CS Lecture 8 & 9. Lagrange Multipliers & Varitional Bounds

Size: px
Start display at page:

Download "CS Lecture 8 & 9. Lagrange Multipliers & Varitional Bounds"

Transcription

1 CS 6347 Lecture 8 & 9 Lagrange Multipliers & Varitional Bounds

2 General Optimization subject to: min ff 0() R nn ff ii 0, h ii = 0, ii = 1,, mm ii = 1,, pp 2

3 General Optimization subject to: min ff 0() R nn ff 0 is not necessarily convex ff ii 0, h ii = 0, ii = 1,, mm ii = 1,, pp 3

4 General Optimization subject to: min ff 0() R nn ff ii 0, h ii = 0, ii = 1,, mm ii = 1,, pp Constraints can be arbitrary functions 4

5 Lagrangian mm LL, λλ, νν = ff 0 + ii=1 pp λλ ii ff ii + ii=1 νν ii h ii () Incorporate constraints into a new objective function λλ 0 and νν are vectors of Lagrange multipliers The Lagrange multipliers can be thought of as soft constraints 5

6 Duality Construct a dual function by minimizing the Lagrangian over the primal variables gg λλ, νν = inf LL(, λλ, νν) gg λλ, νν = whenever the Lagrangian is not bounded from below for a fixed λλ and νν 6

7 The Primal Problem subject to: min ff 0() R nn ff ii 0, h ii = 0, ii = 1,, mm ii = 1,, pp Equivalently, inf sup λλ 0,νν LL(, λλ, νν) 7

8 The Dual Problem Equivalently, sup λλ 0,νν sup λλ 0,νν inf gg(λλ, νν) LL(, λλ, νν) The dual problem is always concave, even if the primal problem is not convex 8

9 Primal vs. Dual Why? sup λλ 0,νν inf LL(, λλ, νν) inf gg λλ, νν LL(, λλ, νν) for all sup λλ 0,νν LL(, λλ, νν) LL, λλ, νν ff 0 ( ) for any feasible, λλ 0 is feasible if it satisfies all of the constraints Let be the optimal solution to the primal problem and λλ 0 gg λλ, νν LL, λλ, νν ff 0 9

10 Duality Under certain conditions, the two optimization problems are equivalent sup λλ 0,νν inf LL(, λλ, νν) = inf This is called strong duality sup λλ 0,νν LL(, λλ, νν) If the inequality is strict, then we say that there is a duality gap Size of gap measured by the difference between the two sides of the inequality 10

11 Slater s Condition For any optimization problem of the form subject to: min ff 0() R nn ff ii 0, ii = 1,, mm AAAA = bb where ff 0,, ff mm are convex functions, strong duality holds if there exists an such that ff ii < 0, ii = 1,, mm AAAA = bb 11

12 Some Examples Minimize 2 + yy 2 subject to + yy 2 Maximize log yy log yy zz log zz subject to, yy, zz 0 and + yy + zz = 1 Minimize subject to + yy 1

13 Approximate Marginal Inference Last week: approximate MAP inference Reparamaterizations Linear programming over the local marginal polytope Approximate marginal inference (e.g., pp(yy ii )) Sampling methods (MCMC, etc.) Variational methods (loopy belief propagation, TRW, etc.) 13

14 KL Divergence In order to perform approximate marginal inference, we will try to find distributions that approximate the true distribution Ideally, the marginals of the approximating distribution should be easy to compute For this, we need a notion of closeness of distributions 14

15 KL Divergence pp DD(pp qq = pp log qq Called the Kullback-Leibler divergence DD(pp qq 0 with equality if and only if pp = qq Not symmetric, DD(pp qq DD(qq pp) 15

16 Jensen's Inequality Let ff() be a convex function and aa ii 0 such that ii aa ii = 1 aa ii ff( ii ) ff ii aa ii ii ii Useful inequality when dealing with convex/concave functions When does equality hold? 16

17 KL Divergence pp DD(pp qq = pp log qq Suppose that we want to approximate the distribution pp with some other distribution qq in some family of distributions QQ Could minimize KL divergence in one of two ways arg min qq QQ DD(pp qq) arg min qq QQ DD(qq pp) 17

18 KL Divergence pp DD(pp qq = pp log qq Suppose that we want to approximate the distribution pp with some other distribution qq in some family of distributions QQ Could minimize KL divergence in one of two ways arg min qq QQ DD(pp qq) arg min qq QQ DD(qq pp) Called the M-projection Called the I-projection 18

19 KL Divergence pp DD(pp qq = pp log qq Suppose that we want to approximate the distribution pp with some other distribution qq in some family of distributions QQ Could minimize KL divergence in one of two ways arg min qq QQ DD(pp qq) arg min qq QQ DD(qq pp) As hard as the original inference problem Potentially easier 19

20 Variational Inference Let's let pp = 1 ZZ cc ψψ cc cc be the distribution that we want to approximate with distribution qq qq DD(qq pp = qq log pp = qq log qq() qq log pp = HH(qq) qq log pp = HH(qq) + log ZZ qq log ψψ cc cc CC = HH(qq) + log ZZ CC CC qq CC CC log ψψ cc cc 20

21 Variational Inference Let's let pp = 1 ZZ cc ψψ cc cc be the distribution that we want to approximate with distribution qq qq DD(qq pp = qq log pp = qq log qq() qq log pp = HH qq qq log pp = HH qq + log ZZ qq log ψψ cc cc CC Where have we seen this before? = HH qq + log ZZ CC CC qq CC CC log ψψ cc cc 21

22 MAP Integer Program max ττ such that ii VV ii ii,jj EE ττ ii ii log φφ ii ii + ττ iiii ii, jj log ψψ iiii ( ii, jj ) ii, jj ττ ii ii = 1 ii jj ττ iiii ( ii, jj ) = ττ ii ( ii ) ττ ii ii {0,1} For all ii VV For all ii, jj EE, ii For all ii VV, ii ττ iiii ii, jj {0,1} For all ii, jj EE, ii, jj 22

