ECE 3084 OCTOBER 17, 2017

Size: px
Start display at page:

Download "ECE 3084 OCTOBER 17, 2017"

Transcription

1 Objective ECE 3084 LAB NO. 1: MEASURING FREQUENCY RESPONSE OCTOBER 17, 2017 The objective of this lab is to measure the magnitude response of a set of headphones or earbuds. We will explore three alternative strategies: One based on feeding a noise-like signal to the headphones, another based on feeding a linear chirp signal, and a third based on feeding an impulse train. Tools You Will Need This lab requires only four tools: (i) a pair of headphones or earbuds; (ii) a microphone (which could be the built-in microphone of your laptop); (iii) sound recording software; (iv) a laptop with MATLAB. Before coming to lab, be sure you are able to (1) record a sound using the microphone, and (2) save it to a WAV file. A word of warning: By default, the sound recorder on a Windows 7 machine will save to WMA format, whereas MATLAB prefers to load audio in WAV format. You could later convert from WMA to WAV after the fact, but you may find it easier to create a shortcut for sound recorder, and to specify the target of the shortcut as: %SystemRoot%\system32\SoundRecorder.exe /file C:\Users\You\Desktop\LAB\recording.wav The key point here is that the filename extension of.wav ensures the proper format. Approach Our aim in this lab is to measure the magnitude response of the cascade of a set of headphones and a microphone. As shown in Fig.1, we will use the MATLAB soundsc command to play a sound s( t ) on the headphones, and use sound recorder software and the MATLAB wavread command to load a sampled version of the recorded waveform r( t ) into MATLAB: The overall cascade of the headphones and the microphone with input s( t ) and output r( t ), is accurately modeled as an LTI system with impulse response h( t ), so that the overall frequency response H(j ) decomposes into the product of the frequency response of the headphones and microphone, namely H(j ) = H 1 (j )H 2 (j ). This lab will compare three different strategies for experimentally measuring the magnitude response: transmit noise; pass the recording through a filter matched to the noise to estimate h( t ); take the Fourier transform of h( t ). transmit a chirp; use the envelope of the recording as an estimate of H(j ). transmit a pulse train; average the responses to the pulses to estimate h( t ); take the Fourier transform of h( t ). These three strategies are compared in Fig.2.

2 s soundsc DAC s( t ) r( t ) sound r.wav recorder ADC wavread r LAPTOP LAPTOP PHONES MIC s( t ) r( t ) H 1 (j ) H 2 (j ) s( t ) r( t ) H(j ) Fig. 1. The experimental setup. The equivalent model is a cascade of two systems. (c) The overall system has frequency response H(j ) = H 1 (j )H 2 (j ). s 1 ( t ) = NOISE h( t ) r( t ) s 1 ( t) MF y( t ) EXTRACT SEGMENT h 1 ( t ) FOURIER TRANSFORM H 1 (j ) s 2 ( t ) = CHIRP h( t ) r( t ) ENVELOPE DETECTOR H 2 (j ) s 3 ( t ) = PULSE TRAIN h( t ) r( t ) AVERAGE SEGMENTS h 3 ( t ) FOURIER TRANSFORM H 3 (j ) Fig. 2. Three strategies for estimating the magnitude response: Transmit noise, and use a matched filter to estimate h( t ); Transmit a chirp, and use an envelope detector to estimate H(j ) ; (c) Transmit a train of impulses, and average the responses to estimate h( t ). The three different types of probing signals will be concatenated to produce one long signal, as shown in Fig.3. At the beginning there is a noise signal s 1 ( t ) of duration T 1, followed by a silence gap of duration T gap, followed by a chirp signal s 2 ( t ) of duration T 2, followed by a silence gap of duration T gap, followed by an impulse train s 3 ( t ) of duration T 3. T 1 T gap T 2 T gap T 3 NOISE CHIRP IMPULSES 0 t Fig. 3. A noise signal of duration T 1, followed by a chirp of duration T 2, followed by an impulse train of duration T 3, separated by a gap of silence of duration T gap.

3 Part 1: Preparation (Pre-Lab) (Envelope detection) The second strategy requires an envelope detector. Here we will show how to implement an envelope detector in MATLAB. The following MATLAB code generates a sampled version of s( t ) = cos(20 t)g( t ), where g( t ) = sin( t)/( t) is a sinc function: fs = 44.1e3; t = -3:1/fs:3; s = cos(20*pi*t).*sinc(t); e = abs(hilbert(s)); plot(t,s,t,e); The line e = abs(hilbert(s)) computes the envelope e( t ) of s( t ). Verify from the plot that the envelope matches your intuition about what an envelope is. Explain how the envelope e( t ) differs from the sinc function g( t ). (Equipment Test) Record your own voice. Load it into MATLAB using: [r,fs] = wavread( recording.wav ); Confirm your ability to record and play back by executing the following command, and verify that what you hear is what you recorded: soundsc(r,fs); What is the sampling rate f s (in Hz) used by your recording software?

4 Part 2: Recording Experiment Save the following MATLAB routine to run2.m (changing fs to match above, if necessary), and run it: T1 = 2; T2 = 2; T3 = 2; Tgap = 0.01; fmax = 10e3; period = 0.01; fs = 44.1e3; N = round(t3/period); L = period*fs; % duration of noise % duration of chirp % duration of impulses % duration of silence gap % maximum chirp frequency % pulse train period % sampling rate % number of impulses transmitted % integer spacing between impulses rng(0); s1 = randn(1,fs*t1); % noise t2 = 0:(1/fs):T2; s2 = cos(pi*fmax*(t2.^2)/t2); % chirp t3 = 0:(1/fs):T3; s3 = 0*t3; s3(1:(period*fs):end) = 1; % pulse train silence = zeros(1,fs*tgap); s = [s1, silence, s2, silence, s3]; input('start recording, then hit return: ','s'); soundsc([s;s],fs); input('after sound ends: Stop recording, then hit return: ','s'); r = mean(wavread('recording.wav'),2); plot(r); Explain what you see in the different time regions of the plot. Zoom into the middle part. Do you see a sinusoid? Zoom into the ending part. Do you see an impulse train? Evaluate the spectrogram using: spectrogram(r,512,[],[],fs,'yaxis'); Explain what you see in each of the three different time regions of the spectrogram.

