1. Calculation of the DFT

Size: px
Start display at page:

Download "1. Calculation of the DFT"

Transcription

1 ELE E4810: Digital Signal Processing Topic 10: The Fast Fourier Transform 1. Calculation of the DFT. The Fast Fourier Transform algorithm 3. Short-Time Fourier Transform 1 1. Calculation of the DFT! Filter design so far has been oriented to time-domain processing - cheaper!! But: frequency-domain processing makes some problems very simple: x[n] DFT X[k] Fourier domain processing Y[k] IDFT y[n]! eed an efficient way to calculate DFT!

2 The DFT! Recall the DFT: X[k] = "1 # n=0! discrete transform of discrete sequence! Matrix form: x[n]w kn # X[0] & # L 1 &# x[0] & % ( % 1 ("1) (% ( % X[1] ( % 1 W W L W (% x[1] ( 4 ("1) % X[] ( = % 1 W W L W (% x[] ( % M ( % M M M O M (% M ( % ( % (% ( ("1) ("1) ("1) $ X[ "1] ' $ 1 W W L W ' $ x[ "1] ' ( W = e " j# ) " W r has only distinct values Lots of structure $ opportunities for efficient algorithms 3 Computational Complexity X[k] = "1 # n=0 x[n]w kn! cpx multiplies + -1 cpx adds per pt! points (k = 0..-1)! cpx mult: (a+jb)(c+jd) = ac - bd + j(ad+bc) = 4 real mults + real adds! cpx add = real adds! Total: 4 real mults, 4 - real adds 4

3 Goertzel s Algorithm "1 kl! ow: X[ k] = # x[ l]w! i.e. x e [n] x e [] = 0 where + W -k X k n y k z -1 l=0 k "k "l = W # x[ l] W l [ ] = y k [ ] [ ] = x e n [ ]" h k [n] y k [n] y k [-1] = 0 y k [] = X[k] ( ) looks like a convolution x e [n] = { x[n] 0! n < 0 n = h k [n] = { W -kn n " 0 0 n < 0 5 H( z) = Goertzel s Algorithm! Separate filters for each X[k]! can calculate for just a few samples of k! o large buffer, no coefficient table! Same complexity for full X[k] (4 mults, 4 - adds)! but: can halve multiplies by making the denominator real: k z "1 1 1" W "k z = 1" W "1 1 " cos #k z"1 + z " evaluate only for last step 6 real mults per step

4 . Fast Fourier Transform FFT! Reduce complexity of DFT from O( ) to O( log)! grows more slowly with larger! Works by decomposing large DFT into several stages of smaller DFTs! Often provided as a highly optimized library 7 Arrange terms in pairs Decimation in Time (DIT) FFT! Can rearrange DFT formula in halves: nk [ ] = x[ n] "W X k Group terms from each pair #1 $ n=0 #1 $ [ ] " W mk ( m+1)k ( + x[ m +1] " W ) = x m m=0 #1 mk k = $ x m + W [ ] "W #1 $ [ ] "W x m +1 m=0 X m=0 0 [<k> / ] X 1 [<k> / ] / pt DFT of x for even n / pt DFT of x for odd n 8 mk

5 X 0 z Decimation in Time (DIT) FFT! Finite sequence x[n], 0! n <, = M! i.e. length is a power of! Divide z-transform into parts coming from even and odd values of n: "1 X( z) = # x[ n]z "n = X 0 z n=0 # "1 [ ]z "n X 1 z ( ) = x n n=0 ZT of / point sequence formed from even pts of x[n] ( ) + z "1 X 1 ( z ) ( ) = # "1 x n +1 n=0 ZT of / point sequence formed from odd pts of x[n] [ ]z "n 9 Decimation in Time (DIT) FFT! ow, but = X 0 e! Hence: X k k = DFT { x[ n] } = ˆ X[ k] = X( z) z=e j "k / #1 =W j "k / ( ) ( ) + e# j "k / X ( j "k / 1 e ) ( e j"k / ) j"k / / = e [ ] = DFT = X [ 0 k ] + W ( ) = W k X 1 [ ] k ( ) #1 { x[ n] }+ W k DFT { x[ n +1] } / point DFT defined only for k = 0../-1 10

6 Decimation in Time (DIT) FFT DFT { x[ n] } = DFT { x 0 [ n] }+ W k DFT { x 1 [ n] }! We can evaluate an -pt DFT as two /-pt DFTs (plus a few mults/adds)! But if DFT { } ~ O( ) then DFT / { } ~ O((/) ) = 1/4 O( ) " Total computation ~! 1/4 O( ) = 1/ the computation (+%) of direct DFT 11 One-Stage DIT Flowgraph [ ] = X 0 k X k Even points from x[n] [ ] + W k X 1 [ ] k twiddle factors always apply to odd-terms ouptut OT mirror-image Odd points from x[n] Classic FFT structure Same as X[0..3] except for factors on X 1 [ ] terms 1

7 Multiple DIT Stages! If decomposing one DFT into two smaller DFT / s speeds things up... Why not further divide into DFT /4 s? i.e. so have! Similarly, [ ] = X 0 k X k 0! k < X 0 k [ ] + W [ ] = X 00 k 4 0! k < / /4-pt DFT of even points in even subset of x[n] X 1 k k X 1 [ ] k [ ] + W [ ] = X 10 k 4 13 k X 01 [ ] k 4 /4-pt DFT of odd points from even subset [ ] + W k X 11 [ ] k 4 Two-Stage DIT Flowgraph 14

8 Multi-stage DIT FFT! Can keep doing this until we get down to -pt DFTs: DFT X[0] = x[0] + x[1] X[1] = x[0] - x[1] butterfly element 1 = W 0-1 = W 1 $ = M -pt DFT reduces to M stages of twiddle factors & summation (O( ) part vanishes) $ real mults < M 4, real adds <!M $ complexity ~ O( M) = O( log ) 15 & FFT Implementation Details! Basic butterfly (at any stage): X X0 [r] X X1 [r]! Can simplify: X X0 [r] X X1 [r] W r -1 W r W r+/ X X [r] cpx mults X X [r+/] X X [r] X X [r+/] W r+ ( ) = j # r+ e" = e " j#r / " j# $ e r = "W just one cpx mult! i.e. SUB rather than ADD 16

