Math 56 Homework 5 Michael Downs

Size: px
Start display at page:

Download "Math 56 Homework 5 Michael Downs"

Transcription

1 1. (a) Since f(x) = cos(6x) = ei6x 2 + e i6x 2, due to the orthogonality of each e inx, n Z, the only nonzero (complex) fourier coefficients are ˆf 6 and ˆf 6 and they re both 1 2 (which is also seen from Euler s identity). (b) The function f(x) = e 6ix lies outside the nyquist frequency N = 5 so aliasing will 2 occur. The DFT coefficients will approximate f m for integers N m < N each with 2 2 error + ˆf m 2N + ˆf m N + ˆf m+n ˆfm+2N + (these are the exact fourier coefficients). Since the only nonzero fourier coefficient is ˆf 6 = 1, the only nonzero approximation in the DFT will be f 4 since its error hits ˆf 6, the only nonzero fourier coefficient. The interpolated function will be f(x) = e 4ix. 2. (a) Code: 1 % s p e c t r a l d i f f e r e n t i a t i o n 3 N = 4 0 ; % number o f sample p o i n t s f x ) exp ( s i n ( x ) ) ; % f u n c t i o n we re sampling 5 df x ) exp ( s i n ( x ) ). cos ( x ) ; % i t s d e r i v a t i v e 11 7 gr = 0 : 1 e 3:2 pi ; % the f i n e s t g r i d 9 maxerrors = z e r o s ( 1, N/2) ; n = 2 : 2 :N; f o r j = 2 : 2 :N 13 x = l i n s p a c e ( 0, ( j 1)/ j 2 pi, j ) ; % sample x v a l u e s y = f ( x ). / j ; % samples 15 f t = f f t ( y ) ; % approximated c o e f f i c i e n t s 17 % get d e r i v a t i v e c o e f f i c i e n t s by m u l t i p l y i n g each approximated % c o e f f i c i e n t by i m where m i s i t s frequency / c o e f f i c i e n t number 19 f o r k = 1 : j /2 f t ( k ) = f t ( k ) i ( k 1) ; 21 f t ( j + 1 k ) = f t ( j + 1 k ) i k ; end 23 i n t e r x ) r e a l (sum( f t ( ( j /2 + 1) : j ). exp( 1 i x ( j /2: 1:1) ) ) + sum( f t ( 1 : j /2). exp ( i x ( 0 : ( j /2 1) ) ) ) ) ; 25 e r r o r = max( abs (df( gr ) arrayfun ( i n t e r, gr ) ) ) ; maxerrors ( j /2) = e r r o r ; 27 end 29 f i g u r e ; semilogy (n, maxerrors ) ; 31 x l a b e l ( N ) ; y l a b e l ( max e r r o r ) ; 33 t i t l e ( Error in truncated N term approximation using s p e c t r a l d i f f e r e n t i a t i o n ) 1

2 Plot: 10 2 Error in truncated N term approximation using spectral differentiation max error N (b) Replacing f and df with: 1 f x ) abs ( s i n ( x ) ). ˆ 3 ; % f u n c t i o n we re sampling df x ) 3 s i n ( x ). abs ( s i n ( x ) ). cos ( x ) ; % i t s d e r i v a t i v e and plotting log(y) vs x: 2

3 10 1 Error in truncated N term approximation using spectral differentiation max error N This is clearly not exponential convergence. I plot the errors again using log(y) vs log(x): 10 1 Error in truncated N term approximation using spectral differentiation max error N It appears to be algebraic of order 2 judging from the graph. The function is twice differentiable so by the theorem from HW4 1(e) it should have second order algebraic. It is not infinitely differentiable and therefore does not have super algebraic convergence. 3

4 3. Algorithm: % cooley tukey r e c u r s i v e algorithm f o r the f a s t f o u r i e r transform 2 % takes a row v e c t o r o f weighted samples o f l ength 2ˆn % and outputs the transformed v e c t o r 4 f u n c t i o n r e s = c t f f t ( f ) 6 N = l e n g t h ( f ) ; % base case in r e c u r s i o n when s i z e i s 2 8 i f N == 2 r e s = ( dftmtx ( 2 ) f. ). ; 10 r eturn ; end 12 % s h u f f l e i n t o even and odd v e c t o r s. KEEPING IN MIND THE ZERO INDEXING 14 % SO ACTUALLY IT S REVERSED f e = f ( 1 : 2 :N) ; 16 f o = f ( 2 : 2 :N) ; 18 % r e c u r s e to get t h e i r f f t s e = c t f f t ( f e ) ; 20 o = c t f f t ( f o ) ; 22 % multiply o by twiddle f a c t o r f o r combining l a t e r twid = exp( 1 1 i 2 pi 1/N ( 0 : (N/2 1) ) ) ; o = twid. o ; % combine them 28 r e s = z e r o s ( 1, N) ; r e s ( 1 :N/2) = e ( 1 :N/2) + o ( 1 :N/2) ; 30 r e s ( ( 1 :N/2) + N/2) = e ( 1 :N/2) o ( 1 :N/2) ; end driver: 1 % d r i v e r f o r my c t f f t code. computes norm o f e r r o r between matlab f f t and % my f f t. a l s o compares run times. 3 N = 2ˆ16; % number o f sample p o i n t s 5 f x ) exp ( s i n ( x ) ) ; % f u n c t i o n we re sampling 7 x = l i n s p a c e ( 0, ()/N 2 pi, N) ; % sample x v a l u e s y = f ( x ). /N; % samples 9 t i c ; 11 mlc = f f t ( y ) ; % matlab code l i b = toc ; 13 4

