Fast yet Simple Natural-Gradient Variational Inference in Complex Models

Size: px
Start display at page:

Download "Fast yet Simple Natural-Gradient Variational Inference in Complex Models"

Transcription

1 Fast yet Simple Natural-Gradient Variational Inference in Complex Models Mohammad Emtiyaz Khan RIKEN Center for AI Project, Tokyo, Japan Joint work with Wu Lin (UBC) DidrikNielsen, Voot Tangkaratt (RIKEN) Yarin Gal (University of Oxford) Akash Srivastava (University of Edinburgh) ZuozhuLiu (SUTD, Singapore)

2 The Goal of My Research To understand the fundamental principles of learning from data and use them to develop algorithms that can learn like living beings. 2

3 Learning by exploring at the age of 6 months

4 Converged at the age of 12 months

5 Transfer Learning at 14 months 5

6 The Goal of My Research To understand the fundamental principles of learning from data and use them to develop algorithms that can learn like living beings. 6

7 Current Focus: Methods to Improve Deep Learning Data-efficiency, robustness, active learning, continual/online learning, exploration 7

8 Bayesian Inference Compute a probability distribution over the unknowns given the data to know how much we don t know 8

9 Uncertainty Estimation Scene Uncertainty of depth estimates (taken from Kendall et al. 2017) 9

10 Bayesian Inference is Difficult! Bayes rule: p(w D) = Data p(d w)p(w) R p(d w)p(w)dw Parameters Intractable integral Variational Inference (VI) using gradient methods (SGD/Adam) Gaussian VI: Bayes by Backprop (Blundell et al. 2015), Practical VI (Graves et al. 2011), Black-box VI (Rangnathan et al. 2014) and many more. This talk: VI using natural-gradient methods (faster and simpler methods than gradientsbased methods) Khan & Lin (Aistats 2017), Khan et al. (ICML 2018), Khan & Nielsen (ISITA2018) 10

11 Outline Backgound Bayesian model and Variational Inference (VI) VI using gradient descent VI using natural-gradient descent Fast and simple natural-gradient VI Results on Bayesian deep learning and RL 11

12 Bayesian model VI using gradient descent Euclidean distance is inappropriate VI using natural-gradient descent BACKGROUND 12

13 A Bayesian Model p(d w) = NY i=1 Neural network p(y i f w (x i )) p(w) = ExpFamily( 0 ) 0 = 1 2 1, 1 µ p(w D) = p(d w)p(w) R p(d w)p(w)dw Intractable integral 13

14 Variational Inference with Gradients p(w D) max L( ):=E q h q (w) = ExpFamily( ) log p(w) i q (w) Regularizer + = NX i=1 1 2 V 1,V 1 m E q [log p(d i w)] Data-fit term t+1 = t + t r L t = arg max T r L t 1 2 t k tk 2 14

15 Euclidean Distance is inappropriate! (Amari 1999, Sato 2001, Honkela et.al. 2010, Hoffman et.al. 2013, Khan and Lin 2017) 15

16 VI using Natural-Gradient Descent Fisher Information Matrix (FIM) F ( ):=E q h r log q (w)r log q (w) >i max T r L t 1 2 t ( t) T F ( t )( t) t+1 = t + t F ( t ) 1 r L t Natural Gradients: r L t 16

17 Natural-Gradients require computation of the FIM Can we avoid this? Yes, by computing the gradient w.r.t. the expectation parameter of exponential family 17

18 Simple Natural-Gradients Part I 18

19 Expectation Parameters of Exp-Family Mean/expectation /moment parameters µ( ):=E q [ (w)] Wainwright and Jordan, 2006 Sufficient statistics E q [w] =m E q [ww > ]=mm > + V 19

20 NatGrad Descent == Mirror Descent Raskutti and Mukherjee, 2015, Khan and Lin 2017 t+1 = t + t F ( t ) 1 r L t max µ µt r µ L t 1 t KL[q µ kq µt ] r µ L t 1 t ( t) =0 r µ L t = F ( t ) 1 r L t := r L t r L t = F (µ t ) 1 r µ L t := r µ L t 20

21 Dually-Flat Riemannian Structure See Amari s book 2016 Figure from Wainwright and Jordan, 2006 For VI, natural gradient in natural-parameter is computationally simpler than in the expectation parameter space 21

22 Natural-Gradient Descent in the Natural-Parameter Space max L( ):=E q h r L = r µ L = 0 + log p(w) i q (w) Conjugate + NX i=1 Conjugate i=1 Nonconjugate (similar to SVI, Hoffmann et al. 2013) E q [log p(d i w)] Nonconjugate NY p(d w) = p(y i f w (x i )) i=1 p(w) = ExpFamily( 0 ) q (w) = ExpFamily( ) NX r µ E q [log p(d i w)] µ=µ( ) 22

23 NGVI as Message Passing Khan and Lin 2017, Khan and Nielsen 2018 t+1 =(1 t ) t + # NX t " 0 + r µ E q [log p(d i w)] µ=µ( t ) i=1 η " w D $ D % D & A generalization of Variational Message Passing (Winn and Bishop 2005) and stochastic variational inference (Hoffman et al. 2013) to nonconjugate models. Convergence proof is in Khan et al. UAI

24 Approximate Bayesian Filter q(w t+1) / [q(w t)] (1 t) h p(w)e r µe[log p(d i w)] > (w) i t New Approximation Previous Approximation ExpFamily Prior DNN Likelihood Optimal natural-parameter == natural-gradient NX = 0 + r E q [log p(d i w)] q(w ) / p(w) i=1 Similar to EP, we get local approximations, but now they are natural-gradients of the local factors. " N Y i=1 e (w)> r Eq [log p(d i w)] # 24

