Physics (PHY 170) Chap 2. Acceleration motion with constant acceleration. Tuesday, January 15, 13 General Physics (PHY 170) Chap 2 Acceleration motion with constant acceleration 1 Average Acceleration Changing velocity (non-uniform) means an acceleration is present Average acceleration is the rate

More information

Physics 111. Lecture 8 (Walker: 5.1-3) Force (F) Mass (m) Newton s 2 nd Law: F = ma. Summary - 2D Kinematics. = (20.0 m/s)(6.

Physics 111. Lecture 8 (Walker: 5.1-3) Force (F) Mass (m) Newton s 2 nd Law: F = ma. Summary - 2D Kinematics. = (20.0 m/s)(6. Physics Lecture 8 (Walker: 5.-3) Force (F) Mass (m) Newton s nd Law: F = ma Example: A Supply Drop Helicopter drops supply package to flood victims on raft. When package is released, helicopter is 00 m

More information

Motion in 2- and 3-dimensions. Examples: non-linear motion (circles, planetary orbits, etc.) flight of projectiles (shells, golf balls, etc.

Motion in 2- and 3-dimensions. Examples: non-linear motion (circles, planetary orbits, etc.) flight of projectiles (shells, golf balls, etc. Motion in 2- and 3-dimensions Examples: HPTER 3 MOTION IN TWO & THREE DIMENSIONS General properties of vectors the displacement vector position and velocity vectors acceleration vector equations of motion

More information

February 8, Week 4. Today: Chapter 3, Projectile Motion. Homework #1 now in boxes.

February 8, Week 4. Today: Chapter 3, Projectile Motion. Homework #1 now in boxes. February 8, Week 4 Today: Chapter 3, Projectile Motion Homework #1 now in boxes. No New homework assignment this week. Homework Solutions posted Thursday morning. Chapter 2 practice problems on Mastering

More information

2-D Kinematics. In general, we have the following 8 equations (4 per dimension): Notes Page 1 of 7

2-D Kinematics. In general, we have the following 8 equations (4 per dimension): Notes Page 1 of 7 2-D Kinematics The problem we run into with 1-D kinematics, is that well it s one dimensional. We will now study kinematics in two dimensions. Obviously the real world happens in three dimensions, but

More information

INTRODUCTION AND KINEMATICS. Physics Unit 1 Chapters 1-3

INTRODUCTION AND KINEMATICS. Physics Unit 1 Chapters 1-3 INTRODUCTION AND KINEMATICS Physics Unit 1 Chapters 1-3 This Slideshow was developed to accompany the textbook OpenStax Physics Available for free at https://openstaxcollege.org/textbooks/college-physics

More information

Projectile Launched at an Angle

Projectile Launched at an Angle Projectile Launched at an Angle by Nada Saab-Ismail, PhD, MAT, MEd, IB nhsaab.weebly.com nhsaab2014@gmail.com P2.2g Apply the independence of the vertical and horizontal initial velocities to solve projectile

More information

(a) On the diagram above, draw an arrow showing the direction of velocity of the projectile at point A.

(a) On the diagram above, draw an arrow showing the direction of velocity of the projectile at point A. QUESTION 1 The path of a projectile in a uniform gravitational field is shown in the diagram below. When the projectile reaches its maximum height, at point A, its speed v is 8.0 m s -1. Assume g = 10

More information

Lecture PowerPoints. Chapter 3 Physics for Scientists & Engineers, with Modern Physics, 4 th edition Giancoli

Lecture PowerPoints. Chapter 3 Physics for Scientists & Engineers, with Modern Physics, 4 th edition Giancoli Lecture PowerPoints Chapter 3 Physics for Scientists & Engineers, with Modern Physics, 4 th edition Giancoli 2009 Pearson Education, Inc. This work is protected by United States copyright laws and is provided

More information

2D Kinematics. Note not covering scalar product or vector product right now we will need it for material in Chap 7 and it will be covered then.