5 Part 3: Estimating Magnitude Response Save the following MATLAB routine to run3.m, and run it: run2; % record sound and load into MATLAB % locate starting indices using a matched filter y = conv(r,fliplr(s1)); % MF [ignore,ix] = max(abs(y)); % ix = index of maximum MF output i2 = ix + Tgap*fs + 1; % i2 = index of first sample of chirp i3 = i2 + (T2 + Tgap)*fs + 1; % i3 = index of first sample of pulse train % estimate impulse response from noise h1 = y(ix (1:L))/(sum(s1.^2)/fs); % estimate magnitude response from chirp f2 = linspace(0,fmax,t2*fs); H2 = smooth(abs(hilbert(r(i2+(1:t2*fs)))),(t2/200)*fs); % estimate impulse response from pulse train R3 = reshape(r(i (1:N*L)),L,N); h3 = mean(r3')*fs; % convert impulse response to magnitude response N = 2^13; Nmax = round(n*fmax/fs); H1=fft(h1,N)/fs; H1 = abs(h1(1:nmax)); H3=fft(h3,N)/fs; H3 = abs(h3(1:nmax)); f1 = linspace(0,fmax,nmax); plot(f1,h1,f2,h2,f1,h3); legend('noise','chirp','impulses'); The variable y is the output of a matched filter. What is it matched to? Plot y and explain what you see. (c) From the code we see that H2 is the smoothed output of an envelope detector with input r. Show where the shape of H2 appears when you plot r using plot(r). (d) Compare the three measured magnitude responses. Are they a good match? (e) How small can you make T1 = T2 = T3 and still get reasonable results? (f) How do the measurements change as T1 = T2 = T3 grows very large?

6 Part 4: Nonlinearity The headphone-microphone system is accurately modeled as a linear system, but it becomes nonlinear when the sound is so loud at the microphone that the microphone saturates. See if you can make the system nonlinear by a combination of turning up the volume and placing the microphone close to the headphones. Which of the three strategies for estimating the magnitude response works the best, despite the nonlinearity? What signs of nonlinearity can be found in the spectrogram of the recorded waveform?

7 ECE 3084 LAB NO. 1: INSTRUCTOR VERIFICATION Part 1. Preparation (Pre-Lab) NAME: Verify that abs(hilbert( )) is an envelope detector. The sampling rate is f s = Hz. Part 2. Recording Experiment After plot(r); Explain what you see in the different time regions of the plot. Zoom into the middle part. Do you see a sinusoid? Zoom into the ending part. Do you see an impulse train? Evaluate the spectrogram using: spectrogram(r,512,[],[],fs,'yaxis'); Explain what you see in each of the three different time regions of the spectrogram. Part 3. Estimating Magnitude Response The variable y is the output of a matched filter. What is it matched to? Plot y and explain what you see. (c) From the code we see that H2 is the smoothed output of an envelope detector with input r. Show where the shape of H2 appears when you plot r using plot(r). (d) Compare the three measured magnitude responses. Are they a good match? (e) How small can you make T1 = T2 = T3 and still get reasonable results? (f) How do the measurements change as T1 = T2 = T3 grows very large? Part 4. Nonlinearity Which of the three strategies for estimating the magnitude response works the best, despite the nonlinearity? What signs of nonlinearity can be found in the spectrogram of the recorded waveform?

E : Lecture 1 Introduction

E : Lecture 1 Introduction E85.2607: Lecture 1 Introduction 1 Administrivia 2 DSP review 3 Fun with Matlab E85.2607: Lecture 1 Introduction 2010-01-21 1 / 24 Course overview Advanced Digital Signal Theory Design, analysis, and implementation

More information

DOING PHYSICS WITH MATLAB FOURIER ANALYSIS FOURIER TRANSFORMS

DOING PHYSICS WITH MATLAB FOURIER ANALYSIS FOURIER TRANSFORMS DOING PHYSICS WITH MATLAB FOURIER ANALYSIS FOURIER TRANSFORMS Ian Cooper School of Physics, University of Sydney ian.cooper@sydney.edu.au DOWNLOAD DIRECTORY FOR MATLAB SCRIPTS maths_ft_01.m mscript used

More information

Lab 4: Quantization, Oversampling, and Noise Shaping

Lab 4: Quantization, Oversampling, and Noise Shaping Lab 4: Quantization, Oversampling, and Noise Shaping Due Friday 04/21/17 Overview: This assignment should be completed with your assigned lab partner(s). Each group must turn in a report composed using

More information

GEORGIA INSTITUTE OF TECHNOLOGY SCHOOL OF ELECTRICAL AND COMPUTER ENGINEERING

GEORGIA INSTITUTE OF TECHNOLOGY SCHOOL OF ELECTRICAL AND COMPUTER ENGINEERING GEORGIA INSTITUTE OF TECHNOLOGY SCHOOL OF ELECTRICAL AND COMUTER ENGINEERING ECE 2026 Summer 208 roblem Set #3 Assigned: May 27, 208 Due: June 5, 208 Reading: Chapter 3 on Spectrum Representation, and

More information

SOLUTIONS to ECE 2026 Summer 2018 Problem Set #3

SOLUTIONS to ECE 2026 Summer 2018 Problem Set #3 SOLUTIONS to ECE 226 Summer 28 Problem Set #3 PROBLEM 3..* Consider a signal of the form: x( t ) = cos(2t) + cos(2f 2 t), the sum of a 6-Hz sunusoid and a second sinusoid whose frequency f 2 is known to

