Convolutional Neural Networks II. Slides from Dr. Vlad Morariu

Size: px
Start display at page:

Download "Convolutional Neural Networks II. Slides from Dr. Vlad Morariu"

Transcription

1 Convolutional Neural Networks II Slides from Dr. Vlad Morariu 1

2 Optimization Example of optimization progress while training a neural network. (Loss over mini-batches goes down over time.) 2

3 Learning rate The effects of step size (or learning rate ) 3

4 Multiple gradient update formulas The effects of different update form formulas (image credits to Alec Radford) 4

5 Stochastic Gradient Descent (SGD) Update weights for each sample E = 1 2 yn y n 2 + Fast, online Sensitive to noise w i t + 1 = w i t ε En w i Minibatch SGD: Update weights for a small set of samples E = 1 2 n B y n y n 2 w i t + 1 = w i t ε EB w i + Fast, online + Robust to noise Slide credit: Bohyung Han 5

6 Momentum Remember the previous direction + Converge faster + Avoid oscillation v i t = αv i t 1 ε E w i (t) w t + 1 = w t + v(t) Slide credit: Bohyung Han 6

7 Weight Decay Penalize the size of the weights C = E i w i 2 w i t + 1 = w i t ε C w i = w i t ε E w i λw i + Improve generalization a lot! Slide credit: Bohyung Han 7

8 Issues in Deep Neural Networks Large amount of training time There are sometimes a lot of training data Many iterations (epochs) are typically required for optimization Computing gradients in each iteration takes too much time Overfitting Learned function fits training data well, but performs poorly on new data (high capacity model, not enough training data) Vanishing gradient problem E w ki = n z i n w ki d y i z y n dz i n Sigmoid E y i n = n z i n w ki d y i Gradients in the lower layers are typically extremely small Optimizing multi-layer neural networks takes huge amount of time n dz i n j w ij d y j n dz j n E y j n Slide credit: adapted from Bohyung Han 8

9 New winter and revival in early 2000 s New winter in the early 2000 s due to problems with training NNs Support Vector Machines (SVMs), Random Forests (RF) easy to train, nice theory Revival again by Name change ( neural networks -> deep learning ) + Algorithmic developments unsupervised layer-wise pre-training ReLU, dropout, layer normalizatoin + Big data + GPU computing = Large outperformance on many datasets (Vision: ILSVRC 12) 9

10 Big Data ImageNet Large Scale Visual Recognition Challenge 1000 categories w/ 1000 images per category 1.2 million training images, 50,000 validation, 150,000 testing O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Huang, A. Karpathy, A. Khosla, M. Bernstein, A. C. Berg and L. Fei-Fei. ImageNet Large Scale Visual Recognition Challenge. IJCV,

11 AlexNet Architecture Figure credit: Krizhevsky et al, NIPS million parameters! Various tricks ReLU nonlinearity Overlapping pooling Local response normalization Dropout set hidden neuron output to 0 with probability.5 Data augmentation Training on GPUs Alex Krizhevsky, Ilya Sutskeyer, Geoffrey E. Hinton. ImageNet Classification with Deep Convolutional Neural Networks. NIPS,

12 GPU Computing Big data and big models require lots of computational power GPUs thousands of cores for parallel operations multiple GPUs still took about 5-6 days to train AlexNet on two NVIDIA GTX 580 3GB GPUs (much faster today) 12

13 Architecture overview Image credit: LeCun, Y., Bottou, L., Bengio, Y., Haffner, P. Gradient-based learning applied to document recognition. Proceedings of the IEEE, Components: Convolution layers Pooling/Subsampling layers Fully connected layers, batch normalization layers 13

14 Convolutional Layer xx3 image height 3 depth width 14

15 Convolutional Layer xx3 image 5x5x3 filter 3 Convolve the filter with the image i.e. slide over the image spatially, computing dot products 11 Jan

16 Convolutional Layer xx3 image Filters always extend the full depth of the input volume 5x5x3 filter 3 Convolve the filter with the image i.e. slide over the image spatially, computing dot products 11 Jan

17 Convolutional Layer xx3 image 5x5x3 filter 3 1 number: the result of taking a dot product between the filter and a small 5x5x3 chunk of the image (i.e. 5*5*3 = 75-dimensional dot product 11 Jan + bias)

18 Convolutional Layer xx3 image 5x5x3 filter activation map 28 convolve (slide) over all spatial locations Jan

19 Convolutional Layer consider a second, green filter xx3 image 5x5x3 filter activation maps 28 convolve (slide) over all spatial locations Jan

20 Convolutional Layer For example, if we had 6 5x5 filters, we ll get 6 separate activation maps: activation maps 28 Convolution Layer Jan 2016 We stack these up to get a new image of size 28x28x6! 20

21 Convolutional Layer ConvNet is a sequence of Convolutional Layers, interspersed with activation functions 28 3 CONV, ReLU e.g. 6 5x5x3 filters Jan

22 Convolutional Layer ConvNet is a sequence of Convolutional Layers, interspersed with activation functions CONV, ReLU e.g. 6 5x5x3 filters 28 6 CONV, ReLU e.g. 10 5x5x6 filters CONV, ReLU. 11 Jan

23 The brain/neuron view of CONV Layer xx3 image 5x5x3 filter 3 1 number: the result of taking a dot product between the filter and this part of the image (i.e. 5*5*3 = 75-dimensional dot product) 11 Jan

24 The brain/neuron view of CONV Layer xx3 image 5x5x3 filter 3 It s just a neuron with local connectivity... 1 number: the result of taking a dot product between the 11 Jan 2016 filter and this part of the image (i.e. 5*5*3 = 75-dimensional dot product) 24

25 The brain/neuron view of CONV Layer 28 An activation map is a 28x28 sheet of neuron outputs: 1. Each is connected to a small region in the input 2. All of them share parameters x5 filter -> 5x5 receptive field for each neuron 11 Jan

26 The brain/neuron view of CONV Layer 28 E.g. with 5 filters, CONV layer consists of neurons arranged in a 3D grid (28x28x5) There will be 5 different neurons 11 Jan 2016 all looking at the same region in the input volume 26