25 Fast Natural-Gradients Part II: Application to Bayesian deep learning Notation change θ = w 25

26 Natural-Gradient VI by using Weight-Perturbed Adam (Vadam) 26

27 Natural-gradient vs gradients h max L(µ, 2 ):=E µ, 2 q log Natural-Gradient VI µ µ r µ L +2 r 2L Gaussian prior N ( 0, I) N ( µ, 2 ) Gaussian variational approximation i + µ µ + NX E q [log p(d i )] i=1 Existing Methods + Non-Gaussian (DNN) ˆr µ L p sµ + ˆr L p s + (Graves et al. 2011, Blundell et al. 2015) 27

28 Doubly Stochastic Approximation h max L(µ, 2 ):=E µ, 2 q log Gaussian prior N ( 0, I) i N ( µ, 2 ) Gaussian variational approximation + NX i=1 Non-Gaussian (DNN) E q [log p(d i )] f + (θ) Natural-Gradient VI µ µ 2 r µ L r 2L Sample a minibatch and a θ from q µ + N M X r f i ( ) i2m N M X r 2 f i ( ) i2m 28

29 Hessian Approximation N M X i2m r 2 f i ( ) N M N Gauss-Newton " X i2m 1 M [r f i ( )] 2 X i2m r f i ( ) Gradient-Magnitude # 2 29

30 Natural Momentum Method Polyak s heavy-ball method Our natural-momentum method t+1 = t + t r µ L t + t( t t 1 ) 30

31 Natural-Gradient VI by using Weight-Perturbed Adam (Vadam) 31

32 Results 32

33 Illustration VOGN uses Gauss-Newton Vadam uses Gradient- Magnitude 33

34 Quality of Posterior Approximation VOGN-1 uses Gauss-Newton with minibatch of size 1 Vadam uses Gradient- Magnitude with minibatch > 1 34

35 Effect of Minibatch on the Accuracy As we decrease minibatch size, the accuracy improves, but the stochastic noise increases which might slow-down the algorithm. 35

36 Vadam performs comparable to BBVI 1 layer 50 hidden units with ReLU on energy (N=768, D= 8) and kin8nm (N=8192, D=8), 5 MC samples for Vadam, 10 for BBVI, minibatch of 32 36

37 Gauss-Newton Converges fast 1 layer 50 hidden units with tanh on Breast Cancer [N=683, D=10], minibatch of size 1 with 16 MC samples and step-sizes = 0.01 log 2 loss BBVI BBVI Vadam VOGN CVI-GGN Epoch 37

38 Avoiding Local Minima An example taken from Casella and Robert s book. Vadam reaches the flat minima, but GD gets stuck at a local minima. Optimization by smoothing, Gaussian homotopy/blurring etc., Entropy SGLD etc. 38

39 Parameter-Space Noise for Deep RL On OpenAI Gym Cheetah with DDPG with DNN with [400,300] ReLU VAdaGrad (noise updated with natural-gradients) Reward 5264 SGD (noise updated with standard gradients) SGD (no noise injection) Reward 3674 Ruckstriesh et.al.2010, Fortunato et.al. 2017, Plapper et.al

40 Improving the Marginal-value of Adam/AdaGrad SGD and Vadam reach a better minimum than Adam and AdaGrad 2-layer LSTM on War & Peace dataset. The example taken from Wilson et.al Marginalvalue of adaptivegradient method 40

41 Summary 41

42 Related Work Natural-Gradient Methods for VI Sato 2001, Honkela et al. 2010, Hoffman et al Gradient methods for VI Rangnathan et al. 2014, Graves et al. 2011, Blundell et al. 2015, Salimans and Knowles 2013 Zhang et al. ICML 2018 Very similar to our ICML paper and our previous work on Variational Adaptive Newton method. Mandt et al. 2017, SGD as VI. Global optimization methods Optimization by smoothing, graduated optimization, Gaussian homotopy, etc. Entropy-SGD, noisy networks for exploration etc. 42

43 References 43

44 Thanks! I am looking for post-docs, research assistants, and interns See details at 44

Bayesian Deep Learning

Bayesian Deep Learning Bayesian Deep Learning Mohammad Emtiyaz Khan RIKEN Center for AI Project, Tokyo http://emtiyaz.github.io Keywords Bayesian Statistics Gaussian distribution, Bayes rule Continues Optimization Gradient descent,

More information

Bayesian Deep Learning

Bayesian Deep Learning Bayesian Deep Learning Mohammad Emtiyaz Khan AIP (RIKEN), Tokyo http://emtiyaz.github.io emtiyaz.khan@riken.jp June 06, 2018 Mohammad Emtiyaz Khan 2018 1 What will you learn? Why is Bayesian inference

More information

Non-convex optimization. Issam Laradji

Non-convex optimization. Issam Laradji Non-convex optimization Issam Laradji Strongly Convex Objective function f(x) x Strongly Convex Objective function Assumptions Gradient Lipschitz continuous f(x) Strongly convex x Strongly Convex Objective

More information

Adaptive Gradient Methods AdaGrad / Adam. Machine Learning for Big Data CSE547/STAT548, University of Washington Sham Kakade