9 bit-reversed indexing 8-pt DIT FFT Flowgraph! -1 s absorbed into summation nodes! W 0 disappears! in-place algorithm: sequential stages 17 FFT for Other Values of! Having = M meant we could divide each stage into halves = radix- FFT! Same approach works for:! = 3 M radix-3! = 4 M radix-4 - more optimized radix-! etc...! Composite = a b c d $ mixed radix (different /r point FFTs at each stage)!.. or just zero-pad to make = M 18

10 Inverse FFT! Recall IDFT: x[n] = 1 "1 # k=0 only differences from forward DFT X[k]W "nk x n! Thus: x * [n] = "1 "nk #( X[k]W ) * = X * nk # [k]w k=0 Forward DFT of x'[n] = X * [k] k=n i.e. time sequence made from spectrum "1 k=0! Hence, use FFT to calculate IFFT: $ & % "1 # [ ] = 1 X * k k=0 ' nk [ ]W ) ( * Re{X[k]} Im{X[k]} DFT 19-1 Re Im Re Im 1/ -1/ Re{x[n]} Im{x[n]} DFT of Real Sequences! If x[n] is pure-real, DFT wastes mult s! Real x[n] $ Conj. symm. X[k] = X * [-k]! Given two real sequences, x[n] and w[n] call y[n] = j w[n], v[n] = x[n] + y[n]! -pt DFT V[k] = X[k] + Y[k] but: V[k]+V * [-k] = X[k]+X * X[k] -Y[k] [-k]+y[k]+y * [-k] " X[k]= 1 / (V[k]+V * [-k]), W[k]= -j / (V[k]-V * [-k])! i.e. compute DFTs of two -pt real sequences with a single -pt DFT 0 M

11 x n 3. Short-Time Fourier Transform (STFT)! Fourier Transform (e.g. DTFT) gives spectrum of an entire sequence:! How to see a time-varying spectrum?! e.g. slow AM of a sinusoid carrier: $ % [ ] = & 1 " cos #n ' ) cos* ( 0 n 1 Fourier Transform of AM Sine! Spectrum of whole sequence indicates modulation indirectly...!... as cancellation between closelytuned sines sin#kn -sin#(k-1)n -sin#(k+1)n cacb = ca+b +ca-b

12 Fourier Transform of AM Sine! Sometimes we d rather separate modulation and carrier: x[n] = A[n]cos' 0 n! A[n] varies on a different (slower) timescale! One approach:! chop x[n] into short sub-sequences ' 0 A[n] '!.. each with ~ constant modulation scale! DFT spectrum of pieces $ show variation 3 FT of Short Segments! Break up x[n] into successive, shorter chunks of length FT, then DFT each: Shows amplitude modulation of ' 0 energy 4

13 The Spectrogram! Plot successive DFTs in time-frequency: time hopsize (between successive frames) = 18 points! This image is called the Spectrogram 5 Short-Time Fourier Transform! Spectrogram = STFT magnitude plotted on time-frequency plane! STFT is (DFT form): frequency index [ ] = x[ n 0 + n] " w[n]" e # j $kn FT X k,n 0 time index FT #1 % n=0 FT points of x starting at n window DFT kernel! intensity as a function of time & frequency 6

14 DTFT form of STFT STFT Window Shape! w[n] provides time localization of STFT w[n]! e.g. rectangular selects x[n], n 0! n < n 0 + W! But: resulting spectrum has same problems as windowing for FIR design: X( e j",n 0 ) = DTFT{ x[ n 0 + n] # w[ n] } & = e j$n 0 ' X ( e j$ )W ( e j ("%$ ) )d$ %& spectrum of short-time window is convolved with (twisted) parent spectrum n 7 STFT Window Shape! e.g. if x[n] is a pure sinusoid, blurring (mainlobe) + ghosting (sidelobes)! Hence, use tapered window for w[n] e.g. Hamming w[ n] = cos(" M n ) +1 sidelobes < -40 db 8

15 STFT Window Length! Length of w[n] sets temporal resolution short window measures only local properties longer window averages spectral character! Window length ( 1/(Mainlobe width) shorter window $ more blurred spectrum! more time detail ) less frequency detail 9 STFT Window Length! Can illustrate time-frequency tradeoff on the time-frequency plane:! Alternate tilings of time-freq: disks show blurring due to window length area of disks is constant $ Uncertainty principle: *f *t! k half-length window $ half as many DFT samples 30

16 Spectrograms of Real Sounds time-domain successive short DFTs individual t-f cells merge into continuous image 31 arrowband vs. Wideband! Effect of varying window length: 3

17 Spectrogram in Matlab >> [d,sr]=wavread('sx419.wav'); >> w=56; >> specgram(d,w,sr) >> colorbar (hann) window length actual sampling rate (to label time axis) db 33 just one freq. STFT as a Filterbank! Consider one row of STFT: [ ] = x[ n 0 + n] " w[ n] " e # j $kn X k n 0 where #1 % n=0 # #1 ( ) % = h k [ m]x n 0 # m m=0 h k n [ ] [ ] = w ["n] # e j $kn convolution with complex IR! Each STFT row is output of a filter (subsampled by the STFT hop size) 34

18 STFT as a Filterbank! If h k [ n] = w [(")n] # e j $kn then ( ) = W e # H k e j" ( $k ( ) j ("# )) shift-in-'! Each STFT row is the same bandpass response defined by W(e j' ), frequency-shifted to a given DFT bin: A bank of identical, frequency-shifted bandpass filters: filterbank 35 STFT Analysis-Synthesis! IDFT of STFT frames can reconstruct (part of) original waveform [ ] = DFT{ x[ n 0 + n] " w[ n] }! e.g. if X k,n 0 then IDFT{ X[ k,n 0 ]} = x[ n 0 + n] " w[ n]! Can shift by n 0, combine, to get x[n]: ^! Could divide by w[n-n 0 ] to recover x[n]... 36

19 STFT Analysis-Synthesis! Dividing by small values of w[n] is bad! Prefer to overlap windows: i.e. sample X[k,n 0 ] at n 0 = r H where H = / (for example)! Then x ˆ n hopsize # r window length [ ] = x[ n]w[ n " rh] = x[ n] if w[ n " rh] $ =1 37 #r STFT Analysis-Synthesis! Hann or Hamming windows with 50% overlap sum to constant ( cos(" n ) ) ( ) = cos(" n# )! Can also modify individual frames of and reconstruct! complex, time-varying modifications! tapered overlap makes things OK 38