23 Variational Inference Let's let pp = 1 ZZ cc ψψ cc cc be the distribution that we want to approximate with distribution qq DD(qq pp = HH qq + log ZZ CC CC qq CC CC log ψψ cc cc Using the observation that the KL divergence is non-negative log ZZ HH qq + CC CC qq CC CC log ψψ cc cc 23

24 Variational Inference Let's let pp = 1 ZZ cc ψψ cc cc be the distribution that we want to approximate with distribution qq DD(qq pp = HH qq + log ZZ CC CC qq CC CC log ψψ cc cc Using the observation that the KL divergence is non-negative log ZZ HH(qq) + CC CC qq CC CC log ψψ cc cc This lower bound holds for any qq 24

25 Variational Inference Let's let pp = 1 ZZ cc ψψ cc cc be the distribution that we want to approximate with distribution qq DD(qq pp = HH qq + log ZZ CC CC qq CC CC log ψψ cc cc Using the observation that the KL divergence is non-negative log ZZ HH qq + CC CC qq CC CC log ψψ cc cc Maximizing this over qq gives equality 25

26 Variational Inference log ZZ HH(qq) + CC CC qq CC CC log ψψ cc cc The right hand side is a concave function of qq Despite that, this optimization problem is hard! (surprised?) Exponentially many distributions, qq We need a more compact way to express them Computing the entropy is non-trivial 26

27 Variational Inference log ZZ HH(qq) + CC CC qq CC CC log ψψ cc cc Two kinds of methods that are used to deal with these difficulties Mean-field methods: assume that the approximating distribution factorizes as qq ii VV qq ii ii Similar idea to naïve Bayes Relaxation based methods: replace hard pieces of the optimization with easier optimization problems Similar to the MAP IP -> MAP LP relaxation 27

28 Relaxation Approach log ZZ HH(qq) + CC CC qq CC CC log ψψ cc cc To handle the representation problem, we can use the same LP relaxation trick that we did before For each ττ in the marginal polytope, we can rewrite the RHS as log ZZ HH ττ + CC CC ττ CC CC log ψψ cc cc 28

29 Relaxation Approach log ZZ HH(qq) + CC CC qq CC CC log ψψ cc cc To handle the representation problem, we can use the same LP relaxation trick that we did before For each ττ in the marginal polytope, we can rewrite the RHS as log ZZ HH(ττ) + CC CC ττ CC CC log ψψ cc cc Maximum entropy over all ττ with these marginals 29

30 Relaxation Approach max ττ M HH ττ + CC CC ττ CC CC log ψψ cc cc Marginal polytope, MM, is intractable to optimize over Use the local polytope, TT! ττ CC CC = ττ ii ii ffffff aaaaaa CC, ii VV CC ii ii ττ ii ii = 1 ffffff aaaaaa ii VV 30

31 Relaxation Approach max ττ TT HH(ττ) + CC CC ττ CC CC log ψψ cc cc Even with the polytope relaxation, the optimization problem still remains challenging as computing the entropy remains nontrivial We will need to approximate the entropy as well For which distributions is it easy to compute the entropy? 31

32 Tree Reparameterization On a tree, the joint distribution factorizes in a special way pp 1,, nn = 1 ZZ ii VV pp ii ( ii ) ii,jj EE pp iiii ( ii, jj ) pp ii ii pp jj ( jj ) pp ii is the marginal distribution of the ii ttt variable and pp iiii is the maxmarginal distribution for the edge ii, jj EE This applies to clique trees as well (i.e., when the factor graph is a tree) 32

33 Tree Reparameterization On a tree, the joint distribution factorizes in a special way pp 1,, nn = 1 ZZ ii VV pp CC ( CC ) pp ii ( ii ) ii CC pp ii ii CC pp ii is the marginal distribution of the ii ttt variable and pp iiii is the maxmarginal distribution for the edge ii, jj EE This applies to clique trees as well (i.e., when the factor graph is a tree) 33

34 Entropy of a Tree Given this factorization, we can easily compute the entropy of a tree structured distribution HH TTTTTTTT = pp ii ii log pp ii ( ii ) ii V ii CC CC pp CC CC pp CC ( CC ) log ii CC pp ii ii This only depends on the marginals Use this as an approximation for general distributions! 34

35 Bethe Free Energy Combining these two approximations gives us the so-called Bethe free energy approximation max ττ TT HH BB ττ + CC CC ττ CC CC log ψψ cc cc where HH BB ττ = ττ ii ii log ττ ii ( ii ) ii V ii CC CC ττ CC CC ττ CC ( CC ) log ii CC ττ ii ii 35

36 Bethe Free Energy max ττ TT HH BB ττ + CC CC ττ CC CC log ψψ cc cc This is not a concave optimization problem for general graphs It is still difficult to maximize However, fixed points of loopy belief propagation correspond to saddle points of this objective over the local marginal polytope 36

Optimization for Communications and Networks. Poompat Saengudomlert. Session 4 Duality and Lagrange Multipliers

Optimization for Communications and Networks. Poompat Saengudomlert. Session 4 Duality and Lagrange Multipliers Optimization for Communications and Networks Poompat Saengudomlert Session 4 Duality and Lagrange Multipliers P Saengudomlert (2015) Optimization Session 4 1 / 14 24 Dual Problems Consider a primal convex

More information

14. Duality. ˆ Upper and lower bounds. ˆ General duality. ˆ Constraint qualifications. ˆ Counterexample. ˆ Complementary slackness.

