Don t Decay the Learning Rate, Increase the Batch Size. Samuel L. Smith, Pieter-Jan Kindermans, Quoc V. Le December 9 th 2017

Size: px
Start display at page:

Download "Don t Decay the Learning Rate, Increase the Batch Size. Samuel L. Smith, Pieter-Jan Kindermans, Quoc V. Le December 9 th 2017"

Transcription

1 Don t Decay the Learning Rate, Increase the Batch Size Samuel L. Smith, Pieter-Jan Kindermans, Quoc V. Le December 9 th 2017 slsmith@ Google Brain

2 Three related questions: What properties control generalization? How should we tune SGD hyper-parameters? Can we train efficiently with large batches? (> 50,000 examples)

3 Small batches out-generalize large batches (at constant learning rate) As observed by: On Large Batch Training, Keskar et al. (2017)

4 Which minimum is best? Proprietary + Confidential

5 Bayesian model comparison Proprietary + Confidential

6 Bayesian model comparison Proprietary + Confidential

7 Bayesian model comparison Probability ratio of two competing models

8 Bayesian model comparison Prior probability ratio of the models. Usually 1. Probability ratio of two competing models

9 Bayesian model comparison Prior probability ratio of the models. Usually 1. Probability ratio of two competing models The evidence ratio!

10 The Bayesian evidence (Gaussian approximation) λ i is the i th Hessian eigenvalue Proprietary + Confidential λ is the L2 regularization parameter

11 The Bayesian evidence (Gaussian approximation) λ i is the i th Hessian eigenvalue Proprietary + Confidential λ is the L2 regularization parameter Evidence for a minimum

12 The Bayesian evidence (Gaussian approximation) λ i is the i th Hessian eigenvalue Proprietary + Confidential λ is the L2 regularization parameter Evidence for a minimum Depth of the minimum

13 The Bayesian evidence (Gaussian approximation) λ i is the i th Hessian eigenvalue Proprietary + Confidential λ is the L2 regularization parameter Evidence for a minimum Depth of the minimum Width of the minimum

14 The Bayesian evidence (Gaussian approximation) λ i is the i th Hessian eigenvalue Proprietary + Confidential λ is the L2 regularization parameter Invariant to changes in model parameterization (sharp minima can t generalize!) Width of the minimum

15 Which minimum is best? Proprietary + Confidential

16 Which minimum is best? Generalization is a weighted combination of: 1) Depth 2) Width

17 Which minimum is best? The SGD should not minimize the cost function It should maximize the evidence

18 The SGD gradient update True gradient Noise

19 The SGD gradient update Proprietary + Confidential

20 The SGD gradient update Proprietary + Confidential

21 The SGD gradient update Batch size

22 How to choose the batch size? (at constant learning rate) Proprietary + Confidential

23 How to choose the batch size? (at constant learning rate) Too much noise (small batches) Just right! Too little noise (big batches)

24 How to choose the batch size? (at constant learning rate) Too much noise (small batches) Just right! Too little noise (big batches) There should be an optimum batch size

25 How to choose the batch size? (at constant learning rate) Proprietary + Confidential

26 How to choose the batch size? (at constant learning rate) As predicted!

27 Defining the SGD noise scale Proprietary + Confidential

28 Defining the SGD noise scale SGD integrates an underlying stochastic differential equation Proprietary + Confidential

29 Defining the SGD noise scale SGD integrates an underlying stochastic differential equation Noise scale

30 Defining the SGD noise scale SGD integrates an underlying stochastic differential equation After a little math:

31 Defining the SGD noise scale SGD integrates an underlying stochastic differential equation After a little math: Prediction:

32

33

34 Consequences 1) We can linearly scale batch size and learning rate Accurate, Large Minibatch SGD: Training ImageNet in 1 Hour, Goyal et al. (2017) 2) We expect training sets to grow over time Suggests batch sizes will rise

35 What about momentum? Proprietary + Confidential

36 What about momentum? Proprietary + Confidential

37 What about momentum? Proprietary + Confidential

38

39 Decaying learning rate and increasing batch size are equivalent Proprietary + Confidential

40 Decaying learning rate and increasing batch size are equivalent Proprietary + Confidential

41 Decaying learning rate and increasing batch size are equivalent We can choose any combination of ε and B with the same g. (so long as ε isn t too large)

42 Three equivalent schedules: Wide ResNet on CIFAR-10

43 Training curves: Ghost batch norm, Hoffer et al., 2017

44 Training curves: Computational cost constant

45 Training curves: Computational cost constant But parallelizable

46 Test curves: Momentum Nesterov momentum

47 Test curves: Vanilla SGD Adam

48 Towards large batch training: Proprietary + Confidential

49 Towards large batch training: Proprietary + Confidential

50 Towards large batch training: Proprietary + Confidential

51 Towards large batch training: Proprietary + Confidential

52 Towards large batch training: Typical speed-up X

53 Why does momentum scaling reduce test accuracy? Proprietary + Confidential

54 Why does momentum scaling reduce test accuracy? Accumulation stores moving average of gradients

55 Why does momentum scaling reduce test accuracy? Larger momentum equals longer memory

56 Why does momentum scaling reduce test accuracy? Larger momentum equals longer memory The gradient changes too slowly as we explore the parameter space