20 STFT Analysis-Synthesis! e.g. oise reduction: STFT of original speech Speech corrupted by white noise Energy threshold mask 39 M

EDISP (NWL3) (English) Digital Signal Processing DFT Windowing, FFT. October 19, 2016

EDISP (NWL3) (English) Digital Signal Processing DFT Windowing, FFT. October 19, 2016 EDISP (NWL3) (English) Digital Signal Processing DFT Windowing, FFT October 19, 2016 DFT resolution 1 N-point DFT frequency sampled at θ k = 2πk N, so the resolution is f s/n If we want more, we use N

More information

EE482: Digital Signal Processing Applications

EE482: Digital Signal Processing Applications Professor Brendan Morris, SEB 3216, brendan.morris@unlv.edu EE482: Digital Signal Processing Applications Spring 2014 TTh 14:305:45 CBC C222 Lecture 8 Frequency Analysis 14/02/18 http://www.ee.unlv.edu/~b1morris/ee482/

More information

L6: Short-time Fourier analysis and synthesis

L6: Short-time Fourier analysis and synthesis L6: Short-time Fourier analysis and synthesis Overview Analysis: Fourier-transform view Analysis: filtering view Synthesis: filter bank summation (FBS) method Synthesis: overlap-add (OLA) method STFT magnitude

More information

1 1.27z z 2. 1 z H 2

1 1.27z z 2. 1 z H 2 E481 Digital Signal Processing Exam Date: Thursday -1-1 16:15 18:45 Final Exam - Solutions Dan Ellis 1. (a) In this direct-form II second-order-section filter, the first stage has

More information

L29: Fourier analysis

L29: Fourier analysis L29: Fourier analysis Introduction The discrete Fourier Transform (DFT) The DFT matrix The Fast Fourier Transform (FFT) The Short-time Fourier Transform (STFT) Fourier Descriptors CSCE 666 Pattern Analysis

More information

ELEG 305: Digital Signal Processing

ELEG 305: Digital Signal Processing ELEG 5: Digital Signal Processing Lecture 6: The Fast Fourier Transform; Radix Decimatation in Time Kenneth E. Barner Department of Electrical and Computer Engineering University of Delaware Fall 8 K.

More information

Discrete Fourier Transform

Discrete Fourier Transform Discrete Fourier Transform Virtually all practical signals have finite length (e.g., sensor data, audio records, digital images, stock values, etc). Rather than considering such signals to be zero-padded

More information

Chapter 4 Discrete Fourier Transform (DFT) And Signal Spectrum

Chapter 4 Discrete Fourier Transform (DFT) And Signal Spectrum Chapter 4 Discrete Fourier Transform (DFT) And Signal Spectrum CEN352, DR. Nassim Ammour, King Saud University 1 Fourier Transform History Born 21 March 1768 ( Auxerre ). Died 16 May 1830 ( Paris ) French

More information

EE123 Digital Signal Processing

EE123 Digital Signal Processing EE123 Digital Signal Processing Lecture 1 Time-Dependent FT Announcements! Midterm: 2/22/216 Open everything... but cheat sheet recommended instead 1am-12pm How s the lab going? Frequency Analysis with

More information

Transforms and Orthogonal Bases

Transforms and Orthogonal Bases Orthogonal Bases Transforms and Orthogonal Bases We now turn back to linear algebra to understand transforms, which map signals between different domains Recall that signals can be interpreted as vectors

More information

ELEG 305: Digital Signal Processing

ELEG 305: Digital Signal Processing ELEG 305: Digital Signal Processing Lecture 18: Applications of FFT Algorithms & Linear Filtering DFT Computation; Implementation of Discrete Time Systems Kenneth E. Barner Department of Electrical and

More information

VII. Discrete Fourier Transform (DFT) Chapter-8. A. Modulo Arithmetic. (n) N is n modulo N, n is an integer variable.

VII. Discrete Fourier Transform (DFT) Chapter-8. A. Modulo Arithmetic. (n) N is n modulo N, n is an integer variable. 1 VII. Discrete Fourier Transform (DFT) Chapter-8 A. Modulo Arithmetic (n) N is n modulo N, n is an integer variable. (n) N = n m N 0 n m N N-1, pick m Ex. (k) 4 W N = e -j2π/n 2 Note that W N k = 0 but

More information

Chirp Transform for FFT

Chirp Transform for FFT Chirp Transform for FFT Since the FFT is an implementation of the DFT, it provides a frequency resolution of 2π/N, where N is the length of the input sequence. If this resolution is not sufficient in a

More information

Fundamentals of the DFT (fft) Algorithms

Fundamentals of the DFT (fft) Algorithms Fundamentals of the DFT (fft) Algorithms D. Sundararajan November 6, 9 Contents 1 The PM DIF DFT Algorithm 1.1 Half-wave symmetry of periodic waveforms.............. 1. The DFT definition and the half-wave

More information

Lecture 20: Discrete Fourier Transform and FFT

Lecture 20: Discrete Fourier Transform and FFT EE518 Digital Signal Processing University of Washington Autumn 2001 Dept of Electrical Engineering Lecture 20: Discrete Fourier Transform and FFT Dec 10, 2001 Prof: J Bilmes TA:

More information

Fall 2011, EE123 Digital Signal Processing

Fall 2011, EE123 Digital Signal Processing Lecture 6 Miki Lustig, UCB September 11, 2012 Miki Lustig, UCB DFT and Sampling the DTFT X (e jω ) = e j4ω sin2 (5ω/2) sin 2 (ω/2) 5 x[n] 25 X(e jω ) 4 20 3 15 2 1 0 10 5 1 0 5 10 15 n 0 0 2 4 6 ω 5 reconstructed

More information

Fourier Analysis of Signals Using the DFT

Fourier Analysis of Signals Using the DFT Fourier Analysis of Signals Using the DFT ECE 535 Lecture April 29, 23 Overview: Motivation Many applications require analyzing the frequency content of signals Speech processing study resonances of vocal

More information

The Fourier transform allows an arbitrary function to be represented in terms of simple sinusoids. The Fourier transform (FT) of a function f(t) is

The Fourier transform allows an arbitrary function to be represented in terms of simple sinusoids. The Fourier transform (FT) of a function f(t) is 1 Introduction Here is something I wrote many years ago while working on the design of anemometers for measuring shear stresses. Part of this work required modelling and compensating for the transfer function