14. Duality. ˆ Upper and lower bounds. ˆ General duality. ˆ Constraint qualifications. ˆ Counterexample. ˆ Complementary slackness. CS/ECE/ISyE 524 Introduction to Optimization Spring 2016 17 14. Duality ˆ Upper and lower bounds ˆ General duality ˆ Constraint qualifications ˆ Counterexample ˆ Complementary slackness ˆ Examples ˆ Sensitivity

More information

14 : Theory of Variational Inference: Inner and Outer Approximation

14 : Theory of Variational Inference: Inner and Outer Approximation 10-708: Probabilistic Graphical Models 10-708, Spring 2014 14 : Theory of Variational Inference: Inner and Outer Approximation Lecturer: Eric P. Xing Scribes: Yu-Hsin Kuo, Amos Ng 1 Introduction Last lecture

More information

Probabilistic Graphical Models. Theory of Variational Inference: Inner and Outer Approximation. Lecture 15, March 4, 2013

Probabilistic Graphical Models. Theory of Variational Inference: Inner and Outer Approximation. Lecture 15, March 4, 2013 School of Computer Science Probabilistic Graphical Models Theory of Variational Inference: Inner and Outer Approximation Junming Yin Lecture 15, March 4, 2013 Reading: W & J Book Chapters 1 Roadmap Two

More information

Probabilistic Graphical Models

Probabilistic Graphical Models School of Computer Science Probabilistic Graphical Models Variational Inference IV: Variational Principle II Junming Yin Lecture 17, March 21, 2012 X 1 X 1 X 1 X 1 X 2 X 3 X 2 X 2 X 3 X 3 Reading: X 4

More information

Duality (Continued) min f ( x), X R R. Recall, the general primal problem is. The Lagrangian is a function. defined by

Duality (Continued) min f ( x), X R R. Recall, the general primal problem is. The Lagrangian is a function. defined by Duality (Continued) Recall, the general primal problem is min f ( x), xx g( x) 0 n m where X R, f : X R, g : XR ( X). he Lagrangian is a function L: XR R m defined by L( xλ, ) f ( x) λ g( x) Duality (Continued)

More information

14 : Theory of Variational Inference: Inner and Outer Approximation

14 : Theory of Variational Inference: Inner and Outer Approximation 10-708: Probabilistic Graphical Models 10-708, Spring 2017 14 : Theory of Variational Inference: Inner and Outer Approximation Lecturer: Eric P. Xing Scribes: Maria Ryskina, Yen-Chia Hsu 1 Introduction

More information

13: Variational inference II

13: Variational inference II 10-708: Probabilistic Graphical Models, Spring 2015 13: Variational inference II Lecturer: Eric P. Xing Scribes: Ronghuo Zheng, Zhiting Hu, Yuntian Deng 1 Introduction We started to talk about variational

More information

Constrained Optimization and Lagrangian Duality

Constrained Optimization and Lagrangian Duality CIS 520: Machine Learning Oct 02, 2017 Constrained Optimization and Lagrangian Duality Lecturer: Shivani Agarwal Disclaimer: These notes are designed to be a supplement to the lecture. They may or may

More information

Variational algorithms for marginal MAP

Variational algorithms for marginal MAP Variational algorithms for marginal MAP Alexander Ihler UC Irvine CIOG Workshop November 2011 Variational algorithms for marginal MAP Alexander Ihler UC Irvine CIOG Workshop November 2011 Work with Qiang

More information

Support Vector Machines. CSE 4309 Machine Learning Vassilis Athitsos Computer Science and Engineering Department University of Texas at Arlington

Support Vector Machines. CSE 4309 Machine Learning Vassilis Athitsos Computer Science and Engineering Department University of Texas at Arlington Support Vector Machines CSE 4309 Machine Learning Vassilis Athitsos Computer Science and Engineering Department University of Texas at Arlington 1 A Linearly Separable Problem Consider the binary classification

More information

13 : Variational Inference: Loopy Belief Propagation and Mean Field

13 : Variational Inference: Loopy Belief Propagation and Mean Field 10-708: Probabilistic Graphical Models 10-708, Spring 2012 13 : Variational Inference: Loopy Belief Propagation and Mean Field Lecturer: Eric P. Xing Scribes: Peter Schulam and William Wang 1 Introduction

More information

Inferring the origin of an epidemic with a dynamic message-passing algorithm

Inferring the origin of an epidemic with a dynamic message-passing algorithm Inferring the origin of an epidemic with a dynamic message-passing algorithm HARSH GUPTA (Based on the original work done by Andrey Y. Lokhov, Marc Mézard, Hiroki Ohta, and Lenka Zdeborová) Paper Andrey

More information

Lecture 3: Lagrangian duality and algorithms for the Lagrangian dual problem

Lecture 3: Lagrangian duality and algorithms for the Lagrangian dual problem Lecture 3: Lagrangian duality and algorithms for the Lagrangian dual problem Michael Patriksson 0-0 The Relaxation Theorem 1 Problem: find f := infimum f(x), x subject to x S, (1a) (1b) where f : R n R

More information

Lecture 11. Kernel Methods

Lecture 11. Kernel Methods Lecture 11. Kernel Methods COMP90051 Statistical Machine Learning Semester 2, 2017 Lecturer: Andrey Kan Copyright: University of Melbourne This lecture The kernel trick Efficient computation of a dot product

More information

Lagrange duality. The Lagrangian. We consider an optimization program of the form

Lagrange duality. The Lagrangian. We consider an optimization program of the form Lagrange duality Another way to arrive at the KKT conditions, and one which gives us some insight on solving constrained optimization problems, is through the Lagrange dual. The dual is a maximization

More information

Lagrangian Duality and Convex Optimization

Lagrangian Duality and Convex Optimization Lagrangian Duality and Convex Optimization David Rosenberg New York University February 11, 2015 David Rosenberg (New York University) DS-GA 1003 February 11, 2015 1 / 24 Introduction Why Convex Optimization?