57 Training ImageNet in under 2500 updates! Inception-Resnet-V2 Original implementation: ~ 400,000 updates ImageNet in one hour Goyal et al., 2017 (learning rate scaling) ~ 14,000 updates

58 Training ImageNet in under 2500 updates! 79% accuracy in under 6000 updates 77% accuracy in under 2500 updates Batches of 65,536 images

59 Thank You! A Bayesian Perspective on Generalization and Stochastic Gradient Descent, arxiv: Samuel L Smith and Quoc V. Le Don t Decay the Learning Rate, Increase the Batch Size, arxiv: Samuel L Smith*, Pieter-Jan Kindermans* and Quoc V. Le *Equal contribution Stochastic Gradient Descent as Approximate Bayesian Inference, arxiv: Stephan Mandt, Matthew D. Hoffman and David M. Blei slsmith@ pikinder@ qvl@

Machine Learning CS 4900/5900. Lecture 03. Razvan C. Bunescu School of Electrical Engineering and Computer Science

Machine Learning CS 4900/5900. Lecture 03. Razvan C. Bunescu School of Electrical Engineering and Computer Science Machine Learning CS 4900/5900 Razvan C. Bunescu School of Electrical Engineering and Computer Science bunescu@ohio.edu Machine Learning is Optimization Parametric ML involves minimizing an objective function

More information

Optimization for Training I. First-Order Methods Training algorithm

Optimization for Training I. First-Order Methods Training algorithm Optimization for Training I First-Order Methods Training algorithm 2 OPTIMIZATION METHODS Topics: Types of optimization methods. Practical optimization methods breakdown into two categories: 1. First-order

More information

Nonlinear Optimization Methods for Machine Learning

Nonlinear Optimization Methods for Machine Learning Nonlinear Optimization Methods for Machine Learning Jorge Nocedal Northwestern University University of California, Davis, Sept 2018 1 Introduction We don t really know, do we? a) Deep neural networks

More information

Day 3 Lecture 3. Optimizing deep networks

Day 3 Lecture 3. Optimizing deep networks Day 3 Lecture 3 Optimizing deep networks Convex optimization A function is convex if for all α [0,1]: f(x) Tangent line Examples Quadratics 2-norms Properties Local minimum is global minimum x Gradient

More information

A BAYESIAN PERSPECTIVE ON GENERALIZATION AND STOCHASTIC GRADIENT DESCENT

A BAYESIAN PERSPECTIVE ON GENERALIZATION AND STOCHASTIC GRADIENT DESCENT A BAYESIAN PERSPECTIVE ON GENERALIZATION AND STOCHASTIC GRADIENT DESCENT Samuel L. Smith & Quoc V. Le Google Brain {slsmith, qvl}@google.com ABSTRACT We consider two questions at the heart of machine learning;

More information

CS260: Machine Learning Algorithms

CS260: Machine Learning Algorithms CS260: Machine Learning Algorithms Lecture 4: Stochastic Gradient Descent Cho-Jui Hsieh UCLA Jan 16, 2019 Large-scale Problems Machine learning: usually minimizing the training loss min w { 1 N min w {

More information

Optimization for neural networks

Optimization for neural networks 0 - : Optimization for neural networks Prof. J.C. Kao, UCLA Optimization for neural networks We previously introduced the principle of gradient descent. Now we will discuss specific modifications we make

More information

Optimization geometry and implicit regularization

Optimization geometry and implicit regularization Optimization geometry and implicit regularization Suriya Gunasekar Joint work with N. Srebro (TTIC), J. Lee (USC), D. Soudry (Technion), M.S. Nacson (Technion), B. Woodworth (TTIC), S. Bhojanapalli (TTIC),

More information

ECE521 lecture 4: 19 January Optimization, MLE, regularization

ECE521 lecture 4: 19 January Optimization, MLE, regularization ECE521 lecture 4: 19 January 2017 Optimization, MLE, regularization First four lectures Lectures 1 and 2: Intro to ML Probability review Types of loss functions and algorithms Lecture 3: KNN Convexity

More information

Overview of gradient descent optimization algorithms. HYUNG IL KOO Based on

Overview of gradient descent optimization algorithms. HYUNG IL KOO Based on Overview of gradient descent optimization algorithms HYUNG IL KOO Based on http://sebastianruder.com/optimizing-gradient-descent/ Problem Statement Machine Learning Optimization Problem Training samples:

More information

Unraveling the mysteries of stochastic gradient descent on deep neural networks

Unraveling the mysteries of stochastic gradient descent on deep neural networks Unraveling the mysteries of stochastic gradient descent on deep neural networks Pratik Chaudhari UCLA VISION LAB 1 The question measures disagreement of predictions with ground truth Cat Dog... x = argmin

More information

Tutorial on: Optimization I. (from a deep learning perspective) Jimmy Ba

Tutorial on: Optimization I. (from a deep learning perspective) Jimmy Ba Tutorial on: Optimization I (from a deep learning perspective) Jimmy Ba Outline Random search v.s. gradient descent Finding better search directions Design white-box optimization methods to improve computation

More information

The K-FAC method for neural network optimization

The K-FAC method for neural network optimization The K-FAC method for neural network optimization James Martens Thanks to my various collaborators on K-FAC research and engineering: Roger Grosse, Jimmy Ba, Vikram Tankasali, Matthew Johnson, Daniel Duckworth,