More information

! Spectral Analysis with DFT. ! Windowing. ! Effect of zero-padding. ! Time-dependent Fourier transform. " Aka short-time Fourier transform

! Spectral Analysis with DFT. ! Windowing. ! Effect of zero-padding. ! Time-dependent Fourier transform.  Aka short-time Fourier transform Lecture Outline ESE 531: Digital Signal Processing Spectral Analysis with DFT Windowing Lec 24: April 18, 2019 Spectral Analysis Effect of zero-padding Time-dependent Fourier transform " Aka short-time

More information

E : Lecture 1 Introduction

E : Lecture 1 Introduction E85.2607: Lecture 1 Introduction 1 Administrivia 2 DSP review 3 Fun with Matlab E85.2607: Lecture 1 Introduction 2010-01-21 1 / 24 Course overview Advanced Digital Signal Theory Design, analysis, and implementation

More information

OLA and FBS Duality Review

OLA and FBS Duality Review MUS421/EE367B Lecture 10A Review of OverLap-Add (OLA) and Filter-Bank Summation (FBS) Interpretations of Short-Time Fourier Analysis, Modification, and Resynthesis Julius O. Smith III (jos@ccrma.stanford.edu)

More information

Multimedia Signals and Systems - Audio and Video. Signal, Image, Video Processing Review-Introduction, MP3 and MPEG2

Multimedia Signals and Systems - Audio and Video. Signal, Image, Video Processing Review-Introduction, MP3 and MPEG2 Multimedia Signals and Systems - Audio and Video Signal, Image, Video Processing Review-Introduction, MP3 and MPEG2 Kunio Takaya Electrical and Computer Engineering University of Saskatchewan December

More information

EE123 Digital Signal Processing

EE123 Digital Signal Processing Announcements EE Digital Signal Processing otes posted HW due Friday SDR give away Today! Read Ch 9 $$$ give me your names Lecture based on slides by JM Kahn M Lustig, EECS UC Berkeley M Lustig, EECS UC

More information

DSP Algorithm Original PowerPoint slides prepared by S. K. Mitra

DSP Algorithm Original PowerPoint slides prepared by S. K. Mitra Chapter 11 DSP Algorithm Implementations 清大電機系林嘉文 cwlin@ee.nthu.edu.tw Original PowerPoint slides prepared by S. K. Mitra 03-5731152 11-1 Matrix Representation of Digital Consider Filter Structures This

More information

VU Signal and Image Processing. Torsten Möller + Hrvoje Bogunović + Raphael Sahann

VU Signal and Image Processing. Torsten Möller + Hrvoje Bogunović + Raphael Sahann 052600 VU Signal and Image Processing Torsten Möller + Hrvoje Bogunović + Raphael Sahann torsten.moeller@univie.ac.at hrvoje.bogunovic@meduniwien.ac.at raphael.sahann@univie.ac.at vda.cs.univie.ac.at/teaching/sip/17s/

More information

Chapter 8 The Discrete Fourier Transform

Chapter 8 The Discrete Fourier Transform Chapter 8 The Discrete Fourier Transform Introduction Representation of periodic sequences: the discrete Fourier series Properties of the DFS The Fourier transform of periodic signals Sampling the Fourier

More information

Continuous Fourier transform of a Gaussian Function

Continuous Fourier transform of a Gaussian Function Continuous Fourier transform of a Gaussian Function Gaussian function: e t2 /(2σ 2 ) The CFT of a Gaussian function is also a Gaussian function (i.e., time domain is Gaussian, then the frequency domain

More information

Digital Signal Processing. Midterm 2 Solutions

Digital Signal Processing. Midterm 2 Solutions EE 123 University of California, Berkeley Anant Sahai arch 15, 2007 Digital Signal Processing Instructions idterm 2 Solutions Total time allowed for the exam is 80 minutes Please write your name and SID

More information

SNR Calculation and Spectral Estimation [S&T Appendix A]

SNR Calculation and Spectral Estimation [S&T Appendix A] SR Calculation and Spectral Estimation [S&T Appendix A] or, How not to make a mess of an FFT Make sure the input is located in an FFT bin 1 Window the data! A Hann window works well. Compute the FFT 3

More information

! Circular Convolution. " Linear convolution with circular convolution. ! Discrete Fourier Transform. " Linear convolution through circular

! Circular Convolution.  Linear convolution with circular convolution. ! Discrete Fourier Transform.  Linear convolution through circular Previously ESE 531: Digital Signal Processing Lec 22: April 18, 2017 Fast Fourier Transform (con t)! Circular Convolution " Linear convolution with circular convolution! Discrete Fourier Transform " Linear

More information

convenient means to determine response to a sum of clear evidence of signal properties that are obscured in the original signal

convenient means to determine response to a sum of clear evidence of signal properties that are obscured in the original signal Digital Speech Processing Lecture 9 Short-Time Fourier Analysis Methods- Introduction 1 General Discrete-Time Model of Speech Production Voiced Speech: A V P(z)G(z)V(z)R(z) Unvoiced Speech: A N N(z)V(z)R(z)

More information

MAHALAKSHMI ENGINEERING COLLEGE-TRICHY

MAHALAKSHMI ENGINEERING COLLEGE-TRICHY DIGITAL SIGNAL PROCESSING DEPT./SEM.: ECE&EEE /V DISCRETE FOURIER TRANFORM AND FFT PART-A 1. Define DFT of a discrete time sequence? AUC MAY 06 The DFT is used to convert a finite discrete time sequence

More information

Digital Speech Processing Lecture 10. Short-Time Fourier Analysis Methods - Filter Bank Design

Digital Speech Processing Lecture 10. Short-Time Fourier Analysis Methods - Filter Bank Design Digital Speech Processing Lecture Short-Time Fourier Analysis Methods - Filter Bank Design Review of STFT j j ˆ m ˆ. X e x[ mw ] [ nˆ m] e nˆ function of nˆ looks like a time sequence function of ˆ looks

More information

Frequency-domain representation of discrete-time signals

Frequency-domain representation of discrete-time signals 4 Frequency-domain representation of discrete-time signals So far we have been looing at signals as a function of time or an index in time. Just lie continuous-time signals, we can view a time signal as