More information

Probabilistic and Bayesian Machine Learning

Probabilistic and Bayesian Machine Learning Probabilistic and Bayesian Machine Learning Day 4: Expectation and Belief Propagation Yee Whye Teh ywteh@gatsby.ucl.ac.uk Gatsby Computational Neuroscience Unit University College London http://www.gatsby.ucl.ac.uk/

More information

Lecture 1: Entropy, convexity, and matrix scaling CSE 599S: Entropy optimality, Winter 2016 Instructor: James R. Lee Last updated: January 24, 2016

Lecture 1: Entropy, convexity, and matrix scaling CSE 599S: Entropy optimality, Winter 2016 Instructor: James R. Lee Last updated: January 24, 2016 Lecture 1: Entropy, convexity, and matrix scaling CSE 599S: Entropy optimality, Winter 2016 Instructor: James R. Lee Last updated: January 24, 2016 1 Entropy Since this course is about entropy maximization,

More information

Charge carrier density in metals and semiconductors

Charge carrier density in metals and semiconductors Charge carrier density in metals and semiconductors 1. Introduction The Hall Effect Particles must overlap for the permutation symmetry to be relevant. We saw examples of this in the exchange energy in

More information

Uncertain Compression & Graph Coloring. Madhu Sudan Harvard

Uncertain Compression & Graph Coloring. Madhu Sudan Harvard Uncertain Compression & Graph Coloring Madhu Sudan Harvard Based on joint works with: (1) Adam Kalai (MSR), Sanjeev Khanna (U.Penn), Brendan Juba (WUStL) (2) Elad Haramaty (Harvard) (3) Badih Ghazi (MIT),

More information

Advanced data analysis

Advanced data analysis Advanced data analysis Akisato Kimura ( 木村昭悟 ) NTT Communication Science Laboratories E-mail: akisato@ieee.org Advanced data analysis 1. Introduction (Aug 20) 2. Dimensionality reduction (Aug 20,21) PCA,

More information

Lagrange Duality. Daniel P. Palomar. Hong Kong University of Science and Technology (HKUST)

Lagrange Duality. Daniel P. Palomar. Hong Kong University of Science and Technology (HKUST) Lagrange Duality Daniel P. Palomar Hong Kong University of Science and Technology (HKUST) ELEC5470 - Convex Optimization Fall 2017-18, HKUST, Hong Kong Outline of Lecture Lagrangian Dual function Dual

More information

Lecture #21. c T x Ax b. maximize subject to

Lecture #21. c T x Ax b. maximize subject to COMPSCI 330: Design and Analysis of Algorithms 11/11/2014 Lecture #21 Lecturer: Debmalya Panigrahi Scribe: Samuel Haney 1 Overview In this lecture, we discuss linear programming. We first show that the

More information

Posterior Regularization

Posterior Regularization Posterior Regularization 1 Introduction One of the key challenges in probabilistic structured learning, is the intractability of the posterior distribution, for fast inference. There are numerous methods

More information

Bayesian Learning in Undirected Graphical Models

Bayesian Learning in Undirected Graphical Models Bayesian Learning in Undirected Graphical Models Zoubin Ghahramani Gatsby Computational Neuroscience Unit University College London, UK http://www.gatsby.ucl.ac.uk/ Work with: Iain Murray and Hyun-Chul

More information

Variational Inference (11/04/13)

Variational Inference (11/04/13) STA561: Probabilistic machine learning Variational Inference (11/04/13) Lecturer: Barbara Engelhardt Scribes: Matt Dickenson, Alireza Samany, Tracy Schifeling 1 Introduction In this lecture we will further

More information

Variations. ECE 6540, Lecture 02 Multivariate Random Variables & Linear Algebra

Variations. ECE 6540, Lecture 02 Multivariate Random Variables & Linear Algebra Variations ECE 6540, Lecture 02 Multivariate Random Variables & Linear Algebra Last Time Probability Density Functions Normal Distribution Expectation / Expectation of a function Independence Uncorrelated

More information

Probabilistic Graphical Models

Probabilistic Graphical Models Probabilistic Graphical Models Lecture 9: Variational Inference Relaxations Volkan Cevher, Matthias Seeger Ecole Polytechnique Fédérale de Lausanne 24/10/2011 (EPFL) Graphical Models 24/10/2011 1 / 15

More information

Convex Optimization & Lagrange Duality

Convex Optimization & Lagrange Duality Convex Optimization & Lagrange Duality Chee Wei Tan CS 8292 : Advanced Topics in Convex Optimization and its Applications Fall 2010 Outline Convex optimization Optimality condition Lagrange duality KKT

More information

Support Vector Machines: Maximum Margin Classifiers

Support Vector Machines: Maximum Margin Classifiers Support Vector Machines: Maximum Margin Classifiers Machine Learning and Pattern Recognition: September 16, 2008 Piotr Mirowski Based on slides by Sumit Chopra and Fu-Jie Huang 1 Outline What is behind

More information

Worksheets for GCSE Mathematics. Quadratics. mr-mathematics.com Maths Resources for Teachers. Algebra

Worksheets for GCSE Mathematics. Quadratics. mr-mathematics.com Maths Resources for Teachers. Algebra Worksheets for GCSE Mathematics Quadratics mr-mathematics.com Maths Resources for Teachers Algebra Quadratics Worksheets Contents Differentiated Independent Learning Worksheets Solving x + bx + c by factorisation

More information

Discrete Markov Random Fields the Inference story. Pradeep Ravikumar

Discrete Markov Random Fields the Inference story. Pradeep Ravikumar Discrete Markov Random Fields the Inference story Pradeep Ravikumar Graphical Models, The History How to model stochastic processes of the world? I want to model the world, and I like graphs... 2 Mid to

More information

CS249: ADVANCED DATA MINING

CS249: ADVANCED DATA MINING CS249: ADVANCED DATA MINING Support Vector Machine and Neural Network Instructor: Yizhou Sun yzsun@cs.ucla.edu April 24, 2017 Homework 1 Announcements Due end of the day of this Friday (11:59pm) Reminder