5 t i c ; 15 myc = c t f f t ( y ) ; % my code mine = toc ; 17 f p r i n t f ( norm o f e r r o r : \n ) 19 norm ( mlc myc) 21 f p r i n t f ( the l i b r a r y code i s %g times f a s t e r \n, mine/ l i b ) ; output: >> driver norm of error: ans = e-16 the library code is times faster 4. (a) Code: 1 [ f, f s, n b i t s ] = wavread ( s i g n o i s e. wav ) ; 3 x = l i n s p a c e ( 0, 2 pi ( length ( f ) 1)/ length ( f ), l ength ( f ) ) ; 5 p l o t ( x, f ) ; x l a b e l ( time ) 7 y l a b e l ( amplitude ) t i t l e ( s i g n a l f which c o n t a i n s one frequency component on top o f n o i s e ) 5

6 1 signal f which contains one frequency component on top of noise amplitude time There appears to be a subtle sinusoidal shape and some periodicity but it s difficult to make out. Turning to the fft to determine the dominant frequency: % use the f f t to r e c o n s t r u c t the o r i g i n a l s i g n a l by determining which 2 % f o u r i e r c o e f f i c i e n t s are dominant f t = f f t ( f ) ; 4 p l o t ( 1 : l e n g t h ( f t ), abs ( f t ) ) ; t i t l e ( magnitude o f approximated f o u r i e r c o e f f i c i e n t s ) ; 6 x l a b e l ( m ) ; y l a b e l ( abs ( f m ) ) ; A graph of the magntudes of the fourier coeffiients shows one coefficient pair to be much higher than the others: 6

7 450 magnitude of approximated fourier coefficients abs(f m ) m x 10 4 magnitude of approximated fourier coefficients abs(f m ) m zooming reveals that the dominant coefficient is at 655 in matlab so it s at m = 654 which means that the other coefficient in the pair should be at = (and it is). The indices are related because the negative coefficients get wrapped into the upper half of the DFT output vector. The 654th fourier coefficient is in the first half but the -654th is at position in the output vector. The coefficients are related in that they are eachother s complex conjugate. Confirming: >> ft(655) 7

8 ans = e e+02i >> ft(64883) ans = e e+02i They both correspond to the dominant frequency for the input signal F which is, presumably, some combination of sines and cosines. (b) The true frequency for m = 654, f s = 44100, and N = should be: BONUS I reconstruct the original signal: 1 % remove n o i s e f i x e d = z e r o s ( l e n g t h ( f t ), 1) ; 3 f i x e d (655) = f t (655) ; f i x e d (64883) = f t (64883) ; 5 f = mf s N % r e v e r s e f f t 7 s i g = i f f t ( f i x e d ) ; wavwrite ( s i g, , f i x e d. wav ) ; 440Hz I cannot hear the tone above the noise but since the fourier coefficients corresponding to the undistorted signal are larger in amplitude than the noise, they should be able to be heard over the noise. 5. (a) Given f = [1, 1, 1, 0, 0, 0] T and g = [1, 1, 1, 1, 0, 0] T, f g = [1, 2, 3, 3, 2, 1] T. (b) Given f = [1, 1, 1, 0, 0] T and g = [1, 1, 1, 1, 0] T, f g = [2, 2, 3, 3, 2] T (c) (a) has the same elements as in the non periodic convolution. Both vectors must be padded to length N 1 + N 2 1. (d) ft and ift denote the fourier transform and inverse fourier transform. f g = ift(ft(f g))) = ift(ft(f) ft(g)) = ift(ft(g) ft(f)) = ift(ft(g f)) = g f 8

9 (e) The sum of the elements in f g in (a) is 12 which is 3 4 while 3 and 4 are the sums of the elements in f and g respectively. Proposition: j=0 (f g) j = i = 0 f i j=0 (f g) j = j=0 = = j=0 i=0 i=0 i=0 f i j=0 f i j=0 f i g (j i)modn g (j i)modn g j j=0 g (j i)modn = j=0 g j for all i. It s the same summation in a different order. 6. % s c r i p t to use the f f t and i f f t to convolve an audio f i l e with an impulse 2 % response 4 [ f1, fs1, n b i t s 1 ] = wavread ( invoker. wav ) ; [ f2, fs2, n b i t s 2 ] = wavread ( impulseresponse. wav ) ; 6 f 1 = f1 ; f 2 = f2 ; 8 % pad with z e r o s so that the c o n v o l u t i o n i s c o r r e c t 10 p a d s i z e = l e n g t h ( f 1 ) + l e n g t h ( f 2 ) 1 ; padf1 = z e r o s ( 1, p a d s i z e l e ngth ( f 1 ) ) ; 12 padf2 = z e r o s ( 1, p a d s i z e l e ngth ( f 2 ) ) ; f 1 = [ f 1 padf1 ] ; 14 f 2 = [ f 2 padf2 ] ; 16 % convert to f o u r i e r space. f 1 = f f t ( f 1 ) ; 18 f 2 = f f t ( f 2 ) ; 20 % perform component wise m u l t i p l i c a t i o n r e s = f 1. f 2 ; 22 % s h i f t back to r e g u l a r space 24 r e s = i f f t ( r e s ) ; 26 r e s = res ; 28 r e s = r e s /max( r e s ) ; 9

10 30 wavwrite ( res, , r e s u l t. wav ) ; 7. (a) blur = reshape ( t e x t r e a d ( b l u r r y. txt ),512,512) ; 2 aper = reshape ( t e x t r e a d ( aperture. txt ),512,512) ; 4 a x i s equal ; colormap ( gray (256) ) 6 imagesc ( blur ) ; (b) % convert to f o u r i e r space 2 f b l u r = f f t 2 ( blur ) ; f a p e r = f f t 2 ( aper ) ; 4 % deconvolve and convert back 6 c l e a r = f b l u r. / f a p e r ; c l e a r = i f f t 2 ( c l e a r ) ; 8 imagesc ( c l e a r ) ; 10