Adaptive Gradient Methods AdaGrad / Adam. Machine Learning for Big Data CSE547/STAT548, University of Washington Sham Kakade Adaptive Gradient Methods AdaGrad / Adam Machine Learning for Big Data CSE547/STAT548, University of Washington Sham Kakade 1 Announcements: HW3 posted Dual coordinate ascent (some review of SGD and random

More information

Reading Group on Deep Learning Session 1

Reading Group on Deep Learning Session 1 Reading Group on Deep Learning Session 1 Stephane Lathuiliere & Pablo Mesejo 2 June 2016 1/31 Contents Introduction to Artificial Neural Networks to understand, and to be able to efficiently use, the popular

More information

Faster Stochastic Variational Inference using Proximal-Gradient Methods with General Divergence Functions

Faster Stochastic Variational Inference using Proximal-Gradient Methods with General Divergence Functions Faster Stochastic Variational Inference using Proximal-Gradient Methods with General Divergence Functions Mohammad Emtiyaz Khan, Reza Babanezhad, Wu Lin, Mark Schmidt, Masashi Sugiyama Conference on Uncertainty

More information

Adaptive Gradient Methods AdaGrad / Adam

Adaptive Gradient Methods AdaGrad / Adam Case Study 1: Estimating Click Probabilities Adaptive Gradient Methods AdaGrad / Adam Machine Learning for Big Data CSE547/STAT548, University of Washington Sham Kakade 1 The Problem with GD (and SGD)

More information

Variational Dropout via Empirical Bayes

Variational Dropout via Empirical Bayes Variational Dropout via Empirical Bayes Valery Kharitonov 1 kharvd@gmail.com Dmitry Molchanov 1, dmolch111@gmail.com Dmitry Vetrov 1, vetrovd@yandex.ru 1 National Research University Higher School of Economics,

More information

Day 3 Lecture 3. Optimizing deep networks

Day 3 Lecture 3. Optimizing deep networks Day 3 Lecture 3 Optimizing deep networks Convex optimization A function is convex if for all α [0,1]: f(x) Tangent line Examples Quadratics 2-norms Properties Local minimum is global minimum x Gradient

More information

Tutorial on: Optimization I. (from a deep learning perspective) Jimmy Ba

Tutorial on: Optimization I. (from a deep learning perspective) Jimmy Ba Tutorial on: Optimization I (from a deep learning perspective) Jimmy Ba Outline Random search v.s. gradient descent Finding better search directions Design white-box optimization methods to improve computation

More information

Probabilistic & Bayesian deep learning. Andreas Damianou

Probabilistic & Bayesian deep learning. Andreas Damianou Probabilistic & Bayesian deep learning Andreas Damianou Amazon Research Cambridge, UK Talk at University of Sheffield, 19 March 2019 In this talk Not in this talk: CRFs, Boltzmann machines,... In this

More information

New Insights and Perspectives on the Natural Gradient Method

New Insights and Perspectives on the Natural Gradient Method 1 / 18 New Insights and Perspectives on the Natural Gradient Method Yoonho Lee Department of Computer Science and Engineering Pohang University of Science and Technology March 13, 2018 Motivation 2 / 18

More information

Stein Variational Gradient Descent: A General Purpose Bayesian Inference Algorithm

Stein Variational Gradient Descent: A General Purpose Bayesian Inference Algorithm Stein Variational Gradient Descent: A General Purpose Bayesian Inference Algorithm Qiang Liu and Dilin Wang NIPS 2016 Discussion by Yunchen Pu March 17, 2017 March 17, 2017 1 / 8 Introduction Let x R d

More information

Lecture : Probabilistic Machine Learning

Lecture : Probabilistic Machine Learning Lecture : Probabilistic Machine Learning Riashat Islam Reasoning and Learning Lab McGill University September 11, 2018 ML : Many Methods with Many Links Modelling Views of Machine Learning Machine Learning

More information

Expectation Propagation for Approximate Bayesian Inference

Expectation Propagation for Approximate Bayesian Inference Expectation Propagation for Approximate Bayesian Inference José Miguel Hernández Lobato Universidad Autónoma de Madrid, Computer Science Department February 5, 2007 1/ 24 Bayesian Inference Inference Given

More information

Introduction to Machine Learning

Introduction to Machine Learning Introduction to Machine Learning Logistic Regression Varun Chandola Computer Science & Engineering State University of New York at Buffalo Buffalo, NY, USA chandola@buffalo.edu Chandola@UB CSE 474/574

More information

Bayesian Machine Learning

Bayesian Machine Learning Bayesian Machine Learning Andrew Gordon Wilson ORIE 6741 Lecture 2: Bayesian Basics https://people.orie.cornell.edu/andrew/orie6741 Cornell University August 25, 2016 1 / 17 Canonical Machine Learning

More information

Introduction to Neural Networks

Introduction to Neural Networks CUONG TUAN NGUYEN SEIJI HOTTA MASAKI NAKAGAWA Tokyo University of Agriculture and Technology Copyright by Nguyen, Hotta and Nakagawa 1 Pattern classification Which category of an input? Example: Character

More information

Stochastic Variational Inference

Stochastic Variational Inference Stochastic Variational Inference David M. Blei Princeton University (DRAFT: DO NOT CITE) December 8, 2011 We derive a stochastic optimization algorithm for mean field variational inference, which we call

More information

Deep Learning & Artificial Intelligence WS 2018/2019

Deep Learning & Artificial Intelligence WS 2018/2019 Deep Learning & Artificial Intelligence WS 2018/2019 Linear Regression Model Model Error Function: Squared Error Has no special meaning except it makes gradients look nicer Prediction Ground truth / target

