Ampere s Law. Outline. Objectives. BEE-Lecture Notes Anurag Srivastava 1

Size: px
Start display at page:

Download "Ampere s Law. Outline. Objectives. BEE-Lecture Notes Anurag Srivastava 1"

Transcription

1 Outline Introduce as an analogy to Gauss Law. Define. Applications of. Objectives Recognise to be analogous to Gauss Law. Recognise similar concepts: (1) draw an imaginary shape enclosing the current carrying conductor, (2) current enclosed. Anurag Srivastava 1

2 Learning Goals How you can determine the amount of charge within a closed surface by examining the electric field on the surface! What is meant by electric flux and how you can calculate it. How to use Gauss s Law to calculate the electric field due to a symmetric distribution of charges. A charge inside a box can be probed with a test charge q o to measure E field outside the box. The volume (V) flow rate (dv/dt) of fluid through the wire rectangle (a) is va when the area of the rectangle is perpendicular to the velocity vector v and (b) is va cos φ when the rectangle is tilted at an angle φ. We will next replace the fluid velocity flow vector v with the electric field vector E to get to the concept of electric flux Φ E. Volume flow rate through the wire rectangle. Anurag Srivastava 2

3 (a) The electric flux through the surface = EA. (b) When the area vector makes an angle φ with the vector E, the area projected onto a plane oriented perpendicular to the flow is A perp. = A cos φ. The flux is zero when φ = 90 o because the rectangle lies in a plane parallel to the flow and no fluid flows through the rectangle A flat surface in a uniform electric field. Φ E = E. da = E da cos φ = E da = E da = E (4π R 2 ) = (1/4π ε o ) q /R 2 ) (4π R 2 ) = q / ε o. So the electric flux Φ E = q / ε o. Now we can write Gauss's Law: Φ E = E. da = EdA cos φ =Qencl /ε o Electric FLUX through a sphere centered on a point charge q. The projection of an element of area da of a sphere of radius R onto a concentric sphere of radius 2R. The projection multiplies each linear dimension by 2, so the area element on the larger sphere is 4 da. The same number of lines of flux pass thru each area element. Flux Φ E from a point charge q. Anurag Srivastava 3

4 The projection of the area element da onto the spherical surface is da cos φ. Flux through an irregular surface. Spherical Gaussian surfaces around (a) positive and (b) negative point charge. Gauss s Law can be used to calculate the magnitude of the E field vector: Anurag Srivastava 4

5 Learning Goals How to calculate the magnetic field produced by a long straight current-carrying wire, using Law of Biot & Savart (the Biot Savart law is an equation describing the magnetic field generated by an electric current) How to calculate the magnetic field produced by a circular current-carrying loop of wire, using Law of Biot & Savart. How to use to calculate the magnetic field caused by symmetric current distributions. (a) Magnetic field caused by the current element Idl. (b) In figure (b) the current is moving into the screen. Magnetic field around a long, straight conductor. The field lines are circles, with directions determined by the right-hand rule. Anurag Srivastava 5

6 x o Magnetic field produced by a straight currentcarrying wire of length 2a. The direction of B at point P is into the screen. Law of Biot and Savart db = µ o / 4π (I dl x r) / r 3 Use Law of Biot and Savart, the integral is simple! db = µ o / 4π (I dl x r) / r 3 Magnetic field caused by a circular loop of current. The current in the segment dl causes the field db, which lies in the xy plane. Parallel conductors carrying currents in the same direction attract each other. The force on the upper conductor is exerted by the magnetic field caused by the current in the lower conductor. Anurag Srivastava 6

7 states that the integral of B around any closed path equals µ o times the current, I encircled, encircled by the closed loop. We will use this law to obtain some useful results by choosing a simple path along which the magnitude of B is constant, (or independent of dl). Some () integration paths for the line integral of B in the vicinity of a long straight conductor. Path in (c) is not useful because it does not encircle the current-carrying conductor. To find the magnetic field at radius r < R, we apply to the circle (path) enclosing the red area. For r > R, the circle (path) encloses the entire conductor. Anurag Srivastava 7

8 B = µ o n I, where n = N / L A section of a long, tightly wound solenoid centered on the x-axis, showing the magnetic field lines in the interior of the solenoid and the current. COAXIAL CABLE A solid conductor with radius a is insulated from a conducting rod with inner radius b and outer radius c. Gauss law allowed us to find the net electric field due to any charge distribution (with little effort) by applying symmetry. Similarly the net magnetic field can be found with little effort if there is symmetry using Ampere s law. Anurag Srivastava 8

9 Ampere s law, v v B. ds = µ 0i enc Where the integral is a line integral. B.ds is integrated around a closed loop called an Amperian loop. The current i enc is net current enclosed by the loop. ie, ie i enc N v v B. ds = µ 0 i n n= 1 = N i n n= 1 Example. Find the magnetic field outside a long straight wire with current. r I Anurag Srivastava 9

10 We draw an Amperian loop and the direction of integration. Amperian Loop Direction of Integration Wire surface B v ds v θ = 0 Recall, Therefore, N v B. ds = v µ 0 i n n= 1 ( ) I B cos θds = B ds = B 2 B 2 π r = + µ 0 µ 0I B = 2πr The equation derived earlier. ( πr) The positive sign for the current collaborates that the direction of B was correct. Anurag Srivastava 10