27 Pooling Layer - makes the representations smaller and more manageable - operates over each activation map independently: 11 Jan

28 Pooling Layer MAX POOLING x Single depth slice y max pool with 2x2 filters and stride Jan

29 Many more details Data preprocessing Initialization Learning rate Batch normalization layer ReLU, prelu, other activation functions 29

30 AlexNet 11 Jan

31 Convolutional filter visualization [From recent Yann LeCun slides] 11 Jan

32 Convolutional filter visualization [From recent Yann LeCun slides] 11 Jan 2016

33 Convolutional filter visualization one filter => one activation map example 5x5 filters ( total) We call the layer convolutional because it is related to convolution of two signals: 11 Jan 2016 elementwise multiplication and sum of a filter and the signal (image) 33

34 Case Study: VGGNet [Simonyan and Zisserman, 2014] Only 3x3 CONV stride 1, pad 1 and 2x2 MAX POOL stride 2 best model 11.2% top 5 error in ILSVRC > 7.3% top 5 error 11 Jan

35 Case Study: GoogLeNet [Szegedy et al., 2014] Inception module 11 Jan 2016 ILSVRC 2014 winner (6.7% top 5 error) 35

36 Case Study: ResNet [He et al., 2015] 11 Jan

37 Questions? References (& great tutorials):

38 Unsupervised Neural Networks Autoencoders Encode then decode the same input No supervision needed output x hidden layer (Restricted) Boltzman Machines (RBMs) Stochastic networks that can learn representations Restricted version: neurons must form bipartite graph input x H. Bourlard and Y. Kamp Auto-association by multilayer perceptrons and singular value decomposition. Biol. Cybern. 59, 4-5 (September 1988), hidden layer input x Ackley, David H; Hinton Geoffrey E; Sejnowski, Terrence J, "A learning algorithm for Boltzmann machines", Cognitive science, Elsevier, Smolensky, Paul. "Chapter 6: Information Processing in Dynamical Systems: Foundations of Harmony Theory. In Parallel Distributed Processing: Explorations in the Microstructure of Cognition, Volume 1: Foundations,

39 Recurrent Neural Networks Networks with loops The output of a layer is used as input for the same (or lower) layer Can model dynamics (e.g. in space or time) Loops are unrolled Now a standard feed-forward network with many layers Suffers from vanishing gradient problem In theory, can learn long term memory, in practice not (Bengio et al, 1994) Image credit: Chritopher Olah s blog Sepp Hochreiter (1991), Untersuchungen zu dynamischen neuronalen Netzen, Diploma thesis. Institut f. Informatik, Technische Univ. Munich. Advisor: J. Schmidhuber. Y. Bengio, P. Simard, P. Frasconi. Learning Long-Term Dependencies with Gradient Descent is Difficult. In TNN

40 Long Short Term Memory (LSTM) Image credit: Christopher Colah s blog, A type of RNN explicitly designed not to have the vanishing or exploding gradient problem Models long-term dependencies Memory is propagated and accessed by gates Used for speech recognition, language modeling Hochreiter, Sepp; and Schmidhuber, Jürgen. Long Short-Term Memory. Neural Computation,

41 Image Classification Performance Figure from: K. He, X. Zhang, S. Ren, J. Sun. Deep Residual Learning for Image Recognition. arxiv (slides) Image Classification Top-5 Errors (%) Slide credit: Bohyung Han 41

Deep Neural Networks CMSC 422 MARINE CARPUAT. Deep learning slides credit: Vlad Morariu

Deep Neural Networks CMSC 422 MARINE CARPUAT. Deep learning slides credit: Vlad Morariu Deep Neural Networks CMSC 422 MARINE CARPUAT marie@cs.umd.edu Deep learig slides credit: Vlad Morariu Traiig (Deep) Neural Networks Computatioal graphs Improvemets to gradiet descet Stochastic gradiet

More information

Introduction to Convolutional Neural Networks (CNNs)

Introduction to Convolutional Neural Networks (CNNs) Introduction to Convolutional Neural Networks (CNNs) nojunk@snu.ac.kr http://mipal.snu.ac.kr Department of Transdisciplinary Studies Seoul National University, Korea Jan. 2016 Many slides are from Fei-Fei

More information

Classification goals: Make 1 guess about the label (Top-1 error) Make 5 guesses about the label (Top-5 error) No Bounding Box

Classification goals: Make 1 guess about the label (Top-1 error) Make 5 guesses about the label (Top-5 error) No Bounding Box ImageNet Classification with Deep Convolutional Neural Networks Alex Krizhevsky, Ilya Sutskever, Geoffrey E. Hinton Motivation Classification goals: Make 1 guess about the label (Top-1 error) Make 5 guesses

More information

Lecture 17: Neural Networks and Deep Learning

Lecture 17: Neural Networks and Deep Learning UVA CS 6316 / CS 4501-004 Machine Learning Fall 2016 Lecture 17: Neural Networks and Deep Learning Jack Lanchantin Dr. Yanjun Qi 1 Neurons 1-Layer Neural Network Multi-layer Neural Network Loss Functions

More information

arxiv: v1 [cs.cv] 11 May 2015 Abstract

arxiv: v1 [cs.cv] 11 May 2015 Abstract Training Deeper Convolutional Networks with Deep Supervision Liwei Wang Computer Science Dept UIUC lwang97@illinois.edu Chen-Yu Lee ECE Dept UCSD chl260@ucsd.edu Zhuowen Tu CogSci Dept UCSD ztu0@ucsd.edu

More information

Machine Learning for Signal Processing Neural Networks Continue. Instructor: Bhiksha Raj Slides by Najim Dehak 1 Dec 2016

Machine Learning for Signal Processing Neural Networks Continue. Instructor: Bhiksha Raj Slides by Najim Dehak 1 Dec 2016 Machine Learning for Signal Processing Neural Networks Continue Instructor: Bhiksha Raj Slides by Najim Dehak 1 Dec 2016 1 So what are neural networks?? Voice signal N.Net Transcription Image N.Net Text