11 (c) 1 % add a small amount o f e r r o r n = l e n g t h ( blur ) ; 3 e r b l u r = blur + randn ( n ) 3 10ˆ 5 5 % convert to f o u r i e r space f b l u r = f f t 2 ( e r b l u r ) ; 7 f a p e r = f f t 2 ( aper ) ; 9 % deconvolve and convert back c l e a r 2 = f b l u r. / f a p e r ; 11 c l e a r 2 = i f f t 2 ( c l e a r 2 ) ; imagesc ( c l e a r 2 ) ; Why does the error get amplified? In the component wise division in fourier space, most of the entries in the aperture matrix are small, some on the order of Divison by such small numbers amplifies the 10 5 error. A visualization of the dft of the aperture function is below. The blue signifies relatively smaller values while the 11

12 red/green signifies relatively larger values. The majority of values in the dft of the aperture matrix are small and this particular deconvolution process amplifies errors 10 5 or larger

Fourier Transforms For additional information, see the classic book The Fourier Transform and its Applications by Ronald N. Bracewell (which is on the shelves of most radio astronomers) and the Wikipedia

More information

SEISMIC WAVE PROPAGATION. Lecture 2: Fourier Analysis

SEISMIC WAVE PROPAGATION. Lecture 2: Fourier Analysis SEISMIC WAVE PROPAGATION Lecture 2: Fourier Analysis Fourier Series & Fourier Transforms Fourier Series Review of trigonometric identities Analysing the square wave Fourier Transform Transforms of some

More information

ECG782: Multidimensional Digital Signal Processing

ECG782: Multidimensional Digital Signal Processing Professor Brendan Morris, SEB 3216, brendan.morris@unlv.edu ECG782: Multidimensional Digital Signal Processing Filtering in the Frequency Domain http://www.ee.unlv.edu/~b1morris/ecg782/ 2 Outline Background

More information

The Fourier spectral method (Amath Bretherton)

The Fourier spectral method (Amath Bretherton) The Fourier spectral method (Amath 585 - Bretherton) 1 Introduction The Fourier spectral method (or more precisely, pseudospectral method) is a very accurate way to solve BVPs with smooth solutions on

More information

E : Lecture 1 Introduction

E : Lecture 1 Introduction E85.2607: Lecture 1 Introduction 1 Administrivia 2 DSP review 3 Fun with Matlab E85.2607: Lecture 1 Introduction 2010-01-21 1 / 24 Course overview Advanced Digital Signal Theory Design, analysis, and implementation

More information

Mathematics for Chemists 2 Lecture 14: Fourier analysis. Fourier series, Fourier transform, DFT/FFT

Mathematics for Chemists 2 Lecture 14: Fourier analysis. Fourier series, Fourier transform, DFT/FFT Mathematics for Chemists 2 Lecture 14: Fourier analysis Fourier series, Fourier transform, DFT/FFT Johannes Kepler University Summer semester 2012 Lecturer: David Sevilla Fourier analysis 1/25 Remembering

More information

Transforms and Orthogonal Bases

Transforms and Orthogonal Bases Orthogonal Bases Transforms and Orthogonal Bases We now turn back to linear algebra to understand transforms, which map signals between different domains Recall that signals can be interpreted as vectors

More information

Numerical Methods I Orthogonal Polynomials

Numerical Methods I Orthogonal Polynomials Numerical Methods I Orthogonal Polynomials Aleksandar Donev Courant Institute, NYU 1 donev@courant.nyu.edu 1 Course G63.2010.001 / G22.2420-001, Fall 2010 Nov. 4th and 11th, 2010 A. Donev (Courant Institute)

More information

Signal Processing COS 323

Signal Processing COS 323 Signal Processing COS 323 Digital Signals D: functions of space or time e.g., sound 2D: often functions of 2 spatial dimensions e.g. images 3D: functions of 3 spatial dimensions CAT, MRI scans or 2 space,

More information

Today s lecture. The Fourier transform. Sampling, aliasing, interpolation The Fast Fourier Transform (FFT) algorithm

Today s lecture. The Fourier transform. Sampling, aliasing, interpolation The Fast Fourier Transform (FFT) algorithm Today s lecture The Fourier transform What is it? What is it useful for? What are its properties? Sampling, aliasing, interpolation The Fast Fourier Transform (FFT) algorithm Jean Baptiste Joseph Fourier

More information

Fourier Series : Dr. Mohammed Saheb Khesbak Page 34

Fourier Series : Dr. Mohammed Saheb Khesbak Page 34 Fourier Series : Dr. Mohammed Saheb Khesbak Page 34 Dr. Mohammed Saheb Khesbak Page 35 Example 1: Dr. Mohammed Saheb Khesbak Page 36 Dr. Mohammed Saheb Khesbak Page 37 Dr. Mohammed Saheb Khesbak Page 38

More information

Discrete Fourier Transform

Discrete Fourier Transform Discrete Fourier Transform Valentina Hubeika, Jan Černocký DCGM FIT BUT Brno, {ihubeika,cernocky}@fit.vutbr.cz Diskrete Fourier transform (DFT) We have just one problem with DFS that needs to be solved.

More information

Appendix C: Recapitulation of Numerical schemes

Appendix C: Recapitulation of Numerical schemes Appendix C: Recapitulation of Numerical schemes August 31, 2009) SUMMARY: Certain numerical schemes of general use are regrouped here in order to facilitate implementations of simple models C1 The tridiagonal

More information

Correlation, discrete Fourier transforms and the power spectral density

Correlation, discrete Fourier transforms and the power spectral density Correlation, discrete Fourier transforms and the power spectral density visuals to accompany lectures, notes and m-files by Tak Igusa tigusa@jhu.edu Department of Civil Engineering Johns Hopkins University

More information

PART 1. Review of DSP. f (t)e iωt dt. F(ω) = f (t) = 1 2π. F(ω)e iωt dω. f (t) F (ω) The Fourier Transform. Fourier Transform.