11 Example. Magnetic Field inside a Long Straight wire with current. R r B v ds v Wire surface Amperian Loop, B cos θds = B ds = B 2 N v v B. ds = µ 0 i n n= 1 ( πr), N v v B. ds = µ 0 i n n= 1 B cos θds B ds = B( 2πr = ) The charge enclosed is proportional to the area encircled by the loop, 2 πr i enc = i πr 2 Anurag Srivastava 11

12 The current enclosed is positive from the right hand rule. 2 πr B( 2π r) = µ 0i 2 πr µ 0i B = r 2 2πR Anurag Srivastava 12

Handout 8: Sources of magnetic field. Magnetic field of moving charge

Handout 8: Sources of magnetic field. Magnetic field of moving charge 1 Handout 8: Sources of magnetic field Magnetic field of moving charge Moving charge creates magnetic field around it. In Fig. 1, charge q is moving at constant velocity v. The magnetic field at point

More information

Chapter 24 Gauss Law

Chapter 24 Gauss Law Chapter 24 Gauss Law A charge inside a box can be probed with a test charge q o to measure E field outside the box. The volume (V) flow rate (dv/dt) of fluid through the wire rectangle (a) is va when the

More information

Chapter 22 Gauss s law. Electric charge and flux (sec &.3) Gauss s Law (sec &.5) Charges on conductors (sec. 22.6)

Chapter 22 Gauss s law. Electric charge and flux (sec &.3) Gauss s Law (sec &.5) Charges on conductors (sec. 22.6) Chapter 22 Gauss s law Electric charge and flux (sec. 22.2 &.3) Gauss s Law (sec. 22.4 &.5) Charges on conductors (sec. 22.6) 1 Learning Goals for CH 22 Determine the amount of charge within a closed surface

More information

Ch 30 - Sources of Magnetic Field

Ch 30 - Sources of Magnetic Field Ch 30 - Sources of Magnetic Field Currents produce Magnetism? 1820, Hans Christian Oersted: moving charges produce a magnetic field. The direction of the field is determined using a RHR. Oersted (1820)

More information

The Steady Magnetic Fields

The Steady Magnetic Fields The Steady Magnetic Fields Prepared By Dr. Eng. Sherif Hekal Assistant Professor Electronics and Communications Engineering 1/8/017 1 Agenda Intended Learning Outcomes Why Study Magnetic Field Biot-Savart

More information

PHYS152 Lecture 8. Eunil Won Korea University. Ch 30 Magnetic Fields Due to Currents. Fundamentals of Physics by Eunil Won, Korea University

PHYS152 Lecture 8. Eunil Won Korea University. Ch 30 Magnetic Fields Due to Currents. Fundamentals of Physics by Eunil Won, Korea University PHYS152 Lecture 8 Ch 3 Magnetic Fields Due to Currents Eunil Won Korea University Calculating the Magnetic Field Due to a Current Recall that we had the formula for the electrostatic force: d E = 1 ɛ dq

More information

Chapter 28 Source of Magnetic Field

Chapter 28 Source of Magnetic Field Chapter 28 Source of Magnetic Field Lecture by Dr. Hebin Li Goals of Chapter 28 To determine the magnetic field produced by a moving charge To study the magnetic field of an element of a current-carrying

More information

Chapter 30 Sources of the magnetic field

Chapter 30 Sources of the magnetic field Chapter 30 Sources of the magnetic field Force Equation Point Object Force Point Object Field Differential Field Is db radial? Does db have 1/r2 dependence? Biot-Savart Law Set-Up The magnetic field is

More information

Ampere s law. Lecture 15. Chapter 32. Physics II. Course website:

Ampere s law. Lecture 15. Chapter 32. Physics II. Course website: Lecture 15 Chapter 32 Physics II Ampere s law Course website: http://faculty.uml.edu/andriy_danylov/teaching/physicsii Ampere s Law Electric Field From Coulomb s law 1 4 Magnetic Field Bio-Savart law 4

More information

Chapter 22 Gauss s Law

Chapter 22 Gauss s Law Chapter 22 Gauss s Law Lecture by Dr. Hebin Li Goals for Chapter 22 To use the electric field at a surface to determine the charge within the surface To learn the meaning of electric flux and how to calculate

More information

Physics 114 Exam 1 Spring 2013

Physics 114 Exam 1 Spring 2013 Physics 114 Exam 1 Spring 2013 Name: For grading purposes (do not write here): Question 1. 1. 2. 2. 3. 3. Problem Answer each of the following questions and each of the problems. Points for each question

More information

The Steady Magnetic Field

The Steady Magnetic Field The Steady Magnetic Field Prepared By Dr. Eng. Sherif Hekal Assistant Professor Electronics and Communications Engineering 1/13/016 1 Agenda Intended Learning Outcomes Why Study Magnetic Field Biot-Savart

More information

Magnetic Fields due to Currents

Magnetic Fields due to Currents Observation: a current of moving charged particles produces a magnetic field around the current. Chapter 29 Magnetic Fields due to Currents Magnetic field due to a current in a long straight wire a current

More information

Gauss s Law. Phys102 Lecture 4. Key Points. Electric Flux Gauss s Law Applications of Gauss s Law. References. SFU Ed: 22-1,2,3. 6 th Ed: 16-10,+.