2D Kinematics. Note not covering scalar product or vector product right now we will need it for material in Chap 7 and it will be covered then. Announcements: 2D Kinematics CAPA due at 10pm tonight There will be the third CAPA assignment ready this evening. Chapter 3 on Vectors Note not covering scalar product or vector product right now we will

More information

Lab 5: Projectile Motion

Lab 5: Projectile Motion Lab 5 Projectile Motion 47 Name Date Partners Lab 5: Projectile Motion OVERVIEW We learn in our study of kinematics that two-dimensional motion is a straightforward application of onedimensional motion.

More information

Chapter 3 Kinematics in Two Dimensions; Vectors

Chapter 3 Kinematics in Two Dimensions; Vectors Chapter 3 Kinematics in Two Dimensions; Vectors Vectors and Scalars Addition of Vectors Graphical Methods (One and Two- Dimension) Multiplication of a Vector by a Scalar Subtraction of Vectors Graphical

More information

Chapter 3 Acceleration

Chapter 3 Acceleration Chapter 3 Acceleration Slide 3-1 Chapter 3: Acceleration Chapter Goal: To extend the description of motion in one dimension to include changes in velocity. This type of motion is called acceleration. Slide

More information

PHYS 111 HOMEWORK #5

PHYS 111 HOMEWORK #5 PHYS 111 HOMEWORK #5 Due : 9 Sept. 016 This is a homework set about projectile motion, so we will be using the equations of motion throughout. Therefore, I will collect all those equations here at the

More information

BROCK UNIVERSITY SOLUTIONS. 1. [1 point] A car is driving at a constant speed on a circular road. The force on a passenger in the car is

BROCK UNIVERSITY SOLUTIONS. 1. [1 point] A car is driving at a constant speed on a circular road. The force on a passenger in the car is BROCK UNIVERSITY Test 2: October 2014 Number of pages: 4 + formula sheet Course: PHYS 1P21/1P91 Number of students: 280 Examination date: 6 October 2014 Time of Examination: 13:00 13:50 Instructor: S.

More information

MOTION (Chapter 2) Student Learning Objectives 2/11/2016. Compare and contrast terms used to describe motion Analyze circular and parabolic motion

MOTION (Chapter 2) Student Learning Objectives 2/11/2016. Compare and contrast terms used to describe motion Analyze circular and parabolic motion MOTION (Chapter 2) https://www.youtube.com/watch?v=oxc-hhqldbe Student Learning Objectives Compare and contrast terms used to describe motion Analyze circular and parabolic motion PHYSICS:THE MOST FUNDAMENTAL

More information

Chapter 2 One-Dimensional Kinematics. Copyright 2010 Pearson Education, Inc.

Chapter 2 One-Dimensional Kinematics. Copyright 2010 Pearson Education, Inc. Chapter 2 One-Dimensional Kinematics Units of Chapter 2 Position, Distance, and Displacement Average Speed and Velocity Instantaneous Velocity Acceleration Motion with Constant Acceleration Applications

More information

Chapter 4. Motion in Two Dimensions

Chapter 4. Motion in Two Dimensions Chapter 4 Motion in Two Dimensions Projectile Motion An object may move in both the x and y directions simultaneously. This form of two-dimensional motion we will deal with is called projectile motion.

More information

Trigonometry Basics. Which side is opposite? It depends on the angle. θ 2. Y is opposite to θ 1 ; Y is adjacent to θ 2.

Trigonometry Basics. Which side is opposite? It depends on the angle. θ 2. Y is opposite to θ 1 ; Y is adjacent to θ 2. Trigonometry Basics Basic Terms θ (theta) variable for any angle. Hypotenuse longest side of a triangle. Opposite side opposite the angle (θ). Adjacent side next to the angle (θ). Which side is opposite?

More information

Projectile Motion. Figure 1. The system of coordinates for the projectile motion.

