W13D2: Displacement Current, Maxwell s Equations, Wave Equations. Today s Reading Course Notes: Sections

Size: px
Start display at page:

Download "W13D2: Displacement Current, Maxwell s Equations, Wave Equations. Today s Reading Course Notes: Sections"

Transcription

1 W13D2: Displacement Current, Maxwell s Equations, Wave Equations Today s Reading Course Notes: ections

2 Announcements Math Review Tuesday May 6 from 9 pm-11 pm in Pset 10 due May 6 at 9 pm 2

3 Outline Displacement Current Poynting Vector and Energy Flow Maxwell s Equations 3

4 Maxwell s Equations E ˆn da = 1 ρ dv V (Gauss's Law) B ˆn da = 0 (Magnetic Gauss's Law) E d s B ˆn da = d dt C B d s = µ 0 J ˆn da C (Faraday's Law) (Ampere's Law quasi - static) Is there something missing? 4

5 Maxwell s Equations One Last Modification: Displacement Current 5

6 Ampere s Law: Capacitor Consider a charging capacitor: Use Ampere s Law to calculate the magnetic field just above the top plate B d s I enc = = µ 0 I enc J ˆn da 1) urface 1 : I enc = I 2) urface 2 : I enc = 0 What s Going On? 6

7 Displacement Current We don t have current between the capacitor plates but we do have a changing E field. Can we make a current out of that? E = Q A Q = EA = Φ E dq dt = dφ E dt I dis This is called the displacement current. It is not a flow of charge but proportional to changing electric flux 7

8 Displacement Current: I dis = d dt E ˆn da = dφ E dt If surface 2 encloses all of the electric flux due to the charged plate then I dis = I 8

9 Maxwell-Ampere s Law B d s = µ 0 J ˆnda C + µ 0 d = µ 0 (I enc + I dis ) dt E ˆnda flow of electric charge I enc = J ˆnda changing electric flux I dis = d dt E ˆnda 9

10 Concept Question: Capacitor If instead of integrating the magnetic field around the pictured Amperian circular loop of radius r we were to integrate around an Amperian loop of the same radius R as the plates (b) then the integral of the magnetic field around the closed path would be 1. the same. 2. larger. 3. smaller. 10

11 ign Conventions: Right Hand Rule B d s = µ 0 J ˆnda C + µ 0 d dt E ˆnda Integration direction clockwise for line integral requires that unit normal points into page for surface integral. Current positive into the page. Negative out of page. Electric flux positive into page, negative out of page. 11

12 ign Conventions: Right Hand Rule B d s = µ 0 J ˆnda C + µ 0 d dt E ˆnda Integration direction counter clockwise for line integral requires that unit normal points out page for surface integral. Current positive out of page. Negative into page. Electric flux positive out of page, negative into page. 12

13 Concept Question: Capacitor Consider a circular capacitor, with an Amperian circular loop (radius r) in the plane midway between the plates. When the capacitor is charging, the line integral of the magnetic field around the circle (in direction shown) is 1. Zero (No current through loop) 2. Positive 3. Negative 4. Can t tell (need to know direction of E) 13

14 Concept Question: Capacitor The figures above shows a side and top view of a capacitor with charge Q and electric and magnetic fields E and B at time t. At this time the charge Q is: 1. Increasing in time 2. Constant in time. 3. Decreasing in time. 14

15 Group Problem: Capacitor A circular capacitor of spacing d and radius R is in a circuit carrying the steady current i shown. At time t = 0, the plates are uncharged 1. Find the electric field E(t) at P vs. time t (mag. & dir.) 2. Find the magnetic field B(t) at P 15

16 Energy Flow 16

17 Poynting Vector Power per unit area: Poynting vector = E B µ 0 Power through a surface P = open surface ˆn da 17

18 Energy Flow: Capacitor = E B µ 0 What is the magnetic field? 18

19 Concept Question: Capacitor The figures above show a side and top view of a capacitor with charge Q and electric and magnetic fields E and B at time t. At this time the energy stored in the electric field is: 1. Increasing in time. 2. Constant in time. 3. Decreasing in time. 19

20 Energy Flow: Capacitor = ( E B) / µ 0 = (E ˆk B ˆθ) / µ 0 = (EB / µ 0 ) ˆr P = ˆn out da = (EB / µ 0 )2π Rh P = = (EB / µ 0 ) ˆr ˆr da cylindrical shell EB µ 0 = E µ 0 µ 0 2 2π Rh de dt R = E de dt π R2 h = d dt 1 2 E 2 π R2 h = du E dt (Volume) cylindrical body 2π Rh de B2π R = µ 0 dt π R2 B = µ 0 2 de dt R! 20

21 Maxwell s Equations E ˆn da = 1 ε ρ dv 0 V (Gauss's Law) B ˆn da = 0 (Magnetic Gauss's Law) C E d s = d dt B ˆn da B d s = µ 0 J ˆn da C + µ 0 d dt E ˆn da (Faraday's Law) (Maxwell - Ampere's Law) 21

22 Electromagnetism Review E fields are associated with: (1) electric charges (Gauss s Law ) (2) time changing B fields (Faraday s Law) B fields are associated with (3a) moving electric charges (Ampere-Maxwell Law) (3b) time changing E fields (Maxwell s Addition (Ampere- Maxwell Law) Conservation of magnetic flux (4) No magnetic charge (Gauss s Law for Magnetism) 22

23 Electromagnetism Review Conservation of charge: closed surface J d A = d dt volume enclosed ρ dv E and B fields exert forces on (moving) electric charges: F q = q( E + v B) Energy stored in electric and magnetic fields U E = u E dv = all space all space 2 E 2 dv U B = u B dv = all space 1 B 2 dv 2µ all space 0 23