More information

Jakub Hajic Artificial Intelligence Seminar I

Jakub Hajic Artificial Intelligence Seminar I Jakub Hajic Artificial Intelligence Seminar I. 11. 11. 2014 Outline Key concepts Deep Belief Networks Convolutional Neural Networks A couple of questions Convolution Perceptron Feedforward Neural Network

More information

SGD and Deep Learning

SGD and Deep Learning SGD and Deep Learning Subgradients Lets make the gradient cheating more formal. Recall that the gradient is the slope of the tangent. f(w 1 )+rf(w 1 ) (w w 1 ) Non differentiable case? w 1 Subgradients

More information

CSC321 Lecture 16: ResNets and Attention

CSC321 Lecture 16: ResNets and Attention CSC321 Lecture 16: ResNets and Attention Roger Grosse Roger Grosse CSC321 Lecture 16: ResNets and Attention 1 / 24 Overview Two topics for today: Topic 1: Deep Residual Networks (ResNets) This is the state-of-the

More information

Artificial Neural Networks D B M G. Data Base and Data Mining Group of Politecnico di Torino. Elena Baralis. Politecnico di Torino

Artificial Neural Networks D B M G. Data Base and Data Mining Group of Politecnico di Torino. Elena Baralis. Politecnico di Torino Artificial Neural Networks Data Base and Data Mining Group of Politecnico di Torino Elena Baralis Politecnico di Torino Artificial Neural Networks Inspired to the structure of the human brain Neurons as

More information

DEEP LEARNING AND NEURAL NETWORKS: BACKGROUND AND HISTORY

DEEP LEARNING AND NEURAL NETWORKS: BACKGROUND AND HISTORY DEEP LEARNING AND NEURAL NETWORKS: BACKGROUND AND HISTORY 1 On-line Resources http://neuralnetworksanddeeplearning.com/index.html Online book by Michael Nielsen http://matlabtricks.com/post-5/3x3-convolution-kernelswith-online-demo

More information

Deep Learning: a gentle introduction

Deep Learning: a gentle introduction Deep Learning: a gentle introduction Jamal Atif jamal.atif@dauphine.fr PSL, Université Paris-Dauphine, LAMSADE February 8, 206 Jamal Atif (Université Paris-Dauphine) Deep Learning February 8, 206 / Why

More information

Efficient DNN Neuron Pruning by Minimizing Layer-wise Nonlinear Reconstruction Error

Efficient DNN Neuron Pruning by Minimizing Layer-wise Nonlinear Reconstruction Error Efficient DNN Neuron Pruning by Minimizing Layer-wise Nonlinear Reconstruction Error Chunhui Jiang, Guiying Li, Chao Qian, Ke Tang Anhui Province Key Lab of Big Data Analysis and Application, University

More information

CS 1674: Intro to Computer Vision. Final Review. Prof. Adriana Kovashka University of Pittsburgh December 7, 2016

CS 1674: Intro to Computer Vision. Final Review. Prof. Adriana Kovashka University of Pittsburgh December 7, 2016 CS 1674: Intro to Computer Vision Final Review Prof. Adriana Kovashka University of Pittsburgh December 7, 2016 Final info Format: multiple-choice, true/false, fill in the blank, short answers, apply an

More information

CONVOLUTIONAL neural networks [18] have contributed

CONVOLUTIONAL neural networks [18] have contributed SUBMITTED FOR PUBLICATION, 2016 1 Multi-Residual Networks: Improving the Speed and Accuracy of Residual Networks Masoud Abdi, and Saeid Nahavandi, Senior Member, IEEE arxiv:1609.05672v4 cs.cv 15 Mar 2017

More information

Swapout: Learning an ensemble of deep architectures

Swapout: Learning an ensemble of deep architectures Swapout: Learning an ensemble of deep architectures Saurabh Singh, Derek Hoiem, David Forsyth Department of Computer Science University of Illinois, Urbana-Champaign {ss1, dhoiem, daf}@illinois.edu Abstract

More information

Theories of Deep Learning

Theories of Deep Learning Theories of Deep Learning Lecture 02 Donoho, Monajemi, Papyan Department of Statistics Stanford Oct. 4, 2017 1 / 50 Stats 385 Fall 2017 2 / 50 Stats 285 Fall 2017 3 / 50 Course info Wed 3:00-4:20 PM in

More information

COMPARING FIXED AND ADAPTIVE COMPUTATION TIME FOR RE-

COMPARING FIXED AND ADAPTIVE COMPUTATION TIME FOR RE- Workshop track - ICLR COMPARING FIXED AND ADAPTIVE COMPUTATION TIME FOR RE- CURRENT NEURAL NETWORKS Daniel Fojo, Víctor Campos, Xavier Giró-i-Nieto Universitat Politècnica de Catalunya, Barcelona Supercomputing

More information

Introduction to Deep Neural Networks

Introduction to Deep Neural Networks Introduction to Deep Neural Networks Presenter: Chunyuan Li Pattern Classification and Recognition (ECE 681.01) Duke University April, 2016 Outline 1 Background and Preliminaries Why DNNs? Model: Logistic

More information

Introduction to Convolutional Neural Networks 2018 / 02 / 23

Introduction to Convolutional Neural Networks 2018 / 02 / 23 Introduction to Convolutional Neural Networks 2018 / 02 / 23 Buzzword: CNN Convolutional neural networks (CNN, ConvNet) is a class of deep, feed-forward (not recurrent) artificial neural networks that

More information

Need for Deep Networks Perceptron. Can only model linear functions. Kernel Machines. Non-linearity provided by kernels

Need for Deep Networks Perceptron. Can only model linear functions. Kernel Machines. Non-linearity provided by kernels Need for Deep Networks Perceptron Can only model linear functions Kernel Machines Non-linearity provided by kernels Need to design appropriate kernels (possibly selecting from a set, i.e. kernel learning)

More information

Neural Networks and Introduction to Deep Learning

Neural Networks and Introduction to Deep Learning 1 Neural Networks and Introduction to Deep Learning Neural Networks and Introduction to Deep Learning 1 Introduction Deep learning is a set of learning methods attempting to model data with complex architectures

