Variational algorithms for marginal MAP

Size: px
Start display at page:

Download "Variational algorithms for marginal MAP"

Transcription

1 Variational algorithms for marginal MAP Alexander Ihler UC Irvine CIOG Workshop November 2011

2 Variational algorithms for marginal MAP Alexander Ihler UC Irvine CIOG Workshop November 2011 Work with Qiang Liu

3 Graphical models where (partition function) A C A C A C B Bayesian Network B Factor Graph B Markov Random Field

4 Types of queries Maximum a posterior (MAP) query wcsps, minimum energy configurations 4

5 Types of queries Maximum a posterior (MAP) query wcsps, minimum energy configurations Summation queries Partition function, #CSP 5

6 Types of queries Maximum a posterior (MAP) query wcsps, minimum energy configurations Summation queries Partition function, #CSP Mixed queries Combine more than one elimination operator Marginal-MAP max (B) sum (A) and many others where 6

7 Three type of queries Max-Inference Sum-Inference Harder Mixed-Inference NP-hard: exponentially many terms We will focus on approximation algorithms 7

8 Variable Elimination (exact sum) 8

9 Variable Elimination (exact sum) 9

10 Variable Elimination (exact sum) 10

11 Variable Elimination (exact sum) Cost: exponential in the tree-width 11

12 Variable Elimination (exact sum / max) Interpretation as message-passing on trees Algorithm similar for max (dynamic programming)

13 Variable Elimination (exact mixed) Interpretation as message-passing on trees Algorithm similar for max (dynamic programming) Mixed-inference is harder! Elimination orders are restricted: max sum Example from D. Koller and N. Friedman (2009) 13

14 Variable Elimination (exact max /mixed) Interpretation as message-passing on trees Algorithm similar for max (dynamic programming) Mixed-inference is harder! Elimination orders are restricted: max sum Example from D. Koller and N. Friedman (2009) 14

15 Variational approaches Replace elimination with optimization over distributions (maximum: q = 1(x*) ) : set of joint distributions over x Equivalently n terms of, the marginal polytope 15

16 Variational approaches Replace elimination with optimization over distributions (maximum: q = 1(x*) ) : set of joint distributions over x Equivalently n terms of, the marginal polytope (maximum: q = p) 16

17 Variational approaches Replace elimination with optimization over distributions (maximum: q = 1(x*) ) : set of joint distributions over x Equivalently n terms of, the marginal polytope (maximum: q = p) Proof: (Kullback Leibler divergence)

18 Variational approximations Replace q 2 P and H(q) with simpler approximations 18

19 Variational approximations Replace q 2 P and H(q) with simpler approximations Algorithms & their properties: Method distributions entropy value Max: Sum: Linear programming Mean field Belief propagation Tree-reweighted n/a exact 19

20 Variational methods for marginal MAP max (B) sum (A) max part sum part Apply the same approach to each part: 20

21 Variational methods for marginal MAP dual where (Truncate the entropies of the max nodes) General framework for approximate algorithms Truncated Bethe approximation Truncated TRW approximation Truncated mean field approximation H(x) = H(x B ) + H(x A x B ) 21

22 Truncated free energy approximations dual where (Truncate the entropies of the max nodes) Truncated Bethe approximation Truncated tree-reweighted approximation 22

23 A-B trees In sum or max-inference, trees are tractable subproblems In mixed inference, they may not be A-B trees Extend the notion to mixed inference Graph structure that remains a tree during elimination Type 1 Example from D. Koller and N. Friedman (2009) Type 2 23

24 Designing message passing algorithms Can write as generic weighted objective Derive messages (minor generalization of TRW) Take limit as some weights! 0 (minor generalization of Weiss et al. 2007) max (B) sum (A) Can opt to take limit directly on message update equations 24

25 Mixed product message passing A! A [ B B! B B! A Sum- product Max- product Match max and sum max (B) sum (A) 25

26 Mixed product message passing Satisfies a reparameterization property, where i 2 A i, j 2 B! B i 2 B, j 2 A Sum- product Max- product Match max and sum Can use this to show local optimality properties similar to max-product 26

27 Variational methods for marginal MAP dual where (Truncate the entropies of the max nodes) Double-loop algorithms (CCCP & similar): Example: Truncated Bethe approximation Solve summation problem: 27

28 Variational methods for marginal MAP dual where (Truncate the entropies of the max nodes) Double-loop algorithms (CCCP & similar): Example: Truncated Bethe approximation Solve summation problem: Remove excess entropy: 28

29 Variational methods for marginal MAP dual where (Truncate the entropies of the max nodes) Double-loop algorithms (CCCP & similar): Example: Truncated Bethe approximation Solve summation problem: Remove excess entropy: Iterate: (a bit like annealing makes the function sharper )

30 Experiments: trees

31 Experiments: cycles Attractive Mixed

32 Conclusions Consider mixed inference tasks (marginal MAP) Derive a variational framework Develop analogues of Bethe, TRW, etc. Approximations and bounds Develop algorithms Message passing & double-loop methods Directions Extend to more general mixed problems Algorithmic improvements 32