More information

LAB 6: FIR Filter Design Summer 2011

LAB 6: FIR Filter Design Summer 2011 University of Illinois at Urbana-Champaign Department of Electrical and Computer Engineering ECE 311: Digital Signal Processing Lab Chandra Radhakrishnan Peter Kairouz LAB 6: FIR Filter Design Summer 011

More information

Signals & Systems interaction in the Time Domain. (Systems will be LTI from now on unless otherwise stated)

Signals & Systems interaction in the Time Domain. (Systems will be LTI from now on unless otherwise stated) Signals & Systems interaction in the Time Domain (Systems will be LTI from now on unless otherwise stated) Course Objectives Specific Course Topics: -Basic test signals and their properties -Basic system

More information

Fourier Analysis. David-Alexander Robinson ; Daniel Tanner; Jack Denning th October Abstract 2. 2 Introduction & Theory 2

Fourier Analysis. David-Alexander Robinson ; Daniel Tanner; Jack Denning th October Abstract 2. 2 Introduction & Theory 2 Fourier Analysis David-Alexander Robinson ; Daniel Tanner; Jack Denning 08332461 15th October 2009 Contents 1 Abstract 2 2 Introduction & Theory 2 3 Experimental Method 2 3.1 Experiment 1...........................

More information

George Mason University ECE 201: Introduction to Signal Analysis Spring 2017

George Mason University ECE 201: Introduction to Signal Analysis Spring 2017 Assigned: March 20, 2017 Due Date: Week of April 03, 2017 George Mason University ECE 201: Introduction to Signal Analysis Spring 2017 Laboratory Project #6 Due Date Your lab report must be submitted on

More information

Final Exam of ECE301, Section 1 (Prof. Chih-Chun Wang) 1 3pm, Friday, December 13, 2016, EE 129.

Final Exam of ECE301, Section 1 (Prof. Chih-Chun Wang) 1 3pm, Friday, December 13, 2016, EE 129. Final Exam of ECE301, Section 1 (Prof. Chih-Chun Wang) 1 3pm, Friday, December 13, 2016, EE 129. 1. Please make sure that it is your name printed on the exam booklet. Enter your student ID number, and

More information

Math 56 Homework 5 Michael Downs

Math 56 Homework 5 Michael Downs 1. (a) Since f(x) = cos(6x) = ei6x 2 + e i6x 2, due to the orthogonality of each e inx, n Z, the only nonzero (complex) fourier coefficients are ˆf 6 and ˆf 6 and they re both 1 2 (which is also seen from

More information

Centre for Mathematical Sciences HT 2017 Mathematical Statistics. Study chapters 6.1, 6.2 and in the course book.

Centre for Mathematical Sciences HT 2017 Mathematical Statistics. Study chapters 6.1, 6.2 and in the course book. Lund University Stationary stochastic processes Centre for Mathematical Sciences HT 2017 Mathematical Statistics Computer exercise 2 in Stationary stochastic processes, HT 17. The purpose with this computer

More information

Homework 5 Solutions

Homework 5 Solutions 18-290 Signals and Systems Profs. Byron Yu and Pulkit Grover Fall 2018 Homework 5 Solutions. Part One 1. (12 points) Calculate the following convolutions: (a) x[n] δ[n n 0 ] (b) 2 n u[n] u[n] (c) 2 n u[n]

More information

CMPT 889: Lecture 3 Fundamentals of Digital Audio, Discrete-Time Signals

CMPT 889: Lecture 3 Fundamentals of Digital Audio, Discrete-Time Signals CMPT 889: Lecture 3 Fundamentals of Digital Audio, Discrete-Time Signals Tamara Smyth, tamaras@cs.sfu.ca School of Computing Science, Simon Fraser University October 6, 2005 1 Sound Sound waves are longitudinal

More information

Frequency Domain Speech Analysis

Frequency Domain Speech Analysis Frequency Domain Speech Analysis Short Time Fourier Analysis Cepstral Analysis Windowed (short time) Fourier Transform Spectrogram of speech signals Filter bank implementation* (Real) cepstrum and complex

More information

Distortion Analysis T

Distortion Analysis T EE 435 Lecture 32 Spectral Performance Windowing Spectral Performance of Data Converters - Time Quantization - Amplitude Quantization Quantization Noise . Review from last lecture. Distortion Analysis

More information

COMP 546, Winter 2018 lecture 19 - sound 2

COMP 546, Winter 2018 lecture 19 - sound 2 Sound waves Last lecture we considered sound to be a pressure function I(X, Y, Z, t). However, sound is not just any function of those four variables. Rather, sound obeys the wave equation: 2 I(X, Y, Z,

More information

Lab 4 Motion in One-Dimension Part 2: Position, Velocity and Acceleration Graphically and Statistically (pre-requisite Lab3)

Lab 4 Motion in One-Dimension Part 2: Position, Velocity and Acceleration Graphically and Statistically (pre-requisite Lab3) Lab 4 Motion in One-Dimension Part 2: Position, Velocity and Acceleration Graphically and Statistically (pre-requisite Lab3) Objectives: To obtain an understanding of position, velocity, and acceleration

More information

Introduction to Biomedical Engineering

Introduction to Biomedical Engineering Introduction to Biomedical Engineering Biosignal processing Kung-Bin Sung 6/11/2007 1 Outline Chapter 10: Biosignal processing Characteristics of biosignals Frequency domain representation and analysis

More information

FIELD SPECTROMETER QUICK-START GUIDE FOR FIELD DATA COLLECTION (LAST UPDATED 23MAR2011)

FIELD SPECTROMETER QUICK-START GUIDE FOR FIELD DATA COLLECTION (LAST UPDATED 23MAR2011) FIELD SPECTROMETER QUICK-START GUIDE FOR FIELD DATA COLLECTION (LAST UPDATED 23MAR2011) The ASD Inc FieldSpec Max spectrometer is a precision instrument designed for obtaining high spectral resolution

More information

Final Exam of ECE301, Prof. Wang s section 1 3pm Tuesday, December 11, 2012, Lily 1105.