More information

DHANALAKSHMI COLLEGE OF ENGINEERING DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING EC2314- DIGITAL SIGNAL PROCESSING UNIT I INTRODUCTION PART A

DHANALAKSHMI COLLEGE OF ENGINEERING DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING EC2314- DIGITAL SIGNAL PROCESSING UNIT I INTRODUCTION PART A DHANALAKSHMI COLLEGE OF ENGINEERING DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING EC2314- DIGITAL SIGNAL PROCESSING UNIT I INTRODUCTION PART A Classification of systems : Continuous and Discrete

More information

Chapter 2: The Fourier Transform

Chapter 2: The Fourier Transform EEE, EEE Part A : Digital Signal Processing Chapter Chapter : he Fourier ransform he Fourier ransform. Introduction he sampled Fourier transform of a periodic, discrete-time signal is nown as the discrete

More information

II. Nonparametric Spectrum Estimation for Stationary Random Signals - Non-parametric Methods -

II. Nonparametric Spectrum Estimation for Stationary Random Signals - Non-parametric Methods - II. onparametric Spectrum Estimation for Stationary Random Signals - on-parametric Methods - - [p. 3] Periodogram - [p. 12] Periodogram properties - [p. 23] Modified periodogram - [p. 25] Bartlett s method

More information

LAB 6: FIR Filter Design Summer 2011

LAB 6: FIR Filter Design Summer 2011 University of Illinois at Urbana-Champaign Department of Electrical and Computer Engineering ECE 311: Digital Signal Processing Lab Chandra Radhakrishnan Peter Kairouz LAB 6: FIR Filter Design Summer 011

More information

OLA and FBS Duality Review

OLA and FBS Duality Review OLA and FBS Duality Review MUS421/EE367B Lecture 10A Review of OverLap-Add (OLA) and Filter-Bank Summation (FBS) Interpretations of Short-Time Fourier Analysis, Modification, and Resynthesis Julius O.

More information

LAB 2: DTFT, DFT, and DFT Spectral Analysis Summer 2011

LAB 2: DTFT, DFT, and DFT Spectral Analysis Summer 2011 University of Illinois at Urbana-Champaign Department of Electrical and Computer Engineering ECE 311: Digital Signal Processing Lab Chandra Radhakrishnan Peter Kairouz LAB 2: DTFT, DFT, and DFT Spectral

More information

Linear Convolution Using FFT

Linear Convolution Using FFT Linear Convolution Using FFT Another useful property is that we can perform circular convolution and see how many points remain the same as those of linear convolution. When P < L and an L-point circular

More information

/ (2π) X(e jω ) dω. 4. An 8 point sequence is given by x(n) = {2,2,2,2,1,1,1,1}. Compute 8 point DFT of x(n) by

/ (2π) X(e jω ) dω. 4. An 8 point sequence is given by x(n) = {2,2,2,2,1,1,1,1}. Compute 8 point DFT of x(n) by Code No: RR320402 Set No. 1 III B.Tech II Semester Regular Examinations, Apr/May 2006 DIGITAL SIGNAL PROCESSING ( Common to Electronics & Communication Engineering, Electronics & Instrumentation Engineering,

More information

Digital Signal Processing

Digital Signal Processing DIGITAL SIGNAL PROCESSING SUBJECT CODE : NO. OF LECTURE HRS/WEEK : 04 TOTAL NO. OF LECTURE HRS. : 52 IA MARKS : 25 EXAM HOURS : 03 EXAMMARKS : 100 UNIT - 1 DISCRETE FOURIER TRANSFORMS (DFT): FREQUENCY

More information

Ch. 15 Wavelet-Based Compression

Ch. 15 Wavelet-Based Compression Ch. 15 Wavelet-Based Compression 1 Origins and Applications The Wavelet Transform (WT) is a signal processing tool that is replacing the Fourier Transform (FT) in many (but not all!) applications. WT theory

More information

Elec4621 Advanced Digital Signal Processing Chapter 11: Time-Frequency Analysis

Elec4621 Advanced Digital Signal Processing Chapter 11: Time-Frequency Analysis Elec461 Advanced Digital Signal Processing Chapter 11: Time-Frequency Analysis Dr. D. S. Taubman May 3, 011 In this last chapter of your notes, we are interested in the problem of nding the instantaneous

More information

DEPARTMENT OF EI DIGITAL SIGNAL PROCESSING ASSIGNMENT 1

DEPARTMENT OF EI DIGITAL SIGNAL PROCESSING ASSIGNMENT 1 This PDF is Created by Simpo PDF Creator unregistered version - http://wwwsimpopdfcom Study hard, for the well is deep, and our brains are shallow DEPARTMENT OF EI DIGITAL SIGNAL PROCESSING ASSIGNMENT

More information

IT DIGITAL SIGNAL PROCESSING (2013 regulation) UNIT-1 SIGNALS AND SYSTEMS PART-A

IT DIGITAL SIGNAL PROCESSING (2013 regulation) UNIT-1 SIGNALS AND SYSTEMS PART-A DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING IT6502 - DIGITAL SIGNAL PROCESSING (2013 regulation) UNIT-1 SIGNALS AND SYSTEMS PART-A 1. What is a continuous and discrete time signal? Continuous

More information

Lecture 19: Discrete Fourier Series

Lecture 19: Discrete Fourier Series EE518 Digital Signal Processing University of Washington Autumn 2001 Dept. of Electrical Engineering Lecture 19: Discrete Fourier Series Dec 5, 2001 Prof: J. Bilmes TA: Mingzhou

More information

EEO 401 Digital Signal Processing Prof. Mark Fowler

EEO 401 Digital Signal Processing Prof. Mark Fowler EEO 401 Digital Signal Processing Prof. Mark Fowler Note Set #21 Using the DFT to Implement FIR Filters Reading Assignment: Sect. 7.3 of Proakis & Manolakis Motivation: DTFT View of Filtering There are

More information

DFT-Based FIR Filtering. See Porat s Book: 4.7, 5.6

DFT-Based FIR Filtering. See Porat s Book: 4.7, 5.6 DFT-Based FIR Filtering See Porat s Book: 4.7, 5.6 1 Motivation: DTFT View of Filtering There are two views of filtering: * Time Domain * Frequency Domain x[ X f ( θ ) h[ H f ( θ ) Y y[ = h[ * x[ f ( θ