More information

TTIC 31230, Fundamentals of Deep Learning David McAllester, Winter Stochastic Gradient Descent (SGD) The Classical Convergence Thoerem

TTIC 31230, Fundamentals of Deep Learning David McAllester, Winter Stochastic Gradient Descent (SGD) The Classical Convergence Thoerem TTIC 31230, Fundamentals of Deep Learning David McAllester, Winter 2018 Stochastic Gradient Descent (SGD) The Classical Convergence Thoerem RMSProp, Momentum and Adam Scaling Learnng Rates with Batch Size

More information

Large-Batch Training for Deep Learning: Generalization Gap and Sharp Minima

Large-Batch Training for Deep Learning: Generalization Gap and Sharp Minima Large-Batch Training for Deep Learning: Generalization Gap and Sharp Minima J. Nocedal with N. Keskar Northwestern University D. Mudigere INTEL P. Tang INTEL M. Smelyanskiy INTEL 1 Initial Remarks SGD

More information

arxiv: v3 [cs.lg] 16 Oct 2018

arxiv: v3 [cs.lg] 16 Oct 2018 Stochastic natural gradient descent draws posterior samples in function space arxiv:1806.09597v3 [cs.lg] 16 Oct 2018 Samuel L. Smith*, Daniel Duckworth*, Semon Rezchikov +±, Quoc V. Le* and Jascha Sohl-Dickstein*

More information

Deep Learning & Artificial Intelligence WS 2018/2019

Deep Learning & Artificial Intelligence WS 2018/2019 Deep Learning & Artificial Intelligence WS 2018/2019 Linear Regression Model Model Error Function: Squared Error Has no special meaning except it makes gradients look nicer Prediction Ground truth / target

More information

Comparison of Modern Stochastic Optimization Algorithms

Comparison of Modern Stochastic Optimization Algorithms Comparison of Modern Stochastic Optimization Algorithms George Papamakarios December 214 Abstract Gradient-based optimization methods are popular in machine learning applications. In large-scale problems,

More information

Introduction to Neural Networks

Introduction to Neural Networks CUONG TUAN NGUYEN SEIJI HOTTA MASAKI NAKAGAWA Tokyo University of Agriculture and Technology Copyright by Nguyen, Hotta and Nakagawa 1 Pattern classification Which category of an input? Example: Character

More information

OPTIMIZATION METHODS IN DEEP LEARNING

OPTIMIZATION METHODS IN DEEP LEARNING Tutorial outline OPTIMIZATION METHODS IN DEEP LEARNING Based on Deep Learning, chapter 8 by Ian Goodfellow, Yoshua Bengio and Aaron Courville Presented By Nadav Bhonker Optimization vs Learning Surrogate

More information

Advanced Training Techniques. Prajit Ramachandran

Advanced Training Techniques. Prajit Ramachandran Advanced Training Techniques Prajit Ramachandran Outline Optimization Regularization Initialization Optimization Optimization Outline Gradient Descent Momentum RMSProp Adam Distributed SGD Gradient Noise

More information

CSCI 1951-G Optimization Methods in Finance Part 12: Variants of Gradient Descent

CSCI 1951-G Optimization Methods in Finance Part 12: Variants of Gradient Descent CSCI 1951-G Optimization Methods in Finance Part 12: Variants of Gradient Descent April 27, 2018 1 / 32 Outline 1) Moment and Nesterov s accelerated gradient descent 2) AdaGrad and RMSProp 4) Adam 5) Stochastic

More information

Eve: A Gradient Based Optimization Method with Locally and Globally Adaptive Learning Rates

Eve: A Gradient Based Optimization Method with Locally and Globally Adaptive Learning Rates Eve: A Gradient Based Optimization Method with Locally and Globally Adaptive Learning Rates Hiroaki Hayashi 1,* Jayanth Koushik 1,* Graham Neubig 1 arxiv:1611.01505v3 [cs.lg] 11 Jun 2018 Abstract Adaptive

More information

LARGE BATCH TRAINING OF CONVOLUTIONAL NET-

LARGE BATCH TRAINING OF CONVOLUTIONAL NET- LARGE BATCH TRAINING OF CONVOLUTIONAL NET- WORKS WITH LAYER-WISE ADAPTIVE RATE SCALING Anonymous authors Paper under double-blind review ABSTRACT A common way to speed up training of deep convolutional

More information

Non-convex optimization. Issam Laradji

Non-convex optimization. Issam Laradji Non-convex optimization Issam Laradji Strongly Convex Objective function f(x) x Strongly Convex Objective function Assumptions Gradient Lipschitz continuous f(x) Strongly convex x Strongly Convex Objective

More information

CSC2541 Lecture 5 Natural Gradient

CSC2541 Lecture 5 Natural Gradient CSC2541 Lecture 5 Natural Gradient Roger Grosse Roger Grosse CSC2541 Lecture 5 Natural Gradient 1 / 12 Motivation Two classes of optimization procedures used throughout ML (stochastic) gradient descent,

More information

Lecture 6 Optimization for Deep Neural Networks

Lecture 6 Optimization for Deep Neural Networks Lecture 6 Optimization for Deep Neural Networks CMSC 35246: Deep Learning Shubhendu Trivedi & Risi Kondor University of Chicago April 12, 2017 Things we will look at today Stochastic Gradient Descent Things