24 Maxwell s Equations in Vacua 24

25 Maxwell s Equations E d A = Q 0 in (Gauss's Law) B da = 0 (Magnetic Gauss's Law) C C E d s B d s = dφ B dt 0 dφ = µ 0 I enc + µ 0 ε E 0 dt (Faraday's Law) (Ampere - Maxwell Law) What about free space (no charge or current)? 25

26 26

27 Maxwell: First Colour Photograph James Clerk Maxwell is sometimes credited as being the father of additive color. He had the photographer Thomas utton photograph a tartan ribbon on black-andwhite film three times, first with a red, then green, then blue color filter over the lens. The three black-and-white images were developed and then projected onto a screen with three different projectors, each equipped with the corresponding red, green, or blue color filter used to take its image. When brought into alignment, the three images (a black-and-red image, a black-and-green image and a black-and-blue image) formed a full color image, thus demonstrating the principles of additive color. 27

28 How Do Maxwell s Equations Lead to EM Waves? 28

29 Wave Equation tart with Ampere-Maxwell Eq and closed oriented loop B d s E ˆn da C = µ 0 d dt 29

30 Wave Equation tart with Ampere-Maxwell Eq: Apply it to red rectangle: B d s = B z (x,t)l B z (x + Δx,t)l C d µ 0 dt E ˆn da = µ 0 l Δx E (x + Δx / 2,t) y t C B d s = µ 0 d dt E ˆn da B z (x + Δx,t) B z (x,t) Δx = µ 0 E y (x + Δx / 2,t) t o in the limit that dx is very small: B z x = µ 0 E y t 30

31 Group Problem: Wave Equation Use Faraday s Law E d s = d dt B ˆn da C and apply it to red rectangle to find the partial differential equation in order to find a relationship between E y / x and B z / t 31

32 Group Problem: Wave Equation ol. Use Faraday s Law: and apply it to red rectangle: C E d s d dt = E y (x + Δx,t)l E y (x,t)l B ˆn da = ldx B z t C E d s = d dt B ˆn da E y (x + dx,t) E y (x,t) dx = B z t o in the limit that dx is very small: E y x = B z t 32

33 1D Wave Equation for Electric Field E y x = B z t (1) B z x = µ 0 E y t (2) Take x-derivative of Eq.(1) and use the Eq. (2) 2 E y x 2 = x E y x = x B z t = t B z x = µ 0 2 E y t 2 2 E y x 2 = µ 0 2 E y t 2 33

34 1D Wave Equation for E 2 E y x 2 2 E = µ ε y 0 0 t 2 This is an equation for a wave. Let E y = f (x vt) 2 E y x 2 2 E y t 2 = f ''( x vt) ( ) = v 2 f '' x vt v = 1 µ 0 34

35 Definition of Constants and Wave peed Recall exact definitions of c m s 1 µ 0 4π 10 7 N s 2 C 2 The permittivity of free space is exactly defined by 1 c 2 µ C 2 m -2 N 1 v = c = 1 µ 0 in vacua 35

36 Group Problem: 1D Wave Eq. for B B z t = E y x B z x = µ 0 E y t Take appropriate derivatives of the above equations and show that 2 B z x 2 = 1 c 2 2 B z t 2 36

37 Wave Equations: ummary Both electric & magnetic fields travel like waves: 2 E y x 2 = 1 2 E y c 2 t 2 2 B z x 2 = 1 c 2 2 B z t 2 with speed c = 1 µ 0 But there are strict relations between them: B z t = E y x B z x = µ 0 E y t 37

38 Electromagnetic Waves 38

39 Electromagnetic Radiation: Plane Waves 39

W15D1: Poynting Vector and Energy Flow. Today s Readings: Course Notes: Sections 13.6,

W15D1: Poynting Vector and Energy Flow. Today s Readings: Course Notes: Sections 13.6, W15D1: Poynting Vector and Energy Flow Today s Readings: Course Notes: Sections 13.6, 13.12.3-13.12.4 1 Announcements Final Math Review Week 15 Tues from 9-11 pm in 32-082 Final Exam Monday Morning May

More information

Poynting Vector and Energy Flow W14D1

Poynting Vector and Energy Flow W14D1 Poynting Vector and Energy Flow W14D1 1 Announcements Week 14 Prepset due online Friday 8:30 am PS 11 due Week 14 Friday at 9 pm in boxes outside 26-152 Sunday Tutoring 1-5 pm in 26-152 2 Outline Poynting

More information

Maxwell s Equations and Electromagnetic Waves W13D2

Maxwell s Equations and Electromagnetic Waves W13D2 Maxwell s Equations and Electromagnetic Waves W13D2 1 Announcements Week 13 Prepset due online Friday 8:30 am Sunday Tutoring 1-5 pm in 26-152 PS 10 due Week 14 Friday at 9 pm in boxes outside 26-152 2

More information

Problem Solving 9: Displacement Current, Poynting Vector and Energy Flow

Problem Solving 9: Displacement Current, Poynting Vector and Energy Flow MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Physics Problem Solving 9: Displacement Current, Poynting Vector and Energy Flow Section Table and Group Names Hand in one copy per group at the end

More information

Yell if you have any questions

Yell if you have any questions Class 36: Outline Hour 1: Concept Review / Overview PRS Questions Possible Exam Questions Hour : Sample Exam Yell if you have any questions P36-1 Before Starting All of your grades should now be posted

More information

Yell if you have any questions

Yell if you have any questions Class 36: Outline Hour 1: Concept Review / Overview PRS Questions Possible Exam Questions Hour : Sample Exam Yell if you have any questions P36-1 efore Starting All of your grades should now be posted

More information

Lecture 36: WED 18 NOV CH32: Maxwell s Equations I

Lecture 36: WED 18 NOV CH32: Maxwell s Equations I Physics 2113 Jonathan Dowling Lecture 36: WED 18 NOV H32: Maxwell s Equations I James lerk Maxwell (1831-1879) Maxwell I: Gauss Law for E-Fields: charges produce electric fields, field lines start and