Gauss s Law. Phys102 Lecture 4. Key Points. Electric Flux Gauss s Law Applications of Gauss s Law. References. SFU Ed: 22-1,2,3. 6 th Ed: 16-10,+. Phys102 Lecture 4 Phys102 Lecture 4-1 Gauss s Law Key Points Electric Flux Gauss s Law Applications of Gauss s Law References SFU Ed: 22-1,2,3. 6 th Ed: 16-10,+. Electric Flux Electric flux: The direction

More information

ELECTRO MAGNETIC FIELDS

ELECTRO MAGNETIC FIELDS SET - 1 1. a) State and explain Gauss law in differential form and also list the limitations of Guess law. b) A square sheet defined by -2 x 2m, -2 y 2m lies in the = -2m plane. The charge density on the

More information

Electric Flux. If we know the electric field on a Gaussian surface, we can find the net charge enclosed by the surface.

Electric Flux. If we know the electric field on a Gaussian surface, we can find the net charge enclosed by the surface. Chapter 23 Gauss' Law Instead of considering the electric fields of charge elements in a given charge distribution, Gauss' law considers a hypothetical closed surface enclosing the charge distribution.

More information

The Steady Magnetic Field LECTURE 7

The Steady Magnetic Field LECTURE 7 The Steady Magnetic Field LECTURE 7 Learning Objectives Understand the Biot-Savart Law Understand the Ampere s Circuital Law Explain the Application of Ampere s Law Motivating the Magnetic Field Concept:

More information

Chapter 22 Gauss s Law. Copyright 2009 Pearson Education, Inc.

Chapter 22 Gauss s Law. Copyright 2009 Pearson Education, Inc. Chapter 22 Gauss s Law Electric Flux Gauss s Law Units of Chapter 22 Applications of Gauss s Law Experimental Basis of Gauss s and Coulomb s Laws 22-1 Electric Flux Electric flux: Electric flux through

More information

Physics 202, Lecture 13. Today s Topics. Magnetic Forces: Hall Effect (Ch. 27.8)

Physics 202, Lecture 13. Today s Topics. Magnetic Forces: Hall Effect (Ch. 27.8) Physics 202, Lecture 13 Today s Topics Magnetic Forces: Hall Effect (Ch. 27.8) Sources of the Magnetic Field (Ch. 28) B field of infinite wire Force between parallel wires Biot-Savart Law Examples: ring,

More information

Chapter (2) Gauss s Law

Chapter (2) Gauss s Law Chapter (2) Gauss s Law How you can determine the amount of charge within a closed surface by examining the electric field on the surface! What is meant by electric flux and how you can calculate it. How

More information

PH 222-2C Fall Gauss Law. Lectures 3-4. Chapter 23 (Halliday/Resnick/Walker, Fundamentals of Physics 8 th edition)

PH 222-2C Fall Gauss Law. Lectures 3-4. Chapter 23 (Halliday/Resnick/Walker, Fundamentals of Physics 8 th edition) PH 222-2C Fall 212 Gauss Law Lectures 3-4 Chapter 23 (Halliday/Resnick/Walker, Fundamentals of Physics 8 th edition) 1 Chapter 23 Gauss Law In this chapter we will introduce the following new concepts:

More information

μ 0 I enclosed = B ds

μ 0 I enclosed = B ds Ampere s law To determine the magnetic field created by a current, an equation much easier to use than Biot-Savart is known as Ampere s law. As before, μ 0 is the permeability of free space, 4π x 10-7

More information

Magnetic Fields Part 2: Sources of Magnetic Fields

Magnetic Fields Part 2: Sources of Magnetic Fields Magnetic Fields Part 2: Sources of Magnetic Fields Last modified: 08/01/2018 Contents Links What Causes a Magnetic Field? Moving Charges Right Hand Grip Rule Permanent Magnets Biot-Savart Law Magnetic

More information

Experiment No: EM 4 Experiment Name: Biot-Savart Law Objectives:

Experiment No: EM 4 Experiment Name: Biot-Savart Law Objectives: Experiment No: EM 4 Experiment Name: Biot-Savart Law Objectives: Measuring the magnetic field of a current passing through long straight and conductor wire as a function of the current. Measuring the magnetic

More information

Electric Flux. To investigate this, we have to understand electric flux.