33 Conclusions Thanks! Consider mixed inference tasks (marginal MAP) Derive a variational framework Develop analogues of Bethe, TRW, etc. Approximations and bounds Develop algorithms Message passing & double-loop methods Directions Extend to more general mixed problems Algorithmic improvements 33

13 : Variational Inference: Loopy Belief Propagation and Mean Field

13 : Variational Inference: Loopy Belief Propagation and Mean Field 10-708: Probabilistic Graphical Models 10-708, Spring 2012 13 : Variational Inference: Loopy Belief Propagation and Mean Field Lecturer: Eric P. Xing Scribes: Peter Schulam and William Wang 1 Introduction

More information

arxiv: v1 [stat.ml] 26 Feb 2013

arxiv: v1 [stat.ml] 26 Feb 2013 Variational Algorithms for Marginal MAP Qiang Liu Donald Bren School of Information and Computer Sciences University of California, Irvine Irvine, CA, 92697-3425, USA qliu1@uci.edu arxiv:1302.6584v1 [stat.ml]

More information

Variational Algorithms for Marginal MAP

Variational Algorithms for Marginal MAP Variational Algorithms for Marginal MAP Qiang Liu Department of Computer Science University of California, Irvine Irvine, CA, 92697 qliu1@ics.uci.edu Alexander Ihler Department of Computer Science University

More information

13 : Variational Inference: Loopy Belief Propagation

13 : Variational Inference: Loopy Belief Propagation 10-708: Probabilistic Graphical Models 10-708, Spring 2014 13 : Variational Inference: Loopy Belief Propagation Lecturer: Eric P. Xing Scribes: Rajarshi Das, Zhengzhong Liu, Dishan Gupta 1 Introduction

More information

Junction Tree, BP and Variational Methods

Junction Tree, BP and Variational Methods Junction Tree, BP and Variational Methods Adrian Weller MLSALT4 Lecture Feb 21, 2018 With thanks to David Sontag (MIT) and Tony Jebara (Columbia) for use of many slides and illustrations For more information,

More information

6.867 Machine learning, lecture 23 (Jaakkola)

6.867 Machine learning, lecture 23 (Jaakkola) Lecture topics: Markov Random Fields Probabilistic inference Markov Random Fields We will briefly go over undirected graphical models or Markov Random Fields (MRFs) as they will be needed in the context

More information

Probabilistic and Bayesian Machine Learning

Probabilistic and Bayesian Machine Learning Probabilistic and Bayesian Machine Learning Day 4: Expectation and Belief Propagation Yee Whye Teh ywteh@gatsby.ucl.ac.uk Gatsby Computational Neuroscience Unit University College London http://www.gatsby.ucl.ac.uk/

More information

12 : Variational Inference I

12 : Variational Inference I 10-708: Probabilistic Graphical Models, Spring 2015 12 : Variational Inference I Lecturer: Eric P. Xing Scribes: Fattaneh Jabbari, Eric Lei, Evan Shapiro 1 Introduction Probabilistic inference is one of

More information

Algorithms for Reasoning with Probabilistic Graphical Models. Class 3: Approximate Inference. International Summer School on Deep Learning July 2017

Algorithms for Reasoning with Probabilistic Graphical Models. Class 3: Approximate Inference. International Summer School on Deep Learning July 2017 Algorithms for Reasoning with Probabilistic Graphical Models Class 3: Approximate Inference International Summer School on Deep Learning July 2017 Prof. Rina Dechter Prof. Alexander Ihler Approximate Inference

More information

Bayesian Machine Learning - Lecture 7

Bayesian Machine Learning - Lecture 7 Bayesian Machine Learning - Lecture 7 Guido Sanguinetti Institute for Adaptive and Neural Computation School of Informatics University of Edinburgh gsanguin@inf.ed.ac.uk March 4, 2015 Today s lecture 1

More information

Variational Inference. Sargur Srihari

Variational Inference. Sargur Srihari Variational Inference Sargur srihari@cedar.buffalo.edu 1 Plan of discussion We first describe inference with PGMs and the intractability of exact inference Then give a taxonomy of inference algorithms

More information

Inference as Optimization

Inference as Optimization Inference as Optimization Sargur Srihari srihari@cedar.buffalo.edu 1 Topics in Inference as Optimization Overview Exact Inference revisited The Energy Functional Optimizing the Energy Functional 2 Exact

More information

Sampling Algorithms for Probabilistic Graphical models

Sampling Algorithms for Probabilistic Graphical models Sampling Algorithms for Probabilistic Graphical models Vibhav Gogate University of Washington References: Chapter 12 of Probabilistic Graphical models: Principles and Techniques by Daphne Koller and Nir

More information

A Combined LP and QP Relaxation for MAP

A Combined LP and QP Relaxation for MAP A Combined LP and QP Relaxation for MAP Patrick Pletscher ETH Zurich, Switzerland pletscher@inf.ethz.ch Sharon Wulff ETH Zurich, Switzerland sharon.wulff@inf.ethz.ch Abstract MAP inference for general