More information

Maxwell Equations: Electromagnetic Waves

Maxwell Equations: Electromagnetic Waves Maxwell Equations: Electromagnetic Waves Maxwell s Equations contain the wave equation The velocity of electromagnetic waves: c = 2.99792458 x 10 8 m/s The relationship between E and B in an EM wave Energy

More information

Lecture 22 Chapter 31 Maxwell s equations

Lecture 22 Chapter 31 Maxwell s equations Lecture 22 Chapter 31 Maxwell s equations Finally, I see the goal, the summit of this Everest Today we are going to discuss: Chapter 31: Section 31.2-4 Let s revisit Ampere s Law a straight wire with current

More information

Yell if you have any questions

Yell if you have any questions Class 31: Outline Hour 1: Concept Review / Overview PRS Questions possible exam questions Hour : Sample Exam Yell if you have any questions P31 1 Exam 3 Topics Faraday s Law Self Inductance Energy Stored

More information

Maxwell s Equations & Electromagnetic Waves. The Equations So Far...

Maxwell s Equations & Electromagnetic Waves. The Equations So Far... Maxwell s Equations & Electromagnetic Waves Maxwell s equations contain the wave equation Velocity of electromagnetic waves c = 2.99792458 x 1 8 m/s Relationship between E and B in an EM wave Energy in

More information

Problem Solving 6: Ampere s Law and Faraday s Law. Part One: Ampere s Law

Problem Solving 6: Ampere s Law and Faraday s Law. Part One: Ampere s Law MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Physics: 8.02 Problem Solving 6: Ampere s Law and Faraday s Law Section Table Names Hand in one copy per group at the end of the Friday Problem Solving

More information

Exam 3 Topics. Displacement Current Poynting Vector. Faraday s Law Self Inductance. Circuits. Energy Stored in Inductor/Magnetic Field

Exam 3 Topics. Displacement Current Poynting Vector. Faraday s Law Self Inductance. Circuits. Energy Stored in Inductor/Magnetic Field Exam 3 Topics Faraday s Law Self Inductance Energy Stored in Inductor/Magnetic Field Circuits LR Circuits Undriven (R)LC Circuits Driven RLC Circuits Displacement Current Poynting Vector NO: B Materials,

More information

Inductors Maxwell s equations

Inductors Maxwell s equations Lecture 19 Chapter 34 Physics II Inductors Maxwell s equations Course website: http://faculty.uml.edu/andriy_danylov/teaching/physicsii Inductors Inductors (solenoids) store potential energy in a form

More information

MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Physics: Final Exam Review Session Problems Solutions

MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Physics: Final Exam Review Session Problems Solutions Department of Physics: 8 Problem 1: Spherical Capacitor 8 Final Exam Review Session Problems Solutions A capacitor consists of two concentric spherical shells The outer radius of the inner shell is a =

More information

PES 1120 Spring 2014, Spendier Lecture 38/Page 1

PES 1120 Spring 2014, Spendier Lecture 38/Page 1 PES 1120 Spring 2014, Spendier Lecture 38/Page 1 Today: Start last chapter 32 - Maxwell s Equations James Clerk Maxwell (1831-1879) Scottish mathematical physicist. He united all observations, experiments

More information

EMF Notes 11; Maxwell s Equations. MAXWELL S EQUATIONS Maxwell s four equations

EMF Notes 11; Maxwell s Equations. MAXWELL S EQUATIONS Maxwell s four equations MAXWELL S EQUATONS Maxwell s four equations n the 870 s, James Clerk Maxwell showed that four equations constitute a complete description of the electric and magnetic fields, or THE ELECTROMAGNETC FELD

More information

Lecture 36: WED 19 NOV CH32: Maxwell s Equations II

Lecture 36: WED 19 NOV CH32: Maxwell s Equations II Physics 2113 Jonathan Dowling Lecture 36: WED 19 NOV CH32: Maxwell s Equations II James Clerk Maxwell (1831-1879) Maxwell s Displacement Current B E B If we are charging a capacitor, there is a current

More information

Class 30: Outline. Hour 1: Traveling & Standing Waves. Hour 2: Electromagnetic (EM) Waves P30-

Class 30: Outline. Hour 1: Traveling & Standing Waves. Hour 2: Electromagnetic (EM) Waves P30- Class 30: Outline Hour 1: Traveling & Standing Waves Hour : Electromagnetic (EM) Waves P30-1 Last Time: Traveling Waves P30- Amplitude (y 0 ) Traveling Sine Wave Now consider f(x) = y = y 0 sin(kx): π

More information

Lecture 13.2 :! Inductors

Lecture 13.2 :! Inductors Lecture 13.2 :! Inductors Lecture Outline:! Induced Fields! Inductors! LC Circuits! LR Circuits!! Textbook Reading:! Ch. 33.6-33.10 April 9, 2015 1 Announcements! HW #10 due on Tuesday, April 14, at 9am.!

More information

MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Physics Spring 2014 Final Exam Equation Sheet. B( r) = µ o 4π

MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Physics Spring 2014 Final Exam Equation Sheet. B( r) = µ o 4π MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Physics 8.02 Spring 2014 Final Exam Equation Sheet Force Law: F q = q( E ext + v q B ext ) Poynting Vector: S = ( E B) / µ 0 Force on Current Carrying

More information

Chapter 31 Maxwell s Equations and Electromagnetic Waves. Copyright 2009 Pearson Education, Inc.