More information

CS229T/STATS231: Statistical Learning Theory. Lecturer: Tengyu Ma Lecture 11 Scribe: Jongho Kim, Jamie Kang October 29th, 2018

CS229T/STATS231: Statistical Learning Theory. Lecturer: Tengyu Ma Lecture 11 Scribe: Jongho Kim, Jamie Kang October 29th, 2018 CS229T/STATS231: Statistical Learning Theory Lecturer: Tengyu Ma Lecture 11 Scribe: Jongho Kim, Jamie Kang October 29th, 2018 1 Overview This lecture mainly covers Recall the statistical theory of GANs

More information

Junction Tree, BP and Variational Methods

Junction Tree, BP and Variational Methods Junction Tree, BP and Variational Methods Adrian Weller MLSALT4 Lecture Feb 21, 2018 With thanks to David Sontag (MIT) and Tony Jebara (Columbia) for use of many slides and illustrations For more information,

More information

Classical RSA algorithm

Classical RSA algorithm Classical RSA algorithm We need to discuss some mathematics (number theory) first Modulo-NN arithmetic (modular arithmetic, clock arithmetic) 9 (mod 7) 4 3 5 (mod 7) congruent (I will also use = instead

More information

Lecture 3. STAT161/261 Introduction to Pattern Recognition and Machine Learning Spring 2018 Prof. Allie Fletcher

Lecture 3. STAT161/261 Introduction to Pattern Recognition and Machine Learning Spring 2018 Prof. Allie Fletcher Lecture 3 STAT161/261 Introduction to Pattern Recognition and Machine Learning Spring 2018 Prof. Allie Fletcher Previous lectures What is machine learning? Objectives of machine learning Supervised and

More information

EE364a Review Session 5

EE364a Review Session 5 EE364a Review Session 5 EE364a Review announcements: homeworks 1 and 2 graded homework 4 solutions (check solution to additional problem 1) scpd phone-in office hours: tuesdays 6-7pm (650-723-1156) 1 Complementary

More information

Expectation Propagation performs smooth gradient descent GUILLAUME DEHAENE

Expectation Propagation performs smooth gradient descent GUILLAUME DEHAENE Expectation Propagation performs smooth gradient descent 1 GUILLAUME DEHAENE In a nutshell Problem: posteriors are uncomputable Solution: parametric approximations 2 But which one should we choose? Laplace?

More information

12 : Variational Inference I

12 : Variational Inference I 10-708: Probabilistic Graphical Models, Spring 2015 12 : Variational Inference I Lecturer: Eric P. Xing Scribes: Fattaneh Jabbari, Eric Lei, Evan Shapiro 1 Introduction Probabilistic inference is one of

More information

Convex Optimization and Support Vector Machine

Convex Optimization and Support Vector Machine Convex Optimization and Support Vector Machine Problem 0. Consider a two-class classification problem. The training data is L n = {(x 1, t 1 ),..., (x n, t n )}, where each t i { 1, 1} and x i R p. We

More information

4. Algebra and Duality

4. Algebra and Duality 4-1 Algebra and Duality P. Parrilo and S. Lall, CDC 2003 2003.12.07.01 4. Algebra and Duality Example: non-convex polynomial optimization Weak duality and duality gap The dual is not intrinsic The cone

More information

13 : Variational Inference: Loopy Belief Propagation

13 : Variational Inference: Loopy Belief Propagation 10-708: Probabilistic Graphical Models 10-708, Spring 2014 13 : Variational Inference: Loopy Belief Propagation Lecturer: Eric P. Xing Scribes: Rajarshi Das, Zhengzhong Liu, Dishan Gupta 1 Introduction

More information

Probabilistic Graphical Models

Probabilistic Graphical Models School of Computer Science Probabilistic Graphical Models Variational Inference II: Mean Field Method and Variational Principle Junming Yin Lecture 15, March 7, 2012 X 1 X 1 X 1 X 1 X 2 X 3 X 2 X 2 X 3

More information

CS249: ADVANCED DATA MINING

CS249: ADVANCED DATA MINING CS249: ADVANCED DATA MINING Vector Data: Clustering: Part II Instructor: Yizhou Sun yzsun@cs.ucla.edu May 3, 2017 Methods to Learn: Last Lecture Classification Clustering Vector Data Text Data Recommender

More information

Lagrangian Duality. Richard Lusby. Department of Management Engineering Technical University of Denmark

Lagrangian Duality. Richard Lusby. Department of Management Engineering Technical University of Denmark Lagrangian Duality Richard Lusby Department of Management Engineering Technical University of Denmark Today s Topics (jg Lagrange Multipliers Lagrangian Relaxation Lagrangian Duality R Lusby (42111) Lagrangian

More information

A notion of Total Dual Integrality for Convex, Semidefinite and Extended Formulations

A notion of Total Dual Integrality for Convex, Semidefinite and Extended Formulations A notion of for Convex, Semidefinite and Extended Formulations Marcel de Carli Silva Levent Tunçel April 26, 2018 A vector in R n is integral if each of its components is an integer, A vector in R n is

More information

5. Duality. Lagrangian

5. Duality. Lagrangian 5. Duality Convex Optimization Boyd & Vandenberghe Lagrange dual problem weak and strong duality geometric interpretation optimality conditions perturbation and sensitivity analysis examples generalized

More information

Convex Optimization Boyd & Vandenberghe. 5. Duality

Convex Optimization Boyd & Vandenberghe. 5. Duality 5. Duality Convex Optimization Boyd & Vandenberghe Lagrange dual problem weak and strong duality geometric interpretation optimality conditions perturbation and sensitivity analysis examples generalized

More information

EE 227A: Convex Optimization and Applications October 14, 2008

EE 227A: Convex Optimization and Applications October 14, 2008 EE 227A: Convex Optimization and Applications October 14, 2008 Lecture 13: SDP Duality Lecturer: Laurent El Ghaoui Reading assignment: Chapter 5 of BV. 13.1 Direct approach 13.1.1 Primal problem Consider