Final Exam of ECE301, Prof. Wang s section 1 3pm Tuesday, December 11, 2012, Lily 1105. Final Exam of ECE301, Prof. Wang s section 1 3pm Tuesday, December 11, 2012, Lily 1105. 1. Please make sure that it is your name printed on the exam booklet. Enter your student ID number, e-mail address,

More information

2.004 Dynamics and Control II Spring 2008

2.004 Dynamics and Control II Spring 2008 MIT OpenCourseWare http://ocw.mit.edu 2.004 Dynamics and Control II Spring 2008 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. Massachusetts Institute

More information

Homework 5 Solutions

Homework 5 Solutions 18-290 Signals and Systems Profs. Byron Yu and Pulkit Grover Fall 2017 Homework 5 Solutions Part One 1. (18 points) For each of the following impulse responses, determine whether the corresponding LTI

More information

Vibration Testing. Typically either instrumented hammers or shakers are used.

Vibration Testing. Typically either instrumented hammers or shakers are used. Vibration Testing Vibration Testing Equipment For vibration testing, you need an excitation source a device to measure the response a digital signal processor to analyze the system response Excitation

More information

The Continuous-time Fourier

The Continuous-time Fourier The Continuous-time Fourier Transform Rui Wang, Assistant professor Dept. of Information and Communication Tongji University it Email: ruiwang@tongji.edu.cn Outline Representation of Aperiodic signals:

More information

Laboratory handout 5 Mode shapes and resonance

Laboratory handout 5 Mode shapes and resonance laboratory handouts, me 34 82 Laboratory handout 5 Mode shapes and resonance In this handout, material and assignments marked as optional can be skipped when preparing for the lab, but may provide a useful

More information

Experiment P-5 Motion of a Cart on an Inclined Plane

Experiment P-5 Motion of a Cart on an Inclined Plane 1 Experiment P-5 Motion of a Cart on an Inclined Plane Objectives To learn about the four motion equations. To study the motion of a cart on an inclined plane. To study motion with constant acceleration.

More information

ODEON APPLICATION NOTE Calibration of Impulse Response Measurements

ODEON APPLICATION NOTE Calibration of Impulse Response Measurements ODEON APPLICATION NOTE Calibration of Impulse Response Measurements Part 2 Free Field Method GK, CLC - May 2015 Scope In this application note we explain how to use the Free-field calibration tool in ODEON

More information

Solutions to Problems in Chapter 4

Solutions to Problems in Chapter 4 Solutions to Problems in Chapter 4 Problems with Solutions Problem 4. Fourier Series of the Output Voltage of an Ideal Full-Wave Diode Bridge Rectifier he nonlinear circuit in Figure 4. is a full-wave

More information

Sound 2: frequency analysis

Sound 2: frequency analysis COMP 546 Lecture 19 Sound 2: frequency analysis Tues. March 27, 2018 1 Speed of Sound Sound travels at about 340 m/s, or 34 cm/ ms. (This depends on temperature and other factors) 2 Wave equation Pressure

More information

Noise Robust Isolated Words Recognition Problem Solving Based on Simultaneous Perturbation Stochastic Approximation Algorithm

Noise Robust Isolated Words Recognition Problem Solving Based on Simultaneous Perturbation Stochastic Approximation Algorithm EngOpt 2008 - International Conference on Engineering Optimization Rio de Janeiro, Brazil, 0-05 June 2008. Noise Robust Isolated Words Recognition Problem Solving Based on Simultaneous Perturbation Stochastic

More information

Experiment 2: The Heat Capacity Ratio of Gases Measured Using a Fourier Transform Technique

Experiment 2: The Heat Capacity Ratio of Gases Measured Using a Fourier Transform Technique Physical Measurements - Core I Experiment 2: The Heat Capacity Ratio of Gases Measured Using a Fourier Transform Technique GENERAL REFERENCES 1. Shoemaker, D.P.; Garland, C.W.; Nibler, J.W. Experiments

More information

ACOUSTICAL MEASUREMENTS BY ADAPTIVE SYSTEM MODELING

ACOUSTICAL MEASUREMENTS BY ADAPTIVE SYSTEM MODELING ACOUSTICAL MEASUREMENTS BY ADAPTIVE SYSTEM MODELING PACS REFERENCE: 43.60.Qv Somek, Branko; Dadic, Martin; Fajt, Sinisa Faculty of Electrical Engineering and Computing University of Zagreb Unska 3, 10000

More information

Last time: small acoustics

Last time: small acoustics Last time: small acoustics Voice, many instruments, modeled by tubes Traveling waves in both directions yield standing waves Standing waves correspond to resonances Variations from the idealization give

More information

Bfh Ti Control F Ws 2008/2009 Lab Matlab-1

Bfh Ti Control F Ws 2008/2009 Lab Matlab-1 Bfh Ti Control F Ws 2008/2009 Lab Matlab-1 Theme: The very first steps with Matlab. Goals: After this laboratory you should be able to solve simple numerical engineering problems with Matlab. Furthermore,

More information

ECE3510 Lab #5 PID Control

ECE3510 Lab #5 PID Control ECE3510 Lab #5 ID Control Objectives The objective of this lab is to study basic design issues for proportionalintegral-derivative control laws. Emphasis is placed on transient responses and steady-state

More information

Lecture 27 Frequency Response 2

Lecture 27 Frequency Response 2 Lecture 27 Frequency Response 2 Fundamentals of Digital Signal Processing Spring, 2012 Wei-Ta Chu 2012/6/12 1 Application of Ideal Filters Suppose we can generate a square wave with a fundamental period

More information

Discrete-Time Fourier Transform

Discrete-Time Fourier Transform Discrete-Time Fourier Transform Chapter Intended Learning Outcomes: (i) (ii) (iii) Represent discrete-time signals using discrete-time Fourier transform Understand the properties of discrete-time Fourier