More information

Streaming Variational Bayes

Streaming Variational Bayes Streaming Variational Bayes Tamara Broderick, Nicholas Boyd, Andre Wibisono, Ashia C. Wilson, Michael I. Jordan UC Berkeley Discussion led by Miao Liu September 13, 2013 Introduction The SDA-Bayes Framework

More information

The connection of dropout and Bayesian statistics

The connection of dropout and Bayesian statistics The connection of dropout and Bayesian statistics Interpretation of dropout as approximate Bayesian modelling of NN http://mlg.eng.cam.ac.uk/yarin/thesis/thesis.pdf Dropout Geoffrey Hinton Google, University

More information

Afternoon Meeting on Bayesian Computation 2018 University of Reading

Afternoon Meeting on Bayesian Computation 2018 University of Reading Gabriele Abbati 1, Alessra Tosi 2, Seth Flaxman 3, Michael A Osborne 1 1 University of Oxford, 2 Mind Foundry Ltd, 3 Imperial College London Afternoon Meeting on Bayesian Computation 2018 University of

More information

ECS289: Scalable Machine Learning

ECS289: Scalable Machine Learning ECS289: Scalable Machine Learning Cho-Jui Hsieh UC Davis Nov 2, 2016 Outline SGD-typed algorithms for Deep Learning Parallel SGD for deep learning Perceptron Prediction value for a training data: prediction

More information

Variational Inference via Stochastic Backpropagation

Variational Inference via Stochastic Backpropagation Variational Inference via Stochastic Backpropagation Kai Fan February 27, 2016 Preliminaries Stochastic Backpropagation Variational Auto-Encoding Related Work Summary Outline Preliminaries Stochastic Backpropagation

More information

Ch 4. Linear Models for Classification

Ch 4. Linear Models for Classification Ch 4. Linear Models for Classification Pattern Recognition and Machine Learning, C. M. Bishop, 2006. Department of Computer Science and Engineering Pohang University of Science and echnology 77 Cheongam-ro,

More information

Bayesian Machine Learning

Bayesian Machine Learning Bayesian Machine Learning Andrew Gordon Wilson ORIE 6741 Lecture 3 Stochastic Gradients, Bayesian Inference, and Occam s Razor https://people.orie.cornell.edu/andrew/orie6741 Cornell University August

More information

CSCI 1951-G Optimization Methods in Finance Part 12: Variants of Gradient Descent

CSCI 1951-G Optimization Methods in Finance Part 12: Variants of Gradient Descent CSCI 1951-G Optimization Methods in Finance Part 12: Variants of Gradient Descent April 27, 2018 1 / 32 Outline 1) Moment and Nesterov s accelerated gradient descent 2) AdaGrad and RMSProp 4) Adam 5) Stochastic

More information

Machine Learning CS 4900/5900. Lecture 03. Razvan C. Bunescu School of Electrical Engineering and Computer Science

Machine Learning CS 4900/5900. Lecture 03. Razvan C. Bunescu School of Electrical Engineering and Computer Science Machine Learning CS 4900/5900 Razvan C. Bunescu School of Electrical Engineering and Computer Science bunescu@ohio.edu Machine Learning is Optimization Parametric ML involves minimizing an objective function

More information

Don t Decay the Learning Rate, Increase the Batch Size. Samuel L. Smith, Pieter-Jan Kindermans, Quoc V. Le December 9 th 2017

Don t Decay the Learning Rate, Increase the Batch Size. Samuel L. Smith, Pieter-Jan Kindermans, Quoc V. Le December 9 th 2017 Don t Decay the Learning Rate, Increase the Batch Size Samuel L. Smith, Pieter-Jan Kindermans, Quoc V. Le December 9 th 2017 slsmith@ Google Brain Three related questions: What properties control generalization?

More information

Optimization for Training I. First-Order Methods Training algorithm

Optimization for Training I. First-Order Methods Training algorithm Optimization for Training I First-Order Methods Training algorithm 2 OPTIMIZATION METHODS Topics: Types of optimization methods. Practical optimization methods breakdown into two categories: 1. First-order

More information

Online Algorithms for Sum-Product

Online Algorithms for Sum-Product Online Algorithms for Sum-Product Networks with Continuous Variables Priyank Jaini Ph.D. Seminar Consistent/Robust Tensor Decomposition And Spectral Learning Offline Bayesian Learning ADF, EP, SGD, oem

More information

Convergence of Proximal-Gradient Stochastic Variational Inference under Non-Decreasing Step-Size Sequence

Convergence of Proximal-Gradient Stochastic Variational Inference under Non-Decreasing Step-Size Sequence Convergence of Proximal-Gradient Stochastic Variational Inference under Non-Decreasing Step-Size Sequence Mohammad Emtiyaz Khan Ecole Polytechnique Fédérale de Lausanne Lausanne Switzerland emtiyaz@gmail.com

More information

Optimization for neural networks

Optimization for neural networks 0 - : Optimization for neural networks Prof. J.C. Kao, UCLA Optimization for neural networks We previously introduced the principle of gradient descent. Now we will discuss specific modifications we make

More information

Overview of gradient descent optimization algorithms. HYUNG IL KOO Based on

Overview of gradient descent optimization algorithms. HYUNG IL KOO Based on Overview of gradient descent optimization algorithms HYUNG IL KOO Based on http://sebastianruder.com/optimizing-gradient-descent/ Problem Statement Machine Learning Optimization Problem Training samples:

More information

Normalization Techniques in Training of Deep Neural Networks

Normalization Techniques in Training of Deep Neural Networks Normalization Techniques in Training of Deep Neural Networks Lei Huang ( 黄雷 ) State Key Laboratory of Software Development Environment, Beihang University Mail:huanglei@nlsde.buaa.edu.cn August 17 th,

More information

CSC2541 Lecture 5 Natural Gradient

CSC2541 Lecture 5 Natural Gradient CSC2541 Lecture 5 Natural Gradient Roger Grosse Roger Grosse CSC2541 Lecture 5 Natural Gradient 1 / 12 Motivation Two classes of optimization procedures used throughout ML (stochastic) gradient descent,

More information

Variational Bayes and Variational Message Passing

Variational Bayes and Variational Message Passing Variational Bayes and Variational Message Passing Mohammad Emtiyaz Khan CS,UBC Variational Bayes and Variational Message Passing p.1/16 Variational Inference Find a tractable distribution Q(H) that closely

More information

Sum-Product Networks. STAT946 Deep Learning Guest Lecture by Pascal Poupart University of Waterloo October 17, 2017

Sum-Product Networks. STAT946 Deep Learning Guest Lecture by Pascal Poupart University of Waterloo October 17, 2017 Sum-Product Networks STAT946 Deep Learning Guest Lecture by Pascal Poupart University of Waterloo October 17, 2017 Introduction Outline What is a Sum-Product Network? Inference Applications In more depth

More information

Deep Feedforward Networks

Deep Feedforward Networks Deep Feedforward Networks Liu Yang March 30, 2017 Liu Yang Short title March 30, 2017 1 / 24 Overview 1 Background A general introduction Example 2 Gradient based learning Cost functions Output Units 3

More information

J. Sadeghi E. Patelli M. de Angelis

J. Sadeghi E. Patelli M. de Angelis J. Sadeghi E. Patelli Institute for Risk and, Department of Engineering, University of Liverpool, United Kingdom 8th International Workshop on Reliable Computing, Computing with Confidence University of

More information

arxiv: v1 [stat.ml] 8 Nov 2018

arxiv: v1 [stat.ml] 8 Nov 2018 Practical Bayesian Learning of Neural Networks via Adaptive Subgradient Methods arxiv:1811.03679v1 [stat.ml] 8 Nov 2018 Arnold Salas *,1,2 Stefan Zohren *,1,2 Stephen Roberts 1,2,3 1 Machine Learning Research

More information

Distributed Bayesian Learning with Stochastic Natural-gradient EP and the Posterior Server

Distributed Bayesian Learning with Stochastic Natural-gradient EP and the Posterior Server Distributed Bayesian Learning with Stochastic Natural-gradient EP and the Posterior Server in collaboration with: Minjie Xu, Balaji Lakshminarayanan, Leonard Hasenclever, Thibaut Lienart, Stefan Webb,

More information

Need for Deep Networks Perceptron. Can only model linear functions. Kernel Machines. Non-linearity provided by kernels

Need for Deep Networks Perceptron. Can only model linear functions. Kernel Machines. Non-linearity provided by kernels Need for Deep Networks Perceptron Can only model linear functions Kernel Machines Non-linearity provided by kernels Need to design appropriate kernels (possibly selecting from a set, i.e. kernel learning)

More information

Learning with Noisy Labels. Kate Niehaus Reading group 11-Feb-2014

Learning with Noisy Labels. Kate Niehaus Reading group 11-Feb-2014 Learning with Noisy Labels Kate Niehaus Reading group 11-Feb-2014 Outline Motivations Generative model approach: Lawrence, N. & Scho lkopf, B. Estimating a Kernel Fisher Discriminant in the Presence of

More information

Algorithms for Variational Learning of Mixture of Gaussians

Algorithms for Variational Learning of Mixture of Gaussians Algorithms for Variational Learning of Mixture of Gaussians Instructors: Tapani Raiko and Antti Honkela Bayes Group Adaptive Informatics Research Center 28.08.2008 Variational Bayesian Inference Mixture

More information

BAYESIAN TRANSFER LEARNING FOR DEEP NETWORKS. J. Wohlert, A. M. Munk, S. Sengupta, F. Laumann

BAYESIAN TRANSFER LEARNING FOR DEEP NETWORKS. J. Wohlert, A. M. Munk, S. Sengupta, F. Laumann BAYESIAN TRANSFER LEARNING FOR DEEP NETWORKS J. Wohlert, A. M. Munk, S. Sengupta, F. Laumann Technical University of Denmark Department of Applied Mathematics and Computer Science 2800 Lyngby, Denmark

More information

Neural Networks: Optimization & Regularization

Neural Networks: Optimization & Regularization Neural Networks: Optimization & Regularization Shan-Hung Wu shwu@cs.nthu.edu.tw Department of Computer Science, National Tsing Hua University, Taiwan Machine Learning Shan-Hung Wu (CS, NTHU) NN Opt & Reg

More information

CSC321 Lecture 8: Optimization

CSC321 Lecture 8: Optimization CSC321 Lecture 8: Optimization Roger Grosse Roger Grosse CSC321 Lecture 8: Optimization 1 / 26 Overview We ve talked a lot about how to compute gradients. What do we actually do with them? Today s lecture:

More information

CSC321 Lecture 7: Optimization

CSC321 Lecture 7: Optimization CSC321 Lecture 7: Optimization Roger Grosse Roger Grosse CSC321 Lecture 7: Optimization 1 / 25 Overview We ve talked a lot about how to compute gradients. What do we actually do with them? Today s lecture:

More information

Neural Network Training

Neural Network Training Neural Network Training Sargur Srihari Topics in Network Training 0. Neural network parameters Probabilistic problem formulation Specifying the activation and error functions for Regression Binary classification

More information

OPTIMIZATION METHODS IN DEEP LEARNING

OPTIMIZATION METHODS IN DEEP LEARNING Tutorial outline OPTIMIZATION METHODS IN DEEP LEARNING Based on Deep Learning, chapter 8 by Ian Goodfellow, Yoshua Bengio and Aaron Courville Presented By Nadav Bhonker Optimization vs Learning Surrogate

More information

Linear regression example Simple linear regression: f(x) = ϕ(x)t w w ~ N(0, ) The mean and covariance are given by E[f(x)] = ϕ(x)e[w] = 0.

