THEORY OF STRUCTURES CHAPTER 3 : SLOPE DEFLECTION (FOR BEAM) PART 1

Size: px
Start display at page:

Download "THEORY OF STRUCTURES CHAPTER 3 : SLOPE DEFLECTION (FOR BEAM) PART 1"

Transcription

1 or updated version, please click on THEORY O STRUCTURES CHAPTER : SOPE DEECTION (OR EA) PART 1 by Saffuan Wan Ahmad aculty of Civil Engineering & Earth Resources saffuan@ump.edu.my

2 Chapter : Part 1 Slope Deflection Aims Determine the end moment for beam using Slope Deflection ethod. Expected Outcomes : Able to indicate the degree of freedom. Able to indicate the moment due to angular displacement. Able to determine the moment due to linear displacement Able to determine the fixed end moment Able to write the slope deflection equation. References echanics of aterials, R.C. Hibbeler, 7th Edition, Prentice Hall Structural Analysis, Hibbeler, 7th Edition, Prentice Hall Structural Analysis, SI Edition by Aslam Kassimali,Cengage earning Structural Analysis, Coates, Coatie and Kong Structural Analysis - A Classical and atrix Approach, Jack C. ccormac and James K. Nelson, Jr., 4th Edition, John Wiley

3 INTRODUCTION Introduced for analyzing statically indeterminate structure reactions and internal forces. The method required the solution of simultaneous equations representing the overall system of equilibrium equation.

4 DEGREE O REEDO When a structure is loaded, specified point on it call nodes, will undergo displacements. These displacement are referred to as the degree of freedom for the structure. To determined the number of degrees of freedom, we can imagine the structure to consist of a series member connected to nodes, which is usually located at JOINT, SUPPORT, and at the END O EER or where the member have SUDDEN CHANGE IN CROSS SECTION.

5

6 EXAPE A P When load P is applied to the beam, will cause node A to rotate, while node is completely restricted from moving. A P Onedegreeof freedom, A C our degreeof freedom, P C,,, A C C Three degreeof freedom, A D, C,

7 Conclusion 0 Real beam

8 OOD O IND ind the number of degree of freedom P w P P A C D Ans : 4

9 SOPE DEECTION EQUATION A - INTERNA END OENT Angular displacement at A (Near) Angular displacement at (ar) inear displacement ixed end moment

10 1. ANGUAR DISPACEENT AT A A A A A 4 EI A A EI A

11 . ANGUAR DISPACEENT AT A A 4 A EI A EI

12 EXAPE. A 4EI A A EI 4EI EI A

13 C 4EI C EI C 4EI EI C

14 CD 4EI C DC EI D 4EI EI D C

15 DE 4EI D ED EI E 4EI EI E D

16 . REATIVE INEAR DISPACEENT A 6EI A

17 EXAPE 1 Determine the moment due to linear displacement for each members. Assume mm settlement occur at support. 7kN 10kN/m A 4 m 4 m C

18 A A 6EI 6EI( 0.00) EI C C 6EI 6EI( 0.00) EI

19 OOD O IND Determine the moment due to linear displacement for each members. Assume mm and 1mm settlement occur at support and C respectively. 7kN 10kN/m A 4 m 4 m C

20 4. IXED END OENT A A oment cause by external load whilst the both support are fixed. - REER TAE

21 EXAPE Determine the ixed End oment for each members. 7kN 10kN/m A m m 4 m C

22 A P 8 7(4) 8.5kNm A P 8 7(4) 8.5kNm

23 C C w 1 10(4) 1 1.kNm w 1 10(4) 1 1.kNm

24 SOPE DEECTION EQUATION A 4EI EI 6EI A A Angular displacement at A Angular displacement at ixed end moment inear displacement

25 A 4EI EI 6 A EI A Angular displacement at Angular displacement at A ixed end moment inear displacement

26 Write down the slope deflection equation TU 4EI EI 6 T U EI TU UT 4EI EI 6 U T EI UT

27 EXAPE Analyse the two span continuous beam as shown below for the bending moment at the support point or member end using SD. The relative flexural rigidity for both span are identical ie EI is constant and the beam is subjected to a point moment of 100kNm at