PART 1. Review of DSP. f (t)e iωt dt. F(ω) = f (t) = 1 2π. F(ω)e iωt dω. f (t) F (ω) The Fourier Transform. Fourier Transform. PART 1 Review of DSP Mauricio Sacchi University of Alberta, Edmonton, AB, Canada The Fourier Transform F() = f (t) = 1 2π f (t)e it dt F()e it d Fourier Transform Inverse Transform f (t) F () Part 1 Review

More information

8/19/16. Fourier Analysis. Fourier analysis: the dial tone phone. Fourier analysis: the dial tone phone

8/19/16. Fourier Analysis. Fourier analysis: the dial tone phone. Fourier analysis: the dial tone phone Patrice Koehl Department of Biological Sciences National University of Singapore http://www.cs.ucdavis.edu/~koehl/teaching/bl5229 koehl@cs.ucdavis.edu Fourier analysis: the dial tone phone We use Fourier

More information

Lecture 7. Fourier Analysis

Lecture 7. Fourier Analysis Lecture 7 Fourier Analysis Summary Lecture 6 Minima and maxima 1 dimension : Bracket minima : 3 values of f(x) : f(2) < f(1) and f(2)

More information

CS711008Z Algorithm Design and Analysis

CS711008Z Algorithm Design and Analysis CS711008Z Algorithm Design and Analysis Lecture 5 FFT and Divide and Conquer Dongbo Bu Institute of Computing Technology Chinese Academy of Sciences, Beijing, China 1 / 56 Outline DFT: evaluate a polynomial

More information

sinc function T=1 sec T=2 sec angle(f(w)) angle(f(w))

sinc function T=1 sec T=2 sec angle(f(w)) angle(f(w)) T=1 sec sinc function 3 angle(f(w)) T=2 sec angle(f(w)) 1 A quick script to plot mag & phase in MATLAB w=0:0.2:50; Real exponential func b=5; Fourier transform (filter) F=1.0./(b+j*w); subplot(211), plot(w,

More information

Computer Vision. Filtering in the Frequency Domain

Computer Vision. Filtering in the Frequency Domain Computer Vision Filtering in the Frequency Domain Filippo Bergamasco (filippo.bergamasco@unive.it) http://www.dais.unive.it/~bergamasco DAIS, Ca Foscari University of Venice Academic year 2016/2017 Introduction

More information

Fourier Transform and Frequency Domain

Fourier Transform and Frequency Domain Fourier Transform and Frequency Domain http://www.cs.cmu.edu/~16385/ 16-385 Computer Vision Spring 2018, Lecture 3 (part 2) Overview of today s lecture Some history. Fourier series. Frequency domain. Fourier

More information

Scientific Computing: An Introductory Survey

Scientific Computing: An Introductory Survey Scientific Computing: An Introductory Survey Chapter 12 Prof. Michael T. Heath Department of Computer Science University of Illinois at Urbana-Champaign Copyright c 2002. Reproduction permitted for noncommercial,

More information

G52IVG, School of Computer Science, University of Nottingham

G52IVG, School of Computer Science, University of Nottingham Image Transforms Fourier Transform Basic idea 1 Image Transforms Fourier transform theory Let f(x) be a continuous function of a real variable x. The Fourier transform of f(x) is F ( u) f ( x)exp[ j2πux]

More information

3. Lecture. Fourier Transformation Sampling

3. Lecture. Fourier Transformation Sampling 3. Lecture Fourier Transformation Sampling Some slides taken from Digital Image Processing: An Algorithmic Introduction using Java, Wilhelm Burger and Mark James Burge Separability ² The 2D DFT can be

More information

Review of Concepts from Fourier & Filtering Theory. Fourier theory for finite sequences. convolution/filtering of infinite sequences filter cascades

Review of Concepts from Fourier & Filtering Theory. Fourier theory for finite sequences. convolution/filtering of infinite sequences filter cascades Review of Concepts from Fourier & Filtering Theory precise definition of DWT requires a few basic concepts from Fourier analysis and theory of linear filters will start with discussion/review of: basic

More information

APPENDIX A. The Fourier integral theorem

APPENDIX A. The Fourier integral theorem APPENDIX A The Fourier integral theorem In equation (1.7) of Section 1.3 we gave a description of a signal defined on an infinite range in the form of a double integral, with no explanation as to how that

More information

DCSP-2: Fourier Transform

DCSP-2: Fourier Transform DCSP-2: Fourier Transform Jianfeng Feng Department of Computer Science Warwick Univ., UK Jianfeng.feng@warwick.ac.uk http://www.dcs.warwick.ac.uk/~feng/dcsp.html Data transmission Channel characteristics,

More information

Signals and Systems Lecture (S2) Orthogonal Functions and Fourier Series March 17, 2008

Signals and Systems Lecture (S2) Orthogonal Functions and Fourier Series March 17, 2008 Signals and Systems Lecture (S) Orthogonal Functions and Fourier Series March 17, 008 Today s Topics 1. Analogy between functions of time and vectors. Fourier series Take Away Periodic complex exponentials

More information

The Discrete Fourier Transform

The Discrete Fourier Transform In [ ]: cd matlab pwd The Discrete Fourier Transform Scope and Background Reading This session introduces the z-transform which is used in the analysis of discrete time systems. As for the Fourier and

More information

Syllabus for IMGS-616 Fourier Methods in Imaging (RIT #11857) Week 1: 8/26, 8/28 Week 2: 9/2, 9/4

Syllabus for IMGS-616 Fourier Methods in Imaging (RIT #11857)  Week 1: 8/26, 8/28 Week 2: 9/2, 9/4 IMGS 616-20141 p.1 Syllabus for IMGS-616 Fourier Methods in Imaging (RIT #11857) 3 July 2014 (TENTATIVE and subject to change) Note that I expect to be in Europe twice during the term: in Paris the week

More information

ENT 315 Medical Signal Processing CHAPTER 2 DISCRETE FOURIER TRANSFORM. Dr. Lim Chee Chin