Electric Flux. To investigate this, we have to understand electric flux. Problem 21.72 A charge q 1 = +5. nc is placed at the origin of an xy-coordinate system, and a charge q 2 = -2. nc is placed on the positive x-axis at x = 4. cm. (a) If a third charge q 3 = +6. nc is now

More information

Worksheet for Exploration 24.1: Flux and Gauss's Law

Worksheet for Exploration 24.1: Flux and Gauss's Law Worksheet for Exploration 24.1: Flux and Gauss's Law In this Exploration, we will calculate the flux, Φ, through three Gaussian surfaces: green, red and blue (position is given in meters and electric field

More information

Lecture 29. PHYC 161 Fall 2016

Lecture 29. PHYC 161 Fall 2016 Lecture 29 PHYC 161 Fall 2016 Magnetic Force and Torque on a Current Loop Let s look at the Net force and net torque on a current loop: df Idl B F IaB top and bottom F IbB sides But, the forces on opposite

More information

Lecture 27: MON 26 OCT Magnetic Fields Due to Currents II

Lecture 27: MON 26 OCT Magnetic Fields Due to Currents II Physics 212 Jonathan Dowling Lecture 27: MON 26 OCT Magnetic Fields Due to Currents II Jean-Baptiste Biot (1774-1862) Felix Savart (1791 1841) Electric Current: A Source of Magnetic Field Observation:

More information

The Basic Definition of Flux

The Basic Definition of Flux The Basic Definition of Flux Imagine holding a rectangular wire loop of area A in front of a fan. The volume of air flowing through the loop each second depends on the angle between the loop and the direction

More information

Chapter 23. Gauss Law. Copyright 2014 John Wiley & Sons, Inc. All rights reserved.

Chapter 23. Gauss Law. Copyright 2014 John Wiley & Sons, Inc. All rights reserved. Chapter 23 Gauss Law Copyright 23-1 Electric Flux Electric field vectors and field lines pierce an imaginary, spherical Gaussian surface that encloses a particle with charge +Q. Now the enclosed particle

More information

March 11. Physics 272. Spring Prof. Philip von Doetinchem

March 11. Physics 272. Spring Prof. Philip von Doetinchem Physics 272 March 11 Spring 2014 http://www.phys.hawaii.edu/~philipvd/pvd_14_spring_272_uhm.html Prof. Philip von Doetinchem philipvd@hawaii.edu Phys272 - Spring 14 - von Doetinchem - 32 Summary Magnetic

More information

Homework 6 solutions PHYS 212 Dr. Amir

Homework 6 solutions PHYS 212 Dr. Amir Homework 6 solutions PHYS 1 Dr. Amir Chapter 8 18. (II) A rectangular loop of wire is placed next to a straight wire, as shown in Fig. 8 7. There is a current of.5 A in both wires. Determine the magnitude

More information

Chapter 30. Sources of the Magnetic Field Amperes and Biot-Savart Laws

Chapter 30. Sources of the Magnetic Field Amperes and Biot-Savart Laws Chapter 30 Sources of the Magnetic Field Amperes and Biot-Savart Laws F B on a Charge Moving in a Magnetic Field Magnitude proportional to charge and speed of the particle Direction depends on the velocity

More information

Chapter 28 Sources of Magnetic Field

Chapter 28 Sources of Magnetic Field Chapter 28 Sources of Magnetic Field In this chapter we investigate the sources of magnetic of magnetic field, in particular, the magnetic field produced by moving charges (i.e., currents). Ampere s Law

More information

Chapter 22 Gauss s Law. Copyright 2009 Pearson Education, Inc.

Chapter 22 Gauss s Law. Copyright 2009 Pearson Education, Inc. Chapter 22 Gauss s Law 22-1 Electric Flux Electric flux: Electric flux through an area is proportional to the total number of field lines crossing the area. 22-1 Electric Flux Example 22-1: Electric flux.

More information

Chapter 28 Magnetic Fields Sources

Chapter 28 Magnetic Fields Sources Chapter 28 Magnetic Fields Sources All known magnetic sources are due to magnetic dipoles and inherently macroscopic current sources or microscopic spins and magnetic moments Goals for Chapter 28 Study

More information

Chapter 28 Sources of Magnetic Field

Chapter 28 Sources of Magnetic Field Chapter 28 Sources of Magnetic Field In this chapter we investigate the sources of magnetic field, in particular, the magnetic field produced by moving charges (i.e., currents), Ampere s Law is introduced

More information

CH 23. Gauss Law. A. Gauss law relates the electric fields at points on a (closed) Gaussian surface to the net charge enclosed by that surface.

CH 23. Gauss Law. A. Gauss law relates the electric fields at points on a (closed) Gaussian surface to the net charge enclosed by that surface. CH 23 Gauss Law [SHIVOK SP212] January 4, 2016 I. Introduction to Gauss Law A. Gauss law relates the electric fields at points on a (closed) Gaussian surface to the net charge enclosed by that surface.

More information

Chapter 27 Sources of Magnetic Field

Chapter 27 Sources of Magnetic Field Chapter 27 Sources of Magnetic Field In this chapter we investigate the sources of magnetic of magnetic field, in particular, the magnetic field produced by moving charges (i.e., currents). Ampere s Law

More information

Mansfield Independent School District AP Physics C: Electricity and Magnetism Year at a Glance

Mansfield Independent School District AP Physics C: Electricity and Magnetism Year at a Glance Mansfield Independent School District AP Physics C: Electricity and Magnetism Year at a Glance First Six-Weeks Second Six-Weeks Third Six-Weeks Lab safety Lab practices and ethical practices Math and Calculus

More information

AMPERE'S LAW. B dl = 0

AMPERE'S LAW. B dl = 0 AMPERE'S LAW The figure below shows a basic result of an experiment done by Hans Christian Oersted in 1820. It shows the magnetic field produced by a current in a long, straight length of current-carrying

More information

Chapter 29: Magnetic Fields Due to Currents. PHY2049: Chapter 29 1

Chapter 29: Magnetic Fields Due to Currents. PHY2049: Chapter 29 1 Chapter 29: Magnetic Fields Due to Currents PHY2049: Chapter 29 1 Law of Magnetism Unlike the law of static electricity, comes in two pieces Piece 1: Effect of B field on moving charge r r F = qv B (Chapt.