More information

8/19/16. Fourier Analysis. Fourier analysis: the dial tone phone. Fourier analysis: the dial tone phone

8/19/16. Fourier Analysis. Fourier analysis: the dial tone phone. Fourier analysis: the dial tone phone Patrice Koehl Department of Biological Sciences National University of Singapore http://www.cs.ucdavis.edu/~koehl/teaching/bl5229 koehl@cs.ucdavis.edu Fourier analysis: the dial tone phone We use Fourier

More information

Time-domain representations

Time-domain representations Time-domain representations Speech Processing Tom Bäckström Aalto University Fall 2016 Basics of Signal Processing in the Time-domain Time-domain signals Before we can describe speech signals or modelling

More information

Finite Word Length Effects and Quantisation Noise. Professors A G Constantinides & L R Arnaut

Finite Word Length Effects and Quantisation Noise. Professors A G Constantinides & L R Arnaut Finite Word Length Effects and Quantisation Noise 1 Finite Word Length Effects Finite register lengths and A/D converters cause errors at different levels: (i) input: Input quantisation (ii) system: Coefficient

More information

Digital Circuits, Binary Numbering, and Logic Gates Cornerstone Electronics Technology and Robotics II

Digital Circuits, Binary Numbering, and Logic Gates Cornerstone Electronics Technology and Robotics II Digital Circuits, Binary Numbering, and Logic Gates Cornerstone Electronics Technology and Robotics II Administration: o Prayer Electricity and Electronics, Section 20.1, Digital Fundamentals: o Fundamentals:

More information

THE ACOUSTIC IMPEDANCE MEASUREMNET SYSTEM USING TWO MICROPHONES

THE ACOUSTIC IMPEDANCE MEASUREMNET SYSTEM USING TWO MICROPHONES P-7 THE ACOUSTIC IMPEDANCE MEASUREMNET SYSTEM USING TWO MICROPHONES RYU, YUNSEON BRUEL & KJAER SOUND & VIBRATION MEASUREMENT A/S SKODSBORGVEJ 307 NAERUM 2850 DENMARK TEL : +45 77 41 23 87 FAX : +45 77

More information

Topic 3: Fourier Series (FS)

Topic 3: Fourier Series (FS) ELEC264: Signals And Systems Topic 3: Fourier Series (FS) o o o o Introduction to frequency analysis of signals CT FS Fourier series of CT periodic signals Signal Symmetry and CT Fourier Series Properties

More information

Digital Filters Ying Sun

Digital Filters Ying Sun Digital Filters Ying Sun Digital filters Finite impulse response (FIR filter: h[n] has a finite numbers of terms. Infinite impulse response (IIR filter: h[n] has infinite numbers of terms. Causal filter:

More information

TinySR. Peter Schmidt-Nielsen. August 27, 2014

TinySR. Peter Schmidt-Nielsen. August 27, 2014 TinySR Peter Schmidt-Nielsen August 27, 2014 Abstract TinySR is a light weight real-time small vocabulary speech recognizer written entirely in portable C. The library fits in a single file (plus header),

More information

ω 0 = 2π/T 0 is called the fundamental angular frequency and ω 2 = 2ω 0 is called the

ω 0 = 2π/T 0 is called the fundamental angular frequency and ω 2 = 2ω 0 is called the he ime-frequency Concept []. Review of Fourier Series Consider the following set of time functions {3A sin t, A sin t}. We can represent these functions in different ways by plotting the amplitude versus

More information

Final Exam of ECE301, Prof. Wang s section 8 10am Tuesday, May 6, 2014, EE 129.

Final Exam of ECE301, Prof. Wang s section 8 10am Tuesday, May 6, 2014, EE 129. Final Exam of ECE301, Prof. Wang s section 8 10am Tuesday, May 6, 2014, EE 129. 1. Please make sure that it is your name printed on the exam booklet. Enter your student ID number, e-mail address, and signature

More information

Determining C-H Connectivity: ghmqc and ghmbc (VnmrJ-2.2D Version: For use with the new Software)

Determining C-H Connectivity: ghmqc and ghmbc (VnmrJ-2.2D Version: For use with the new Software) Determining C-H Connectivity: ghmqc and ghmbc (VnmrJ-2.2D Version: For use with the new Software) Heteronuclear Multiple Quantum Coherence (HMQC) and Heteronuclear Multiple Bond Coherence (HMBC) are 2-dimensional

More information

Information on the test material EDS-TM002 and the BAM software package EDX Spectrometer Test for determination of the spectrometer performance

Information on the test material EDS-TM002 and the BAM software package EDX Spectrometer Test for determination of the spectrometer performance BAM 6.8 8.5.213 Information on the test material EDS-TM2 and the BAM software package EDX Spectrometer Test for determination of the spectrometer performance 1. Introduction Energy dispersive spectrometers

More information

PHYSICS 221 Fall 2016 FINAL EXAM: December 12, :30pm 6:30pm. Name (printed): Recitation Instructor: Section #:

PHYSICS 221 Fall 2016 FINAL EXAM: December 12, :30pm 6:30pm. Name (printed): Recitation Instructor: Section #: PHYSICS 221 Fall 2016 FINAL EXAM: December 12, 2016 4:30pm 6:30pm Name (printed): Recitation Instructor: Section #: INSTRUCTIONS: This exam contains 25 multiple-choice questions, plus two extra-credit

More information

Problem Value

Problem Value GEORGIA INSTITUTE OF TECHNOLOGY SCHOOL of ELECTRICAL & COMPUTER ENGINEERING FINAL EXAM DATE: 30-Apr-04 COURSE: ECE-2025 NAME: GT #: LAST, FIRST Recitation Section: Circle the date & time when your Recitation

More information

Lab 9a. Linear Predictive Coding for Speech Processing

Lab 9a. Linear Predictive Coding for Speech Processing EE275Lab October 27, 2007 Lab 9a. Linear Predictive Coding for Speech Processing Pitch Period Impulse Train Generator Voiced/Unvoiced Speech Switch Vocal Tract Parameters Time-Varying Digital Filter H(z)