ENT 315 Medical Signal Processing CHAPTER 2 DISCRETE FOURIER TRANSFORM. Dr. Lim Chee Chin ENT 315 Medical Signal Processing CHAPTER 2 DISCRETE FOURIER TRANSFORM Dr. Lim Chee Chin Outline Introduction Discrete Fourier Series Properties of Discrete Fourier Series Time domain aliasing due to frequency

More information

Computer Problems for Fourier Series and Transforms

Computer Problems for Fourier Series and Transforms Computer Problems for Fourier Series and Transforms 1. Square waves are frequently used in electronics and signal processing. An example is shown below. 1 π < x < 0 1 0 < x < π y(x) = 1 π < x < 2π... and

More information

Continuous-time Fourier Methods

Continuous-time Fourier Methods ELEC 321-001 SIGNALS and SYSTEMS Continuous-time Fourier Methods Chapter 6 1 Representing a Signal The convolution method for finding the response of a system to an excitation takes advantage of the linearity

More information

12.1 Fourier Transform of Discretely Sampled Data

12.1 Fourier Transform of Discretely Sampled Data 494 Chapter 12. Fast Fourier Transform now is: The PSD-per-unit-time converges to finite values at all frequencies except those where h(t) has a discrete sine-wave (or cosine-wave) component of finite

More information

Contents. Signals as functions (1D, 2D)

Contents. Signals as functions (1D, 2D) Fourier Transform The idea A signal can be interpreted as en electromagnetic wave. This consists of lights of different color, or frequency, that can be split apart usign an optic prism. Each component

More information

3 rd class Mech. Eng. Dept. hamdiahmed.weebly.com Fourier Series

3 rd class Mech. Eng. Dept. hamdiahmed.weebly.com Fourier Series Definition 1 Fourier Series A function f is said to be piecewise continuous on [a, b] if there exists finitely many points a = x 1 < x 2

More information

Contents. Signals as functions (1D, 2D)

Contents. Signals as functions (1D, 2D) Fourier Transform The idea A signal can be interpreted as en electromagnetic wave. This consists of lights of different color, or frequency, that can be split apart usign an optic prism. Each component

More information

Fundamentals of the DFT (fft) Algorithms

Fundamentals of the DFT (fft) Algorithms Fundamentals of the DFT (fft) Algorithms D. Sundararajan November 6, 9 Contents 1 The PM DIF DFT Algorithm 1.1 Half-wave symmetry of periodic waveforms.............. 1. The DFT definition and the half-wave

More information

Information and Communications Security: Encryption and Information Hiding

Information and Communications Security: Encryption and Information Hiding Short Course on Information and Communications Security: Encryption and Information Hiding Tuesday, 10 March Friday, 13 March, 2015 Lecture 5: Signal Analysis Contents The complex exponential The complex

More information

Contents. Signals as functions (1D, 2D)

Contents. Signals as functions (1D, 2D) Fourier Transform The idea A signal can be interpreted as en electromagnetic wave. This consists of lights of different color, or frequency, that can be split apart usign an optic prism. Each component

More information

Tutorial Sheet #2 discrete vs. continuous functions, periodicity, sampling

Tutorial Sheet #2 discrete vs. continuous functions, periodicity, sampling 2.39 utorial Sheet #2 discrete vs. continuous functions, periodicity, sampling We will encounter two classes of signals in this class, continuous-signals and discrete-signals. he distinct mathematical

More information

Fourier Transform and Frequency Domain

Fourier Transform and Frequency Domain Fourier Transform and Frequency Domain http://graphics.cs.cmu.edu/courses/15-463 15-463, 15-663, 15-862 Computational Photography Fall 2017, Lecture 6 Course announcements Last call for responses to Doodle

More information

Chapter 4 Discrete Fourier Transform (DFT) And Signal Spectrum

Chapter 4 Discrete Fourier Transform (DFT) And Signal Spectrum Chapter 4 Discrete Fourier Transform (DFT) And Signal Spectrum CEN352, DR. Nassim Ammour, King Saud University 1 Fourier Transform History Born 21 March 1768 ( Auxerre ). Died 16 May 1830 ( Paris ) French

More information

Introduction to Fourier Analysis. CS 510 Lecture #5 February 2 nd 2015

Introduction to Fourier Analysis. CS 510 Lecture #5 February 2 nd 2015 Introduction to Fourier Analysis CS 510 Lecture 5 February 2 nd 2015 Why? Get used to changing representa6ons! (and this par6cular transforma6on is ubiquitous and important) 2/9/15 CSU CS 510, Ross Beveridge

More information

Elliptic Fourier Transform

Elliptic Fourier Transform NCUR, ART GRIGORYAN Frequency Analysis of the signals on ellipses: Elliptic Fourier Transform Joao Donacien N. Nsingui Department of Electrical and Computer Engineering The University of Texas at San Antonio

More information

9.4 Enhancing the SNR of Digitized Signals

9.4 Enhancing the SNR of Digitized Signals 9.4 Enhancing the SNR of Digitized Signals stepping and averaging compared to ensemble averaging creating and using Fourier transform digital filters removal of Johnson noise and signal distortion using

More information

FOURIER SERIES, HAAR WAVELETS AND FAST FOURIER TRANSFORM

FOURIER SERIES, HAAR WAVELETS AND FAST FOURIER TRANSFORM FOURIER SERIES, HAAR WAVELETS AD FAST FOURIER TRASFORM VESA KAARIOJA, JESSE RAILO AD SAMULI SILTAE Abstract. This handout is for the course Applications of matrix computations at the University of Helsinki

More information

Tutorial 2 - Learning about the Discrete Fourier Transform

Tutorial 2 - Learning about the Discrete Fourier Transform Tutorial - Learning about the Discrete Fourier Transform This tutorial will be about the Discrete Fourier Transform basis, or the DFT basis in short. What is a basis? If we google define basis, we get:

More information

Sound & Vibration Magazine March, Fundamentals of the Discrete Fourier Transform

Sound & Vibration Magazine March, Fundamentals of the Discrete Fourier Transform Fundamentals of the Discrete Fourier Transform Mark H. Richardson Hewlett Packard Corporation Santa Clara, California The Fourier transform is a mathematical procedure that was discovered by a French mathematician