More information

Linear and Combinatorial Optimization

Linear and Combinatorial Optimization Linear and Combinatorial Optimization The dual of an LP-problem. Connections between primal and dual. Duality theorems and complementary slack. Philipp Birken (Ctr. for the Math. Sc.) Lecture 3: Duality

More information

Tutorial on Convex Optimization: Part II

Tutorial on Convex Optimization: Part II Tutorial on Convex Optimization: Part II Dr. Khaled Ardah Communications Research Laboratory TU Ilmenau Dec. 18, 2018 Outline Convex Optimization Review Lagrangian Duality Applications Optimal Power Allocation

More information

Algorithms for Reasoning with Probabilistic Graphical Models. Class 3: Approximate Inference. International Summer School on Deep Learning July 2017

Algorithms for Reasoning with Probabilistic Graphical Models. Class 3: Approximate Inference. International Summer School on Deep Learning July 2017 Algorithms for Reasoning with Probabilistic Graphical Models Class 3: Approximate Inference International Summer School on Deep Learning July 2017 Prof. Rina Dechter Prof. Alexander Ihler Approximate Inference

More information

Duality. Lagrange dual problem weak and strong duality optimality conditions perturbation and sensitivity analysis generalized inequalities

Duality. Lagrange dual problem weak and strong duality optimality conditions perturbation and sensitivity analysis generalized inequalities Duality Lagrange dual problem weak and strong duality optimality conditions perturbation and sensitivity analysis generalized inequalities Lagrangian Consider the optimization problem in standard form

More information

A linear operator of a new class of multivalent harmonic functions

A linear operator of a new class of multivalent harmonic functions International Journal of Scientific Research Publications, Volume 7, Issue 8, August 2017 278 A linear operator of a new class of multivalent harmonic functions * WaggasGalibAtshan, ** Ali Hussein Battor,

More information

Duality. Geoff Gordon & Ryan Tibshirani Optimization /

Duality. Geoff Gordon & Ryan Tibshirani Optimization / Duality Geoff Gordon & Ryan Tibshirani Optimization 10-725 / 36-725 1 Duality in linear programs Suppose we want to find lower bound on the optimal value in our convex problem, B min x C f(x) E.g., consider

More information

Convex Optimization M2

Convex Optimization M2 Convex Optimization M2 Lecture 3 A. d Aspremont. Convex Optimization M2. 1/49 Duality A. d Aspremont. Convex Optimization M2. 2/49 DMs DM par email: dm.daspremont@gmail.com A. d Aspremont. Convex Optimization

More information

Lecture 9: PGM Learning

Lecture 9: PGM Learning 13 Oct 2014 Intro. to Stats. Machine Learning COMP SCI 4401/7401 Table of Contents I Learning parameters in MRFs 1 Learning parameters in MRFs Inference and Learning Given parameters (of potentials) and

More information

Bayesian Machine Learning - Lecture 7

Bayesian Machine Learning - Lecture 7 Bayesian Machine Learning - Lecture 7 Guido Sanguinetti Institute for Adaptive and Neural Computation School of Informatics University of Edinburgh gsanguin@inf.ed.ac.uk March 4, 2015 Today s lecture 1

More information

I.3. LMI DUALITY. Didier HENRION EECI Graduate School on Control Supélec - Spring 2010

I.3. LMI DUALITY. Didier HENRION EECI Graduate School on Control Supélec - Spring 2010 I.3. LMI DUALITY Didier HENRION henrion@laas.fr EECI Graduate School on Control Supélec - Spring 2010 Primal and dual For primal problem p = inf x g 0 (x) s.t. g i (x) 0 define Lagrangian L(x, z) = g 0

More information

Lagrange Relaxation and Duality

Lagrange Relaxation and Duality Lagrange Relaxation and Duality As we have already known, constrained optimization problems are harder to solve than unconstrained problems. By relaxation we can solve a more difficult problem by a simpler

More information

Duality in Linear Programs. Lecturer: Ryan Tibshirani Convex Optimization /36-725

Duality in Linear Programs. Lecturer: Ryan Tibshirani Convex Optimization /36-725 Duality in Linear Programs Lecturer: Ryan Tibshirani Convex Optimization 10-725/36-725 1 Last time: proximal gradient descent Consider the problem x g(x) + h(x) with g, h convex, g differentiable, and

More information

Section Notes 9. IP: Cutting Planes. Applied Math 121. Week of April 12, 2010

Section Notes 9. IP: Cutting Planes. Applied Math 121. Week of April 12, 2010 Section Notes 9 IP: Cutting Planes Applied Math 121 Week of April 12, 2010 Goals for the week understand what a strong formulations is. be familiar with the cutting planes algorithm and the types of cuts

More information

Worksheets for GCSE Mathematics. Algebraic Expressions. Mr Black 's Maths Resources for Teachers GCSE 1-9. Algebra

Worksheets for GCSE Mathematics. Algebraic Expressions. Mr Black 's Maths Resources for Teachers GCSE 1-9. Algebra Worksheets for GCSE Mathematics Algebraic Expressions Mr Black 's Maths Resources for Teachers GCSE 1-9 Algebra Algebraic Expressions Worksheets Contents Differentiated Independent Learning Worksheets

More information

General Strong Polarization

General Strong Polarization General Strong Polarization Madhu Sudan Harvard University Joint work with Jaroslaw Blasiok (Harvard), Venkatesan Gurswami (CMU), Preetum Nakkiran (Harvard) and Atri Rudra (Buffalo) December 4, 2017 IAS:

More information

Example: feasibility. Interpretation as formal proof. Example: linear inequalities and Farkas lemma

Example: feasibility. Interpretation as formal proof. Example: linear inequalities and Farkas lemma 4-1 Algebra and Duality P. Parrilo and S. Lall 2006.06.07.01 4. Algebra and Duality Example: non-convex polynomial optimization Weak duality and duality gap The dual is not intrinsic The cone of valid

More information

Lecture: Duality.