More information

CS Lecture 8 & 9. Lagrange Multipliers & Varitional Bounds

CS Lecture 8 & 9. Lagrange Multipliers & Varitional Bounds CS 6347 Lecture 8 & 9 Lagrange Multipliers & Varitional Bounds General Optimization subject to: min ff 0() R nn ff ii 0, h ii = 0, ii = 1,, mm ii = 1,, pp 2 General Optimization subject to: min ff 0()

More information

13: Variational inference II

13: Variational inference II 10-708: Probabilistic Graphical Models, Spring 2015 13: Variational inference II Lecturer: Eric P. Xing Scribes: Ronghuo Zheng, Zhiting Hu, Yuntian Deng 1 Introduction We started to talk about variational

More information

Does Better Inference mean Better Learning?

Does Better Inference mean Better Learning? Does Better Inference mean Better Learning? Andrew E. Gelfand, Rina Dechter & Alexander Ihler Department of Computer Science University of California, Irvine {agelfand,dechter,ihler}@ics.uci.edu Abstract

More information

Probabilistic Graphical Models

Probabilistic Graphical Models School of Computer Science Probabilistic Graphical Models Variational Inference IV: Variational Principle II Junming Yin Lecture 17, March 21, 2012 X 1 X 1 X 1 X 1 X 2 X 3 X 2 X 2 X 3 X 3 Reading: X 4

More information

Probabilistic Graphical Models

Probabilistic Graphical Models Probabilistic Graphical Models Brown University CSCI 295-P, Spring 213 Prof. Erik Sudderth Lecture 11: Inference & Learning Overview, Gaussian Graphical Models Some figures courtesy Michael Jordan s draft

More information

Probabilistic Graphical Models

Probabilistic Graphical Models Probabilistic Graphical Models David Sontag New York University Lecture 6, March 7, 2013 David Sontag (NYU) Graphical Models Lecture 6, March 7, 2013 1 / 25 Today s lecture 1 Dual decomposition 2 MAP inference

More information

Probabilistic Graphical Models

Probabilistic Graphical Models School of Computer Science Probabilistic Graphical Models Variational Inference II: Mean Field Method and Variational Principle Junming Yin Lecture 15, March 7, 2012 X 1 X 1 X 1 X 1 X 2 X 3 X 2 X 2 X 3

More information

Fractional Belief Propagation

Fractional Belief Propagation Fractional Belief Propagation im iegerinck and Tom Heskes S, niversity of ijmegen Geert Grooteplein 21, 6525 EZ, ijmegen, the etherlands wimw,tom @snn.kun.nl Abstract e consider loopy belief propagation

More information

Variational Inference (11/04/13)

Variational Inference (11/04/13) STA561: Probabilistic machine learning Variational Inference (11/04/13) Lecturer: Barbara Engelhardt Scribes: Matt Dickenson, Alireza Samany, Tracy Schifeling 1 Introduction In this lecture we will further

More information

Dual Decomposition for Marginal Inference

Dual Decomposition for Marginal Inference Dual Decomposition for Marginal Inference Justin Domke Rochester Institute of echnology Rochester, NY 14623 Abstract We present a dual decomposition approach to the treereweighted belief propagation objective.

More information

EECS 545 Project Report: Query Learning for Multiple Object Identification

EECS 545 Project Report: Query Learning for Multiple Object Identification EECS 545 Project Report: Query Learning for Multiple Object Identification Dan Lingenfelter, Tzu-Yu Liu, Antonis Matakos and Zhaoshi Meng 1 Introduction In a typical query learning setting we have a set

More information

Lecture 18 Generalized Belief Propagation and Free Energy Approximations

Lecture 18 Generalized Belief Propagation and Free Energy Approximations Lecture 18, Generalized Belief Propagation and Free Energy Approximations 1 Lecture 18 Generalized Belief Propagation and Free Energy Approximations In this lecture we talked about graphical models and

More information

Bounding the Partition Function using Hölder s Inequality

Bounding the Partition Function using Hölder s Inequality Qiang Liu Alexander Ihler Department of Computer Science, University of California, Irvine, CA, 92697, USA qliu1@uci.edu ihler@ics.uci.edu Abstract We describe an algorithm for approximate inference in

More information

UNIVERSITY OF CALIFORNIA, IRVINE. Reasoning and Decisions in Probabilistic Graphical Models A Unified Framework DISSERTATION

UNIVERSITY OF CALIFORNIA, IRVINE. Reasoning and Decisions in Probabilistic Graphical Models A Unified Framework DISSERTATION UNIVERSITY OF CALIFORNIA, IRVINE Reasoning and Decisions in Probabilistic Graphical Models A Unified Framework DISSERTATION submitted in partial satisfaction of the requirements for the degree of DOCTOR

More information

Probabilistic Graphical Models. Theory of Variational Inference: Inner and Outer Approximation. Lecture 15, March 4, 2013