More information

Fourier Transform in Image Processing. CS/BIOEN 6640 U of Utah Guido Gerig (slides modified from Marcel Prastawa 2012)

Fourier Transform in Image Processing. CS/BIOEN 6640 U of Utah Guido Gerig (slides modified from Marcel Prastawa 2012) Fourier Transform in Image Processing CS/BIOEN 6640 U of Utah Guido Gerig (slides modified from Marcel Prastawa 2012) Basis Decomposition Write a function as a weighted sum of basis functions f ( x) wibi(

More information

Tutorial 4. Fast Fourier Transforms Phase factors runs around on the unit circle contains Wave forms

Tutorial 4. Fast Fourier Transforms Phase factors runs around on the unit circle contains Wave forms Tutorial 4. Fast Fourier Transforms Phase factors There are functions that produce roots-of-one as a function of time (t) or place (x). A good example is a Bloch function φ(x) = exp(i kx) or the phase

More information

LES of Turbulent Flows: Lecture 4 (ME EN )

LES of Turbulent Flows: Lecture 4 (ME EN ) 1 LES of Turbulent Flows: Lecture 4 (ME EN 796 8) Prof. Rob Stoll Department of Mechanical Engineering University of Utah Spring 11 Fourier Transforms Fourier Transforms are a common tool in fluid dynamics

More information

Fourier Transform 2D

Fourier Transform 2D Image Processing - Lesson 8 Fourier Transform 2D Discrete Fourier Transform - 2D Continues Fourier Transform - 2D Fourier Properties Convolution Theorem Eamples = + + + The 2D Discrete Fourier Transform

More information

Lecture # 06. Image Processing in Frequency Domain

Lecture # 06. Image Processing in Frequency Domain Digital Image Processing CP-7008 Lecture # 06 Image Processing in Frequency Domain Fall 2011 Outline Fourier Transform Relationship with Image Processing CP-7008: Digital Image Processing Lecture # 6 2

More information

V(t) = Total Power = Calculating the Power Spectral Density (PSD) in IDL. Thomas Ferree, Ph.D. August 23, 1999

V(t) = Total Power = Calculating the Power Spectral Density (PSD) in IDL. Thomas Ferree, Ph.D. August 23, 1999 Calculating the Power Spectral Density (PSD) in IDL Thomas Ferree, Ph.D. August 23, 1999 This note outlines the calculation of power spectra via the fast Fourier transform (FFT) algorithm. There are several

More information

Index. p, lip, 78 8 function, 107 v, 7-8 w, 7-8 i,7-8 sine, 43 Bo,94-96

Index. p, lip, 78 8 function, 107 v, 7-8 w, 7-8 i,7-8 sine, 43 Bo,94-96 p, lip, 78 8 function, 107 v, 7-8 w, 7-8 i,7-8 sine, 43 Bo,94-96 B 1,94-96 M,94-96 B oro!' 94-96 BIro!' 94-96 I/r, 79 2D linear system, 56 2D FFT, 119 2D Fourier transform, 1, 12, 18,91 2D sinc, 107, 112

More information

Fourier Series. (Com S 477/577 Notes) Yan-Bin Jia. Nov 29, 2016

Fourier Series. (Com S 477/577 Notes) Yan-Bin Jia. Nov 29, 2016 Fourier Series (Com S 477/577 otes) Yan-Bin Jia ov 9, 016 1 Introduction Many functions in nature are periodic, that is, f(x+τ) = f(x), for some fixed τ, which is called the period of f. Though function

More information

Fourier and Partial Differential Equations

Fourier and Partial Differential Equations Chapter 5 Fourier and Partial Differential Equations 5.1 Fourier MATH 294 SPRING 1982 FINAL # 5 5.1.1 Consider the function 2x, 0 x 1. a) Sketch the odd extension of this function on 1 x 1. b) Expand the

More information

Problem Set 8 - Solution

Problem Set 8 - Solution Problem Set 8 - Solution Jonasz Słomka Unless otherwise specified, you may use MATLAB to assist with computations. provide a print-out of the code used and its output with your assignment. Please 1. More

More information

MATH 350: Introduction to Computational Mathematics

MATH 350: Introduction to Computational Mathematics MATH 350: Introduction to Computational Mathematics Chapter VIII: The Fast Fourier Transform Greg Fasshauer Department of Applied Mathematics Illinois Institute of Technology Spring 2008 Outline 1 The

More information

1. Calculation of the DFT

1. Calculation of the DFT ELE E4810: Digital Signal Processing Topic 10: The Fast Fourier Transform 1. Calculation of the DFT. The Fast Fourier Transform algorithm 3. Short-Time Fourier Transform 1 1. Calculation of the DFT! Filter

More information

Chapter 8 The Discrete Fourier Transform

Chapter 8 The Discrete Fourier Transform Chapter 8 The Discrete Fourier Transform Introduction Representation of periodic sequences: the discrete Fourier series Properties of the DFS The Fourier transform of periodic signals Sampling the Fourier

More information

Images have structure at various scales

Images have structure at various scales Images have structure at various scales Frequency Frequency of a signal is how fast it changes Reflects scale of structure A combination of frequencies 0.1 X + 0.3 X + 0.5 X = Fourier transform Can we

More information

The discrete and fast Fourier transforms

The discrete and fast Fourier transforms The discrete and fast Fourier transforms Marcel Oliver Revised April 7, 1 1 Fourier series We begin by recalling the familiar definition of the Fourier series. For a periodic function u: [, π] C, we define

More information

Lecture 4 Filtering in the Frequency Domain. Lin ZHANG, PhD School of Software Engineering Tongji University Spring 2016