More information

ECSE 512 Digital Signal Processing I Fall 2010 FINAL EXAMINATION

ECSE 512 Digital Signal Processing I Fall 2010 FINAL EXAMINATION FINAL EXAMINATION 9:00 am 12:00 pm, December 20, 2010 Duration: 180 minutes Examiner: Prof. M. Vu Assoc. Examiner: Prof. B. Champagne There are 6 questions for a total of 120 points. This is a closed book

More information

6.003: Signal Processing

6.003: Signal Processing 6.003: Signal Processing Discrete Fourier Transform Discrete Fourier Transform (DFT) Relations to Discrete-Time Fourier Transform (DTFT) Relations to Discrete-Time Fourier Series (DTFS) October 16, 2018

More information

Problem Set 8 - Solution

Problem Set 8 - Solution Problem Set 8 - Solution Jonasz Słomka Unless otherwise specified, you may use MATLAB to assist with computations. provide a print-out of the code used and its output with your assignment. Please 1. More

More information

Frequency Domain Speech Analysis

Frequency Domain Speech Analysis Frequency Domain Speech Analysis Short Time Fourier Analysis Cepstral Analysis Windowed (short time) Fourier Transform Spectrogram of speech signals Filter bank implementation* (Real) cepstrum and complex

More information

Module 3. Convolution. Aim

Module 3. Convolution. Aim Module Convolution Digital Signal Processing. Slide 4. Aim How to perform convolution in real-time systems efficiently? Is convolution in time domain equivalent to multiplication of the transformed sequence?

More information

Radar Systems Engineering Lecture 3 Review of Signals, Systems and Digital Signal Processing

Radar Systems Engineering Lecture 3 Review of Signals, Systems and Digital Signal Processing Radar Systems Engineering Lecture Review of Signals, Systems and Digital Signal Processing Dr. Robert M. O Donnell Guest Lecturer Radar Systems Course Review Signals, Systems & DSP // Block Diagram of

More information

Topic 7. Convolution, Filters, Correlation, Representation. Bryan Pardo, 2008, Northwestern University EECS 352: Machine Perception of Music and Audio

Topic 7. Convolution, Filters, Correlation, Representation. Bryan Pardo, 2008, Northwestern University EECS 352: Machine Perception of Music and Audio Topic 7 Convolution, Filters, Correlation, Representation Short time Fourier Transform Break signal into windows Calculate DFT of each window The Spectrogram spectrogram(y,1024,512,1024,fs,'yaxis'); A

More information

SIDDHARTH GROUP OF INSTITUTIONS:: PUTTUR Siddharth Nagar, Narayanavanam Road QUESTION BANK (DESCRIPTIVE)

SIDDHARTH GROUP OF INSTITUTIONS:: PUTTUR Siddharth Nagar, Narayanavanam Road QUESTION BANK (DESCRIPTIVE) SIDDHARTH GROUP OF INSTITUTIONS:: PUTTUR Siddharth Nagar, Narayanavanam Road 517583 QUESTION BANK (DESCRIPTIVE) Subject with Code : Digital Signal Processing(16EC422) Year & Sem: III-B.Tech & II-Sem Course

More information

EDISP (NWL2) (English) Digital Signal Processing Transform, FT, DFT. March 11, 2015

EDISP (NWL2) (English) Digital Signal Processing Transform, FT, DFT. March 11, 2015 EDISP (NWL2) (English) Digital Signal Processing Transform, FT, DFT March 11, 2015 Transform concept We want to analyze the signal represent it as built of some building blocks (well known signals), possibly

More information

Discrete Fourier transform (DFT)

Discrete Fourier transform (DFT) Discrete Fourier transform (DFT) Signal Processing 2008/9 LEA Instituto Superior Técnico Signal Processing LEA (IST) Discrete Fourier transform 1 / 34 Periodic signals Consider a periodic signal x[n] with

More information

Course Name: Digital Signal Processing Course Code: EE 605A Credit: 3

Course Name: Digital Signal Processing Course Code: EE 605A Credit: 3 Course Name: Digital Signal Processing Course Code: EE 605A Credit: 3 Prerequisites: Sl. No. Subject Description Level of Study 01 Mathematics Fourier Transform, Laplace Transform 1 st Sem, 2 nd Sem 02

More information

Lecture 5. The Digital Fourier Transform. (Based, in part, on The Scientist and Engineer's Guide to Digital Signal Processing by Steven Smith)

Lecture 5. The Digital Fourier Transform. (Based, in part, on The Scientist and Engineer's Guide to Digital Signal Processing by Steven Smith) Lecture 5 The Digital Fourier Transform (Based, in part, on The Scientist and Engineer's Guide to Digital Signal Processing by Steven Smith) 1 -. 8 -. 6 -. 4 -. 2-1 -. 8 -. 6 -. 4 -. 2 -. 2. 4. 6. 8 1

More information

The Discrete Fourier Transform

The Discrete Fourier Transform In [ ]: cd matlab pwd The Discrete Fourier Transform Scope and Background Reading This session introduces the z-transform which is used in the analysis of discrete time systems. As for the Fourier and

More information

How to manipulate Frequencies in Discrete-time Domain? Two Main Approaches

How to manipulate Frequencies in Discrete-time Domain? Two Main Approaches How to manipulate Frequencies in Discrete-time Domain? Two Main Approaches Difference Equations (an LTI system) x[n]: input, y[n]: output That is, building a system that maes use of the current and previous

More information

[ ], [ ] [ ] [ ] = [ ] [ ] [ ]{ [ 1] [ 2]

[ ], [ ] [ ] [ ] = [ ] [ ] [ ]{ [ 1] [ 2] 4. he discrete Fourier transform (DF). Application goal We study the discrete Fourier transform (DF) and its applications: spectral analysis and linear operations as convolution and correlation. We use

More information

DIGITAL SIGNAL PROCESSING

DIGITAL SIGNAL PROCESSING IT 1252 DIGITAL SIGNAL PROCESSING 1. Define Discrete time signal. A discrete time signal x (n) is a function of an independent variable that is an integer.a discrete time signal is not defined at instant

More information

BME 50500: Image and Signal Processing in Biomedicine. Lecture 2: Discrete Fourier Transform CCNY