More information

Stochastic Gradient Descent

Stochastic Gradient Descent Stochastic Gradient Descent Weihang Chen, Xingchen Chen, Jinxiu Liang, Cheng Xu, Zehao Chen and Donglin He March 26, 2017 Outline What is Stochastic Gradient Descent Comparison between BGD and SGD Analysis

More information

Improving the Convergence of Back-Propogation Learning with Second Order Methods

Improving the Convergence of Back-Propogation Learning with Second Order Methods the of Back-Propogation Learning with Second Order Methods Sue Becker and Yann le Cun, Sept 1988 Kasey Bray, October 2017 Table of Contents 1 with Back-Propagation 2 the of BP 3 A Computationally Feasible

More information

CSC321 Lecture 8: Optimization

CSC321 Lecture 8: Optimization CSC321 Lecture 8: Optimization Roger Grosse Roger Grosse CSC321 Lecture 8: Optimization 1 / 26 Overview We ve talked a lot about how to compute gradients. What do we actually do with them? Today s lecture:

More information

Deep Feedforward Networks

Deep Feedforward Networks Deep Feedforward Networks Liu Yang March 30, 2017 Liu Yang Short title March 30, 2017 1 / 24 Overview 1 Background A general introduction Example 2 Gradient based learning Cost functions Output Units 3

More information

Selected Topics in Optimization. Some slides borrowed from

Selected Topics in Optimization. Some slides borrowed from Selected Topics in Optimization Some slides borrowed from http://www.stat.cmu.edu/~ryantibs/convexopt/ Overview Optimization problems are almost everywhere in statistics and machine learning. Input Model

More information

Normalization Techniques in Training of Deep Neural Networks

Normalization Techniques in Training of Deep Neural Networks Normalization Techniques in Training of Deep Neural Networks Lei Huang ( 黄雷 ) State Key Laboratory of Software Development Environment, Beihang University Mail:huanglei@nlsde.buaa.edu.cn August 17 th,

More information

Optimizing CNNs. Timothy Dozat Stanford. Abstract. 1. Introduction. 2. Background Momentum

Optimizing CNNs. Timothy Dozat Stanford. Abstract. 1. Introduction. 2. Background Momentum Optimizing CNNs Timothy Dozat Stanford tdozat@stanford.edu Abstract This work aims to explore the performance of a popular class of related optimization algorithms in the context of convolutional neural

More information

J. Sadeghi E. Patelli M. de Angelis

J. Sadeghi E. Patelli M. de Angelis J. Sadeghi E. Patelli Institute for Risk and, Department of Engineering, University of Liverpool, United Kingdom 8th International Workshop on Reliable Computing, Computing with Confidence University of

More information

what can deep learning learn from linear regression? Benjamin Recht University of California, Berkeley

what can deep learning learn from linear regression? Benjamin Recht University of California, Berkeley what can deep learning learn from linear regression? Benjamin Recht University of California, Berkeley Collaborators Joint work with Samy Bengio, Moritz Hardt, Michael Jordan, Jason Lee, Max Simchowitz,

More information

Neural Network Training

Neural Network Training Neural Network Training Sargur Srihari Topics in Network Training 0. Neural network parameters Probabilistic problem formulation Specifying the activation and error functions for Regression Binary classification

More information

CS 229 Project Final Report: Reinforcement Learning for Neural Network Architecture Category : Theory & Reinforcement Learning

CS 229 Project Final Report: Reinforcement Learning for Neural Network Architecture Category : Theory & Reinforcement Learning CS 229 Project Final Report: Reinforcement Learning for Neural Network Architecture Category : Theory & Reinforcement Learning Lei Lei Ruoxuan Xiong December 16, 2017 1 Introduction Deep Neural Network

More information

Non-Linearity. CS 188: Artificial Intelligence. Non-Linear Separators. Non-Linear Separators. Deep Learning I

Non-Linearity. CS 188: Artificial Intelligence. Non-Linear Separators. Non-Linear Separators. Deep Learning I Non-Linearity CS 188: Artificial Intelligence Deep Learning I Instructors: Pieter Abbeel & Anca Dragan --- University of California, Berkeley [These slides were created by Dan Klein, Pieter Abbeel, Anca

More information

Support Vector Machines: Training with Stochastic Gradient Descent. Machine Learning Fall 2017

Support Vector Machines: Training with Stochastic Gradient Descent. Machine Learning Fall 2017 Support Vector Machines: Training with Stochastic Gradient Descent Machine Learning Fall 2017 1 Support vector machines Training by maximizing margin The SVM objective Solving the SVM optimization problem

More information

Loss Functions and Optimization. Lecture 3-1

Loss Functions and Optimization. Lecture 3-1 Lecture 3: Loss Functions and Optimization Lecture 3-1 Administrative Assignment 1 is released: http://cs231n.github.io/assignments2017/assignment1/ Due Thursday April 20, 11:59pm on Canvas (Extending

More information

A picture of the energy landscape of! deep neural networks

A picture of the energy landscape of! deep neural networks A picture of the energy landscape of! deep neural networks Pratik Chaudhari December 15, 2017 UCLA VISION LAB 1 Dy (x; w) = (w p (w p 1 (... (w 1 x))...)) w = argmin w (x,y ) 2 D kx 1 {y =i } log Dy i