Chapter 31 Maxwell s Equations and Electromagnetic Waves. Copyright 2009 Pearson Education, Inc. Chapter 31 Maxwell s Equations and Electromagnetic Waves Units of Chapter 31 Changing Electric Fields Produce Magnetic Fields; Ampère s Law and Displacement Current Gauss s Law for Magnetism Maxwell s

More information

Physics 208, Spring 2016 Exam #3

Physics 208, Spring 2016 Exam #3 Physics 208, Spring 206 Exam #3 A Name (Last, First): ID #: Section #: You have 75 minutes to complete the exam. Formulae are provided on an attached sheet. You may NOT use any other formula sheet. You

More information

Questions A hair dryer is rated as 1200 W, 120 V. Its effective internal resistance is (A) 0.1 Ω (B) 10 Ω (C) 12Ω (D) 120 Ω (E) 1440 Ω

Questions A hair dryer is rated as 1200 W, 120 V. Its effective internal resistance is (A) 0.1 Ω (B) 10 Ω (C) 12Ω (D) 120 Ω (E) 1440 Ω Questions 4-41 36. Three 1/ µf capacitors are connected in series as shown in the diagram above. The capacitance of the combination is (A).1 µf (B) 1 µf (C) /3 µf (D) ½ µf (E) 1/6 µf 37. A hair dryer is

More information

Electromagnetic Waves

Electromagnetic Waves Lecture 20 Chapter 34 Physics II Electromagnetic Waves Course website: http://faculty.uml.edu/andriy_danylov/teaching/physicsii Let s finish climbing our EM mountain. Maxwell s equations Let s revisit

More information

Ampere s Law. Outline. Objectives. BEE-Lecture Notes Anurag Srivastava 1

Ampere s Law. Outline. Objectives. BEE-Lecture Notes Anurag Srivastava 1 Outline Introduce as an analogy to Gauss Law. Define. Applications of. Objectives Recognise to be analogous to Gauss Law. Recognise similar concepts: (1) draw an imaginary shape enclosing the current carrying

More information

PHYS 1444 Section 004 Lecture #22

PHYS 1444 Section 004 Lecture #22 PHYS 1444 Section 004 Lecture #22 Monday, April 23, 2012 Dr. Extension of Ampere s Law Gauss Law of Magnetism Maxwell s Equations Production of Electromagnetic Waves Today s homework is #13, due 10pm,

More information

Electromagnetism Physics 15b

Electromagnetism Physics 15b Electromagnetism Physics 15b Lecture #18 Maxwell s Equations Electromagnetic Waves Purcell 9.1 9.4 What We Did Last Time Impedance of R,, and L Z R = V R = R Z I = V = 1 Z R I iω L = V L = iωl I L Generally

More information

Quiz 4 (Discussion Session) Phys 1302W.400 Spring 2018

Quiz 4 (Discussion Session) Phys 1302W.400 Spring 2018 Quiz 4 (Discussion ession) Phys 1302W.400 pring 2018 This group quiz consists of one problem that, together with the individual problems on Friday, will determine your grade for quiz 4. For the group problem,

More information

Electromagnetic Theory PHYS 402. Electrodynamics. Ohm s law Electromotive Force Electromagnetic Induction Maxwell s Equations

Electromagnetic Theory PHYS 402. Electrodynamics. Ohm s law Electromotive Force Electromagnetic Induction Maxwell s Equations Electromagnetic Theory PHYS 4 Electrodynamics Ohm s law Electromotive Force Electromagnetic Induction Maxwell s Equations 1 7.1.1 Ohms Law For the EM force Usually v is small so J = J = σ Current density

More information

1 Maxwell s Equations

1 Maxwell s Equations PHYS 280 Lecture problems outline Spring 2015 Electricity and Magnetism We previously hinted a links between electricity and magnetism, finding that one can induce electric fields by changing the flux

More information

Maxwell s equations. Kyoto. James Clerk Maxwell. Physics 122. James Clerk Maxwell ( ) Unification of electrical and magnetic interactions

Maxwell s equations. Kyoto. James Clerk Maxwell. Physics 122. James Clerk Maxwell ( ) Unification of electrical and magnetic interactions Maxwell s equations Physics /5/ Lecture XXIV Kyoto /5/ Lecture XXIV James Clerk Maxwell James Clerk Maxwell (83 879) Unification of electrical and magnetic interactions /5/ Lecture XXIV 3 Φ = da = Q ε

More information

Maxwell s equations and EM waves. From previous Lecture Time dependent fields and Faraday s Law

Maxwell s equations and EM waves. From previous Lecture Time dependent fields and Faraday s Law Maxwell s equations and EM waves This Lecture More on Motional EMF and Faraday s law Displacement currents Maxwell s equations EM Waves From previous Lecture Time dependent fields and Faraday s Law 1 Radar

More information

Worked Examples Set 2

Worked Examples Set 2 Worked Examples Set 2 Q.1. Application of Maxwell s eqns. [Griffiths Problem 7.42] In a perfect conductor the conductivity σ is infinite, so from Ohm s law J = σe, E = 0. Any net charge must be on the

More information

Motional Electromotive Force

Motional Electromotive Force Motional Electromotive Force The charges inside the moving conductive rod feel the Lorentz force The charges drift toward the point a of the rod The accumulating excess charges at point a create an electric

More information

Unit-1 Electrostatics-1

Unit-1 Electrostatics-1 1. Describe about Co-ordinate Systems. Co-ordinate Systems Unit-1 Electrostatics-1 In order to describe the spatial variations of the quantities, we require using appropriate coordinate system. A point

More information

Problem Solving: Faraday s Law & Inductance. Faraday s Law

Problem Solving: Faraday s Law & Inductance. Faraday s Law MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Physics: 8.02 Problem Solving: Faraday s Law & Inductance Section Table Names Faraday s Law In Chapter 10 of the 8.02 Course Notes, we have seen that

More information

Part IB Electromagnetism

Part IB Electromagnetism Part IB Electromagnetism Theorems Based on lectures by D. Tong Notes taken by Dexter Chua Lent 2015 These notes are not endorsed by the lecturers, and I have modified them (often significantly) after lectures.