More information

Lecture 5. The Digital Fourier Transform. (Based, in part, on The Scientist and Engineer's Guide to Digital Signal Processing by Steven Smith)

Lecture 5. The Digital Fourier Transform. (Based, in part, on The Scientist and Engineer's Guide to Digital Signal Processing by Steven Smith) Lecture 5 The Digital Fourier Transform (Based, in part, on The Scientist and Engineer's Guide to Digital Signal Processing by Steven Smith) 1 -. 8 -. 6 -. 4 -. 2-1 -. 8 -. 6 -. 4 -. 2 -. 2. 4. 6. 8 1

More information

Fourier Series and the DFT

Fourier Series and the DFT Laboratory 4 June 10, 2002, Release v3.0 EECS 206 Laboratory 4 Fourier Series and the DF 4.1 Introduction As emphasized in the previous lab, sinusoids are an important part of signal analysis. We noted

More information

Lab 4: Introduction to Signal Processing: Fourier Transform

Lab 4: Introduction to Signal Processing: Fourier Transform Lab 4: Introduction to Signal Processing: Fourier Transform This laboratory requires the following equipment: Matlab The laboratory duration is approximately 3 hours. Although this laboratory is not graded,

More information

Timbral, Scale, Pitch modifications

Timbral, Scale, Pitch modifications Introduction Timbral, Scale, Pitch modifications M2 Mathématiques / Vision / Apprentissage Audio signal analysis, indexing and transformation Page 1 / 40 Page 2 / 40 Modification of playback speed Modifications

More information

ECE 3084 QUIZ 2 SCHOOL OF ELECTRICAL AND COMPUTER ENGINEERING GEORGIA INSTITUTE OF TECHNOLOGY MARCH 31, Name:

ECE 3084 QUIZ 2 SCHOOL OF ELECTRICAL AND COMPUTER ENGINEERING GEORGIA INSTITUTE OF TECHNOLOGY MARCH 31, Name: ECE 3084 QUIZ SCHOOL OF ELECTRICAL AND COMPUTER ENGINEERING GEORGIA INSTITUTE OF TECHNOLOGY MARCH 3, 07 Name:. The quiz is closed book, closed notes, except for one -sided sheet of handwritten notes..

More information

Vibration Testing. an excitation source a device to measure the response a digital signal processor to analyze the system response

Vibration Testing. an excitation source a device to measure the response a digital signal processor to analyze the system response Vibration Testing For vibration testing, you need an excitation source a device to measure the response a digital signal processor to analyze the system response i) Excitation sources Typically either

More information

Reference Text: The evolution of Applied harmonics analysis by Elena Prestini

Reference Text: The evolution of Applied harmonics analysis by Elena Prestini Notes for July 14. Filtering in Frequency domain. Reference Text: The evolution of Applied harmonics analysis by Elena Prestini It all started with: Jean Baptist Joseph Fourier (1768-1830) Mathematician,

More information

Experiment 13 Poles and zeros in the z plane: IIR systems

Experiment 13 Poles and zeros in the z plane: IIR systems Experiment 13 Poles and zeros in the z plane: IIR systems Achievements in this experiment You will be able to interpret the poles and zeros of the transfer function of discrete-time filters to visualize

More information

FINAL EXAM. Problem Value Score

FINAL EXAM. Problem Value Score GEORGIA INSTITUTE OF TECHNOLOGY SCHOOL of ELECTRICAL & COMPUTER ENGINEERING FINAL EXAM DATE: 27-Apr-09 COURSE: ECE-2025 NAME: GT username: LAST, FIRST (ex: gpburdell3) 3 points 3 points 3 points Recitation

More information

A Categorization of Mexican Free-Tailed Bat (Tadarida brasiliensis) Chirps

A Categorization of Mexican Free-Tailed Bat (Tadarida brasiliensis) Chirps A Categorization of Mexican Free-Tailed Bat (Tadarida brasiliensis) Chirps ýýýýý Gregory Backus August 20, 2010 Abstract Male Mexican Free-tailed Bats (Tadarida brasiliensis) attract mates and defend territory

More information

Chapter 9. Linear Predictive Analysis of Speech Signals 语音信号的线性预测分析

Chapter 9. Linear Predictive Analysis of Speech Signals 语音信号的线性预测分析 Chapter 9 Linear Predictive Analysis of Speech Signals 语音信号的线性预测分析 1 LPC Methods LPC methods are the most widely used in speech coding, speech synthesis, speech recognition, speaker recognition and verification

More information

ECE 320 Linear Control Systems Winter Lab 1 Time Domain Analysis of a 1DOF Rectilinear System

ECE 320 Linear Control Systems Winter Lab 1 Time Domain Analysis of a 1DOF Rectilinear System Amplitude ECE 3 Linear Control Systems Winter - Lab Time Domain Analysis of a DOF Rectilinear System Objective: Become familiar with the ECP control system and MATLAB interface Collect experimental data

More information

A R T A - A P P L I C A T I O N N O T E

A R T A - A P P L I C A T I O N N O T E Loudspeaker Free-Field Response This AP shows a simple method for the estimation of the loudspeaker free field response from a set of measurements made in normal reverberant rooms. Content 1. Near-Field,

More information

Chapter 11: WinTDR Algorithms

Chapter 11: WinTDR Algorithms Chapter 11: WinTDR Algorithms This chapter discusses the algorithms WinTDR uses to analyze waveforms including: Bulk Dielectric Constant; Soil Water Content; Electrical Conductivity; Calibrations for probe

More information

ENVIRONMENTAL DATA ANALYSIS WILLIAM MENKE JOSHUA MENKE WITH MATLAB COPYRIGHT 2011 BY ELSEVIER, INC. ALL RIGHTS RESERVED.