More information

Phys102 General Physics II. Chapter 24: Gauss s Law

Phys102 General Physics II. Chapter 24: Gauss s Law Phys102 General Physics II Gauss Law Chapter 24: Gauss s Law Flux Electric Flux Gauss Law Coulombs Law from Gauss Law Isolated conductor and Electric field outside conductor Application of Gauss Law Charged

More information

AP Physics C - E & M

AP Physics C - E & M AP Physics C - E & M Gauss's Law 2017-07-08 www.njctl.org Electric Flux Gauss's Law Sphere Table of Contents: Gauss's Law Click on the topic to go to that section. Infinite Rod of Charge Infinite Plane

More information

Magnetism. February 27, 2014 Physics for Scientists & Engineers 2, Chapter 27 1

Magnetism. February 27, 2014 Physics for Scientists & Engineers 2, Chapter 27 1 Magnetism February 27, 2014 Physics for Scientists & Engineers 2, Chapter 27 1 Force on a Current Carrying Wire! The magnitude of the magnetic force on a wire of length L carrying a current i is F = il

More information

Where k = 1. The electric field produced by a point charge is given by

Where k = 1. The electric field produced by a point charge is given by Ch 21 review: 1. Electric charge: Electric charge is a property of a matter. There are two kinds of charges, positive and negative. Charges of the same sign repel each other. Charges of opposite sign attract.

More information

Magnetic Field Lines for a Loop

Magnetic Field Lines for a Loop Magnetic Field Lines for a Loop Figure (a) shows the magnetic field lines surrounding a current loop Figure (b) shows the field lines in the iron filings Figure (c) compares the field lines to that of

More information

3/22/2016. Chapter 27 Gauss s Law. Chapter 27 Preview. Chapter 27 Preview. Chapter Goal: To understand and apply Gauss s law. Slide 27-2.

3/22/2016. Chapter 27 Gauss s Law. Chapter 27 Preview. Chapter 27 Preview. Chapter Goal: To understand and apply Gauss s law. Slide 27-2. Chapter 27 Gauss s Law Chapter Goal: To understand and apply Gauss s law. Slide 27-2 Chapter 27 Preview Slide 27-3 Chapter 27 Preview Slide 27-4 1 Chapter 27 Preview Slide 27-5 Chapter 27 Preview Slide

More information

PHYSICS. Chapter 24 Lecture FOR SCIENTISTS AND ENGINEERS A STRATEGIC APPROACH 4/E RANDALL D. KNIGHT

PHYSICS. Chapter 24 Lecture FOR SCIENTISTS AND ENGINEERS A STRATEGIC APPROACH 4/E RANDALL D. KNIGHT PHYSICS FOR SCIENTISTS AND ENGINEERS A STRATEGIC APPROACH 4/E Chapter 24 Lecture RANDALL D. KNIGHT Chapter 24 Gauss s Law IN THIS CHAPTER, you will learn about and apply Gauss s law. Slide 24-2 Chapter

More information

Chapter 28. Gauss s Law

Chapter 28. Gauss s Law Chapter 28. Gauss s Law Using Gauss s law, we can deduce electric fields, particularly those with a high degree of symmetry, simply from the shape of the charge distribution. The nearly spherical shape

More information

Physics 4B Chapter 29: Magnetic Fields Due to Currents

Physics 4B Chapter 29: Magnetic Fields Due to Currents Physics 4B Chapter 29: Magnetic Fields Due to Currents Nothing can bring you peace but yourself. Ralph Waldo Emerson The foolish man seeks happiness in the distance, the wise man grows it under his feet.

More information

Chapter 21 Chapter 23 Gauss Law. Copyright 2014 John Wiley & Sons, Inc. All rights reserved.

Chapter 21 Chapter 23 Gauss Law. Copyright 2014 John Wiley & Sons, Inc. All rights reserved. Chapter 21 Chapter 23 Gauss Law Copyright 23-1 What is Physics? Gauss law relates the electric fields at points on a (closed) Gaussian surface to the net charge enclosed by that surface. Gauss law considers

More information

18. Ampere s law and Gauss s law (for B) Announcements: This Friday, Quiz 1 in-class and during class (training exam)

18. Ampere s law and Gauss s law (for B) Announcements: This Friday, Quiz 1 in-class and during class (training exam) 18. Ampere s law and Gauss s law (for B) Announcements: This Friday, Quiz 1 in-class and during class (training exam) Where does a B-field come from? Facts: Electrical current produces a magnetic field

More information

How to define the direction of A??