More information

arxiv: v2 [cs.lg] 14 Feb 2018

arxiv: v2 [cs.lg] 14 Feb 2018 ADABATCH: ADAPTIVE BATCH SIZES FOR TRAINING DEEP NEURAL NETWORKS Aditya Devarakonda Computer Science Division University of California, Berkeley aditya@cs.berkeley.edu Maxim Naumov & Michael Garland NVIDIA

More information

ECS171: Machine Learning

ECS171: Machine Learning ECS171: Machine Learning Lecture 4: Optimization (LFD 3.3, SGD) Cho-Jui Hsieh UC Davis Jan 22, 2018 Gradient descent Optimization Goal: find the minimizer of a function min f (w) w For now we assume f

More information

arxiv: v2 [cs.lg] 15 Jun 2018

arxiv: v2 [cs.lg] 15 Jun 2018 Three Factors Influencing Minima in SGD Stanislaw Jastrzębski 123, Zachary Kenton 13, Devansh Arpit 3, Nicolas Ballas 4, Asja Fischer 5, Yoshua Bengio 36, Amos Storkey 7 Abstract arxiv:1711.04623v2 [cs.lg]

More information

Regularization and Optimization of Backpropagation

Regularization and Optimization of Backpropagation Regularization and Optimization of Backpropagation The Norwegian University of Science and Technology (NTNU) Trondheim, Norway keithd@idi.ntnu.no October 17, 2017 Regularization Definition of Regularization

More information

Internal Covariate Shift Batch Normalization Implementation Experiments. Batch Normalization. Devin Willmott. University of Kentucky.

Internal Covariate Shift Batch Normalization Implementation Experiments. Batch Normalization. Devin Willmott. University of Kentucky. Batch Normalization Devin Willmott University of Kentucky October 23, 2017 Overview 1 Internal Covariate Shift 2 Batch Normalization 3 Implementation 4 Experiments Covariate Shift Suppose we have two distributions,

More information

Generative adversarial networks

Generative adversarial networks 14-1: Generative adversarial networks Prof. J.C. Kao, UCLA Generative adversarial networks Why GANs? GAN intuition GAN equilibrium GAN implementation Practical considerations Much of these notes are based

More information

Theory of Deep Learning IIb: Optimization Properties of SGD

Theory of Deep Learning IIb: Optimization Properties of SGD CBMM Memo No. 72 December 27, 217 Theory of Deep Learning IIb: Optimization Properties of SGD by Chiyuan Zhang 1 Qianli Liao 1 Alexander Rakhlin 2 Brando Miranda 1 Noah Golowich 1 Tomaso Poggio 1 1 Center

More information

Reading Group on Deep Learning Session 1

Reading Group on Deep Learning Session 1 Reading Group on Deep Learning Session 1 Stephane Lathuiliere & Pablo Mesejo 2 June 2016 1/31 Contents Introduction to Artificial Neural Networks to understand, and to be able to efficiently use, the popular

More information

Non-Convex Optimization. CS6787 Lecture 7 Fall 2017

Non-Convex Optimization. CS6787 Lecture 7 Fall 2017 Non-Convex Optimization CS6787 Lecture 7 Fall 2017 First some words about grading I sent out a bunch of grades on the course management system Everyone should have all their grades in Not including paper

More information

Kernelized Perceptron Support Vector Machines

Kernelized Perceptron Support Vector Machines Kernelized Perceptron Support Vector Machines Emily Fox University of Washington February 13, 2017 What is the perceptron optimizing? 1 The perceptron algorithm [Rosenblatt 58, 62] Classification setting:

More information

Credit Assignment: Beyond Backpropagation

Credit Assignment: Beyond Backpropagation Credit Assignment: Beyond Backpropagation Yoshua Bengio 11 December 2016 AutoDiff NIPS 2016 Workshop oo b s res P IT g, M e n i arn nlin Le ain o p ee em : D will r G PLU ters p cha k t, u o is Deep Learning

More information

Optimization and Gradient Descent

Optimization and Gradient Descent Optimization and Gradient Descent INFO-4604, Applied Machine Learning University of Colorado Boulder September 12, 2017 Prof. Michael Paul Prediction Functions Remember: a prediction function is the function

More information

THE ANISOTROPIC NOISE IN STOCHASTIC GRADIENT DESCENT: ITS BEHAVIOR OF ESCAPING FROM MIN-

THE ANISOTROPIC NOISE IN STOCHASTIC GRADIENT DESCENT: ITS BEHAVIOR OF ESCAPING FROM MIN- THE ANISOTROPIC NOISE IN STOCHASTIC GRADIENT DESCENT: ITS BEHAVIOR OF ESCAPING FROM MIN- IMA AND REGULARIZATION EFFECTS Anonymous authors Paper under double-blind review ABSTRACT Understanding the behavior

More information

Convolutional Neural Networks II. Slides from Dr. Vlad Morariu

Convolutional Neural Networks II. Slides from Dr. Vlad Morariu Convolutional Neural Networks II Slides from Dr. Vlad Morariu 1 Optimization Example of optimization progress while training a neural network. (Loss over mini-batches goes down over time.) 2 Learning rate

More information

Serious limitations of (single-layer) perceptrons: Cannot learn non-linearly separable tasks. Cannot approximate (learn) non-linear functions