More information

Deep Residual. Variations

Deep Residual. Variations Deep Residual Network and Its Variations Diyu Yang (Originally prepared by Kaiming He from Microsoft Research) Advantages of Depth Degradation Problem Possible Causes? Vanishing/Exploding Gradients. Overfitting

More information

Convolutional Neural Network Architecture

Convolutional Neural Network Architecture Convolutional Neural Network Architecture Zhisheng Zhong Feburary 2nd, 2018 Zhisheng Zhong Convolutional Neural Network Architecture Feburary 2nd, 2018 1 / 55 Outline 1 Introduction of Convolution Motivation

More information

Feature Design. Feature Design. Feature Design. & Deep Learning

Feature Design. Feature Design. Feature Design. & Deep Learning Artificial Intelligence and its applications Lecture 9 & Deep Learning Professor Daniel Yeung danyeung@ieee.org Dr. Patrick Chan patrickchan@ieee.org South China University of Technology, China Appropriately

More information

UNSUPERVISED LEARNING

UNSUPERVISED LEARNING UNSUPERVISED LEARNING Topics Layer-wise (unsupervised) pre-training Restricted Boltzmann Machines Auto-encoders LAYER-WISE (UNSUPERVISED) PRE-TRAINING Breakthrough in 2006 Layer-wise (unsupervised) pre-training

More information

Deep Learning for Automatic Speech Recognition Part II

Deep Learning for Automatic Speech Recognition Part II Deep Learning for Automatic Speech Recognition Part II Xiaodong Cui IBM T. J. Watson Research Center Yorktown Heights, NY 10598 Fall, 2018 Outline A brief revisit of sampling, pitch/formant and MFCC DNN-HMM

More information

Neural Networks 2. 2 Receptive fields and dealing with image inputs

Neural Networks 2. 2 Receptive fields and dealing with image inputs CS 446 Machine Learning Fall 2016 Oct 04, 2016 Neural Networks 2 Professor: Dan Roth Scribe: C. Cheng, C. Cervantes Overview Convolutional Neural Networks Recurrent Neural Networks 1 Introduction There

More information

Machine Learning for Large-Scale Data Analysis and Decision Making A. Neural Networks Week #6

Machine Learning for Large-Scale Data Analysis and Decision Making A. Neural Networks Week #6 Machine Learning for Large-Scale Data Analysis and Decision Making 80-629-17A Neural Networks Week #6 Today Neural Networks A. Modeling B. Fitting C. Deep neural networks Today s material is (adapted)

More information

Some Applications of Machine Learning to Astronomy. Eduardo Bezerra 20/fev/2018

Some Applications of Machine Learning to Astronomy. Eduardo Bezerra 20/fev/2018 Some Applications of Machine Learning to Astronomy Eduardo Bezerra ebezerra@cefet-rj.br 20/fev/2018 Overview 2 Introduction Definition Neural Nets Applications do Astronomy Ads: Machine Learning Course

More information

Neural Networks. David Rosenberg. July 26, New York University. David Rosenberg (New York University) DS-GA 1003 July 26, / 35

Neural Networks. David Rosenberg. July 26, New York University. David Rosenberg (New York University) DS-GA 1003 July 26, / 35 Neural Networks David Rosenberg New York University July 26, 2017 David Rosenberg (New York University) DS-GA 1003 July 26, 2017 1 / 35 Neural Networks Overview Objectives What are neural networks? How

More information

Machine Learning: Chenhao Tan University of Colorado Boulder LECTURE 16

Machine Learning: Chenhao Tan University of Colorado Boulder LECTURE 16 Machine Learning: Chenhao Tan University of Colorado Boulder LECTURE 16 Slides adapted from Jordan Boyd-Graber, Justin Johnson, Andrej Karpathy, Chris Ketelsen, Fei-Fei Li, Mike Mozer, Michael Nielson

More information

Encoder Based Lifelong Learning - Supplementary materials

Encoder Based Lifelong Learning - Supplementary materials Encoder Based Lifelong Learning - Supplementary materials Amal Rannen Rahaf Aljundi Mathew B. Blaschko Tinne Tuytelaars KU Leuven KU Leuven, ESAT-PSI, IMEC, Belgium firstname.lastname@esat.kuleuven.be

More information

Need for Deep Networks Perceptron. Can only model linear functions. Kernel Machines. Non-linearity provided by kernels

Need for Deep Networks Perceptron. Can only model linear functions. Kernel Machines. Non-linearity provided by kernels Need for Deep Networks Perceptron Can only model linear functions Kernel Machines Non-linearity provided by kernels Need to design appropriate kernels (possibly selecting from a set, i.e. kernel learning)

More information

Outline. CSCI567 Machine Learning (Spring 2019) Outline. Math formulation. Prof. Victor Adamchik. Feb. 12, 2019

Outline. CSCI567 Machine Learning (Spring 2019) Outline. Math formulation. Prof. Victor Adamchik. Feb. 12, 2019 Outline CSCI56 Machine Learning (Spring 29) Review of last lecture Prof. Victor Adamchik 2 Convolutional neural networks U of Southern California Feb. 2, 29 Kernel methods February 2, 29 / 48 February

More information

Neural Architectures for Image, Language, and Speech Processing

Neural Architectures for Image, Language, and Speech Processing Neural Architectures for Image, Language, and Speech Processing Karl Stratos June 26, 2018 1 / 31 Overview Feedforward Networks Need for Specialized Architectures Convolutional Neural Networks (CNNs) Recurrent

More information

Neural networks and optimization

Neural networks and optimization Neural networks and optimization Nicolas Le Roux Criteo 18/05/15 Nicolas Le Roux (Criteo) Neural networks and optimization 18/05/15 1 / 85 1 Introduction 2 Deep networks 3 Optimization 4 Convolutional

More information

ECE G: Special Topics in Signal Processing: Sparsity, Structure, and Inference

ECE G: Special Topics in Signal Processing: Sparsity, Structure, and Inference ECE 18-898G: Special Topics in Signal Processing: Sparsity, Structure, and Inference Neural Networks: A brief touch Yuejie Chi Department of Electrical and Computer Engineering Spring 2018 1/41 Outline