28 Solution. ixed End oment A A C C 0 Slope Deflection Equation A C 0 0 A 4EI EI 6EI A A EI A 4EI EI 6EI A A EI

29 C 4EI EI 6EI C C EI C 4EI EI 6EI C C EI EQUIIRIU AT JOINT 100 A C 100 EI EI EI

30 SUSTITUTING INTO SDE A A C C 5kNm 50kNm 50kNm 5kNm

31 In figure below, the two span continuous beam shown earlier is now subjected two in span loads of UD having an intensity of 10 kn/m over span A and a point load of 5kN at the mid span of C. EI is constant. Determine the support moment at A, and C. Draw the bending moment diagram. 10 kn/m EXAPE 4 5 kn A EI EI C 6m 6m

32 SOUTION Step # 1 IXED END OENT A A C C W 1 0kNm P 5(6) kNm 0kNm 18.75kNm

33 Step # SOPE DEECTION EQUATION A C 0 A A A A 4EI EI EI 0 6 6EI A 4EI EI 6EI A EI 0 A A

34 C 4EI EI 6EI C C C EI C 4EI EI 6EI C C C EI 18.75

35 Step # Equilibrium Equation 0 A C 0 EI 0 EI EI 8.8

36 Step # 4 SUSTITUTING INTO SDE A A C C.81kNm 4.7kNm 4.8kNm 15.9kNm

37 OENT PROIE

38 Span A kn R kn R R A A (6) 10(6) m x x knm oment ax knm Area (.14)(1.4) 1

39 Span C R C R 11.09kN () 1.91kN R C (6) 0 Area ()(1.91) 41.7kNm ax oment kNm

40 D

41 EXAPE 5 Continuous beam with settlement at support and C. Determine the end moment in the figure if there is 1mm downward movement at support and C. Take EI is 75E knm for all span

42 SOUTION IXED END OENT A A C C CD DC.5kNm.5kNm 4kNm 6kNm 0 0

43 OENT DUE TO SHRINKAGE EI 6 A 50kNm EI 6 A 50kNm C 0 6EI

44 C 6EI EI 6 CD 18kNm EI 6 DC 18kNm 5

45 Slope Deflection Equation. A 4EI EI 6EI A A A A

46 A 4EI EI 6EI A A A A 10, C 4EI EI 6EI C C C C C 4 60,000 0,000 C 4

47 C 60,000 0,000 C 6 CD 60, C DC 0, C EQUIIRIU AT JOINT 0 A C 0 160,000 0, C

48 C 0 C CD 0 0,000 10, C 160,000 0,000 0,000 10,000 C

49 Solving by using calculator C SUSTITUTING INTO SDE A A C C CD DC 51.19kNm 15.1kNm 15.1kNm 15.9kNm 15.40kNm 1.0kNm

50 THANKS

51 Author Information ohd Arif in Sulaiman ohd aizal in d. Jaafar ohammad Amirulkhairi in Zubir Rokiah inti Othman Norhaiza inti Ghazali Shariza inti at Aris

THEORY OF STRUCTURES CHAPTER 3 : SLOPE DEFLECTION (FOR FRAME) PART 2

THEORY OF STRUCTURES CHAPTER 3 : SLOPE DEFLECTION (FOR FRAME) PART 2 or updated version, please click on http://ocw.ump.edu.my THEORY O STRUTURES HAPTER : SOPE DEETION (OR RAE) PART by Saffuan Wan Ahmad aculty of ivil Engineering & Earth Resources saffuan@ump.edu.my hapter

More information

Chapter 11. Displacement Method of Analysis Slope Deflection Method

Chapter 11. Displacement Method of Analysis Slope Deflection Method Chapter 11 Displacement ethod of Analysis Slope Deflection ethod Displacement ethod of Analysis Two main methods of analyzing indeterminate structure Force method The method of consistent deformations

More information

MODULE 3 ANALYSIS OF STATICALLY INDETERMINATE STRUCTURES BY THE DISPLACEMENT METHOD

MODULE 3 ANALYSIS OF STATICALLY INDETERMINATE STRUCTURES BY THE DISPLACEMENT METHOD ODULE 3 ANALYI O TATICALLY INDETERINATE TRUCTURE BY THE DIPLACEENT ETHOD LEON 19 THE OENT- DITRIBUTION ETHOD: TATICALLY INDETERINATE BEA WITH UPPORT ETTLEENT Instructional Objectives After reading this