More information

ECE 3209 Electromagnetic Fields Final Exam Example. University of Virginia Solutions

ECE 3209 Electromagnetic Fields Final Exam Example. University of Virginia Solutions ECE 3209 Electromagnetic Fields Final Exam Example University of Virginia Solutions (print name above) This exam is closed book and closed notes. Please perform all work on the exam sheets in a neat and

More information

Magnetic Flux. Conference 8. Physics 102 General Physics II

Magnetic Flux. Conference 8. Physics 102 General Physics II Physics 102 Conference 8 Magnetic Flux Conference 8 Physics 102 General Physics II Monday, March 24th, 2014 8.1 Quiz Problem 8.1 Suppose we want to set up an EMF of 12 Volts in a circular loop of wire

More information

MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Physics Spring 2013 Exam 3 Equation Sheet. closed fixed path. ! = I ind.

MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Physics Spring 2013 Exam 3 Equation Sheet. closed fixed path. ! = I ind. MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Physics 8.0 Spring 013 Exam 3 Equation Sheet Force Law: F q = q( E ext + v q B ext ) Force on Current Carrying Wire: F = Id s " B # wire ext Magnetic

More information

Slide 1 / 24. Electromagnetic Induction 2011 by Bryan Pflueger

Slide 1 / 24. Electromagnetic Induction 2011 by Bryan Pflueger Slide 1 / 24 Electromagnetic Induction 2011 by Bryan Pflueger Slide 2 / 24 Induced Currents If we have a galvanometer attached to a coil of wire we can induce a current simply by changing the magnetic

More information

INTRODUCTION ELECTRODYNAMICS BEFORE MAXWELL MAXWELL S DISPLACEMENT CURRENT. Introduction Z B S. E l = Electrodynamics before Maxwell

INTRODUCTION ELECTRODYNAMICS BEFORE MAXWELL MAXWELL S DISPLACEMENT CURRENT. Introduction Z B S. E l = Electrodynamics before Maxwell Chapter 14 MAXWELL S EQUATONS ntroduction Electrodynamics before Maxwell Maxwell s displacement current Maxwell s equations: General Maxwell s equations in vacuum The mathematics of waves Summary NTRODUCTON

More information

Chapter 7. Electrodynamics

Chapter 7. Electrodynamics Chapter 7. Electrodynamics 7.3 Maxwell's Equations 7.3.1 Electrodynamics Before Maxwell So far, in the electromagnetic theory But, there is a fatal inconsistency (Divergence of curl = 0) ( = 0 ) It s OK.

More information

where the last equality follows from the divergence theorem. Now since we did this for an arbitrary volume τ, it must hold locally:

where the last equality follows from the divergence theorem. Now since we did this for an arbitrary volume τ, it must hold locally: 8 Electrodynamics Read: Boas Ch. 6, particularly sec. 10 and 11. 8.1 Maxwell equations Some of you may have seen Maxwell s equations on t-shirts or encountered them briefly in electromagnetism courses.

More information

E or B? It Depends on Your Perspective

E or B? It Depends on Your Perspective E or B? It Depends on Your Perspective Alec sees a moving charge, and he knows that this creates a magnetic field. From Brittney s perspective, the charge is at rest, so the magnetic field is zero. Is

More information

Lecture 14.1 :! Electromagnetic Fields

Lecture 14.1 :! Electromagnetic Fields Lecture 14.1 :! Electromagnetic Fields Lecture Outline:! LR Circuits! E & B Transformations! The Displacement Current!! Textbook Reading:! Ch. 33.10-34.3 April 14, 2015 1 Announcements Leo Anthony Soderberg

More information

Intermission Page 343, Griffith

Intermission Page 343, Griffith Intermission Page 343, Griffith Chapter 8. Conservation Laws (Page 346, Griffith) Lecture : Electromagnetic Power Flow Flow of Electromagnetic Power Electromagnetic waves transport throughout space the

More information

ELECTROMAGNETIC FIELD

ELECTROMAGNETIC FIELD UNIT-III INTRODUCTION: In our study of static fields so far, we have observed that static electric fields are produced by electric charges, static magnetic fields are produced by charges in motion or by

More information

Where k = 1. The electric field produced by a point charge is given by

Where k = 1. The electric field produced by a point charge is given by Ch 21 review: 1. Electric charge: Electric charge is a property of a matter. There are two kinds of charges, positive and negative. Charges of the same sign repel each other. Charges of opposite sign attract.

More information

Chapter 8. Conservation Laws. 8.3 Magnetic Forces Do No Work

Chapter 8. Conservation Laws. 8.3 Magnetic Forces Do No Work Chapter 8. Conservation Laws 8.3 Magnetic Forces Do No Work 8.2 Momentum of EM fields 8.2.1 Newton's Third Law in Electrodynamics Consider two charges, q 1 and q 2, moving with speeds v 1 and v 2 magnetic

More information

Physics 3323, Fall 2014 Problem Set 12 due Nov 21, 2014

Physics 3323, Fall 2014 Problem Set 12 due Nov 21, 2014 Physics 333, Fall 014 Problem Set 1 due Nov 1, 014 Reading: Griffiths Ch. 9.1 9.3.3 1. Square loops Griffiths 7.3 (formerly 7.1). A square loop of wire, of side a lies midway between two long wires, 3a

More information

Ch 30 - Sources of Magnetic Field

Ch 30 - Sources of Magnetic Field Ch 30 - Sources of Magnetic Field Currents produce Magnetism? 1820, Hans Christian Oersted: moving charges produce a magnetic field. The direction of the field is determined using a RHR. Oersted (1820)

More information

UNIT-III Maxwell's equations (Time varying fields)

UNIT-III Maxwell's equations (Time varying fields) UNIT-III Maxwell's equations (Time varying fields) Faraday s law, transformer emf &inconsistency of ampere s law Displacement current density Maxwell s equations in final form Maxwell s equations in word

More information

Exam 2 Fall 2014

Exam 2 Fall 2014 1 95.144 Exam 2 Fall 2014 Section instructor Section number Last/First name Last 3 Digits of Student ID Number: Show all work. Show all formulas used for each problem prior to substitution of numbers.