Serious limitations of (single-layer) perceptrons: Cannot learn non-linearly separable tasks. Cannot approximate (learn) non-linear functions BACK-PROPAGATION NETWORKS Serious limitations of (single-layer) perceptrons: Cannot learn non-linearly separable tasks Cannot approximate (learn) non-linear functions Difficult (if not impossible) to design

More information

CSC321 Lecture 7: Optimization

CSC321 Lecture 7: Optimization CSC321 Lecture 7: Optimization Roger Grosse Roger Grosse CSC321 Lecture 7: Optimization 1 / 25 Overview We ve talked a lot about how to compute gradients. What do we actually do with them? Today s lecture:

More information

ECS289: Scalable Machine Learning

ECS289: Scalable Machine Learning ECS289: Scalable Machine Learning Cho-Jui Hsieh UC Davis Nov 2, 2016 Outline SGD-typed algorithms for Deep Learning Parallel SGD for deep learning Perceptron Prediction value for a training data: prediction

More information

On stochas*c gradient descent, flatness and generaliza*on Yoshua Bengio

On stochas*c gradient descent, flatness and generaliza*on Yoshua Bengio On stochas*c gradient descent, flatness and generaliza*on Yoshua Bengio July 14, 2018 ICML 2018 Workshop on nonconvex op=miza=on Disentangling optimization and generalization The tradi=onal ML picture is

More information

Sub-Sampled Newton Methods for Machine Learning. Jorge Nocedal

Sub-Sampled Newton Methods for Machine Learning. Jorge Nocedal Sub-Sampled Newton Methods for Machine Learning Jorge Nocedal Northwestern University Goldman Lecture, Sept 2016 1 Collaborators Raghu Bollapragada Northwestern University Richard Byrd University of Colorado

More information

Bridging the Gap between Stochastic Gradient MCMC and Stochastic Optimization

Bridging the Gap between Stochastic Gradient MCMC and Stochastic Optimization Bridging the Gap between Stochastic Gradient MCMC and Stochastic Optimization Changyou Chen, David Carlson, Zhe Gan, Chunyuan Li, Lawrence Carin May 2, 2016 1 Changyou Chen Bridging the Gap between Stochastic

More information

Introduction to Optimization

Introduction to Optimization Introduction to Optimization Konstantin Tretyakov (kt@ut.ee) MTAT.03.227 Machine Learning So far Machine learning is important and interesting The general concept: Fitting models to data So far Machine

More information

Reptile: a Scalable Metalearning Algorithm

Reptile: a Scalable Metalearning Algorithm Reptile: a Scalable Metalearning Algorithm Alex Nichol and John Schulman OpenAI {alex, joschu}@openai.com Abstract This paper considers metalearning problems, where there is a distribution of tasks, and

More information

Fast yet Simple Natural-Gradient Variational Inference in Complex Models

Fast yet Simple Natural-Gradient Variational Inference in Complex Models Fast yet Simple Natural-Gradient Variational Inference in Complex Models Mohammad Emtiyaz Khan RIKEN Center for AI Project, Tokyo, Japan http://emtiyaz.github.io Joint work with Wu Lin (UBC) DidrikNielsen,

More information

Simple Techniques for Improving SGD. CS6787 Lecture 2 Fall 2017

Simple Techniques for Improving SGD. CS6787 Lecture 2 Fall 2017 Simple Techniques for Improving SGD CS6787 Lecture 2 Fall 2017 Step Sizes and Convergence Where we left off Stochastic gradient descent x t+1 = x t rf(x t ; yĩt ) Much faster per iteration than gradient

More information

An Evolving Gradient Resampling Method for Machine Learning. Jorge Nocedal

An Evolving Gradient Resampling Method for Machine Learning. Jorge Nocedal An Evolving Gradient Resampling Method for Machine Learning Jorge Nocedal Northwestern University NIPS, Montreal 2015 1 Collaborators Figen Oztoprak Stefan Solntsev Richard Byrd 2 Outline 1. How to improve

More information

Machine Learning Basics: Stochastic Gradient Descent. Sargur N. Srihari

Machine Learning Basics: Stochastic Gradient Descent. Sargur N. Srihari Machine Learning Basics: Stochastic Gradient Descent Sargur N. srihari@cedar.buffalo.edu 1 Topics 1. Learning Algorithms 2. Capacity, Overfitting and Underfitting 3. Hyperparameters and Validation Sets

More information

Lecture 7 Convolutional Neural Networks

Lecture 7 Convolutional Neural Networks Lecture 7 Convolutional Neural Networks CMSC 35246: Deep Learning Shubhendu Trivedi & Risi Kondor University of Chicago April 17, 2017 We saw before: ŷ x 1 x 2 x 3 x 4 A series of matrix multiplications:

More information

Sparse Stochastic Inference for Latent Dirichlet Allocation

Sparse Stochastic Inference for Latent Dirichlet Allocation Sparse Stochastic Inference for Latent Dirichlet Allocation David Mimno 1, Matthew D. Hoffman 2, David M. Blei 1 1 Dept. of Computer Science, Princeton U. 2 Dept. of Statistics, Columbia U. Presentation

More information

Linear classifiers: Overfitting and regularization

Linear classifiers: Overfitting and regularization Linear classifiers: Overfitting and regularization Emily Fox University of Washington January 25, 2017 Logistic regression recap 1 . Thus far, we focused on decision boundaries Score(x i ) = w 0 h 0 (x