More information

Neural Turing Machine. Author: Alex Graves, Greg Wayne, Ivo Danihelka Presented By: Tinghui Wang (Steve)

Neural Turing Machine. Author: Alex Graves, Greg Wayne, Ivo Danihelka Presented By: Tinghui Wang (Steve) Neural Turing Machine Author: Alex Graves, Greg Wayne, Ivo Danihelka Presented By: Tinghui Wang (Steve) Introduction Neural Turning Machine: Couple a Neural Network with external memory resources The combined

More information

Convolutional Neural Networks. Srikumar Ramalingam

Convolutional Neural Networks. Srikumar Ramalingam Convolutional Neural Networks Srikumar Ramalingam Reference Many of the slides are prepared using the following resources: neuralnetworksanddeeplearning.com (mainly Chapter 6) http://cs231n.github.io/convolutional-networks/

More information

CSE446: Neural Networks Spring Many slides are adapted from Carlos Guestrin and Luke Zettlemoyer

CSE446: Neural Networks Spring Many slides are adapted from Carlos Guestrin and Luke Zettlemoyer CSE446: Neural Networks Spring 2017 Many slides are adapted from Carlos Guestrin and Luke Zettlemoyer Human Neurons Switching time ~ 0.001 second Number of neurons 10 10 Connections per neuron 10 4-5 Scene

More information

Deep Learning (CNNs)

Deep Learning (CNNs) 10-601 Introduction to Machine Learning Machine Learning Department School of Computer Science Carnegie Mellon University Deep Learning (CNNs) Deep Learning Readings: Murphy 28 Bishop - - HTF - - Mitchell

More information

DEEP LEARNING PART ONE - INTRODUCTION CS/CNS/EE MACHINE LEARNING & DATA MINING - LECTURE 7

DEEP LEARNING PART ONE - INTRODUCTION CS/CNS/EE MACHINE LEARNING & DATA MINING - LECTURE 7 DEEP LEARNING PART ONE - INTRODUCTION CS/CNS/EE 155 - MACHINE LEARNING & DATA MINING - LECTURE 7 INTRODUCTION & MOTIVATION data labels 3 y is continuous y is binary or categorical y y x x regression classification

More information

Lecture 7 Convolutional Neural Networks

Lecture 7 Convolutional Neural Networks Lecture 7 Convolutional Neural Networks CMSC 35246: Deep Learning Shubhendu Trivedi & Risi Kondor University of Chicago April 17, 2017 We saw before: ŷ x 1 x 2 x 3 x 4 A series of matrix multiplications:

More information

Demystifying deep learning. Artificial Intelligence Group Department of Computer Science and Technology, University of Cambridge, UK

Demystifying deep learning. Artificial Intelligence Group Department of Computer Science and Technology, University of Cambridge, UK Demystifying deep learning Petar Veličković Artificial Intelligence Group Department of Computer Science and Technology, University of Cambridge, UK London Data Science Summit 20 October 2017 Introduction

More information

ANALYSIS ON GRADIENT PROPAGATION IN BATCH NORMALIZED RESIDUAL NETWORKS

ANALYSIS ON GRADIENT PROPAGATION IN BATCH NORMALIZED RESIDUAL NETWORKS ANALYSIS ON GRADIENT PROPAGATION IN BATCH NORMALIZED RESIDUAL NETWORKS Anonymous authors Paper under double-blind review ABSTRACT We conduct mathematical analysis on the effect of batch normalization (BN)

More information

Deep Learning Basics Lecture 7: Factor Analysis. Princeton University COS 495 Instructor: Yingyu Liang

Deep Learning Basics Lecture 7: Factor Analysis. Princeton University COS 495 Instructor: Yingyu Liang Deep Learning Basics Lecture 7: Factor Analysis Princeton University COS 495 Instructor: Yingyu Liang Supervised v.s. Unsupervised Math formulation for supervised learning Given training data x i, y i

More information

<Special Topics in VLSI> Learning for Deep Neural Networks (Back-propagation)

<Special Topics in VLSI> Learning for Deep Neural Networks (Back-propagation) Learning for Deep Neural Networks (Back-propagation) Outline Summary of Previous Standford Lecture Universal Approximation Theorem Inference vs Training Gradient Descent Back-Propagation

More information

Neural Networks and Deep Learning.

Neural Networks and Deep Learning. Neural Networks and Deep Learning www.cs.wisc.edu/~dpage/cs760/ 1 Goals for the lecture you should understand the following concepts perceptrons the perceptron training rule linear separability hidden

More information

Deep Learning CMSC 422 MARINE CARPUAT. Based on slides by Vlad Morariu

Deep Learning CMSC 422 MARINE CARPUAT. Based on slides by Vlad Morariu Deep Learig CMSC 422 MARINE CARPUAT marie@cs.umd.edu Based o slides by Vlad Morariu feature extractio classificatio Stadard Applicatio of Machie Learig to Computer Visio cat or backgroud features predicted

More information

SHAKE-SHAKE REGULARIZATION OF 3-BRANCH

SHAKE-SHAKE REGULARIZATION OF 3-BRANCH SHAKE-SHAKE REGULARIZATION OF 3-BRANCH RESIDUAL NETWORKS Xavier Gastaldi xgastaldi.mba2011@london.edu ABSTRACT The method introduced in this paper aims at helping computer vision practitioners faced with

More information

Making Deep Learning Understandable for Analyzing Sequential Data about Gene Regulation

Making Deep Learning Understandable for Analyzing Sequential Data about Gene Regulation Making Deep Learning Understandable for Analyzing Sequential Data about Gene Regulation Dr. Yanjun Qi Department of Computer Science University of Virginia Tutorial @ ACM BCB-2018 8/29/18 Yanjun Qi / UVA

More information

Introduction to Neural Networks

Introduction to Neural Networks CUONG TUAN NGUYEN SEIJI HOTTA MASAKI NAKAGAWA Tokyo University of Agriculture and Technology Copyright by Nguyen, Hotta and Nakagawa 1 Pattern classification Which category of an input? Example: Character

More information

Deep learning / Ian Goodfellow, Yoshua Bengio and Aaron Courville. - Cambridge, MA ; London, Spis treści

Deep learning / Ian Goodfellow, Yoshua Bengio and Aaron Courville. - Cambridge, MA ; London, Spis treści Deep learning / Ian Goodfellow, Yoshua Bengio and Aaron Courville. - Cambridge, MA ; London, 2017 Spis treści Website Acknowledgments Notation xiii xv xix 1 Introduction 1 1.1 Who Should Read This Book?