Lecture: Duality. Lecture: Duality http://bicmr.pku.edu.cn/~wenzw/opt-2016-fall.html Acknowledgement: this slides is based on Prof. Lieven Vandenberghe s lecture notes Introduction 2/35 Lagrange dual problem weak and strong

More information

Introduction to Machine Learning Prof. Sudeshna Sarkar Department of Computer Science and Engineering Indian Institute of Technology, Kharagpur

Introduction to Machine Learning Prof. Sudeshna Sarkar Department of Computer Science and Engineering Indian Institute of Technology, Kharagpur Introduction to Machine Learning Prof. Sudeshna Sarkar Department of Computer Science and Engineering Indian Institute of Technology, Kharagpur Module - 5 Lecture - 22 SVM: The Dual Formulation Good morning.

More information

Topic: Primal-Dual Algorithms Date: We finished our discussion of randomized rounding and began talking about LP Duality.

Topic: Primal-Dual Algorithms Date: We finished our discussion of randomized rounding and began talking about LP Duality. CS787: Advanced Algorithms Scribe: Amanda Burton, Leah Kluegel Lecturer: Shuchi Chawla Topic: Primal-Dual Algorithms Date: 10-17-07 14.1 Last Time We finished our discussion of randomized rounding and

More information

Introduction to Mathematical Programming IE406. Lecture 10. Dr. Ted Ralphs

Introduction to Mathematical Programming IE406. Lecture 10. Dr. Ted Ralphs Introduction to Mathematical Programming IE406 Lecture 10 Dr. Ted Ralphs IE406 Lecture 10 1 Reading for This Lecture Bertsimas 4.1-4.3 IE406 Lecture 10 2 Duality Theory: Motivation Consider the following

More information

Extreme Abridgment of Boyd and Vandenberghe s Convex Optimization

Extreme Abridgment of Boyd and Vandenberghe s Convex Optimization Extreme Abridgment of Boyd and Vandenberghe s Convex Optimization Compiled by David Rosenberg Abstract Boyd and Vandenberghe s Convex Optimization book is very well-written and a pleasure to read. The

More information

The Lagrangian L : R d R m R r R is an (easier to optimize) lower bound on the original problem:

The Lagrangian L : R d R m R r R is an (easier to optimize) lower bound on the original problem: HT05: SC4 Statistical Data Mining and Machine Learning Dino Sejdinovic Department of Statistics Oxford Convex Optimization and slides based on Arthur Gretton s Advanced Topics in Machine Learning course

More information

Lecture: Duality of LP, SOCP and SDP

Lecture: Duality of LP, SOCP and SDP 1/33 Lecture: Duality of LP, SOCP and SDP Zaiwen Wen Beijing International Center For Mathematical Research Peking University http://bicmr.pku.edu.cn/~wenzw/bigdata2017.html wenzw@pku.edu.cn Acknowledgement:

More information

17 Variational Inference

17 Variational Inference Massachusetts Institute of Technology Department of Electrical Engineering and Computer Science 6.438 Algorithms for Inference Fall 2014 17 Variational Inference Prompted by loopy graphs for which exact

More information

Estimate by the L 2 Norm of a Parameter Poisson Intensity Discontinuous

Estimate by the L 2 Norm of a Parameter Poisson Intensity Discontinuous Research Journal of Mathematics and Statistics 6: -5, 24 ISSN: 242-224, e-issn: 24-755 Maxwell Scientific Organization, 24 Submied: September 8, 23 Accepted: November 23, 23 Published: February 25, 24

More information

Grover s algorithm. We want to find aa. Search in an unordered database. QC oracle (as usual) Usual trick

Grover s algorithm. We want to find aa. Search in an unordered database. QC oracle (as usual) Usual trick Grover s algorithm Search in an unordered database Example: phonebook, need to find a person from a phone number Actually, something else, like hard (e.g., NP-complete) problem 0, xx aa Black box ff xx

More information

Solving Dual Problems

Solving Dual Problems Lecture 20 Solving Dual Problems We consider a constrained problem where, in addition to the constraint set X, there are also inequality and linear equality constraints. Specifically the minimization problem

More information

Bayesian Learning in Undirected Graphical Models

Bayesian Learning in Undirected Graphical Models Bayesian Learning in Undirected Graphical Models Zoubin Ghahramani Gatsby Computational Neuroscience Unit University College London, UK http://www.gatsby.ucl.ac.uk/ and Center for Automated Learning and

More information

ICS-E4030 Kernel Methods in Machine Learning

ICS-E4030 Kernel Methods in Machine Learning ICS-E4030 Kernel Methods in Machine Learning Lecture 3: Convex optimization and duality Juho Rousu 28. September, 2016 Juho Rousu 28. September, 2016 1 / 38 Convex optimization Convex optimisation This

More information

Systems of Linear Equations

Systems of Linear Equations Systems of Linear Equations As stated in Section G, Definition., a linear equation in two variables is an equation of the form AAAA + BBBB = CC, where AA and BB are not both zero. Such an equation has

More information

Lecture 18: Optimization Programming

Lecture 18: Optimization Programming Fall, 2016 Outline Unconstrained Optimization 1 Unconstrained Optimization 2 Equality-constrained Optimization Inequality-constrained Optimization Mixture-constrained Optimization 3 Quadratic Programming

More information

16.1 L.P. Duality Applied to the Minimax Theorem

16.1 L.P. Duality Applied to the Minimax Theorem CS787: Advanced Algorithms Scribe: David Malec and Xiaoyong Chai Lecturer: Shuchi Chawla Topic: Minimax Theorem and Semi-Definite Programming Date: October 22 2007 In this lecture, we first conclude our