More information

Physics Lecture 40: FRI3 DEC

Physics Lecture 40: FRI3 DEC Physics 3 Physics 3 Lecture 4: FRI3 DEC Review of concepts for the final exam Electric Fields Electric field E at some point in space is defined as the force divided by the electric charge. Force on charge

More information

Basics of Electromagnetics Maxwell s Equations (Part - I)

Basics of Electromagnetics Maxwell s Equations (Part - I) Basics of Electromagnetics Maxwell s Equations (Part - I) Soln. 1. C A. dl = C. d S [GATE 1994: 1 Mark] A. dl = A. da using Stoke s Theorem = S A. ds 2. The electric field strength at distant point, P,

More information

CHAPTER 32: ELECTROMAGNETIC WAVES

CHAPTER 32: ELECTROMAGNETIC WAVES CHAPTER 32: ELECTROMAGNETIC WAVES For those of you who are interested, below are the differential, or point, form of the four Maxwell s equations we studied this semester. The version of Maxwell s equations

More information

Last Homework. Reading: Chap. 33 and Chap. 33. Suggested exercises: 33.1, 33.3, 33.5, 33.7, 33.9, 33.11, 33.13, 33.15,

Last Homework. Reading: Chap. 33 and Chap. 33. Suggested exercises: 33.1, 33.3, 33.5, 33.7, 33.9, 33.11, 33.13, 33.15, Chapter 33. Electromagnetic Induction Electromagnetic induction is the scientific principle that underlies many modern technologies, from the generation of electricity to communications and data storage.

More information

Physics 182. Assignment 4

Physics 182. Assignment 4 Physics 182 Assignment 4 1. A dipole (electric or magnetic) in a non-uniform field will in general experience a net force. The electric case was the subject of a problem on the midterm exam; here we examine

More information

University Physics (Prof. David Flory) Chapt_31 Tuesday, July 31, 2007

University Physics (Prof. David Flory) Chapt_31 Tuesday, July 31, 2007 Name: Date: 1. Suppose you are looking into one end of a long cylindrical tube in which there is a uniform electric field, pointing away from you. If the magnitude of the field is decreasing with time

More information

Physics 202, Lecture 13. Today s Topics. Magnetic Forces: Hall Effect (Ch. 27.8)

Physics 202, Lecture 13. Today s Topics. Magnetic Forces: Hall Effect (Ch. 27.8) Physics 202, Lecture 13 Today s Topics Magnetic Forces: Hall Effect (Ch. 27.8) Sources of the Magnetic Field (Ch. 28) B field of infinite wire Force between parallel wires Biot-Savart Law Examples: ring,

More information

While the Gauss law forms for the static electric and steady magnetic field equations

While the Gauss law forms for the static electric and steady magnetic field equations Unit 2 Time-Varying Fields and Maxwell s Equations While the Gauss law forms for the static electric and steady magnetic field equations remain essentially unchanged for the case of time-varying fields,

More information

Chapter 21: Gauss law Tuesday September 13 th. Gauss law and conductors Electrostatic potential energy (more likely on Thu.)

Chapter 21: Gauss law Tuesday September 13 th. Gauss law and conductors Electrostatic potential energy (more likely on Thu.) Chapter 21: Gauss law Tuesday September 13 th LABS START THIS WEEK Quick review of Gauss law The flux of a vector field The shell theorem Gauss law for other symmetries A uniformly charged sheet A uniformly

More information

Physics Jonathan Dowling. Final Exam Review

Physics Jonathan Dowling. Final Exam Review Physics 2102 Jonathan Dowling Physics 2102 Final Exam Review A few concepts: electric force, field and potential Electric force: What is the force on a charge produced by other charges? What is the force

More information

Final Exam: Physics Spring, 2017 May 8, 2017 Version 01

Final Exam: Physics Spring, 2017 May 8, 2017 Version 01 Final Exam: Physics2331 - Spring, 2017 May 8, 2017 Version 01 NAME (Please Print) Your exam should have 11 pages. This exam consists of 18 multiple-choice questions (2 points each, worth 36 points), and

More information

UNIT-I INTRODUCTION TO COORDINATE SYSTEMS AND VECTOR ALGEBRA

UNIT-I INTRODUCTION TO COORDINATE SYSTEMS AND VECTOR ALGEBRA SIDDHARTH GROUP OF INSTITUTIONS :: PUTTUR Siddharth Nagar, Narayanavanam Road 517583 QUESTION BANK (DESCRIPTIVE) Subject with Code : EMF(16EE214) Sem: II-B.Tech & II-Sem Course & Branch: B.Tech - EEE Year

More information

EELE 3332 Electromagnetic II Chapter 9. Maxwell s Equations. Islamic University of Gaza Electrical Engineering Department Dr.

EELE 3332 Electromagnetic II Chapter 9. Maxwell s Equations. Islamic University of Gaza Electrical Engineering Department Dr. EELE 3332 Electromagnetic II Chapter 9 Maxwell s Equations Islamic University of Gaza Electrical Engineering Department Dr. Talal Skaik 2012 1 Review Electrostatics and Magnetostatics Electrostatic Fields

More information

EXAM 3: SOLUTIONS. B = B. A 2 = BA 2 cos 0 o = BA 2. =Φ(2) B A 2 = A 1 cos 60 o = A 1 2 =0.5m2

EXAM 3: SOLUTIONS. B = B. A 2 = BA 2 cos 0 o = BA 2. =Φ(2) B A 2 = A 1 cos 60 o = A 1 2 =0.5m2 EXAM : S Q.The normal to a certain m area makes an angle of 6 o with a uniform magnetic field. The magnetic flux through this area is the same as the flux through a second area that is perpendicular to

More information

W07D1 Magnetic Dipoles, Force and Torque on a Dipole, Experiment 2

W07D1 Magnetic Dipoles, Force and Torque on a Dipole, Experiment 2 W07D1 Magnetic Dipoles, Force and Torque on a Dipole, Experiment 2 W07D1 Magnetic Dipoles, Torque and Force on a Dipole, Experiment 2: Magnetic Dipole in a Helmholtz Coil http://web.mit.edu/8.02t/www/materials/experiments/expmagforcesdipolehelmholtz.pdf

More information

Lecture notes for ELECTRODYNAMICS.