How to define the direction of A?? Chapter Gauss Law.1 Electric Flu. Gauss Law. A charged Isolated Conductor.4 Applying Gauss Law: Cylindrical Symmetry.5 Applying Gauss Law: Planar Symmetry.6 Applying Gauss Law: Spherical Symmetry You will

More information

3 Chapter. Gauss s Law

3 Chapter. Gauss s Law 3 Chapter Gauss s Law 3.1 Electric Flux... 3-2 3.2 Gauss s Law (see also Gauss s Law Simulation in Section 3.10)... 3-4 Example 3.1: Infinitely Long Rod of Uniform Charge Density... 3-9 Example 3.2: Infinite

More information

Magnetostatic Fields. Dr. Talal Skaik Islamic University of Gaza Palestine

Magnetostatic Fields. Dr. Talal Skaik Islamic University of Gaza Palestine Magnetostatic Fields Dr. Talal Skaik Islamic University of Gaza Palestine 01 Introduction In chapters 4 to 6, static electric fields characterized by E or D (D=εE) were discussed. This chapter considers

More information

Currents (1) Line charge λ (C/m) with velocity v : in time t, This constitutes a current I = λv (vector). Magnetic force on a segment of length dl is

Currents (1) Line charge λ (C/m) with velocity v : in time t, This constitutes a current I = λv (vector). Magnetic force on a segment of length dl is Magnetostatics 1. Currents 2. Relativistic origin of magnetic field 3. Biot-Savart law 4. Magnetic force between currents 5. Applications of Biot-Savart law 6. Ampere s law in differential form 7. Magnetic

More information

Magnetic Fields; Sources of Magnetic Field

Magnetic Fields; Sources of Magnetic Field This test covers magnetic fields, magnetic forces on charged particles and current-carrying wires, the Hall effect, the Biot-Savart Law, Ampère s Law, and the magnetic fields of current-carrying loops

More information

AP Physics C. Electricity - Term 3

AP Physics C. Electricity - Term 3 AP Physics C Electricity - Term 3 Interest Packet Term Introduction: AP Physics has been specifically designed to build on physics knowledge previously acquired for a more in depth understanding of the

More information

Chapter 2 Gauss Law 1

Chapter 2 Gauss Law 1 Chapter 2 Gauss Law 1 . Gauss Law Gauss law relates the electric fields at points on a (closed) Gaussian surface to the net charge enclosed by that surface Consider the flux passing through a closed surface

More information

1) in the direction marked 1 2) in the direction marked 2 3) in the direction marked 3 4) out of the page 5) into the page

1) in the direction marked 1 2) in the direction marked 2 3) in the direction marked 3 4) out of the page 5) into the page Q1) In the figure, the current element i dl, the point P, and the three vectors (1, 2, 3) are all in the plane of the page. The direction of db, due to this current element, at the point P is: 1) in the

More information

PH 1120 Term D, 2017

PH 1120 Term D, 2017 PH 1120 Term D, 2017 Study Guide 4 / Objective 13 The Biot-Savart Law \ / a) Calculate the contribution made to the magnetic field at a \ / specified point by a current element, given the current, location,

More information

PHYS 2212 (Modern) Review. Electric Force and Fields

PHYS 2212 (Modern) Review. Electric Force and Fields PHYS 2212 (Modern) Review Electric Force and Fields A permanent dipole and a charged particle lie on the x-axis and are separated by a distance d as indicated in the figure. The dipole consists of positive

More information

Yell if you have any questions

Yell if you have any questions Class 36: Outline Hour 1: Concept Review / Overview PRS Questions Possible Exam Questions Hour : Sample Exam Yell if you have any questions P36-1 Before Starting All of your grades should now be posted

More information

ECE 3209 Electromagnetic Fields Final Exam Example. University of Virginia Solutions

ECE 3209 Electromagnetic Fields Final Exam Example. University of Virginia Solutions ECE 3209 Electromagnetic Fields Final Exam Example University of Virginia Solutions (print name above) This exam is closed book and closed notes. Please perform all work on the exam sheets in a neat and

More information

Chapter 23. Gauss s Law

Chapter 23. Gauss s Law Chapter 23 Gauss s Law 23.1 What is Physics?: Gauss law relates the electric fields at points on a (closed) Gaussian surface to the net charge enclosed by that surface. Gauss law considers a hypothetical

More information

1-1 Magnetism. q ν B.(1) = q ( ) (2)

1-1 Magnetism. q ν B.(1) = q ( ) (2) 1-1 Magnetism Magnets exert forces on each other just like charges. You can draw magnetic field lines just like you drew electric field lines. Magnetic north and south pole s behavior is not unlike electric

More information

8.4 Ampère s Law ACTIVITY 8.4.1

8.4 Ampère s Law ACTIVITY 8.4.1 8.4 Ampère s Law ACTVTY 8.4.1 Magnetic Fields Near Conductors and Coils (p. 424) What are the characteristics ofthe magnetic fields around a long straight conductor and a coil? How can the characteristics

More information

AP Physics C. Magnetism - Term 4

AP Physics C. Magnetism - Term 4 AP Physics C Magnetism - Term 4 Interest Packet Term Introduction: AP Physics has been specifically designed to build on physics knowledge previously acquired for a more in depth understanding of the world