Projectile Motion. Figure 1. The system of coordinates for the projectile motion. Projectile Motion (1) Introduction and Theory: Consider a projectile motion of a ball as shown in Fig. 1. At t = 0 the ball is released at the position (0, y0) with horizontal velocity vx. Figure 1. The

More information

AP Physics 1 Summer Assignment

AP Physics 1 Summer Assignment Name: Email address (write legibly): AP Physics 1 Summer Assignment Packet 3 The assignments included here are to be brought to the first day of class to be submitted. They are: Problems from Conceptual

More information

Graphical Vector Addition

Graphical Vector Addition Vectors Chapter 4 Vectors and Scalars Measured quantities can be of two types Scalar quantities: only require magnitude (and proper unit) for description. Examples: distance, speed, mass, temperature,

More information

Honors Physics Acceleration and Projectile Review Guide

Honors Physics Acceleration and Projectile Review Guide Honors Physics Acceleration and Projectile Review Guide Major Concepts 1 D Motion on the horizontal 1 D motion on the vertical Relationship between velocity and acceleration Difference between constant

More information

Chapter 3. Table of Contents. Section 1 Introduction to Vectors. Section 2 Vector Operations. Section 3 Projectile Motion. Section 4 Relative Motion

Chapter 3. Table of Contents. Section 1 Introduction to Vectors. Section 2 Vector Operations. Section 3 Projectile Motion. Section 4 Relative Motion Two-Dimensional Motion and Vectors Table of Contents Section 1 Introduction to Vectors Section 2 Vector Operations Section 3 Projectile Motion Section 4 Relative Motion Section 1 Introduction to Vectors

More information

Vector Quantities A quantity such as force, that has both magnitude and direction. Examples: Velocity, Acceleration

Vector Quantities A quantity such as force, that has both magnitude and direction. Examples: Velocity, Acceleration Projectile Motion Vector Quantities A quantity such as force, that has both magnitude and direction. Examples: Velocity, Acceleration Scalar Quantities A quantity such as mass, volume, and time, which

More information

Physics 8 Friday, September 29, 2017

Physics 8 Friday, September 29, 2017 Physics 8 Friday, September 29, 2017 Turn in HW #4 today or Monday. No HW problems next week. Finish reading Ch10 for Monday. The next few chapters (10,11,12) are the most difficult material in the course.

More information

Summary of Chapters 1-3. Equations of motion for a uniformly accelerating object. Quiz to follow

Summary of Chapters 1-3. Equations of motion for a uniformly accelerating object. Quiz to follow Summary of Chapters 1-3 Equations of motion for a uniformly accelerating object Quiz to follow An unbalanced force acting on an object results in its acceleration Accelerated motion in time, t, described

More information

PHYSICS Kinematics in One Dimension

PHYSICS Kinematics in One Dimension PHYSICS Kinematics in One Dimension August 13, 2012 www.njctl.org 1 Motion in One Dimension Return to Table of Contents 2 Distance We all know what the distance between two objects is... So what is it?

More information

Lab 4: Projectile Motion

Lab 4: Projectile Motion 59 Name Date Partners OVEVIEW Lab 4: Projectile Motion We learn in our study of kinematics that two-dimensional motion is a straightforward extension of one-dimensional motion. Projectile motion under

More information

Projectile Motion. v = v 2 + ( v 1 )

Projectile Motion. v = v 2 + ( v 1 ) What do the following situations have in common? Projectile Motion A monkey jumps from the branch of one tree to the branch of an adjacent tree. A snowboarder glides at top speed off the end of a ramp

More information

Basic Physics 29:008 Spring 2005 Exam I

Basic Physics 29:008 Spring 2005 Exam I Exam I solutions Name: Date: 1. Two cars are moving around a circular track at the same constant speed. If car 1 is at the inner edge of the track and car 2 is at the outer edge, then A) the acceleration

More information