Lecture notes for ELECTRODYNAMICS. Lecture notes for 640-343 ELECTRODYNAMICS. 1 Summary of Electrostatics 1.1 Coulomb s Law Force between two point charges F 12 = 1 4πɛ 0 Q 1 Q 2ˆr 12 r 1 r 2 2 (1.1.1) 1.2 Electric Field For a charge distribution:

More information

AP Physics C - E & M

AP Physics C - E & M AP Physics C - E & M Electromagnetic Induction 2017-07-14 www.njctl.org Table of Contents: Electromagnetic Induction Click on the topic to go to that section. Induced EMF Magnetic Flux and Gauss's Law

More information

Physics Will Farmer. May 5, Physics 1120 Contents 2

Physics Will Farmer. May 5, Physics 1120 Contents 2 Physics 1120 Will Farmer May 5, 2013 Contents Physics 1120 Contents 2 1 Charges 3 1.1 Terms................................................... 3 1.2 Electric Charge..............................................

More information

/20 /20 /20 /60. Dr. Galeazzi PHY207 Test #3 November 20, I.D. number:

/20 /20 /20 /60. Dr. Galeazzi PHY207 Test #3 November 20, I.D. number: Signature: Name: I.D. number: You must do ALL the problems Each problem is worth 0 points for a total of 60 points. TO GET CREDIT IN PROBLEMS AND 3 YOU MUST SHOW GOOD WORK. CHECK DISCUSSION SECTION ATTENDED:

More information

Physics 202 Chapter 31 Oct 23, Faraday s Law. Faraday s Law

Physics 202 Chapter 31 Oct 23, Faraday s Law. Faraday s Law Physics 202 Chapter 31 Oct 23, 2007 Faraday s Law Faraday s Law The final step to ignite the industrial use of electromagnetism on a large scale. Light, toasters, cars, TVs, telephones, ipods, industrial

More information

Chapter 31. Faraday s Law

Chapter 31. Faraday s Law Chapter 31 Faraday s Law 1 Ampere s law Magnetic field is produced by time variation of electric field dφ B ( I I ) E d s = µ o + d = µ o I+ µ oεo ds E B 2 Induction A loop of wire is connected to a sensitive

More information

Describe the forces and torques exerted on an electric dipole in a field.

Describe the forces and torques exerted on an electric dipole in a field. Learning Outcomes - PHYS 2015 Electric charges and forces: Describe the electrical nature of matter; Explain how an object can be charged; Distinguish between electrical conductors and insulators and the

More information

Electromagnetic Field Theory Chapter 9: Time-varying EM Fields

Electromagnetic Field Theory Chapter 9: Time-varying EM Fields Electromagnetic Field Theory Chapter 9: Time-varying EM Fields Faraday s law of induction We have learned that a constant current induces magnetic field and a constant charge (or a voltage) makes an electric

More information

Physics 1302W.400 Lecture 33 Introductory Physics for Scientists and Engineering II

Physics 1302W.400 Lecture 33 Introductory Physics for Scientists and Engineering II Physics 1302W.400 Lecture 33 Introductory Physics for Scientists and Engineering II In today s lecture, we will discuss generators and motors. Slide 30-1 Announcement Quiz 4 will be next week. The Final

More information

ECE 6340 Intermediate EM Waves. Fall Prof. David R. Jackson Dept. of ECE. Notes 1

ECE 6340 Intermediate EM Waves. Fall Prof. David R. Jackson Dept. of ECE. Notes 1 EE 6340 Intermediate EM Waves Fall 2016 Prof. David R. Jackson Dept. of EE Notes 1 1 Maxwell s Equations E D rt 2, V/m, rt, Wb/m T ( ) [ ] ( ) ( ) 2 rt, /m, H ( rt, ) [ A/m] B E = t (Faraday's Law) D H

More information

EECS 117. Lecture 17: Magnetic Forces/Torque, Faraday s Law. Prof. Niknejad. University of California, Berkeley

EECS 117. Lecture 17: Magnetic Forces/Torque, Faraday s Law. Prof. Niknejad. University of California, Berkeley University of California, Berkeley EECS 117 Lecture 17 p. 1/? EECS 117 Lecture 17: Magnetic Forces/Torque, Faraday s Law Prof. Niknejad University of California, Berkeley University of California, Berkeley

More information

Last time. Gauss' Law: Examples (Ampere's Law)

Last time. Gauss' Law: Examples (Ampere's Law) Last time Gauss' Law: Examples (Ampere's Law) 1 Ampere s Law in Magnetostatics iot-savart s Law can be used to derive another relation: Ampere s Law The path integral of the dot product of magnetic field

More information

CHAPTER 8 CONSERVATION LAWS

CHAPTER 8 CONSERVATION LAWS CHAPTER 8 CONSERVATION LAWS Outlines 1. Charge and Energy 2. The Poynting s Theorem 3. Momentum 4. Angular Momentum 2 Conservation of charge and energy The net amount of charges in a volume V is given

More information

EELE 3332 Electromagnetic II Chapter 9. Maxwell s Equations. Islamic University of Gaza Electrical Engineering Department Dr.