More information

Topics in AI (CPSC 532L): Multimodal Learning with Vision, Language and Sound. Lecture 3: Introduction to Deep Learning (continued)

Topics in AI (CPSC 532L): Multimodal Learning with Vision, Language and Sound. Lecture 3: Introduction to Deep Learning (continued) Topics in AI (CPSC 532L): Multimodal Learning with Vision, Language and Sound Lecture 3: Introduction to Deep Learning (continued) Course Logistics - Update on course registrations - 6 seats left now -

More information

Recurrent Neural Networks (RNN) and Long-Short-Term-Memory (LSTM) Yuan YAO HKUST

Recurrent Neural Networks (RNN) and Long-Short-Term-Memory (LSTM) Yuan YAO HKUST 1 Recurrent Neural Networks (RNN) and Long-Short-Term-Memory (LSTM) Yuan YAO HKUST Summary We have shown: Now First order optimization methods: GD (BP), SGD, Nesterov, Adagrad, ADAM, RMSPROP, etc. Second

More information

CS 229 Project Final Report: Reinforcement Learning for Neural Network Architecture Category : Theory & Reinforcement Learning

CS 229 Project Final Report: Reinforcement Learning for Neural Network Architecture Category : Theory & Reinforcement Learning CS 229 Project Final Report: Reinforcement Learning for Neural Network Architecture Category : Theory & Reinforcement Learning Lei Lei Ruoxuan Xiong December 16, 2017 1 Introduction Deep Neural Network

More information

Convolutional neural networks

Convolutional neural networks 11-1: Convolutional neural networks Prof. J.C. Kao, UCLA Convolutional neural networks Motivation Biological inspiration Convolution operation Convolutional layer Padding and stride CNN architecture 11-2:

More information

Neural Networks. Single-layer neural network. CSE 446: Machine Learning Emily Fox University of Washington March 10, /9/17

Neural Networks. Single-layer neural network. CSE 446: Machine Learning Emily Fox University of Washington March 10, /9/17 3/9/7 Neural Networks Emily Fox University of Washington March 0, 207 Slides adapted from Ali Farhadi (via Carlos Guestrin and Luke Zettlemoyer) Single-layer neural network 3/9/7 Perceptron as a neural

More information

Architecture Multilayer Perceptron (MLP)

Architecture Multilayer Perceptron (MLP) Architecture Multilayer Perceptron (MLP) 1 Output Hidden Input Neurons partitioned into layers; y 1 y 2 one input layer, one output layer, possibly several hidden layers layers numbered from 0; the input

More information

Faster Training of Very Deep Networks Via p-norm Gates

Faster Training of Very Deep Networks Via p-norm Gates Faster Training of Very Deep Networks Via p-norm Gates Trang Pham, Truyen Tran, Dinh Phung, Svetha Venkatesh Center for Pattern Recognition and Data Analytics Deakin University, Geelong Australia Email:

More information

Deep Learning. Jun Zhu

Deep Learning. Jun Zhu [70240413 Statistical Machine Learning, Spring, 2015] Deep Learning Jun Zhu dcszj@mail.tsinghua.edu.cn http://bigml.cs.tsinghua.edu.cn/~jun State Key Lab of Intelligent Technology & Systems Tsinghua University

More information

P-TELU : Parametric Tan Hyperbolic Linear Unit Activation for Deep Neural Networks

P-TELU : Parametric Tan Hyperbolic Linear Unit Activation for Deep Neural Networks P-TELU : Parametric Tan Hyperbolic Linear Unit Activation for Deep Neural Networks Rahul Duggal rahulduggal2608@gmail.com Anubha Gupta anubha@iiitd.ac.in SBILab (http://sbilab.iiitd.edu.in/) Deptt. of

More information

Stochastic Gradient Estimate Variance in Contrastive Divergence and Persistent Contrastive Divergence

Stochastic Gradient Estimate Variance in Contrastive Divergence and Persistent Contrastive Divergence ESANN 0 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning. Bruges (Belgium), 7-9 April 0, idoc.com publ., ISBN 97-7707-. Stochastic Gradient

More information

Layer-wise Relevance Propagation for Neural Networks with Local Renormalization Layers

Layer-wise Relevance Propagation for Neural Networks with Local Renormalization Layers Layer-wise Relevance Propagation for Neural Networks with Local Renormalization Layers Alexander Binder 1, Grégoire Montavon 2, Sebastian Lapuschkin 3, Klaus-Robert Müller 2,4, and Wojciech Samek 3 1 ISTD

More information

Grundlagen der Künstlichen Intelligenz

Grundlagen der Künstlichen Intelligenz Grundlagen der Künstlichen Intelligenz Neural networks Daniel Hennes 21.01.2018 (WS 2017/18) University Stuttgart - IPVS - Machine Learning & Robotics 1 Today Logistic regression Neural networks Perceptron

More information

Lecture 14: Deep Generative Learning

Lecture 14: Deep Generative Learning Generative Modeling CSED703R: Deep Learning for Visual Recognition (2017F) Lecture 14: Deep Generative Learning Density estimation Reconstructing probability density function using samples Bohyung Han

More information

(Feed-Forward) Neural Networks Dr. Hajira Jabeen, Prof. Jens Lehmann

(Feed-Forward) Neural Networks Dr. Hajira Jabeen, Prof. Jens Lehmann (Feed-Forward) Neural Networks 2016-12-06 Dr. Hajira Jabeen, Prof. Jens Lehmann Outline In the previous lectures we have learned about tensors and factorization methods. RESCAL is a bilinear model for