Linear regression example Simple linear regression: f(x) = ϕ(x)t w w ~ N(0, ) The mean and covariance are given by E[f(x)] = ϕ(x)e[w] = 0. Gaussian Processes Gaussian Process Stochastic process: basically, a set of random variables. may be infinite. usually related in some way. Gaussian process: each variable has a Gaussian distribution every

More information

Noisy Natural Gradient as Variational Inference

Noisy Natural Gradient as Variational Inference Noisy Natural Gradient as Variational Inference Guodong Zhang Shengyang Sun David Duvenaud Roger Grosse University of Toronto Vector Institute {gdzhang, ssy, duvenaud, rgrosse}@cs.toronto.edu Abstract

More information

Expectation propagation as a way of life

Expectation propagation as a way of life Expectation propagation as a way of life Yingzhen Li Department of Engineering Feb. 2014 Yingzhen Li (Department of Engineering) Expectation propagation as a way of life Feb. 2014 1 / 9 Reference This

More information

Expectation Propagation Algorithm

Expectation Propagation Algorithm Expectation Propagation Algorithm 1 Shuang Wang School of Electrical and Computer Engineering University of Oklahoma, Tulsa, OK, 74135 Email: {shuangwang}@ou.edu This note contains three parts. First,

More information

Approximate Message Passing

Approximate Message Passing Approximate Message Passing Mohammad Emtiyaz Khan CS, UBC February 8, 2012 Abstract In this note, I summarize Sections 5.1 and 5.2 of Arian Maleki s PhD thesis. 1 Notation We denote scalars by small letters

More information

The K-FAC method for neural network optimization

The K-FAC method for neural network optimization The K-FAC method for neural network optimization James Martens Thanks to my various collaborators on K-FAC research and engineering: Roger Grosse, Jimmy Ba, Vikram Tankasali, Matthew Johnson, Daniel Duckworth,

More information

Advanced Training Techniques. Prajit Ramachandran

Advanced Training Techniques. Prajit Ramachandran Advanced Training Techniques Prajit Ramachandran Outline Optimization Regularization Initialization Optimization Optimization Outline Gradient Descent Momentum RMSProp Adam Distributed SGD Gradient Noise

More information

VIME: Variational Information Maximizing Exploration

VIME: Variational Information Maximizing Exploration 1 VIME: Variational Information Maximizing Exploration Rein Houthooft, Xi Chen, Yan Duan, John Schulman, Filip De Turck, Pieter Abbeel Reviewed by Zhao Song January 13, 2017 1 Exploration in Reinforcement

More information

Stochastic gradient descent; Classification

Stochastic gradient descent; Classification Stochastic gradient descent; Classification Steve Renals Machine Learning Practical MLP Lecture 2 28 September 2016 MLP Lecture 2 Stochastic gradient descent; Classification 1 Single Layer Networks MLP

More information

Noisy Natural Gradient as Variational Inference

Noisy Natural Gradient as Variational Inference Guodong Zhang * 1 2 Shengyang Sun * 1 2 David Duvenaud 1 2 Roger Grosse 1 2 Abstract Variational Bayesian neural nets combine the flexibility of deep learning with Bayesian uncertainty estimation. Unfortunately,

More information

Variational Dropout and the Local Reparameterization Trick

Variational Dropout and the Local Reparameterization Trick Variational ropout and the Local Reparameterization Trick iederik P. Kingma, Tim Salimans and Max Welling Machine Learning Group, University of Amsterdam Algoritmica University of California, Irvine, and

More information

Deep Neural Networks: From Flat Minima to Numerically Nonvacuous Generalization Bounds via PAC-Bayes

Deep Neural Networks: From Flat Minima to Numerically Nonvacuous Generalization Bounds via PAC-Bayes Deep Neural Networks: From Flat Minima to Numerically Nonvacuous Generalization Bounds via PAC-Bayes Daniel M. Roy University of Toronto; Vector Institute Joint work with Gintarė K. Džiugaitė University

More information

Recent Advances in Bayesian Inference Techniques

Recent Advances in Bayesian Inference Techniques Recent Advances in Bayesian Inference Techniques Christopher M. Bishop Microsoft Research, Cambridge, U.K. research.microsoft.com/~cmbishop SIAM Conference on Data Mining, April 2004 Abstract Bayesian

More information

Lecture 6 Optimization for Deep Neural Networks

Lecture 6 Optimization for Deep Neural Networks Lecture 6 Optimization for Deep Neural Networks CMSC 35246: Deep Learning Shubhendu Trivedi & Risi Kondor University of Chicago April 12, 2017 Things we will look at today Stochastic Gradient Descent Things

More information

Normalization Techniques

Normalization Techniques Normalization Techniques Devansh Arpit Normalization Techniques 1 / 39 Table of Contents 1 Introduction 2 Motivation 3 Batch Normalization 4 Normalization Propagation 5 Weight Normalization 6 Layer Normalization