Probabilistic Graphical Models. Theory of Variational Inference: Inner and Outer Approximation. Lecture 15, March 4, 2013 School of Computer Science Probabilistic Graphical Models Theory of Variational Inference: Inner and Outer Approximation Junming Yin Lecture 15, March 4, 2013 Reading: W & J Book Chapters 1 Roadmap Two

More information

Convexifying the Bethe Free Energy

Convexifying the Bethe Free Energy 402 MESHI ET AL. Convexifying the Bethe Free Energy Ofer Meshi Ariel Jaimovich Amir Globerson Nir Friedman School of Computer Science and Engineering Hebrew University, Jerusalem, Israel 91904 meshi,arielj,gamir,nir@cs.huji.ac.il

More information

Structured Variational Inference

Structured Variational Inference Structured Variational Inference Sargur srihari@cedar.buffalo.edu 1 Topics 1. Structured Variational Approximations 1. The Mean Field Approximation 1. The Mean Field Energy 2. Maximizing the energy functional:

More information

Expectation Propagation Algorithm

Expectation Propagation Algorithm Expectation Propagation Algorithm 1 Shuang Wang School of Electrical and Computer Engineering University of Oklahoma, Tulsa, OK, 74135 Email: {shuangwang}@ou.edu This note contains three parts. First,

More information

Probabilistic Graphical Models

Probabilistic Graphical Models Probabilistic Graphical Models Lecture 11 CRFs, Exponential Family CS/CNS/EE 155 Andreas Krause Announcements Homework 2 due today Project milestones due next Monday (Nov 9) About half the work should

More information

Message-Passing Algorithms for GMRFs and Non-Linear Optimization

Message-Passing Algorithms for GMRFs and Non-Linear Optimization Message-Passing Algorithms for GMRFs and Non-Linear Optimization Jason Johnson Joint Work with Dmitry Malioutov, Venkat Chandrasekaran and Alan Willsky Stochastic Systems Group, MIT NIPS Workshop: Approximate

More information

UNIVERSITY OF CALIFORNIA, IRVINE. Variational Message-Passing: Extension to Continuous Variables and Applications in Multi-Target Tracking

UNIVERSITY OF CALIFORNIA, IRVINE. Variational Message-Passing: Extension to Continuous Variables and Applications in Multi-Target Tracking UNIVERSITY OF CALIFORNIA, IRVINE Variational Message-Passing: Extension to Continuous Variables and Applications in Multi-Target Tracking DISSERTATION submitted in partial satisfaction of the requirements

More information

Probabilistic Graphical Models

Probabilistic Graphical Models Probabilistic Graphical Models Lecture 9 Undirected Models CS/CNS/EE 155 Andreas Krause Announcements Homework 2 due next Wednesday (Nov 4) in class Start early!!! Project milestones due Monday (Nov 9)

More information

Probabilistic Graphical Models (I)

Probabilistic Graphical Models (I) Probabilistic Graphical Models (I) Hongxin Zhang zhx@cad.zju.edu.cn State Key Lab of CAD&CG, ZJU 2015-03-31 Probabilistic Graphical Models Modeling many real-world problems => a large number of random

More information

Extended Version of Expectation propagation for approximate inference in dynamic Bayesian networks

Extended Version of Expectation propagation for approximate inference in dynamic Bayesian networks Extended Version of Expectation propagation for approximate inference in dynamic Bayesian networks Tom Heskes & Onno Zoeter SNN, University of Nijmegen Geert Grooteplein 21, 6525 EZ, Nijmegen, The Netherlands

More information

Quantitative Biology II Lecture 4: Variational Methods

Quantitative Biology II Lecture 4: Variational Methods 10 th March 2015 Quantitative Biology II Lecture 4: Variational Methods Gurinder Singh Mickey Atwal Center for Quantitative Biology Cold Spring Harbor Laboratory Image credit: Mike West Summary Approximate

More information

14 : Theory of Variational Inference: Inner and Outer Approximation

14 : Theory of Variational Inference: Inner and Outer Approximation 10-708: Probabilistic Graphical Models 10-708, Spring 2017 14 : Theory of Variational Inference: Inner and Outer Approximation Lecturer: Eric P. Xing Scribes: Maria Ryskina, Yen-Chia Hsu 1 Introduction

More information

Discrete Markov Random Fields the Inference story. Pradeep Ravikumar

Discrete Markov Random Fields the Inference story. Pradeep Ravikumar Discrete Markov Random Fields the Inference story Pradeep Ravikumar Graphical Models, The History How to model stochastic processes of the world? I want to model the world, and I like graphs... 2 Mid to

More information

arxiv: v1 [stat.ml] 28 Oct 2017

arxiv: v1 [stat.ml] 28 Oct 2017 Jinglin Chen Jian Peng Qiang Liu UIUC UIUC Dartmouth arxiv:1710.10404v1 [stat.ml] 28 Oct 2017 Abstract We propose a new localized inference algorithm for answering marginalization queries in large graphical