More information

Logistic Regression. William Cohen

Logistic Regression. William Cohen Logistic Regression William Cohen 1 Outline Quick review classi5ication, naïve Bayes, perceptrons new result for naïve Bayes Learning as optimization Logistic regression via gradient ascent Over5itting

More information

Stochastic Optimization Algorithms Beyond SG

Stochastic Optimization Algorithms Beyond SG Stochastic Optimization Algorithms Beyond SG Frank E. Curtis 1, Lehigh University involving joint work with Léon Bottou, Facebook AI Research Jorge Nocedal, Northwestern University Optimization Methods

More information

Appendix A.1 Derivation of Nesterov s Accelerated Gradient as a Momentum Method

Appendix A.1 Derivation of Nesterov s Accelerated Gradient as a Momentum Method for all t is su cient to obtain the same theoretical guarantees. This method for choosing the learning rate assumes that f is not noisy, and will result in too-large learning rates if the objective is

More information

Accelerating SVRG via second-order information

Accelerating SVRG via second-order information Accelerating via second-order information Ritesh Kolte Department of Electrical Engineering rkolte@stanford.edu Murat Erdogdu Department of Statistics erdogdu@stanford.edu Ayfer Özgür Department of Electrical

More information

Logistic Regression Review Fall 2012 Recitation. September 25, 2012 TA: Selen Uguroglu

Logistic Regression Review Fall 2012 Recitation. September 25, 2012 TA: Selen Uguroglu Logistic Regression Review 10-601 Fall 2012 Recitation September 25, 2012 TA: Selen Uguroglu!1 Outline Decision Theory Logistic regression Goal Loss function Inference Gradient Descent!2 Training Data

More information

IFT Lecture 6 Nesterov s Accelerated Gradient, Stochastic Gradient Descent

IFT Lecture 6 Nesterov s Accelerated Gradient, Stochastic Gradient Descent IFT 6085 - Lecture 6 Nesterov s Accelerated Gradient, Stochastic Gradient Descent This version of the notes has not yet been thoroughly checked. Please report any bugs to the scribes or instructor. Scribe(s):

More information

TTIC 31230, Fundamentals of Deep Learning David McAllester, Winter Generalization and Regularization

TTIC 31230, Fundamentals of Deep Learning David McAllester, Winter Generalization and Regularization TTIC 31230, Fundamentals of Deep Learning David McAllester, Winter 2019 Generalization and Regularization 1 Chomsky vs. Kolmogorov and Hinton Noam Chomsky: Natural language grammar cannot be learned by

More information

Optimization and (Under/over)fitting

Optimization and (Under/over)fitting Optimization and (Under/over)fitting EECS 442 Prof. David Fouhey Winter 2019, University of Michigan http://web.eecs.umich.edu/~fouhey/teaching/eecs442_w19/ Administrivia We re grading HW2 and will try

More information

Computational Photography

Computational Photography Computational Photography Si Lu Spring 2018 http://web.cecs.pdx.edu/~lusi/cs510/cs510_computati onal_photography.htm 05/29/2018 Last Time o 3D Video Stabilization 2 Introduction of Neural Networks 3 Content

More information

Stochastic Analogues to Deterministic Optimizers

Stochastic Analogues to Deterministic Optimizers Stochastic Analogues to Deterministic Optimizers ISMP 2018 Bordeaux, France Vivak Patel Presented by: Mihai Anitescu July 6, 2018 1 Apology I apologize for not being here to give this talk myself. I injured

More information

Neural Networks: Optimization & Regularization

Neural Networks: Optimization & Regularization Neural Networks: Optimization & Regularization Shan-Hung Wu shwu@cs.nthu.edu.tw Department of Computer Science, National Tsing Hua University, Taiwan Machine Learning Shan-Hung Wu (CS, NTHU) NN Opt & Reg

More information

Classification goals: Make 1 guess about the label (Top-1 error) Make 5 guesses about the label (Top-5 error) No Bounding Box

Classification goals: Make 1 guess about the label (Top-1 error) Make 5 guesses about the label (Top-5 error) No Bounding Box ImageNet Classification with Deep Convolutional Neural Networks Alex Krizhevsky, Ilya Sutskever, Geoffrey E. Hinton Motivation Classification goals: Make 1 guess about the label (Top-1 error) Make 5 guesses

More information

Artificial Neural Networks

Artificial Neural Networks Artificial Neural Networks Stephan Dreiseitl University of Applied Sciences Upper Austria at Hagenberg Harvard-MIT Division of Health Sciences and Technology HST.951J: Medical Decision Support Knowledge

More information

Distributed Machine Learning: A Brief Overview. Dan Alistarh IST Austria

Distributed Machine Learning: A Brief Overview. Dan Alistarh IST Austria Distributed Machine Learning: A Brief Overview Dan Alistarh IST Austria Background The Machine Learning Cambrian Explosion Key Factors: 1. Large s: Millions of labelled images, thousands of hours of speech

More information

CSE 190 Fall 2015 Midterm DO NOT TURN THIS PAGE UNTIL YOU ARE TOLD TO START!!!!