More information

Introduction to Machine Learning

Introduction to Machine Learning Introduction to Machine Learning Linear Regression Varun Chandola Computer Science & Engineering State University of New York at Buffalo Buffalo, NY, USA chandola@buffalo.edu Chandola@UB CSE 474/574 1

More information

CS60010: Deep Learning

CS60010: Deep Learning CS60010: Deep Learning Sudeshna Sarkar Spring 2018 16 Jan 2018 FFN Goal: Approximate some unknown ideal function f : X! Y Ideal classifier: y = f*(x) with x and category y Feedforward Network: Define parametric

More information

Need for Deep Networks Perceptron. Can only model linear functions. Kernel Machines. Non-linearity provided by kernels

Need for Deep Networks Perceptron. Can only model linear functions. Kernel Machines. Non-linearity provided by kernels Need for Deep Networks Perceptron Can only model linear functions Kernel Machines Non-linearity provided by kernels Need to design appropriate kernels (possibly selecting from a set, i.e. kernel learning)

More information

PMR Learning as Inference

PMR Learning as Inference Outline PMR Learning as Inference Probabilistic Modelling and Reasoning Amos Storkey Modelling 2 The Exponential Family 3 Bayesian Sets School of Informatics, University of Edinburgh Amos Storkey PMR Learning

More information

Reinforcement Learning as Variational Inference: Two Recent Approaches

Reinforcement Learning as Variational Inference: Two Recent Approaches Reinforcement Learning as Variational Inference: Two Recent Approaches Rohith Kuditipudi Duke University 11 August 2017 Outline 1 Background 2 Stein Variational Policy Gradient 3 Soft Q-Learning 4 Closing

More information

Nonparametric Bayesian Methods (Gaussian Processes)

Nonparametric Bayesian Methods (Gaussian Processes) [70240413 Statistical Machine Learning, Spring, 2015] Nonparametric Bayesian Methods (Gaussian Processes) Jun Zhu dcszj@mail.tsinghua.edu.cn http://bigml.cs.tsinghua.edu.cn/~jun State Key Lab of Intelligent

More information

Advances in Variational Inference

Advances in Variational Inference 1 Advances in Variational Inference Cheng Zhang Judith Bütepage Hedvig Kjellström Stephan Mandt arxiv:1711.05597v1 [cs.lg] 15 Nov 2017 Abstract Many modern unsupervised or semi-supervised machine learning

More information

COMP90051 Statistical Machine Learning

COMP90051 Statistical Machine Learning COMP90051 Statistical Machine Learning Semester 2, 2017 Lecturer: Trevor Cohn 17. Bayesian inference; Bayesian regression Training == optimisation (?) Stages of learning & inference: Formulate model Regression

More information

Announcements Kevin Jamieson

Announcements Kevin Jamieson Announcements Project proposal due next week: Tuesday 10/24 Still looking for people to work on deep learning Phytolith project, join #phytolith slack channel 2017 Kevin Jamieson 1 Gradient Descent Machine

More information

Part 1: Expectation Propagation

Part 1: Expectation Propagation Chalmers Machine Learning Summer School Approximate message passing and biomedicine Part 1: Expectation Propagation Tom Heskes Machine Learning Group, Institute for Computing and Information Sciences Radboud

More information

Bayesian Inference Course, WTCN, UCL, March 2013

Bayesian Inference Course, WTCN, UCL, March 2013 Bayesian Course, WTCN, UCL, March 2013 Shannon (1948) asked how much information is received when we observe a specific value of the variable x? If an unlikely event occurs then one would expect the information

More information

Bayesian Machine Learning

Bayesian Machine Learning Bayesian Machine Learning Andrew Gordon Wilson ORIE 6741 Lecture 4 Occam s Razor, Model Construction, and Directed Graphical Models https://people.orie.cornell.edu/andrew/orie6741 Cornell University September

More information

Logistic Regression. COMP 527 Danushka Bollegala

Logistic Regression. COMP 527 Danushka Bollegala Logistic Regression COMP 527 Danushka Bollegala Binary Classification Given an instance x we must classify it to either positive (1) or negative (0) class We can use {1,-1} instead of {1,0} but we will

More information

Dropout as a Bayesian Approximation: Insights and Applications

Dropout as a Bayesian Approximation: Insights and Applications Dropout as a Bayesian Approximation: Insights and Applications Yarin Gal and Zoubin Ghahramani Discussion by: Chunyuan Li Jan. 15, 2016 1 / 16 Main idea In the framework of variational inference, the authors

More information

Natural Evolution Strategies for Direct Search

Natural Evolution Strategies for Direct Search Tobias Glasmachers Natural Evolution Strategies for Direct Search 1 Natural Evolution Strategies for Direct Search PGMO-COPI 2014 Recent Advances on Continuous Randomized black-box optimization Thursday

More information

σ(a) = a N (x; 0, 1 2 ) dx. σ(a) = Φ(a) =

σ(a) = a N (x; 0, 1 2 ) dx. σ(a) = Φ(a) = Until now we have always worked with likelihoods and prior distributions that were conjugate to each other, allowing the computation of the posterior distribution to be done in closed form. Unfortunately,

More information

Optimization geometry and implicit regularization

Optimization geometry and implicit regularization Optimization geometry and implicit regularization Suriya Gunasekar Joint work with N. Srebro (TTIC), J. Lee (USC), D. Soudry (Technion), M.S. Nacson (Technion), B. Woodworth (TTIC), S. Bhojanapalli (TTIC),

More information

Black-box α-divergence Minimization

Black-box α-divergence Minimization Black-box α-divergence Minimization José Miguel Hernández-Lobato, Yingzhen Li, Daniel Hernández-Lobato, Thang Bui, Richard Turner, Harvard University, University of Cambridge, Universidad Autónoma de Madrid.