ENVIRONMENTAL DATA ANALYSIS WILLIAM MENKE JOSHUA MENKE WITH MATLAB COPYRIGHT 2011 BY ELSEVIER, INC. ALL RIGHTS RESERVED. ENVIRONMENTAL DATA ANALYSIS WITH MATLAB WILLIAM MENKE PROFESSOR OF EARTH AND ENVIRONMENTAL SCIENCE COLUMBIA UNIVERSITY JOSHUA MENKE SOFTWARE ENGINEER JOM ASSOCIATES COPYRIGHT 2011 BY ELSEVIER, INC. ALL

More information

Lab 4 Numerical simulation of a crane

Lab 4 Numerical simulation of a crane Lab 4 Numerical simulation of a crane Agenda Time 10 min Item Review agenda Introduce the crane problem 95 min Lab activity I ll try to give you a 5- minute warning before the end of the lab period to

More information

LABORATORY 1 DISCRETE-TIME SIGNALS

LABORATORY 1 DISCRETE-TIME SIGNALS LABORATORY DISCRETE-TIME SIGNALS.. Introduction A discrete-time signal is represented as a sequence of numbers, called samples. A sample value of a typical discrete-time signal or sequence is denoted as:

More information

Single Channel Signal Separation Using MAP-based Subspace Decomposition

Single Channel Signal Separation Using MAP-based Subspace Decomposition Single Channel Signal Separation Using MAP-based Subspace Decomposition Gil-Jin Jang, Te-Won Lee, and Yung-Hwan Oh 1 Spoken Language Laboratory, Department of Computer Science, KAIST 373-1 Gusong-dong,

More information

2.161 Signal Processing: Continuous and Discrete Fall 2008

2.161 Signal Processing: Continuous and Discrete Fall 2008 MIT OpenCourseWare http://ocw.mit.edu 2.161 Signal Processing: Continuous and Discrete Fall 2008 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. Massachusetts

More information

Final Exam of ECE301, Section 3 (CRN ) 8 10am, Wednesday, December 13, 2017, Hiler Thtr.

Final Exam of ECE301, Section 3 (CRN ) 8 10am, Wednesday, December 13, 2017, Hiler Thtr. Final Exam of ECE301, Section 3 (CRN 17101-003) 8 10am, Wednesday, December 13, 2017, Hiler Thtr. 1. Please make sure that it is your name printed on the exam booklet. Enter your student ID number, and

More information

I. Signals & Sinusoids

I. Signals & Sinusoids I. Signals & Sinusoids [p. 3] Signal definition Sinusoidal signal Plotting a sinusoid [p. 12] Signal operations Time shifting Time scaling Time reversal Combining time shifting & scaling [p. 17] Trigonometric

More information

State space control for the Two degrees of freedom Helicopter

State space control for the Two degrees of freedom Helicopter State space control for the Two degrees of freedom Helicopter AAE364L In this Lab we will use state space methods to design a controller to fly the two degrees of freedom helicopter. 1 The state space

More information

Introduction Basic Audio Feature Extraction

Introduction Basic Audio Feature Extraction Introduction Basic Audio Feature Extraction Vincent Koops (with slides by Meinhard Müller) Sound and Music Technology, December 6th, 2016 1 28 November 2017 Today g Main modules A. Sound and music for

More information

Linear pulse propagation

Linear pulse propagation Ultrafast Laser Physics Ursula Keller / Lukas Gallmann ETH Zurich, Physics Department, Switzerland www.ulp.ethz.ch Linear pulse propagation Ultrafast Laser Physics ETH Zurich Superposition of many monochromatic

More information

FINAL EXAM. Problem Value Score No/Wrong Rec 3

FINAL EXAM. Problem Value Score No/Wrong Rec 3 GEORGIA INSTITUTE OF TECHNOLOGY SCHOOL of ELECTRICAL & COMPUTER ENGINEERING FINAL EXAM DATE: 1-May-08 COURSE: ECE-2025 NAME: GT username: LAST, FIRST (ex: gpburdell3) 3 points 3 points 3 points Recitation

More information

Digital Signal Processing

Digital Signal Processing Digital Signal Processing Multirate Signal Processing Dr. Manar Mohaisen Office: F28 Email: manar.subhi@kut.ac.kr School of IT Engineering Review of the Precedent ecture Introduced Properties of FIR Filters

More information

Signal representations: Cepstrum

Signal representations: Cepstrum Signal representations: Cepstrum Source-filter separation for sound production For speech, source corresponds to excitation by a pulse train for voiced phonemes and to turbulence (noise) for unvoiced phonemes,

More information

Sound Recognition in Mixtures

Sound Recognition in Mixtures Sound Recognition in Mixtures Juhan Nam, Gautham J. Mysore 2, and Paris Smaragdis 2,3 Center for Computer Research in Music and Acoustics, Stanford University, 2 Advanced Technology Labs, Adobe Systems

More information

Introduction to Digital Signal Processing

Introduction to Digital Signal Processing Introduction to Digital Signal Processing What is DSP? DSP, or Digital Signal Processing, as the term suggests, is the processing of signals by digital means. A signal in this context can mean a number

More information

LECTURE NOTES IN AUDIO ANALYSIS: PITCH ESTIMATION FOR DUMMIES

LECTURE NOTES IN AUDIO ANALYSIS: PITCH ESTIMATION FOR DUMMIES LECTURE NOTES IN AUDIO ANALYSIS: PITCH ESTIMATION FOR DUMMIES Abstract March, 3 Mads Græsbøll Christensen Audio Analysis Lab, AD:MT Aalborg University This document contains a brief introduction to pitch

More information

Experiment 0: Periodic Signals and the Fourier Series

Experiment 0: Periodic Signals and the Fourier Series University of Rhode Island Department of Electrical and Computer Engineering ELE : Communication Systems Experiment : Periodic Signals and the Fourier Series Introduction In this experiment, we will investigate

More information

SHOCK AND VIBRATION RESPONSE SPECTRA COURSE Unit 6B. Notes on the Fourier Transform Magnitude