More information

14 : Theory of Variational Inference: Inner and Outer Approximation

14 : Theory of Variational Inference: Inner and Outer Approximation 10-708: Probabilistic Graphical Models 10-708, Spring 2014 14 : Theory of Variational Inference: Inner and Outer Approximation Lecturer: Eric P. Xing Scribes: Yu-Hsin Kuo, Amos Ng 1 Introduction Last lecture

More information

Information Geometric view of Belief Propagation

Information Geometric view of Belief Propagation Information Geometric view of Belief Propagation Yunshu Liu 2013-10-17 References: [1]. Shiro Ikeda, Toshiyuki Tanaka and Shun-ichi Amari, Stochastic reasoning, Free energy and Information Geometry, Neural

More information

Chalmers Publication Library

Chalmers Publication Library Chalmers Publication Library Copyright Notice 20 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for

More information

Concavity of reweighted Kikuchi approximation

Concavity of reweighted Kikuchi approximation Concavity of reweighted ikuchi approximation Po-Ling Loh Department of Statistics The Wharton School University of Pennsylvania loh@wharton.upenn.edu Andre Wibisono Computer Science Division University

More information

Recitation 9: Loopy BP

Recitation 9: Loopy BP Massachusetts Institute of Technology Department of Electrical Engineering and Computer Science 6.438 Algorithms For Inference Fall 204 Recitation 9: Loopy BP General Comments. In terms of implementation,

More information

Bayesian Networks: Representation, Variable Elimination

Bayesian Networks: Representation, Variable Elimination Bayesian Networks: Representation, Variable Elimination CS 6375: Machine Learning Class Notes Instructor: Vibhav Gogate The University of Texas at Dallas We can view a Bayesian network as a compact representation

More information

Bayesian Networks: Construction, Inference, Learning and Causal Interpretation. Volker Tresp Summer 2016

Bayesian Networks: Construction, Inference, Learning and Causal Interpretation. Volker Tresp Summer 2016 Bayesian Networks: Construction, Inference, Learning and Causal Interpretation Volker Tresp Summer 2016 1 Introduction So far we were mostly concerned with supervised learning: we predicted one or several

More information

Exact Inference I. Mark Peot. In this lecture we will look at issues associated with exact inference. = =

Exact Inference I. Mark Peot. In this lecture we will look at issues associated with exact inference. = = Exact Inference I Mark Peot In this lecture we will look at issues associated with exact inference 10 Queries The objective of probabilistic inference is to compute a joint distribution of a set of query

More information

Growth Rate of Spatially Coupled LDPC codes

Growth Rate of Spatially Coupled LDPC codes Growth Rate of Spatially Coupled LDPC codes Workshop on Spatially Coupled Codes and Related Topics at Tokyo Institute of Technology 2011/2/19 Contents 1. Factor graph, Bethe approximation and belief propagation

More information

Bayesian Networks: Construction, Inference, Learning and Causal Interpretation. Volker Tresp Summer 2014

Bayesian Networks: Construction, Inference, Learning and Causal Interpretation. Volker Tresp Summer 2014 Bayesian Networks: Construction, Inference, Learning and Causal Interpretation Volker Tresp Summer 2014 1 Introduction So far we were mostly concerned with supervised learning: we predicted one or several

More information

Texas A&M University

Texas A&M University Texas A&M University Electrical & Computer Engineering Department Graphical Modeling Course Project Author: Mostafa Karimi UIN: 225000309 Prof Krishna Narayanan May 10 1 Introduction Proteins are made

More information

Inference in Bayesian Networks

Inference in Bayesian Networks Andrea Passerini passerini@disi.unitn.it Machine Learning Inference in graphical models Description Assume we have evidence e on the state of a subset of variables E in the model (i.e. Bayesian Network)

More information

Machine Learning for Data Science (CS4786) Lecture 24

Machine Learning for Data Science (CS4786) Lecture 24 Machine Learning for Data Science (CS4786) Lecture 24 Graphical Models: Approximate Inference Course Webpage : http://www.cs.cornell.edu/courses/cs4786/2016sp/ BELIEF PROPAGATION OR MESSAGE PASSING Each

More information

Approximating the Partition Function by Deleting and then Correcting for Model Edges (Extended Abstract)

Approximating the Partition Function by Deleting and then Correcting for Model Edges (Extended Abstract) Approximating the Partition Function by Deleting and then Correcting for Model Edges (Extended Abstract) Arthur Choi and Adnan Darwiche Computer Science Department University of California, Los Angeles

More information

Inference in Graphical Models Variable Elimination and Message Passing Algorithm

Inference in Graphical Models Variable Elimination and Message Passing Algorithm Inference in Graphical Models Variable Elimination and Message Passing lgorithm Le Song Machine Learning II: dvanced Topics SE 8803ML, Spring 2012 onditional Independence ssumptions Local Markov ssumption

More information

A Generalized Loop Correction Method for Approximate Inference in Graphical Models