More information

Outline Lecture 2 2(32)

Outline Lecture 2 2(32) Outline Lecture (3), Lecture Linear Regression and Classification it is our firm belief that an understanding of linear models is essential for understanding nonlinear ones Thomas Schön Division of Automatic

More information

Stochastic Analogues to Deterministic Optimizers

Stochastic Analogues to Deterministic Optimizers Stochastic Analogues to Deterministic Optimizers ISMP 2018 Bordeaux, France Vivak Patel Presented by: Mihai Anitescu July 6, 2018 1 Apology I apologize for not being here to give this talk myself. I injured

More information

Variational Bayesian Logistic Regression

Variational Bayesian Logistic Regression Variational Bayesian Logistic Regression Sargur N. University at Buffalo, State University of New York USA Topics in Linear Models for Classification Overview 1. Discriminant Functions 2. Probabilistic

More information

Information geometry of mirror descent

Information geometry of mirror descent Information geometry of mirror descent Geometric Science of Information Anthea Monod Department of Statistical Science Duke University Information Initiative at Duke G. Raskutti (UW Madison) and S. Mukherjee

More information

Comments. Assignment 3 code released. Thought questions 3 due this week. Mini-project: hopefully you have started. implement classification algorithms

Comments. Assignment 3 code released. Thought questions 3 due this week. Mini-project: hopefully you have started. implement classification algorithms Neural networks Comments Assignment 3 code released implement classification algorithms use kernels for census dataset Thought questions 3 due this week Mini-project: hopefully you have started 2 Example:

More information

Bayesian Support Vector Machines for Feature Ranking and Selection

Bayesian Support Vector Machines for Feature Ranking and Selection Bayesian Support Vector Machines for Feature Ranking and Selection written by Chu, Keerthi, Ong, Ghahramani Patrick Pletscher pat@student.ethz.ch ETH Zurich, Switzerland 12th January 2006 Overview 1 Introduction

More information

CSC 578 Neural Networks and Deep Learning

CSC 578 Neural Networks and Deep Learning CSC 578 Neural Networks and Deep Learning Fall 2018/19 3. Improving Neural Networks (Some figures adapted from NNDL book) 1 Various Approaches to Improve Neural Networks 1. Cost functions Quadratic Cross

More information

Learning Energy-Based Models of High-Dimensional Data

Learning Energy-Based Models of High-Dimensional Data Learning Energy-Based Models of High-Dimensional Data Geoffrey Hinton Max Welling Yee-Whye Teh Simon Osindero www.cs.toronto.edu/~hinton/energybasedmodelsweb.htm Discovering causal structure as a goal

More information

Tips for Deep Learning

Tips for Deep Learning Tips for Deep Learning Recipe of Deep Learning Step : define a set of function Step : goodness of function Step 3: pick the best function NO Overfitting! NO YES Good Results on Testing Data? YES Good Results

More information

Bayesian Learning. Two Roles for Bayesian Methods. Bayes Theorem. Choosing Hypotheses

Bayesian Learning. Two Roles for Bayesian Methods. Bayes Theorem. Choosing Hypotheses Bayesian Learning Two Roles for Bayesian Methods Probabilistic approach to inference. Quantities of interest are governed by prob. dist. and optimal decisions can be made by reasoning about these prob.

More information

The Expectation-Maximization Algorithm

The Expectation-Maximization Algorithm 1/29 EM & Latent Variable Models Gaussian Mixture Models EM Theory The Expectation-Maximization Algorithm Mihaela van der Schaar Department of Engineering Science University of Oxford MLE for Latent Variable

More information

Riemannian Stein Variational Gradient Descent for Bayesian Inference

Riemannian Stein Variational Gradient Descent for Bayesian Inference Riemannian Stein Variational Gradient Descent for Bayesian Inference Chang Liu, Jun Zhu 1 Dept. of Comp. Sci. & Tech., TNList Lab; Center for Bio-Inspired Computing Research State Key Lab for Intell. Tech.

More information

Non-conjugate Variational Message Passing for Multinomial and Binary Regression

Non-conjugate Variational Message Passing for Multinomial and Binary Regression Non-conjugate Variational Message Passing for Multinomial and Binary Regression David A. Knowles Department of Engineering University of Cambridge Thomas P. Minka Microsoft Research Cambridge, UK Abstract

More information

Simple Techniques for Improving SGD. CS6787 Lecture 2 Fall 2017

Simple Techniques for Improving SGD. CS6787 Lecture 2 Fall 2017 Simple Techniques for Improving SGD CS6787 Lecture 2 Fall 2017 Step Sizes and Convergence Where we left off Stochastic gradient descent x t+1 = x t rf(x t ; yĩt ) Much faster per iteration than gradient

More information

Convex Optimization Algorithms for Machine Learning in 10 Slides

Convex Optimization Algorithms for Machine Learning in 10 Slides Convex Optimization Algorithms for Machine Learning in 10 Slides Presenter: Jul. 15. 2015 Outline 1 Quadratic Problem Linear System 2 Smooth Problem Newton-CG 3 Composite Problem Proximal-Newton-CD 4 Non-smooth,

More information