BME 50500: Image and Signal Processing in Biomedicine. Lecture 2: Discrete Fourier Transform CCNY 1 Lucas Parra, CCNY BME 50500: Image and Signal Processing in Biomedicine Lecture 2: Discrete Fourier Transform Lucas C. Parra Biomedical Engineering Department CCNY http://bme.ccny.cuny.edu/faculty/parra/teaching/signal-and-image/

More information

ENT 315 Medical Signal Processing CHAPTER 2 DISCRETE FOURIER TRANSFORM. Dr. Lim Chee Chin

ENT 315 Medical Signal Processing CHAPTER 2 DISCRETE FOURIER TRANSFORM. Dr. Lim Chee Chin ENT 315 Medical Signal Processing CHAPTER 2 DISCRETE FOURIER TRANSFORM Dr. Lim Chee Chin Outline Introduction Discrete Fourier Series Properties of Discrete Fourier Series Time domain aliasing due to frequency

More information

VALLIAMMAI ENGINEERING COLLEGE. SRM Nagar, Kattankulathur DEPARTMENT OF INFORMATION TECHNOLOGY. Academic Year

VALLIAMMAI ENGINEERING COLLEGE. SRM Nagar, Kattankulathur DEPARTMENT OF INFORMATION TECHNOLOGY. Academic Year VALLIAMMAI ENGINEERING COLLEGE SRM Nagar, Kattankulathur- 603 203 DEPARTMENT OF INFORMATION TECHNOLOGY Academic Year 2016-2017 QUESTION BANK-ODD SEMESTER NAME OF THE SUBJECT SUBJECT CODE SEMESTER YEAR

More information

8 The Discrete Fourier Transform (DFT)

8 The Discrete Fourier Transform (DFT) 8 The Discrete Fourier Transform (DFT) ² Discrete-Time Fourier Transform and Z-transform are de ned over in niteduration sequence. Both transforms are functions of continuous variables (ω and z). For nite-duration

More information

DSP Configurations. responded with: thus the system function for this filter would be

DSP Configurations. responded with: thus the system function for this filter would be DSP Configurations In this lecture we discuss the different physical (or software) configurations that can be used to actually realize or implement DSP functions. Recall that the general form of a DSP

More information

DFT & Fast Fourier Transform PART-A. 7. Calculate the number of multiplications needed in the calculation of DFT and FFT with 64 point sequence.

DFT & Fast Fourier Transform PART-A. 7. Calculate the number of multiplications needed in the calculation of DFT and FFT with 64 point sequence. SHRI ANGALAMMAN COLLEGE OF ENGINEERING & TECHNOLOGY (An ISO 9001:2008 Certified Institution) SIRUGANOOR,TRICHY-621105. DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING UNIT I DFT & Fast Fourier

More information

Contents. Digital Signal Processing, Part II: Power Spectrum Estimation

Contents. Digital Signal Processing, Part II: Power Spectrum Estimation Contents Digital Signal Processing, Part II: Power Spectrum Estimation 5. Application of the FFT for 7. Parametric Spectrum Est. Filtering and Spectrum Estimation 7.1 ARMA-Models 5.1 Fast Convolution 7.2

More information

Lecture Notes 5: Multiresolution Analysis

Lecture Notes 5: Multiresolution Analysis Optimization-based data analysis Fall 2017 Lecture Notes 5: Multiresolution Analysis 1 Frames A frame is a generalization of an orthonormal basis. The inner products between the vectors in a frame and

More information

DISCRETE FOURIER TRANSFORM

DISCRETE FOURIER TRANSFORM DISCRETE FOURIER TRANSFORM 1. Introduction The sampled discrete-time fourier transform (DTFT) of a finite length, discrete-time signal is known as the discrete Fourier transform (DFT). The DFT contains

More information

Image Acquisition and Sampling Theory

Image Acquisition and Sampling Theory Image Acquisition and Sampling Theory Electromagnetic Spectrum The wavelength required to see an object must be the same size of smaller than the object 2 Image Sensors 3 Sensor Strips 4 Digital Image

More information

The Discrete Fourier transform

The Discrete Fourier transform 453.70 Linear Systems, S.M. Tan, The University of uckland 9- Chapter 9 The Discrete Fourier transform 9. DeÞnition When computing spectra on a computer it is not possible to carry out the integrals involved

More information

INTRODUCTION TO THE DFS AND THE DFT

INTRODUCTION TO THE DFS AND THE DFT ITRODUCTIO TO THE DFS AD THE DFT otes: This brief handout contains in very brief outline form the lecture notes used for a video lecture in a previous year introducing the DFS and the DFT. This material

More information

In this Lecture. Frequency domain analysis

In this Lecture. Frequency domain analysis In this Lecture Frequency domain analysis Introduction In most cases we want to know the frequency content of our signal Why? Most popular analysis in frequency domain is based on work of Joseph Fourier

More information

AN EFFICIENT MULTI-RESOLUTION SPECTRAL TRANSFORM FOR MUSIC ANALYSIS

AN EFFICIENT MULTI-RESOLUTION SPECTRAL TRANSFORM FOR MUSIC ANALYSIS 10th International Society for Music Information Retrieval Conference (ISMIR 2009) AN EFFICIENT MULTI-RESOLUTION SPECTRAL TRANSFORM FOR MUSIC ANALYSIS Pablo Cancela Martín Rocamora Ernesto López Universidad

More information

Automatic Speech Recognition (CS753)

Automatic Speech Recognition (CS753) Automatic Speech Recognition (CS753) Lecture 12: Acoustic Feature Extraction for ASR Instructor: Preethi Jyothi Feb 13, 2017 Speech Signal Analysis Generate discrete samples A frame Need to focus on short

More information

EEO 401 Digital Signal Processing Prof. Mark Fowler

EEO 401 Digital Signal Processing Prof. Mark Fowler EEO 4 Digital Signal Processing Pro. Mark Fowler ote Set # Using the DFT or Spectral Analysis o Signals Reading Assignment: Sect. 7.4 o Proakis & Manolakis Ch. 6 o Porat s Book /9 Goal o Practical Spectral

More information

1. FIR Filter Design

1. FIR Filter Design ELEN E4810: Digital Signal Processing Topic 9: Filter Design: FIR 1. Windowed Impulse Response 2. Window Shapes 3. Design by Iterative Optimization 1 1. FIR Filter Design! FIR filters! no poles (just zeros)!