A Generalized Loop Correction Method for Approximate Inference in Graphical Models for Approximate Inference in Graphical Models Siamak Ravanbakhsh mravanba@ualberta.ca Chun-Nam Yu chunnam@ualberta.ca Russell Greiner rgreiner@ualberta.ca Department of Computing Science, University of

More information

CSC 2541: Bayesian Methods for Machine Learning

CSC 2541: Bayesian Methods for Machine Learning CSC 2541: Bayesian Methods for Machine Learning Radford M. Neal, University of Toronto, 2011 Lecture 10 Alternatives to Monte Carlo Computation Since about 1990, Markov chain Monte Carlo has been the dominant

More information

CS Lecture 19. Exponential Families & Expectation Propagation

CS Lecture 19. Exponential Families & Expectation Propagation CS 6347 Lecture 19 Exponential Families & Expectation Propagation Discrete State Spaces We have been focusing on the case of MRFs over discrete state spaces Probability distributions over discrete spaces

More information

Dual Decomposition for Inference

Dual Decomposition for Inference Dual Decomposition for Inference Yunshu Liu ASPITRG Research Group 2014-05-06 References: [1]. D. Sontag, A. Globerson and T. Jaakkola, Introduction to Dual Decomposition for Inference, Optimization for

More information

Clique trees & Belief Propagation. Siamak Ravanbakhsh Winter 2018

Clique trees & Belief Propagation. Siamak Ravanbakhsh Winter 2018 Graphical Models Clique trees & Belief Propagation Siamak Ravanbakhsh Winter 2018 Learning objectives message passing on clique trees its relation to variable elimination two different forms of belief

More information

Walk-Sum Interpretation and Analysis of Gaussian Belief Propagation

Walk-Sum Interpretation and Analysis of Gaussian Belief Propagation Walk-Sum Interpretation and Analysis of Gaussian Belief Propagation Jason K. Johnson, Dmitry M. Malioutov and Alan S. Willsky Department of Electrical Engineering and Computer Science Massachusetts Institute

More information

Learning MN Parameters with Approximation. Sargur Srihari

Learning MN Parameters with Approximation. Sargur Srihari Learning MN Parameters with Approximation Sargur srihari@cedar.buffalo.edu 1 Topics Iterative exact learning of MN parameters Difficulty with exact methods Approximate methods Approximate Inference Belief

More information

9 Forward-backward algorithm, sum-product on factor graphs

9 Forward-backward algorithm, sum-product on factor graphs Massachusetts Institute of Technology Department of Electrical Engineering and Computer Science 6.438 Algorithms For Inference Fall 2014 9 Forward-backward algorithm, sum-product on factor graphs The previous

More information

Expectation Propagation in Factor Graphs: A Tutorial

Expectation Propagation in Factor Graphs: A Tutorial DRAFT: Version 0.1, 28 October 2005. Do not distribute. Expectation Propagation in Factor Graphs: A Tutorial Charles Sutton October 28, 2005 Abstract Expectation propagation is an important variational

More information

Subproblem-Tree Calibration: A Unified Approach to Max-Product Message Passing

Subproblem-Tree Calibration: A Unified Approach to Max-Product Message Passing Subproblem-Tree Calibration: A Unified Approach to Max-Product Message Passing Huayan Wang huayanw@cs.stanford.edu Computer Science Department, Stanford University, Palo Alto, CA 90 USA Daphne Koller koller@cs.stanford.edu

More information

STA 4273H: Statistical Machine Learning

STA 4273H: Statistical Machine Learning STA 4273H: Statistical Machine Learning Russ Salakhutdinov Department of Statistics! rsalakhu@utstat.toronto.edu! http://www.utstat.utoronto.ca/~rsalakhu/ Sidney Smith Hall, Room 6002 Lecture 11 Project

More information

Bounded Inference Non-iteratively; Mini-Bucket Elimination

Bounded Inference Non-iteratively; Mini-Bucket Elimination Bounded Inference Non-iteratively; Mini-Bucket Elimination COMPSCI 276,Spring 2018 Class 6: Rina Dechter Reading: Class Notes (8, Darwiche chapters 14 Outline Mini-bucket elimination Weighted Mini-bucket

More information

Probabilistic Graphical Models

Probabilistic Graphical Models Probabilistic Graphical Models Lecture Notes Fall 2009 November, 2009 Byoung-Ta Zhang School of Computer Science and Engineering & Cognitive Science, Brain Science, and Bioinformatics Seoul National University

More information

Lecture 9: PGM Learning

Lecture 9: PGM Learning 13 Oct 2014 Intro. to Stats. Machine Learning COMP SCI 4401/7401 Table of Contents I Learning parameters in MRFs 1 Learning parameters in MRFs Inference and Learning Given parameters (of potentials) and

More information

4 : Exact Inference: Variable Elimination

4 : Exact Inference: Variable Elimination 10-708: Probabilistic Graphical Models 10-708, Spring 2014 4 : Exact Inference: Variable Elimination Lecturer: Eric P. ing Scribes: Soumya Batra, Pradeep Dasigi, Manzil Zaheer 1 Probabilistic Inference