CSE 190 Fall 2015 Midterm DO NOT TURN THIS PAGE UNTIL YOU ARE TOLD TO START!!!! CSE 190 Fall 2015 Midterm DO NOT TURN THIS PAGE UNTIL YOU ARE TOLD TO START!!!! November 18, 2015 THE EXAM IS CLOSED BOOK. Once the exam has started, SORRY, NO TALKING!!! No, you can t even say see ya

More information

Linear Regression. CSL603 - Fall 2017 Narayanan C Krishnan

Linear Regression. CSL603 - Fall 2017 Narayanan C Krishnan Linear Regression CSL603 - Fall 2017 Narayanan C Krishnan ckn@iitrpr.ac.in Outline Univariate regression Multivariate regression Probabilistic view of regression Loss functions Bias-Variance analysis Regularization

More information

PILCO: A Model-Based and Data-Efficient Approach to Policy Search

PILCO: A Model-Based and Data-Efficient Approach to Policy Search PILCO: A Model-Based and Data-Efficient Approach to Policy Search (M.P. Deisenroth and C.E. Rasmussen) CSC2541 November 4, 2016 PILCO Graphical Model PILCO Probabilistic Inference for Learning COntrol

More information

Linear Models for Regression

Linear Models for Regression Linear Models for Regression CSE 4309 Machine Learning Vassilis Athitsos Computer Science and Engineering Department University of Texas at Arlington 1 The Regression Problem Training data: A set of input-output

More information

Linear Regression. CSL465/603 - Fall 2016 Narayanan C Krishnan

Linear Regression. CSL465/603 - Fall 2016 Narayanan C Krishnan Linear Regression CSL465/603 - Fall 2016 Narayanan C Krishnan ckn@iitrpr.ac.in Outline Univariate regression Multivariate regression Probabilistic view of regression Loss functions Bias-Variance analysis

More information

Generative Adversarial Networks (GANs) Ian Goodfellow, OpenAI Research Scientist Presentation at Berkeley Artificial Intelligence Lab,

Generative Adversarial Networks (GANs) Ian Goodfellow, OpenAI Research Scientist Presentation at Berkeley Artificial Intelligence Lab, Generative Adversarial Networks (GANs) Ian Goodfellow, OpenAI Research Scientist Presentation at Berkeley Artificial Intelligence Lab, 2016-08-31 Generative Modeling Density estimation Sample generation

More information

Auto-Encoding Variational Bayes

Auto-Encoding Variational Bayes Auto-Encoding Variational Bayes Diederik P Kingma, Max Welling June 18, 2018 Diederik P Kingma, Max Welling Auto-Encoding Variational Bayes June 18, 2018 1 / 39 Outline 1 Introduction 2 Variational Lower

More information

Deep Neural Networks: From Flat Minima to Numerically Nonvacuous Generalization Bounds via PAC-Bayes

Deep Neural Networks: From Flat Minima to Numerically Nonvacuous Generalization Bounds via PAC-Bayes Deep Neural Networks: From Flat Minima to Numerically Nonvacuous Generalization Bounds via PAC-Bayes Daniel M. Roy University of Toronto; Vector Institute Joint work with Gintarė K. Džiugaitė University

More information

Optimization in the Big Data Regime 2: SVRG & Tradeoffs in Large Scale Learning. Sham M. Kakade

Optimization in the Big Data Regime 2: SVRG & Tradeoffs in Large Scale Learning. Sham M. Kakade Optimization in the Big Data Regime 2: SVRG & Tradeoffs in Large Scale Learning. Sham M. Kakade Machine Learning for Big Data CSE547/STAT548 University of Washington S. M. Kakade (UW) Optimization for

More information

Lecture 3: Deep Learning Optimizations

Lecture 3: Deep Learning Optimizations Lecture 3: Deep Learning Optimizations Deep Learning @ UvA UVA DEEP LEARNING COURSE EFSTRATIOS GAVVES DEEP LEARNING OPTIMIZATIONS - 1 Lecture overview o How to define our model and optimize it in practice

More information

Lecture 5: Logistic Regression. Neural Networks

Lecture 5: Logistic Regression. Neural Networks Lecture 5: Logistic Regression. Neural Networks Logistic regression Comparison with generative models Feed-forward neural networks Backpropagation Tricks for training neural networks COMP-652, Lecture

More information

IN the context of deep neural networks, the distribution

IN the context of deep neural networks, the distribution Training Faster by Separating Modes of Variation in Batch-normalized Models Mahdi M. Kalayeh, Member, IEEE, and Mubarak Shah, Fellow, IEEE 1 arxiv:1806.02892v1 [cs.cv] 7 Jun 2018 Abstract Batch Normalization

More information

Machine learning comes from Bayesian decision theory in statistics. There we want to minimize the expected value of the loss function.

Machine learning comes from Bayesian decision theory in statistics. There we want to minimize the expected value of the loss function. Bayesian learning: Machine learning comes from Bayesian decision theory in statistics. There we want to minimize the expected value of the loss function. Let y be the true label and y be the predicted

More information

Variational Autoencoders

Variational Autoencoders Variational Autoencoders Recap: Story so far A classification MLP actually comprises two components A feature extraction network that converts the inputs into linearly separable features Or nearly linearly

More information

Introduction to Convolutional Neural Networks (CNNs)

Introduction to Convolutional Neural Networks (CNNs) Introduction to Convolutional Neural Networks (CNNs) nojunk@snu.ac.kr http://mipal.snu.ac.kr Department of Transdisciplinary Studies Seoul National University, Korea Jan. 2016 Many slides are from Fei-Fei

More information