SHOCK AND VIBRATION RESPONSE SPECTRA COURSE Unit 6B. Notes on the Fourier Transform Magnitude SHOCK AND VIBRATION RESPONSE SPECTRA COURSE Unit 6B. Notes on the Fourier Transform Magnitude By Tom Irvine Introduction Fourier transforms, which were introduced in Unit 6A, have a number of potential

More information

Chemistry Department

Chemistry Department Chemistry Department NMR/Instrumentation Facility Users Guide - VNMRJ Prepared by Leila Maurmann The following procedures should be used to acquire one-dimensional proton and carbon NMR data on the 400MHz

More information

Frequency Response and Continuous-time Fourier Series

Frequency Response and Continuous-time Fourier Series Frequency Response and Continuous-time Fourier Series Recall course objectives Main Course Objective: Fundamentals of systems/signals interaction (we d like to understand how systems transform or affect

More information

Signals and Systems. Problem Set: The z-transform and DT Fourier Transform

Signals and Systems. Problem Set: The z-transform and DT Fourier Transform Signals and Systems Problem Set: The z-transform and DT Fourier Transform Updated: October 9, 7 Problem Set Problem - Transfer functions in MATLAB A discrete-time, causal LTI system is described by the

More information

Using a Microcontroller to Study the Time Distribution of Counts From a Radioactive Source

Using a Microcontroller to Study the Time Distribution of Counts From a Radioactive Source Using a Microcontroller to Study the Time Distribution of Counts From a Radioactive Source Will Johns,Eduardo Luiggi (revised by Julia Velkovska, Michael Clemens September 11, 2007 Abstract In this lab

More information

Gaussian Processes for Audio Feature Extraction

Gaussian Processes for Audio Feature Extraction Gaussian Processes for Audio Feature Extraction Dr. Richard E. Turner (ret26@cam.ac.uk) Computational and Biological Learning Lab Department of Engineering University of Cambridge Machine hearing pipeline

More information

DSP First. Laboratory Exercise #10. The z, n, and ˆω Domains

DSP First. Laboratory Exercise #10. The z, n, and ˆω Domains DSP First Laboratory Exercise #10 The z, n, and ˆω Domains 1 Objective The objective for this lab is to build an intuitive understanding of the relationship between the location of poles and zeros in the

More information

Chapter 2: Problem Solutions

Chapter 2: Problem Solutions Chapter 2: Problem Solutions Discrete Time Processing of Continuous Time Signals Sampling à Problem 2.1. Problem: Consider a sinusoidal signal and let us sample it at a frequency F s 2kHz. xt 3cos1000t

More information

Signals, Instruments, and Systems W5. Introduction to Signal Processing Sampling, Reconstruction, and Filters

Signals, Instruments, and Systems W5. Introduction to Signal Processing Sampling, Reconstruction, and Filters Signals, Instruments, and Systems W5 Introduction to Signal Processing Sampling, Reconstruction, and Filters Acknowledgments Recapitulation of Key Concepts from the Last Lecture Dirac delta function (

More information

EECE 2510 Circuits and Signals, Biomedical Applications Final Exam Section 3. Name:

EECE 2510 Circuits and Signals, Biomedical Applications Final Exam Section 3. Name: EECE 2510 Circuits and Signals, Biomedical Applications Final Exam Section 3 Instructions: Closed book, closed notes; Computers and cell phones are not allowed Scientific calculators are allowed Complete

More information

Andrzej DOBRUCKI, Rafał SICZEK. 1. Introduction

Andrzej DOBRUCKI, Rafał SICZEK. 1. Introduction ARCHIVES OF ACOUSTICS 33, 4 (Supplement), 33 37 (2008) THE MEASUREMENT OF NONLINEAR DISTORTION USING BROADBAND NOISE Andrzej DOBRUCKI, Rafał SICZEK Wrocław University of Technology Institute of Telecommunications,

More information

Inverted Pendulum System

Inverted Pendulum System Introduction Inverted Pendulum System This lab experiment consists of two experimental procedures, each with sub parts. Experiment 1 is used to determine the system parameters needed to implement a controller.

More information

Singer Identification using MFCC and LPC and its comparison for ANN and Naïve Bayes Classifiers

Singer Identification using MFCC and LPC and its comparison for ANN and Naïve Bayes Classifiers Singer Identification using MFCC and LPC and its comparison for ANN and Naïve Bayes Classifiers Kumari Rambha Ranjan, Kartik Mahto, Dipti Kumari,S.S.Solanki Dept. of Electronics and Communication Birla

More information

Polarization of light

Polarization of light Laboratory#8 Phys4480/5480 Dr. Cristian Bahrim Polarization of light Light is a transverse electromagnetic wave (EM) which travels due to an electric field and a magnetic field oscillating in phase and

More information

SPEECH COMMUNICATION 6.541J J-HST710J Spring 2004

SPEECH COMMUNICATION 6.541J J-HST710J Spring 2004 6.541J PS3 02/19/04 1 SPEECH COMMUNICATION 6.541J-24.968J-HST710J Spring 2004 Problem Set 3 Assigned: 02/19/04 Due: 02/26/04 Read Chapter 6. Problem 1 In this problem we examine the acoustic and perceptual

More information

MEASUREMENT OF THE UNDERWATER SHIP NOISE BY MEANS OF THE SOUND INTENSITY METHOD. Eugeniusz Kozaczka 1,2 and Ignacy Gloza 2

MEASUREMENT OF THE UNDERWATER SHIP NOISE BY MEANS OF THE SOUND INTENSITY METHOD. Eugeniusz Kozaczka 1,2 and Ignacy Gloza 2 ICSV14 Cairns Australia 9-12 July, 2007 MEASUREMENT OF THE UNDERWATER SHIP NOISE BY MEANS OF THE SOUND INTENSITY METHOD Eugeniusz Kozaczka 1,2 and Ignacy Gloza 2 1 Gdansk University of Techology G. Narutowicza

More information