More information

Bayesian networks approximation

Bayesian networks approximation Bayesian networks approximation Eric Fabre ANR StochMC, Feb. 13, 2014 Outline 1 Motivation 2 Formalization 3 Triangulated graphs & I-projections 4 Successive approximations 5 Best graph selection 6 Conclusion

More information

Probabilistic Graphical Models

Probabilistic Graphical Models School of Computer Science Probabilistic Graphical Models Variational Inference III: Variational Principle I Junming Yin Lecture 16, March 19, 2012 X 1 X 1 X 1 X 1 X 2 X 3 X 2 X 2 X 3 X 3 Reading: X 4

More information

Graphical models and message-passing Part II: Marginals and likelihoods

Graphical models and message-passing Part II: Marginals and likelihoods Graphical models and message-passing Part II: Marginals and likelihoods Martin Wainwright UC Berkeley Departments of Statistics, and EECS Tutorial materials (slides, monograph, lecture notes) available

More information

Introduction to Graphical Models. Srikumar Ramalingam School of Computing University of Utah

Introduction to Graphical Models. Srikumar Ramalingam School of Computing University of Utah Introduction to Graphical Models Srikumar Ramalingam School of Computing University of Utah Reference Christopher M. Bishop, Pattern Recognition and Machine Learning, Jonathan S. Yedidia, William T. Freeman,

More information

Automatic Differentiation Equipped Variable Elimination for Sensitivity Analysis on Probabilistic Inference Queries

Automatic Differentiation Equipped Variable Elimination for Sensitivity Analysis on Probabilistic Inference Queries Automatic Differentiation Equipped Variable Elimination for Sensitivity Analysis on Probabilistic Inference Queries Anonymous Author(s) Affiliation Address email Abstract 1 2 3 4 5 6 7 8 9 10 11 12 Probabilistic

More information

COMPSCI 276 Fall 2007

COMPSCI 276 Fall 2007 Exact Inference lgorithms for Probabilistic Reasoning; OMPSI 276 Fall 2007 1 elief Updating Smoking lung ancer ronchitis X-ray Dyspnoea P lung cancer=yes smoking=no, dyspnoea=yes =? 2 Probabilistic Inference

More information

Lecture 6: Graphical Models: Learning

Lecture 6: Graphical Models: Learning Lecture 6: Graphical Models: Learning 4F13: Machine Learning Zoubin Ghahramani and Carl Edward Rasmussen Department of Engineering, University of Cambridge February 3rd, 2010 Ghahramani & Rasmussen (CUED)

More information

10708 Graphical Models: Homework 2

10708 Graphical Models: Homework 2 10708 Graphical Models: Homework 2 Due Monday, March 18, beginning of class Feburary 27, 2013 Instructions: There are five questions (one for extra credit) on this assignment. There is a problem involves

More information

Lecture 6: Graphical Models

Lecture 6: Graphical Models Lecture 6: Graphical Models Kai-Wei Chang CS @ Uniersity of Virginia kw@kwchang.net Some slides are adapted from Viek Skirmar s course on Structured Prediction 1 So far We discussed sequence labeling tasks:

More information

Stat 521A Lecture 18 1

Stat 521A Lecture 18 1 Stat 521A Lecture 18 1 Outline Cts and discrete variables (14.1) Gaussian networks (14.2) Conditional Gaussian networks (14.3) Non-linear Gaussian networks (14.4) Sampling (14.5) 2 Hybrid networks A hybrid

More information

Introduction to Graphical Models. Srikumar Ramalingam School of Computing University of Utah

Introduction to Graphical Models. Srikumar Ramalingam School of Computing University of Utah Introduction to Graphical Models Srikumar Ramalingam School of Computing University of Utah Reference Christopher M. Bishop, Pattern Recognition and Machine Learning, Jonathan S. Yedidia, William T. Freeman,

More information

Latent Tree Approximation in Linear Model

Latent Tree Approximation in Linear Model Latent Tree Approximation in Linear Model Navid Tafaghodi Khajavi Dept. of Electrical Engineering, University of Hawaii, Honolulu, HI 96822 Email: navidt@hawaii.edu ariv:1710.01838v1 [cs.it] 5 Oct 2017

More information

Machine Learning Summer School

Machine Learning Summer School Machine Learning Summer School Lecture 3: Learning parameters and structure Zoubin Ghahramani zoubin@eng.cam.ac.uk http://learning.eng.cam.ac.uk/zoubin/ Department of Engineering University of Cambridge,

More information

Bayesian Learning in Undirected Graphical Models

Bayesian Learning in Undirected Graphical Models Bayesian Learning in Undirected Graphical Models Zoubin Ghahramani Gatsby Computational Neuroscience Unit University College London, UK http://www.gatsby.ucl.ac.uk/ Work with: Iain Murray and Hyun-Chul