More information

Magnetic Force Cyclotron motion

Magnetic Force Cyclotron motion Lecture 15 Chapter 29 Physics II Magnetic Force Cyclotron motion Course website: http://faculty.uml.edu/andriy_danylov/teaching/physicsii Today we are going to discuss: Chapter 29: Section 29.7 (Skip the

More information

Magnetic Fields Due to Currents

Magnetic Fields Due to Currents PHYS102 Previous Exam Problems CHAPTER 29 Magnetic Fields Due to Currents Calculating the magnetic field Forces between currents Ampere s law Solenoids 1. Two long straight wires penetrate the plane of

More information

Biot-Savart. The equation is this:

Biot-Savart. The equation is this: Biot-Savart When a wire carries a current, this current produces a magnetic field in the vicinity of the wire. One way of determining the strength and direction of this field is with the Law of Biot-Savart.

More information

Announcements This week:

Announcements This week: Announcements This week: Homework due Thursday March 22: Chapter 26 sections 3-5 + Chapter 27 Recitation on Friday March 23: Chapter 27. Quiz on Friday March 23: Homework, Lectures 12, 13 and 14 Properties

More information

Gauss s Law. Chapter 22. Electric Flux Gauss s Law: Definition. Applications of Gauss s Law

Gauss s Law. Chapter 22. Electric Flux Gauss s Law: Definition. Applications of Gauss s Law Electric Flux Gauss s Law: Definition Chapter 22 Gauss s Law Applications of Gauss s Law Uniform Charged Sphere Infinite Line of Charge Infinite Sheet of Charge Two infinite sheets of charge Phys 2435:

More information

Summary: Applications of Gauss Law

Summary: Applications of Gauss Law Physics 2460 Electricity and Magnetism I, Fall 2006, Lecture 15 1 Summary: Applications of Gauss Law 1. Field outside of a uniformly charged sphere of radius a: 2. An infinite, uniformly charged plane

More information

Look over. Examples 11, 12, 2/3/2008. Read over Chapter 23 sections 1-9 Examples 1, 2, 3, 6. 1) What a Gaussian surface is.

Look over. Examples 11, 12, 2/3/2008. Read over Chapter 23 sections 1-9 Examples 1, 2, 3, 6. 1) What a Gaussian surface is. PHYS 2212 Read over Chapter 23 sections 1-9 Examples 1, 2, 3, 6 PHYS 1112 Look over Chapter 16 Section 10 Examples 11, 12, Good Things To Know 1) What a Gaussian surface is. 2) How to calculate the Electric

More information

Physics 196 Final Test Point

Physics 196 Final Test Point Physics 196 Final Test - 120 Point Name You need to complete six 5-point problems and six 10-point problems. Cross off one 5-point problem and one 10-point problem. 1. Two small silver spheres, each with

More information

IMPORTANT: LABS START NEXT WEEK

IMPORTANT: LABS START NEXT WEEK Chapter 21: Gauss law Thursday September 8 th IMPORTANT: LABS START NEXT WEEK Gauss law The flux of a vector field Electric flux and field lines Gauss law for a point charge The shell theorem Examples

More information

Physics 2212 G Quiz #4 Solutions Spring 2018 = E

Physics 2212 G Quiz #4 Solutions Spring 2018 = E Physics 2212 G Quiz #4 Solutions Spring 2018 I. (16 points) The circuit shown has an emf E, three resistors with resistance, and one resistor with resistance 3. What is the current through the resistor

More information

Calculus Relationships in AP Physics C: Electricity and Magnetism

Calculus Relationships in AP Physics C: Electricity and Magnetism C: Electricity This chapter focuses on some of the quantitative skills that are important in your C: Mechanics course. These are not all of the skills that you will learn, practice, and apply during the

More information

Flux. Flux = = va. This is the same as asking What is the flux of water through the rectangle? The answer depends on:

Flux. Flux = = va. This is the same as asking What is the flux of water through the rectangle? The answer depends on: Ch. 22: Gauss s Law Gauss s law is an alternative description of Coulomb s law that allows for an easier method of determining the electric field for situations where the charge distribution contains symmetry.

More information

Chapter 5. Magnetostatics

Chapter 5. Magnetostatics Chapter 5. Magnetostatics 5.1 The Lorentz Force Law 5.1.1 Magnetic Fields Consider the forces between charges in motion Attraction of parallel currents and Repulsion of antiparallel ones: How do you explain

More information

Ch 24 Electric Flux, & Gauss s Law

Ch 24 Electric Flux, & Gauss s Law Ch 24 Electric Flux, & Gauss s Law Electric Flux...is related to the number of field lines penetrating a given surface area. Φ e = E A Φ = phi = electric flux Φ units are N m 2 /C Electric Flux Φ = E A

More information

CHAPTER 30: Sources of Magnetic Fields

CHAPTER 30: Sources of Magnetic Fields CHAPTER 30: Sources of Magnetic Fields Cern s singlewalled coil operates at 7600 amps and produces a 2.0 Tesla B-fld. http://atlasmagnet.web.ce rn.ch/atlasmagnet/info/ project/ ATLAS_Magn et_leafletds.pdf