EELE 3332 Electromagnetic II Chapter 9. Maxwell s Equations. Islamic University of Gaza Electrical Engineering Department Dr. EELE 3332 Electromagnetic II Chapter 9 Maxwell s Equations Islamic University of Gaza Electrical Engineering Department Dr. Talal Skaik 2013 1 Review Electrostatics and Magnetostatics Electrostatic Fields

More information

Electromagnetic Induction

Electromagnetic Induction Chapter 29 Electromagnetic Induction PowerPoint Lectures for University Physics, Twelfth Edition Hugh D. Young and Roger A. Freedman Lectures by James Pazun Modified by P. Lam 8_4_2008 Topics for Chapter

More information

B for a Long, Straight Conductor, Special Case. If the conductor is an infinitely long, straight wire, θ 1 = 0 and θ 2 = π The field becomes

B for a Long, Straight Conductor, Special Case. If the conductor is an infinitely long, straight wire, θ 1 = 0 and θ 2 = π The field becomes B for a Long, Straight Conductor, Special Case If the conductor is an infinitely long, straight wire, θ 1 = 0 and θ 2 = π The field becomes μ I B = o 2πa B for a Curved Wire Segment Find the field at point

More information

ε induced Review: Self-inductance 20.7 RL Circuits Review: Self-inductance B induced Announcements

ε induced Review: Self-inductance 20.7 RL Circuits Review: Self-inductance B induced Announcements Announcements WebAssign HW Set 7 due this Friday Problems cover material from Chapters 20 and 21 We re skipping Sections 21.1-21.7 (alternating current circuits) Review: Self-inductance induced ε induced

More information

Exam 2 Review W11D2 1

Exam 2 Review W11D2 1 Exam 2 Review W11D2 1 Exam 2 Announcements Exam Two: Thursday 20 April 7:30-9:30 pm Conflict Exam Two: If you have a regularly scheduled academic activity that conflicts with the Thursday evening exam,

More information

AP Physics C. Electricity and Magne4sm Review

AP Physics C. Electricity and Magne4sm Review AP Physics C Electricity and Magne4sm Review Electrosta4cs 30% Chap 22-25 Charge and Coulomb s Law Electric Field and Electric Poten4al (including point charges) Gauss Law Fields and poten4als of other

More information

Chapter 31. Faraday s Law

Chapter 31. Faraday s Law Chapter 31 Faraday s Law 1 Ampere s law Magnetic field is produced by time variation of electric field B s II I d d μ o d μo με o o E ds E B Induction A loop of wire is connected to a sensitive ammeter

More information

Louisiana State University Physics 2102, Exam 3 April 2nd, 2009.

Louisiana State University Physics 2102, Exam 3 April 2nd, 2009. PRINT Your Name: Instructor: Louisiana State University Physics 2102, Exam 3 April 2nd, 2009. Please be sure to PRINT your name and class instructor above. The test consists of 4 questions (multiple choice),

More information

CYK\2009\PH102\Tutorial 10

CYK\2009\PH102\Tutorial 10 CYK\2009\PH02\Tutorial 0 Physics II. [G 6.3] Find the force of attraction between two magnetic dipoles, m and m 2, oriented as shown in the Fig., a distance r apart, (a) using F = 2πIRB cos θ, and (b)

More information

4. The last equation is Ampère's Law, which ultimately came from our derivation of the magnetic field from Coulomb's Law and special relativity.

4. The last equation is Ampère's Law, which ultimately came from our derivation of the magnetic field from Coulomb's Law and special relativity. lectromagnetic Theory Prof Ruiz, UNC Asheville, doctorphys on YouTube Chapter G Notes Maxwell's quations: Integral Form G1 No Magnetic Monopoles Q da ε da dl dl µ I The equations at the left summarize

More information

Lecture 33. PHYC 161 Fall 2016

Lecture 33. PHYC 161 Fall 2016 Lecture 33 PHYC 161 Fall 2016 Faraday s law of induction When the magnetic flux through a single closed loop changes with time, there is an induced emf that can drive a current around the loop: Recall

More information

PHYS 1444 Section 003 Lecture #23

PHYS 1444 Section 003 Lecture #23 PHYS 1444 Section 3 Lecture #3 Monday, Nov. 8, 5 EM Waves from Maxwell s Equations Speed of EM Waves Light as EM Wave Electromagnetic Spectrum Energy in EM Waves Energy Transport The epilogue Today s homework

More information

Introduction to Electromagnetism

Introduction to Electromagnetism Introduction to Electromagnetism Electric Field Lines If a charge feels an electrostatic force (Coulombic Force), it is said to be in an electric field. We like to represent electric fields with lines.

More information

nrt V dv = nrt ln(3) = P AV A ln(3) P A dv = P A V 5/ / /3

nrt V dv = nrt ln(3) = P AV A ln(3) P A dv = P A V 5/ / /3 Problem. a For an isothermal process: W iso = VA 3V A PdV = VA 3V A nrt V dv = nrt ln3 = P AV A ln3 For the adiabatic leg, PV γ =const. Thus, I get that P = P A VA V γ. Since the gas is monatomic, γ =

More information

Chapter 31 Maxwell s Equations and Electromagnetic Waves. Copyright 2009 Pearson Education, Inc.

Chapter 31 Maxwell s Equations and Electromagnetic Waves. Copyright 2009 Pearson Education, Inc. Chapter 31 Maxwell s Equations and Electromagnetic Waves Units of Chapter 31 Changing Electric Fields Produce Magnetic Fields; Ampère s Law and Displacement Current Gauss s Law for Magnetism Maxwell s

More information

ELECTRO MAGNETIC FIELDS

ELECTRO MAGNETIC FIELDS SET - 1 1. a) State and explain Gauss law in differential form and also list the limitations of Guess law. b) A square sheet defined by -2 x 2m, -2 y 2m lies in the = -2m plane. The charge density on the

More information

Induced Electric Fields. You must understand how a changing magnetic flux induces an electric field, and be able to calculate induced electric fields.

Induced Electric Fields. You must understand how a changing magnetic flux induces an electric field, and be able to calculate induced electric fields. Today s agenda: Induced lectric Fields. You must understand how a changing magnetic flux induces an electric field, and be able to calculate induced electric fields. ddy Currents. You must understand how

More information