More information

Machine Learning Techniques for Computer Vision

Machine Learning Techniques for Computer Vision Machine Learning Techniques for Computer Vision Part 2: Unsupervised Learning Microsoft Research Cambridge x 3 1 0.5 0.2 0 0.5 0.3 0 0.5 1 ECCV 2004, Prague x 2 x 1 Overview of Part 2 Mixture models EM

More information

Graphical Model Inference with Perfect Graphs

Graphical Model Inference with Perfect Graphs Graphical Model Inference with Perfect Graphs Tony Jebara Columbia University July 25, 2013 joint work with Adrian Weller Graphical models and Markov random fields We depict a graphical model G as a bipartite

More information

Pattern Recognition and Machine Learning

Pattern Recognition and Machine Learning Christopher M. Bishop Pattern Recognition and Machine Learning ÖSpri inger Contents Preface Mathematical notation Contents vii xi xiii 1 Introduction 1 1.1 Example: Polynomial Curve Fitting 4 1.2 Probability

More information

CSE 254: MAP estimation via agreement on (hyper)trees: Message-passing and linear programming approaches

CSE 254: MAP estimation via agreement on (hyper)trees: Message-passing and linear programming approaches CSE 254: MAP estimation via agreement on (hyper)trees: Message-passing and linear programming approaches A presentation by Evan Ettinger November 11, 2005 Outline Introduction Motivation and Background

More information

Chapter 8 Cluster Graph & Belief Propagation. Probabilistic Graphical Models 2016 Fall

Chapter 8 Cluster Graph & Belief Propagation. Probabilistic Graphical Models 2016 Fall Chapter 8 Cluster Graph & elief ropagation robabilistic Graphical Models 2016 Fall Outlines Variable Elimination 消元法 imple case: linear chain ayesian networks VE in complex graphs Inferences in HMMs and

More information

Lecture 4: Probability Propagation in Singly Connected Bayesian Networks

Lecture 4: Probability Propagation in Singly Connected Bayesian Networks Lecture 4: Probability Propagation in Singly Connected Bayesian Networks Singly Connected Networks So far we have looked at several cases of probability propagation in networks. We now want to formalise

More information

Message Passing and Junction Tree Algorithms. Kayhan Batmanghelich

Message Passing and Junction Tree Algorithms. Kayhan Batmanghelich Message Passing and Junction Tree Algorithms Kayhan Batmanghelich 1 Review 2 Review 3 Great Ideas in ML: Message Passing Each soldier receives reports from all branches of tree 3 here 7 here 1 of me 11

More information

Min-Max Message Passing and Local Consistency in Constraint Networks

Min-Max Message Passing and Local Consistency in Constraint Networks Min-Max Message Passing and Local Consistency in Constraint Networks Hong Xu, T. K. Satish Kumar, and Sven Koenig University of Southern California, Los Angeles, CA 90089, USA hongx@usc.edu tkskwork@gmail.com

More information

UNDERSTANDING BELIEF PROPOGATION AND ITS GENERALIZATIONS

UNDERSTANDING BELIEF PROPOGATION AND ITS GENERALIZATIONS UNDERSTANDING BELIEF PROPOGATION AND ITS GENERALIZATIONS JONATHAN YEDIDIA, WILLIAM FREEMAN, YAIR WEISS 2001 MERL TECH REPORT Kristin Branson and Ian Fasel June 11, 2003 1. Inference Inference problems

More information

Tightening Fractional Covering Upper Bounds on the Partition Function for High-Order Region Graphs

Tightening Fractional Covering Upper Bounds on the Partition Function for High-Order Region Graphs Tightening Fractional Covering Upper Bounds on the Partition Function for High-Order Region Graphs Tamir Hazan TTI Chicago Chicago, IL 60637 Jian Peng TTI Chicago Chicago, IL 60637 Amnon Shashua The Hebrew

More information

On the Convergence of the Convex Relaxation Method and Distributed Optimization of Bethe Free Energy

On the Convergence of the Convex Relaxation Method and Distributed Optimization of Bethe Free Energy On the Convergence of the Convex Relaxation Method and Distributed Optimization of Bethe Free Energy Ming Su Department of Electrical Engineering and Department of Statistics University of Washington,

More information

Dynamic models 1 Kalman filters, linearization,

Dynamic models 1 Kalman filters, linearization, Koller & Friedman: Chapter 16 Jordan: Chapters 13, 15 Uri Lerner s Thesis: Chapters 3,9 Dynamic models 1 Kalman filters, linearization, Switching KFs, Assumed density filters Probabilistic Graphical Models

More information

Recent Advances in Bayesian Inference Techniques

Recent Advances in Bayesian Inference Techniques Recent Advances in Bayesian Inference Techniques Christopher M. Bishop Microsoft Research, Cambridge, U.K. research.microsoft.com/~cmbishop SIAM Conference on Data Mining, April 2004 Abstract Bayesian

More information

Fusion in simple models

Fusion in simple models Fusion in simple models Peter Antal antal@mit.bme.hu A.I. February 8, 2018 1 Basic concepts of probability theory Joint distribution Conditional probability Bayes rule Chain rule Marginalization General

More information