More information

Lecture Support Vector Machine (SVM) Classifiers

Lecture Support Vector Machine (SVM) Classifiers Introduction to Machine Learning Lecturer: Amir Globerson Lecture 6 Fall Semester Scribe: Yishay Mansour 6.1 Support Vector Machine (SVM) Classifiers Classification is one of the most important tasks in

More information

Dan Roth 461C, 3401 Walnut

Dan Roth   461C, 3401 Walnut CIS 519/419 Applied Machine Learning www.seas.upenn.edu/~cis519 Dan Roth danroth@seas.upenn.edu http://www.cis.upenn.edu/~danroth/ 461C, 3401 Walnut Slides were created by Dan Roth (for CIS519/419 at Penn

More information

Integer Programming ISE 418. Lecture 8. Dr. Ted Ralphs

Integer Programming ISE 418. Lecture 8. Dr. Ted Ralphs Integer Programming ISE 418 Lecture 8 Dr. Ted Ralphs ISE 418 Lecture 8 1 Reading for This Lecture Wolsey Chapter 2 Nemhauser and Wolsey Sections II.3.1, II.3.6, II.4.1, II.4.2, II.5.4 Duality for Mixed-Integer

More information

EE/AA 578, Univ of Washington, Fall Duality

EE/AA 578, Univ of Washington, Fall Duality 7. Duality EE/AA 578, Univ of Washington, Fall 2016 Lagrange dual problem weak and strong duality geometric interpretation optimality conditions perturbation and sensitivity analysis examples generalized

More information

An introductory example

An introductory example CS1 Lecture 9 An introductory example Suppose that a company that produces three products wishes to decide the level of production of each so as to maximize profits. Let x 1 be the amount of Product 1

More information

subject to (x 2)(x 4) u,

subject to (x 2)(x 4) u, Exercises Basic definitions 5.1 A simple example. Consider the optimization problem with variable x R. minimize x 2 + 1 subject to (x 2)(x 4) 0, (a) Analysis of primal problem. Give the feasible set, the

More information

10701 Recitation 5 Duality and SVM. Ahmed Hefny

10701 Recitation 5 Duality and SVM. Ahmed Hefny 10701 Recitation 5 Duality and SVM Ahmed Hefny Outline Langrangian and Duality The Lagrangian Duality Eamples Support Vector Machines Primal Formulation Dual Formulation Soft Margin and Hinge Loss Lagrangian

More information

Inference as Optimization

Inference as Optimization Inference as Optimization Sargur Srihari srihari@cedar.buffalo.edu 1 Topics in Inference as Optimization Overview Exact Inference revisited The Energy Functional Optimizing the Energy Functional 2 Exact

More information

MAP estimation via agreement on (hyper)trees: Message-passing and linear programming approaches

MAP estimation via agreement on (hyper)trees: Message-passing and linear programming approaches MAP estimation via agreement on (hyper)trees: Message-passing and linear programming approaches Martin Wainwright Tommi Jaakkola Alan Willsky martinw@eecs.berkeley.edu tommi@ai.mit.edu willsky@mit.edu

More information

CS599: Convex and Combinatorial Optimization Fall 2013 Lecture 17: Combinatorial Problems as Linear Programs III. Instructor: Shaddin Dughmi

CS599: Convex and Combinatorial Optimization Fall 2013 Lecture 17: Combinatorial Problems as Linear Programs III. Instructor: Shaddin Dughmi CS599: Convex and Combinatorial Optimization Fall 2013 Lecture 17: Combinatorial Problems as Linear Programs III Instructor: Shaddin Dughmi Announcements Today: Spanning Trees and Flows Flexibility awarded

More information

9. Interpretations, Lifting, SOS and Moments

9. Interpretations, Lifting, SOS and Moments 9-1 Interpretations, Lifting, SOS and Moments P. Parrilo and S. Lall, CDC 2003 2003.12.07.04 9. Interpretations, Lifting, SOS and Moments Polynomial nonnegativity Sum of squares (SOS) decomposition Eample

More information

The Derivative. Leibniz notation: Prime notation: Limit Definition of the Derivative: (Used to directly compute derivative)

The Derivative. Leibniz notation: Prime notation: Limit Definition of the Derivative: (Used to directly compute derivative) Topic 2: The Derivative 1 The Derivative The derivative of a function represents its instantaneous rate of change at any point along its domain. There are several ways which we can represent a derivative,

More information

Random Vectors Part A

Random Vectors Part A Random Vectors Part A Page 1 Outline Random Vectors Measurement of Dependence: Covariance Other Methods of Representing Dependence Set of Joint Distributions Copulas Common Random Vectors Functions of

More information

Lecture 8. Strong Duality Results. September 22, 2008

Lecture 8. Strong Duality Results. September 22, 2008 Strong Duality Results September 22, 2008 Outline Lecture 8 Slater Condition and its Variations Convex Objective with Linear Inequality Constraints Quadratic Objective over Quadratic Constraints Representation

More information

Angular Momentum, Electromagnetic Waves

Angular Momentum, Electromagnetic Waves Angular Momentum, Electromagnetic Waves Lecture33: Electromagnetic Theory Professor D. K. Ghosh, Physics Department, I.I.T., Bombay As before, we keep in view the four Maxwell s equations for all our discussions.

More information

Lecture Note 18: Duality

Lecture Note 18: Duality MATH 5330: Computational Methods of Linear Algebra 1 The Dual Problems Lecture Note 18: Duality Xianyi Zeng Department of Mathematical Sciences, UTEP The concept duality, just like accuracy and stability,

More information

Lecture 7: Semidefinite programming

Lecture 7: Semidefinite programming CS 766/QIC 820 Theory of Quantum Information (Fall 2011) Lecture 7: Semidefinite programming This lecture is on semidefinite programming, which is a powerful technique from both an analytic and computational

More information