Lecture 4 Filtering in the Frequency Domain. Lin ZHANG, PhD School of Software Engineering Tongji University Spring 2016 Lecture 4 Filtering in the Frequency Domain Lin ZHANG, PhD School of Software Engineering Tongji University Spring 2016 Outline Background From Fourier series to Fourier transform Properties of the Fourier

More information

ECE 3084 OCTOBER 17, 2017

ECE 3084 OCTOBER 17, 2017 Objective ECE 3084 LAB NO. 1: MEASURING FREQUENCY RESPONSE OCTOBER 17, 2017 The objective of this lab is to measure the magnitude response of a set of headphones or earbuds. We will explore three alternative

More information

Biomedical Engineering Image Formation II

Biomedical Engineering Image Formation II Biomedical Engineering Image Formation II PD Dr. Frank G. Zöllner Computer Assisted Clinical Medicine Medical Faculty Mannheim Fourier Series - A Fourier series decomposes periodic functions or periodic

More information

Fourier transform. Stefano Ferrari. Università degli Studi di Milano Methods for Image Processing. academic year

Fourier transform. Stefano Ferrari. Università degli Studi di Milano Methods for Image Processing. academic year Fourier transform Stefano Ferrari Università degli Studi di Milano stefano.ferrari@unimi.it Methods for Image Processing academic year 27 28 Function transforms Sometimes, operating on a class of functions

More information

Review: Continuous Fourier Transform

Review: Continuous Fourier Transform Review: Continuous Fourier Transform Review: convolution x t h t = x τ h(t τ)dτ Convolution in time domain Derivation Convolution Property Interchange the order of integrals Let Convolution Property By

More information

Theory and Problems of Signals and Systems

Theory and Problems of Signals and Systems SCHAUM'S OUTLINES OF Theory and Problems of Signals and Systems HWEI P. HSU is Professor of Electrical Engineering at Fairleigh Dickinson University. He received his B.S. from National Taiwan University

More information

Computational Data Analysis!

Computational Data Analysis! 12.714 Computational Data Analysis! Alan Chave (alan@whoi.edu)! Thomas Herring (tah@mit.edu),! http://geoweb.mit.edu/~tah/12.714! Concentration Problem:! Today s class! Signals that are near time and band

More information

Fourier Transform with Rotations on Circles and Ellipses in Signal and Image Processing

Fourier Transform with Rotations on Circles and Ellipses in Signal and Image Processing Fourier Transform with Rotations on Circles and Ellipses in Signal and Image Processing Artyom M. Grigoryan Department of Electrical and Computer Engineering University of Texas at San Antonio One UTSA

More information

Fig. 1: Fourier series Examples

Fig. 1: Fourier series Examples FOURIER SERIES AND ITS SOME APPLICATIONS P. Sathyabama Assistant Professor, Department of Mathematics, Bharath collage of Science and Management, Thanjavur, Tamilnadu Abstract: The Fourier series, the

More information

Filtering in the Frequency Domain

Filtering in the Frequency Domain Filtering in the Frequency Domain Dr. Praveen Sankaran Department of ECE NIT Calicut January 11, 2013 Outline 1 Preliminary Concepts 2 Signal A measurable phenomenon that changes over time or throughout

More information

Discrete Fourier Transform

Discrete Fourier Transform Last lecture I introduced the idea that any function defined on x 0,..., N 1 could be written a sum of sines and cosines. There are two different reasons why this is useful. The first is a general one,

More information

Convolution Spatial Aliasing Frequency domain filtering fundamentals Applications Image smoothing Image sharpening

Convolution Spatial Aliasing Frequency domain filtering fundamentals Applications Image smoothing Image sharpening Frequency Domain Filtering Correspondence between Spatial and Frequency Filtering Fourier Transform Brief Introduction Sampling Theory 2 D Discrete Fourier Transform Convolution Spatial Aliasing Frequency

More information

A523 Signal Modeling, Statistical Inference and Data Mining in Astrophysics Spring 2011

A523 Signal Modeling, Statistical Inference and Data Mining in Astrophysics Spring 2011 A523 Signal Modeling, Statistical Inference and Data Mining in Astrophysics Spring 2011 Lecture 6 PDFs for Lecture 1-5 are on the web page Problem set 2 is on the web page Article on web page A Guided

More information

Fourier Series Example

Fourier Series Example Fourier Series Example Let us compute the Fourier series for the function on the interval [ π,π]. f(x) = x f is an odd function, so the a n are zero, and thus the Fourier series will be of the form f(x)

More information

Tennessee s State Mathematics Standards Precalculus

Tennessee s State Mathematics Standards Precalculus Tennessee s State Mathematics Standards Precalculus Domain Cluster Standard Number Expressions (N-NE) Represent, interpret, compare, and simplify number expressions 1. Use the laws of exponents and logarithms

More information

Introduction to Sparsity in Signal Processing

Introduction to Sparsity in Signal Processing 1 Introduction to Sparsity in Signal Processing Ivan Selesnick Polytechnic Institute of New York University Brooklyn, New York selesi@poly.edu 212 2 Under-determined linear equations Consider a system

More information

CS168: The Modern Algorithmic Toolbox Lecture #11: The Fourier Transform and Convolution

CS168: The Modern Algorithmic Toolbox Lecture #11: The Fourier Transform and Convolution CS168: The Modern Algorithmic Toolbox Lecture #11: The Fourier Transform and Convolution Tim Roughgarden & Gregory Valiant May 8, 2015 1 Intro Thus far, we have seen a number of different approaches to

More information

1.4 Fourier Analysis. Random Data 17

1.4 Fourier Analysis. Random Data 17 Random Data 17 1.4 Fourier Analysis In the physical world we sample (and acquire) signals in either the temporal domain or the spatial domain. However, we are frequently interested in thefrequencycontentof

More information

From Fourier Series to Analysis of Non-stationary Signals - II

From Fourier Series to Analysis of Non-stationary Signals - II From Fourier Series to Analysis of Non-stationary Signals - II prof. Miroslav Vlcek October 10, 2017 Contents Signals 1 Signals 2 3 4 Contents Signals 1 Signals 2 3 4 Contents Signals 1 Signals 2 3 4 Contents