More information

Module 3. Analysis of Statically Indeterminate Structures by the Displacement Method

Module 3. Analysis of Statically Indeterminate Structures by the Displacement Method odule 3 Analysis of Statically Indeterminate Structures by the Displacement ethod Lesson 14 The Slope-Deflection ethod: An Introduction Introduction As pointed out earlier, there are two distinct methods

More information

MECHANICS OF MATERIALS

MECHANICS OF MATERIALS For updated version, please click on http://ocw.ump.edu.my MECHANICS OF MATERIALS COURSE INFORMATION by Nur Farhayu Binti Ariffin Faculty of Civil Engineering and Earth Resources farhayu@ump.edu.my MECHANICS

More information

Continuous Beams - Flexibility Method

Continuous Beams - Flexibility Method ontinuous eams - Flexibility Method Qu. Sketch the M diagram for the beam shown in Fig.. Take E = 200kN/mm 2. 50kN 60kN-m = = 0kN/m D I = 60 50 40 x 0 6 mm 4 Fig. 60.0 23.5 D 25.7 6.9 M diagram in kn-m

More information

Module 3. Analysis of Statically Indeterminate Structures by the Displacement Method

Module 3. Analysis of Statically Indeterminate Structures by the Displacement Method odule 3 Analysis of Statically Indeterminate Structures by the Displacement ethod Lesson 16 The Slope-Deflection ethod: rames Without Sidesway Instructional Objectives After reading this chapter the student

More information

Module 2. Analysis of Statically Indeterminate Structures by the Matrix Force Method

Module 2. Analysis of Statically Indeterminate Structures by the Matrix Force Method Module 2 Analysis of Statically Indeterminate Structures by the Matrix Force Method Lesson 8 The Force Method of Analysis: Beams Instructional Objectives After reading this chapter the student will be

More information

MECHANICS OF MATERIALS. Analysis of Beams for Bending

MECHANICS OF MATERIALS. Analysis of Beams for Bending MECHANICS OF MATERIALS Analysis of Beams for Bending By NUR FARHAYU ARIFFIN Faculty of Civil Engineering & Earth Resources Chapter Description Expected Outcomes Define the elastic deformation of an axially

More information

UNIT-IV SLOPE DEFLECTION METHOD

UNIT-IV SLOPE DEFLECTION METHOD UNITIV SOPE EETION ETHO ontinuous beams and rigid frames (with and without sway) Symmetry and antisymmetry Simplification for hinged end Support displacements Introduction: This method was first proposed

More information

P.E. Civil Exam Review:

P.E. Civil Exam Review: P.E. Civil Exam Review: Structural Analysis J.P. Mohsen Email: jpm@louisville.edu Structures Determinate Indeterminate STATICALLY DETERMINATE STATICALLY INDETERMINATE Stability and Determinacy of Trusses

More information

Module 3. Analysis of Statically Indeterminate Structures by the Displacement Method

Module 3. Analysis of Statically Indeterminate Structures by the Displacement Method odule 3 Analysis of Statically Indeterminate Structures by the Displacement ethod Lesson 21 The oment- Distribution ethod: rames with Sidesway Instructional Objectives After reading this chapter the student

More information

Module 3. Analysis of Statically Indeterminate Structures by the Displacement Method. Version 2 CE IIT, Kharagpur

Module 3. Analysis of Statically Indeterminate Structures by the Displacement Method. Version 2 CE IIT, Kharagpur odule 3 Analysis of Statically Indeterminate Structures by the Displacement ethod Version CE IIT, Kharagpur Lesson The ultistory Frames with Sidesway Version CE IIT, Kharagpur Instructional Objectives

More information

UNIT IV FLEXIBILTY AND STIFFNESS METHOD

UNIT IV FLEXIBILTY AND STIFFNESS METHOD SIDDHARTH GROUP OF INSTITUTIONS :: PUTTUR Siddharth Nagar, Narayanavanam Road 517583 QUESTION BANK (DESCRIPTIVE) Subject with Code : SA-II (13A01505) Year & Sem: III-B.Tech & I-Sem Course & Branch: B.Tech