More information

Deep Learning Architectures and Algorithms

Deep Learning Architectures and Algorithms Deep Learning Architectures and Algorithms In-Jung Kim 2016. 12. 2. Agenda Introduction to Deep Learning RBM and Auto-Encoders Convolutional Neural Networks Recurrent Neural Networks Reinforcement Learning

More information

arxiv: v2 [cs.cv] 12 Apr 2016

arxiv: v2 [cs.cv] 12 Apr 2016 arxiv:1603.05027v2 [cs.cv] 12 Apr 2016 Identity Mappings in Deep Residual Networks Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun Microsoft Research Abstract Deep residual networks [1] have emerged

More information

Neural networks and support vector machines

Neural networks and support vector machines Neural netorks and support vector machines Perceptron Input x 1 Weights 1 x 2 x 3... x D 2 3 D Output: sgn( x + b) Can incorporate bias as component of the eight vector by alays including a feature ith

More information

Neural Networks and Deep Learning

Neural Networks and Deep Learning Neural Networks and Deep Learning Professor Ameet Talwalkar November 12, 2015 Professor Ameet Talwalkar Neural Networks and Deep Learning November 12, 2015 1 / 16 Outline 1 Review of last lecture AdaBoost

More information

arxiv: v4 [cs.cv] 6 Sep 2017

arxiv: v4 [cs.cv] 6 Sep 2017 Deep Pyramidal Residual Networks Dongyoon Han EE, KAIST dyhan@kaist.ac.kr Jiwhan Kim EE, KAIST jhkim89@kaist.ac.kr Junmo Kim EE, KAIST junmo.kim@kaist.ac.kr arxiv:1610.02915v4 [cs.cv] 6 Sep 2017 Abstract

More information

CSCI567 Machine Learning (Fall 2018)

CSCI567 Machine Learning (Fall 2018) CSCI567 Machine Learning (Fall 2018) Prof. Haipeng Luo U of Southern California Sep 12, 2018 September 12, 2018 1 / 49 Administration GitHub repos are setup (ask TA Chi Zhang for any issues) HW 1 is due

More information

Long-Short Term Memory and Other Gated RNNs

Long-Short Term Memory and Other Gated RNNs Long-Short Term Memory and Other Gated RNNs Sargur Srihari srihari@buffalo.edu This is part of lecture slides on Deep Learning: http://www.cedar.buffalo.edu/~srihari/cse676 1 Topics in Sequence Modeling

More information

Day 3 Lecture 3. Optimizing deep networks

Day 3 Lecture 3. Optimizing deep networks Day 3 Lecture 3 Optimizing deep networks Convex optimization A function is convex if for all α [0,1]: f(x) Tangent line Examples Quadratics 2-norms Properties Local minimum is global minimum x Gradient

More information

TTIC 31230, Fundamentals of Deep Learning David McAllester, April Vanishing and Exploding Gradients. ReLUs. Xavier Initialization

TTIC 31230, Fundamentals of Deep Learning David McAllester, April Vanishing and Exploding Gradients. ReLUs. Xavier Initialization TTIC 31230, Fundamentals of Deep Learning David McAllester, April 2017 Vanishing and Exploding Gradients ReLUs Xavier Initialization Batch Normalization Highway Architectures: Resnets, LSTMs and GRUs Causes

More information

CS 179: LECTURE 16 MODEL COMPLEXITY, REGULARIZATION, AND CONVOLUTIONAL NETS

CS 179: LECTURE 16 MODEL COMPLEXITY, REGULARIZATION, AND CONVOLUTIONAL NETS CS 179: LECTURE 16 MODEL COMPLEXITY, REGULARIZATION, AND CONVOLUTIONAL NETS LAST TIME Intro to cudnn Deep neural nets using cublas and cudnn TODAY Building a better model for image classification Overfitting

More information

Lecture 35: Optimization and Neural Nets

Lecture 35: Optimization and Neural Nets Lecture 35: Optimization and Neural Nets CS 4670/5670 Sean Bell DeepDream [Google, Inceptionism: Going Deeper into Neural Networks, blog 2015] Aside: CNN vs ConvNet Note: There are many papers that use

More information

arxiv: v3 [cs.cl] 24 Feb 2018

arxiv: v3 [cs.cl] 24 Feb 2018 FACTORIZATION TRICKS FOR LSTM NETWORKS Oleksii Kuchaiev NVIDIA okuchaiev@nvidia.com Boris Ginsburg NVIDIA bginsburg@nvidia.com ABSTRACT arxiv:1703.10722v3 [cs.cl] 24 Feb 2018 We present two simple ways

More information

How to do backpropagation in a brain

How to do backpropagation in a brain How to do backpropagation in a brain Geoffrey Hinton Canadian Institute for Advanced Research & University of Toronto & Google Inc. Prelude I will start with three slides explaining a popular type of deep

More information

Handwritten Indic Character Recognition using Capsule Networks

Handwritten Indic Character Recognition using Capsule Networks Handwritten Indic Character Recognition using Capsule Networks Bodhisatwa Mandal,Suvam Dubey, Swarnendu Ghosh, RiteshSarkhel, Nibaran Das Dept. of CSE, Jadavpur University, Kolkata, 700032, WB, India.