More information

Lecture 6: Discrete Fourier Transform

Lecture 6: Discrete Fourier Transform Lecture 6: Discrete Fourier Transform In the previous lecture we introduced the discrete Fourier transform as given either by summations or as a matrix vector product The discrete Fourier transform of

More information

Chirp Transform for FFT

Chirp Transform for FFT Chirp Transform for FFT Since the FFT is an implementation of the DFT, it provides a frequency resolution of 2π/N, where N is the length of the input sequence. If this resolution is not sufficient in a

More information

18.085: Summer 2016 Due: 3 August 2016 (in class) Problem Set 8

18.085: Summer 2016 Due: 3 August 2016 (in class) Problem Set 8 Problem Set 8 Unless otherwise specified, you may use MATLAB to assist with computations. provide a print-out of the code used and its output with your assignment. Please 1. More on relation between Fourier

More information

The Discrete Fourier transform

The Discrete Fourier transform 453.70 Linear Systems, S.M. Tan, The University of uckland 9- Chapter 9 The Discrete Fourier transform 9. DeÞnition When computing spectra on a computer it is not possible to carry out the integrals involved

More information

Data Processing and Analysis

Data Processing and Analysis Data Processing and Analysis Rick Aster and Brian Borchers October 10, 2008 Sampled Time Series Commonly, scientific data consist of numerical series or matrices, i.e., sets of spatially or temporally

More information

Filter Banks II. Prof. Dr.-Ing. G. Schuller. Fraunhofer IDMT & Ilmenau University of Technology Ilmenau, Germany

Filter Banks II. Prof. Dr.-Ing. G. Schuller. Fraunhofer IDMT & Ilmenau University of Technology Ilmenau, Germany Filter Banks II Prof. Dr.-Ing. G. Schuller Fraunhofer IDMT & Ilmenau University of Technology Ilmenau, Germany Page Modulated Filter Banks Extending the DCT The DCT IV transform can be seen as modulated

More information

Chapter 2: The Fourier Transform

Chapter 2: The Fourier Transform EEE, EEE Part A : Digital Signal Processing Chapter Chapter : he Fourier ransform he Fourier ransform. Introduction he sampled Fourier transform of a periodic, discrete-time signal is nown as the discrete

More information

Chapter 16. Local Operations

Chapter 16. Local Operations Chapter 16 Local Operations g[x, y] =O{f[x ± x, y ± y]} In many common image processing operations, the output pixel is a weighted combination of the gray values of pixels in the neighborhood of the input

More information

Ch.11 The Discrete-Time Fourier Transform (DTFT)

Ch.11 The Discrete-Time Fourier Transform (DTFT) EE2S11 Signals and Systems, part 2 Ch.11 The Discrete-Time Fourier Transform (DTFT Contents definition of the DTFT relation to the -transform, region of convergence, stability frequency plots convolution

More information

Introduction to Computer Vision. 2D Linear Systems

Introduction to Computer Vision. 2D Linear Systems Introduction to Computer Vision D Linear Systems Review: Linear Systems We define a system as a unit that converts an input function into an output function Independent variable System operator or Transfer

More information

SNR Calculation and Spectral Estimation [S&T Appendix A]

SNR Calculation and Spectral Estimation [S&T Appendix A] SR Calculation and Spectral Estimation [S&T Appendix A] or, How not to make a mess of an FFT Make sure the input is located in an FFT bin 1 Window the data! A Hann window works well. Compute the FFT 3

More information

EE482: Digital Signal Processing Applications

EE482: Digital Signal Processing Applications Professor Brendan Morris, SEB 3216, brendan.morris@unlv.edu EE482: Digital Signal Processing Applications Spring 2014 TTh 14:305:45 CBC C222 Lecture 8 Frequency Analysis 14/02/18 http://www.ee.unlv.edu/~b1morris/ee482/

More information

Computational Methods for Astrophysics: Fourier Transforms

Computational Methods for Astrophysics: Fourier Transforms Computational Methods for Astrophysics: Fourier Transforms John T. Whelan (filling in for Joshua Faber) April 27, 2011 John T. Whelan April 27, 2011 Fourier Transforms 1/13 Fourier Analysis Outline: Fourier

More information

Fourier analysis of discrete-time signals. (Lathi Chapt. 10 and these slides)

Fourier analysis of discrete-time signals. (Lathi Chapt. 10 and these slides) Fourier analysis of discrete-time signals (Lathi Chapt. 10 and these slides) Towards the discrete-time Fourier transform How we will get there? Periodic discrete-time signal representation by Discrete-time

More information

Empirical Mean and Variance!

Empirical Mean and Variance! Global Image Properties! Global image properties refer to an image as a whole rather than components. Computation of global image properties is often required for image enhancement, preceding image analysis.!

More information

VII. Discrete Fourier Transform (DFT) Chapter-8. A. Modulo Arithmetic. (n) N is n modulo N, n is an integer variable.

VII. Discrete Fourier Transform (DFT) Chapter-8. A. Modulo Arithmetic. (n) N is n modulo N, n is an integer variable. 1 VII. Discrete Fourier Transform (DFT) Chapter-8 A. Modulo Arithmetic (n) N is n modulo N, n is an integer variable. (n) N = n m N 0 n m N N-1, pick m Ex. (k) 4 W N = e -j2π/n 2 Note that W N k = 0 but

More information

The Discrete Fourier Transform. Signal Processing PSYCH 711/712 Lecture 3

The Discrete Fourier Transform. Signal Processing PSYCH 711/712 Lecture 3 The Discrete Fourier Transform Signal Processing PSYCH 711/712 Lecture 3 DFT Properties symmetry linearity shifting scaling Symmetry x(n) -1.0-0.5 0.0 0.5 1.0 X(m) -10-5 0 5 10 0 5 10 15 0 5 10 15 n m

More information