More information

Introduction to Biomedical Engineering

Introduction to Biomedical Engineering Introduction to Biomedical Engineering Biosignal processing Kung-Bin Sung 6/11/2007 1 Outline Chapter 10: Biosignal processing Characteristics of biosignals Frequency domain representation and analysis

More information

The Fourier Transform (and more )

The Fourier Transform (and more ) The Fourier Transform (and more ) imrod Peleg ov. 5 Outline Introduce Fourier series and transforms Introduce Discrete Time Fourier Transforms, (DTFT) Introduce Discrete Fourier Transforms (DFT) Consider

More information

18.085: Summer 2016 Due: 3 August 2016 (in class) Problem Set 8

18.085: Summer 2016 Due: 3 August 2016 (in class) Problem Set 8 Problem Set 8 Unless otherwise specified, you may use MATLAB to assist with computations. provide a print-out of the code used and its output with your assignment. Please 1. More on relation between Fourier

More information

Acoustic holography. LMS Test.Lab. Rev 12A

Acoustic holography. LMS Test.Lab. Rev 12A Acoustic holography LMS Test.Lab Rev 12A Copyright LMS International 2012 Table of Contents Chapter 1 Introduction... 5 Chapter 2... 7 Section 2.1 Temporal and spatial frequency... 7 Section 2.2 Time

More information

Ch.11 The Discrete-Time Fourier Transform (DTFT)

Ch.11 The Discrete-Time Fourier Transform (DTFT) EE2S11 Signals and Systems, part 2 Ch.11 The Discrete-Time Fourier Transform (DTFT Contents definition of the DTFT relation to the -transform, region of convergence, stability frequency plots convolution

More information

Source Coding for Compression

Source Coding for Compression Source Coding for Compression Types of data compression: 1. Lossless -. Lossy removes redundancies (reversible) removes less important information (irreversible) Lec 16b.6-1 M1 Lossless Entropy Coding,

More information

Summary of lecture 1. E x = E x =T. X T (e i!t ) which motivates us to define the energy spectrum Φ xx (!) = jx (i!)j 2 Z 1 Z =T. 2 d!

Summary of lecture 1. E x = E x =T. X T (e i!t ) which motivates us to define the energy spectrum Φ xx (!) = jx (i!)j 2 Z 1 Z =T. 2 d! Summary of lecture I Continuous time: FS X FS [n] for periodic signals, FT X (i!) for non-periodic signals. II Discrete time: DTFT X T (e i!t ) III Poisson s summation formula: describes the relationship

More information

x[n] = x a (nt ) x a (t)e jωt dt while the discrete time signal x[n] has the discrete-time Fourier transform x[n]e jωn

x[n] = x a (nt ) x a (t)e jωt dt while the discrete time signal x[n] has the discrete-time Fourier transform x[n]e jωn Sampling Let x a (t) be a continuous time signal. The signal is sampled by taking the signal value at intervals of time T to get The signal x(t) has a Fourier transform x[n] = x a (nt ) X a (Ω) = x a (t)e

More information

(Refer Slide Time: 01:28 03:51 min)

(Refer Slide Time: 01:28 03:51 min) Digital Signal Processing Prof. S. C. Dutta Roy Department of Electrical Engineering Indian Institute of Technology, Delhi Lecture 40 FIR Design by Windowing This is the 40 th lecture and our topic for

More information

! Introduction. ! Discrete Time Signals & Systems. ! Z-Transform. ! Inverse Z-Transform. ! Sampling of Continuous Time Signals

! Introduction. ! Discrete Time Signals & Systems. ! Z-Transform. ! Inverse Z-Transform. ! Sampling of Continuous Time Signals ESE 531: Digital Signal Processing Lec 25: April 24, 2018 Review Course Content! Introduction! Discrete Time Signals & Systems! Discrete Time Fourier Transform! Z-Transform! Inverse Z-Transform! Sampling

More information

Feature extraction 2

Feature extraction 2 Centre for Vision Speech & Signal Processing University of Surrey, Guildford GU2 7XH. Feature extraction 2 Dr Philip Jackson Linear prediction Perceptual linear prediction Comparison of feature methods

More information

WEEK10 Fast Fourier Transform (FFT) (Theory and Implementation)

WEEK10 Fast Fourier Transform (FFT) (Theory and Implementation) WEEK10 Fast Fourier Transform (FFT) (Theory and Implementation) Learning Objectives DFT algorithm. Conversion of DFT to FFT algorithm. Implementation of the FFT algorithm. Chapter 19, Slide 2 DFT Algorithm

More information

! Review: Discrete Fourier Transform (DFT) ! DFT Properties. " Duality. " Circular Shift. ! Circular Convolution. ! Fast Convolution Methods

! Review: Discrete Fourier Transform (DFT) ! DFT Properties.  Duality.  Circular Shift. ! Circular Convolution. ! Fast Convolution Methods Toda ESE 531: Digital Signal Processing! Review: Discrete Fourier Transform (DFT)! DFT Properties Lec 20: April 11, 2017 Discrete Fourier Transform, Pt 2 " Dualit " Circular Shift! Circular Convolution!

More information

Exercises in Digital Signal Processing

Exercises in Digital Signal Processing Exercises in Digital Signal Processing Ivan W. Selesnick September, 5 Contents The Discrete Fourier Transform The Fast Fourier Transform 8 3 Filters and Review 4 Linear-Phase FIR Digital Filters 5 5 Windows

More information

Digital Image Processing Lectures 15 & 16

Digital Image Processing Lectures 15 & 16 Lectures 15 & 16, Professor Department of Electrical and Computer Engineering Colorado State University CWT and Multi-Resolution Signal Analysis Wavelet transform offers multi-resolution by allowing for

More information

Question Bank. UNIT 1 Part-A

Question Bank. UNIT 1 Part-A FATIMA MICHAEL COLLEGE OF ENGINEERING & TECHNOLOGY Senkottai Village, Madurai Sivagangai Main Road, Madurai -625 020 An ISO 9001:2008 Certified Institution Question Bank DEPARTMENT OF ELECTRONICS AND COMMUNICATION

More information

HST.582J / 6.555J / J Biomedical Signal and Image Processing Spring 2007

HST.582J / 6.555J / J Biomedical Signal and Image Processing Spring 2007 MIT OpenCourseare http://ocw.mit.edu HST.58J / 6.555J / 16.56J Biomedical Signal and Image Processing Spring 7 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

More information