More information

Normalization Techniques in Training of Deep Neural Networks

Normalization Techniques in Training of Deep Neural Networks Normalization Techniques in Training of Deep Neural Networks Lei Huang ( 黄雷 ) State Key Laboratory of Software Development Environment, Beihang University Mail:huanglei@nlsde.buaa.edu.cn August 17 th,

More information

Supervised Deep Learning

Supervised Deep Learning Supervised Deep Learning Joana Frontera-Pons Grigorios Tsagkatakis Dictionary Learning on Manifolds workshop Nice, September 2017 Supervised Learning Data Labels Model Prediction Spiral Exploiting prior

More information

Neural Networks. Learning and Computer Vision Prof. Olga Veksler CS9840. Lecture 10

Neural Networks. Learning and Computer Vision Prof. Olga Veksler CS9840. Lecture 10 CS9840 Learning and Computer Vision Prof. Olga Veksler Lecture 0 Neural Networks Many slides are from Andrew NG, Yann LeCun, Geoffry Hinton, Abin - Roozgard Outline Short Intro Perceptron ( layer NN) Multilayer

More information

Slide credit from Hung-Yi Lee & Richard Socher

Slide credit from Hung-Yi Lee & Richard Socher Slide credit from Hung-Yi Lee & Richard Socher 1 Review Recurrent Neural Network 2 Recurrent Neural Network Idea: condition the neural network on all previous words and tie the weights at each time step

More information

Machine Learning for Computer Vision 8. Neural Networks and Deep Learning. Vladimir Golkov Technical University of Munich Computer Vision Group

Machine Learning for Computer Vision 8. Neural Networks and Deep Learning. Vladimir Golkov Technical University of Munich Computer Vision Group Machine Learning for Computer Vision 8. Neural Networks and Deep Learning Vladimir Golkov Technical University of Munich Computer Vision Group INTRODUCTION Nonlinear Coordinate Transformation http://cs.stanford.edu/people/karpathy/convnetjs/

More information

Identifying QCD transition using Deep Learning

Identifying QCD transition using Deep Learning Identifying QCD transition using Deep Learning Kai Zhou Long-Gang Pang, Nan Su, Hannah Peterson, Horst Stoecker, Xin-Nian Wang Collaborators: arxiv:1612.04262 Outline 2 What is deep learning? Artificial

More information

Machine Learning Lecture 14

Machine Learning Lecture 14 Machine Learning Lecture 14 Tricks of the Trade 07.12.2017 Bastian Leibe RWTH Aachen http://www.vision.rwth-aachen.de leibe@vision.rwth-aachen.de Course Outline Fundamentals Bayes Decision Theory Probability

More information

Machine Learning. Neural Networks. (slides from Domingos, Pardo, others)

Machine Learning. Neural Networks. (slides from Domingos, Pardo, others) Machine Learning Neural Networks (slides from Domingos, Pardo, others) For this week, Reading Chapter 4: Neural Networks (Mitchell, 1997) See Canvas For subsequent weeks: Scaling Learning Algorithms toward

More information

The error-backpropagation algorithm is one of the most important and widely used (and some would say wildly used) learning techniques for neural

The error-backpropagation algorithm is one of the most important and widely used (and some would say wildly used) learning techniques for neural 1 2 The error-backpropagation algorithm is one of the most important and widely used (and some would say wildly used) learning techniques for neural networks. First we will look at the algorithm itself

More information

Deep Recurrent Neural Networks

Deep Recurrent Neural Networks Deep Recurrent Neural Networks Artem Chernodub e-mail: a.chernodub@gmail.com web: http://zzphoto.me ZZ Photo IMMSP NASU 2 / 28 Neuroscience Biological-inspired models Machine Learning p x y = p y x p(x)/p(y)

More information

CS420 Machine Learning, Lecture 4. Neural Networks. Weinan Zhang Shanghai Jiao Tong University

CS420 Machine Learning, Lecture 4. Neural Networks. Weinan Zhang Shanghai Jiao Tong University CS420 Machine Learning, Lecture 4 Neural Networks Weinan Zhang Shanghai Jiao Tong University http://wnzhang.net http://wnzhang.net/teaching/cs420/index.html Breaking News of AI in 2016 AlphaGo wins Lee

More information

Deep Learning. What Is Deep Learning? The Rise of Deep Learning. Long History (in Hind Sight)

Deep Learning. What Is Deep Learning? The Rise of Deep Learning. Long History (in Hind Sight) CSCE 636 Neural Networks Instructor: Yoonsuck Choe Deep Learning What Is Deep Learning? Learning higher level abstractions/representations from data. Motivation: how the brain represents sensory information

More information

Artificial Neural Networks. Introduction to Computational Neuroscience Tambet Matiisen

Artificial Neural Networks. Introduction to Computational Neuroscience Tambet Matiisen Artificial Neural Networks Introduction to Computational Neuroscience Tambet Matiisen 2.04.2018 Artificial neural network NB! Inspired by biology, not based on biology! Applications Automatic speech recognition

More information

Reading Group on Deep Learning Session 2

Reading Group on Deep Learning Session 2 Reading Group on Deep Learning Session 2 Stephane Lathuiliere & Pablo Mesejo 10 June 2016 1/39 Chapter Structure Introduction. 5.1. Feed-forward Network Functions. 5.2. Network Training. 5.3. Error Backpropagation.

More information

Large-Scale Feature Learning with Spike-and-Slab Sparse Coding

Large-Scale Feature Learning with Spike-and-Slab Sparse Coding Large-Scale Feature Learning with Spike-and-Slab Sparse Coding Ian J. Goodfellow, Aaron Courville, Yoshua Bengio ICML 2012 Presented by Xin Yuan January 17, 2013 1 Outline Contributions Spike-and-Slab

More information

Bayesian Networks (Part I)

Bayesian Networks (Part I) 10-601 Introduction to Machine Learning Machine Learning Department School of Computer Science Carnegie Mellon University Bayesian Networks (Part I) Graphical Model Readings: Murphy 10 10.2.1 Bishop 8.1,

More information

CS 6501: Deep Learning for Computer Graphics. Basics of Neural Networks. Connelly Barnes

CS 6501: Deep Learning for Computer Graphics. Basics of Neural Networks. Connelly Barnes CS 6501: Deep Learning for Computer Graphics Basics of Neural Networks Connelly Barnes Overview Simple neural networks Perceptron Feedforward neural networks Multilayer perceptron and properties Autoencoders

More information

Eve: A Gradient Based Optimization Method with Locally and Globally Adaptive Learning Rates

Eve: A Gradient Based Optimization Method with Locally and Globally Adaptive Learning Rates Eve: A Gradient Based Optimization Method with Locally and Globally Adaptive Learning Rates Hiroaki Hayashi 1,* Jayanth Koushik 1,* Graham Neubig 1 arxiv:1611.01505v3 [cs.lg] 11 Jun 2018 Abstract Adaptive

More information