More information

PHY102 Electricity Topic 3 (Lectures 4 & 5) Gauss s Law

PHY102 Electricity Topic 3 (Lectures 4 & 5) Gauss s Law PHY1 Electricity Topic 3 (Lectures 4 & 5) Gauss s Law In this topic, we will cover: 1) Electric Flux ) Gauss s Law, relating flux to enclosed charge 3) Electric Fields and Conductors revisited Reading

More information

Electric Flux and Gauss s Law

Electric Flux and Gauss s Law Electric Flux and Gauss s Law Electric Flux Figure (1) Consider an electric field that is uniform in both magnitude and direction, as shown in Figure 1. The total number of lines penetrating the surface

More information

Electric Flux and Gauss Law

Electric Flux and Gauss Law Electric Flux and Gauss Law Gauss Law can be used to find the electric field of complex charge distribution. Easier than treating it as a collection of point charge and using superposition To use Gauss

More information

Ch. 28: Sources of Magnetic Fields

Ch. 28: Sources of Magnetic Fields Ch. 28: Sources of Magnetic Fields Electric Currents Create Magnetic Fields A long, straight wire A current loop A solenoid Slide 24-14 Biot-Savart Law Current produces a magnetic field The Biot-Savart

More information

Fundamental Constants

Fundamental Constants Fundamental Constants Atomic Mass Unit u 1.660 540 2 10 10 27 kg 931.434 32 28 MeV c 2 Avogadro s number N A 6.022 136 7 36 10 23 (g mol) 1 Bohr magneton μ B 9.274 015 4(31) 10-24 J/T Bohr radius a 0 0.529

More information

Chapter 23: Gauss Law. PHY2049: Chapter 23 1

Chapter 23: Gauss Law. PHY2049: Chapter 23 1 Chapter 23: Gauss Law PHY2049: Chapter 23 1 Two Equivalent Laws for Electricity Coulomb s Law equivalent Gauss Law Derivation given in Sec. 23-5 (Read!) Not derived in this book (Requires vector calculus)

More information

Lecture 33. PHYC 161 Fall 2016

Lecture 33. PHYC 161 Fall 2016 Lecture 33 PHYC 161 Fall 2016 Faraday s law of induction When the magnetic flux through a single closed loop changes with time, there is an induced emf that can drive a current around the loop: Recall

More information

PES 1120 Spring 2014, Spendier Lecture 38/Page 1

PES 1120 Spring 2014, Spendier Lecture 38/Page 1 PES 1120 Spring 2014, Spendier Lecture 38/Page 1 Today: Start last chapter 32 - Maxwell s Equations James Clerk Maxwell (1831-1879) Scottish mathematical physicist. He united all observations, experiments

More information

Chapter 29. Magnetic Fields due to Currentss

Chapter 29. Magnetic Fields due to Currentss Chapter 29 Magnetic Fields due to Currentss Refresher: The Magnetic Field Permanent bar magnets have opposite poles on each end, called north and south. Like poles repel; opposites attract. If a magnet

More information

E. not enough information given to decide

E. not enough information given to decide Q22.1 A spherical Gaussian surface (#1) encloses and is centered on a point charge +q. A second spherical Gaussian surface (#2) of the same size also encloses the charge but is not centered on it. Compared

More information

Physics 114 Exam 1 Fall 2016

Physics 114 Exam 1 Fall 2016 Physics 114 Exam 1 Fall 2016 Name: For grading purposes (do not write here): Question 1. 1. 2. 2. 3. 3. Problem Answer each of the following questions and each of the problems. Points for each question

More information

Problem Solving 6: Ampere s Law and Faraday s Law. Part One: Ampere s Law

Problem Solving 6: Ampere s Law and Faraday s Law. Part One: Ampere s Law MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Physics: 8.02 Problem Solving 6: Ampere s Law and Faraday s Law Section Table Names Hand in one copy per group at the end of the Friday Problem Solving

More information

MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Physics Spring 2013 Exam 3 Equation Sheet. closed fixed path. ! = I ind.

MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Physics Spring 2013 Exam 3 Equation Sheet. closed fixed path. ! = I ind. MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Physics 8.0 Spring 013 Exam 3 Equation Sheet Force Law: F q = q( E ext + v q B ext ) Force on Current Carrying Wire: F = Id s " B # wire ext Magnetic

More information

Gauss s Law. The first Maxwell Equation A very useful computational technique This is important!

Gauss s Law. The first Maxwell Equation A very useful computational technique This is important! Gauss s Law The first Maxwell quation A very useful computational technique This is important! P05-7 Gauss s Law The Idea The total flux of field lines penetrating any of these surfaces is the same and

More information

AP Physics C Mechanics Objectives

AP Physics C Mechanics Objectives AP Physics C Mechanics Objectives I. KINEMATICS A. Motion in One Dimension 1. The relationships among position, velocity and acceleration a. Given a graph of position vs. time, identify or sketch a graph

More information

Gauss s Law. Lecture 3. Chapter Course website:

Gauss s Law. Lecture 3. Chapter Course website: Lecture 3 Chapter 24 Gauss s Law 95.144 Course website: http://faculty.uml.edu/andriy_danylov/teaching/physicsii Today we are going to discuss: Chapter 24: Section 24.2 Idea of Flux Section 24.3 Electric

More information