More information

MAHALAKSHMI ENGINEERING COLLEGE

MAHALAKSHMI ENGINEERING COLLEGE CE840-STRENGTH OF TERIS - II PGE 1 HKSHI ENGINEERING COEGE TIRUCHIRPI - 611. QUESTION WITH NSWERS DEPRTENT : CIVI SEESTER: IV SU.CODE/ NE: CE 840 / Strength of aterials -II UNIT INDETERINTE ES 1. Define

More information

CITY AND GUILDS 9210 UNIT 135 MECHANICS OF SOLIDS Level 6 TUTORIAL 5A - MOMENT DISTRIBUTION METHOD

CITY AND GUILDS 9210 UNIT 135 MECHANICS OF SOLIDS Level 6 TUTORIAL 5A - MOMENT DISTRIBUTION METHOD Outcome 1 The learner can: CITY AND GUIDS 910 UNIT 15 ECHANICS OF SOIDS evel 6 TUTORIA 5A - OENT DISTRIBUTION ETHOD Calculate stresses, strain and deflections in a range of components under various load

More information

Module 2. Analysis of Statically Indeterminate Structures by the Matrix Force Method

Module 2. Analysis of Statically Indeterminate Structures by the Matrix Force Method Module 2 Analysis of Statically Indeterminate Structures by the Matrix Force Method Lesson 11 The Force Method of Analysis: Frames Instructional Objectives After reading this chapter the student will be

More information

QUESTION BANK. SEMESTER: V SUBJECT CODE / Name: CE 6501 / STRUCTURAL ANALYSIS-I

QUESTION BANK. SEMESTER: V SUBJECT CODE / Name: CE 6501 / STRUCTURAL ANALYSIS-I QUESTION BANK DEPARTMENT: CIVIL SEMESTER: V SUBJECT CODE / Name: CE 6501 / STRUCTURAL ANALYSIS-I Unit 5 MOMENT DISTRIBUTION METHOD PART A (2 marks) 1. Differentiate between distribution factors and carry

More information

Example 17.3 Analyse the rigid frame shown in Fig a. Moment of inertia of all the members are shown in the figure. Draw bending moment diagram.

Example 17.3 Analyse the rigid frame shown in Fig a. Moment of inertia of all the members are shown in the figure. Draw bending moment diagram. Example 17.3 Analyse the rigid frame shown in ig. 17.5 a. oment of inertia of all the members are shown in the figure. Draw bending moment diagram. Under the action of external forces, the frame gets deformed

More information

The bending moment diagrams for each span due to applied uniformly distributed and concentrated load are shown in Fig.12.4b.

The bending moment diagrams for each span due to applied uniformly distributed and concentrated load are shown in Fig.12.4b. From inspection, it is assumed that the support moments at is zero and support moment at, 15 kn.m (negative because it causes compression at bottom at ) needs to be evaluated. pplying three- Hence, only

More information

MAHALAKSHMI ENGINEERING COLLEGE

MAHALAKSHMI ENGINEERING COLLEGE AHAAKSHI ENGINEERING COEGE TIRUCHIRAPAI - 611. QUESTION WITH ANSWERS DEPARTENT : CIVI SEESTER: V SU.CODE/ NAE: CE 5 / Strength of aterials UNIT INDETERINATE EAS 1. Define statically indeterminate beams.

More information

Structural Analysis III Moment Distribution

Structural Analysis III Moment Distribution Structural Analysis III oment Distribution 2008/9 Dr. Colin Caprani 1 Contents 1. Introduction... 4 1.1 Overview... 4 1.2 The Basic Idea... 5 2. Development... 10 2.1 Carry-Over... 10 2.2 Fixed End oments...

More information

FIXED BEAMS CONTINUOUS BEAMS

FIXED BEAMS CONTINUOUS BEAMS FIXED BEAMS CONTINUOUS BEAMS INTRODUCTION A beam carried over more than two supports is known as a continuous beam. Railway bridges are common examples of continuous beams. But the beams in railway bridges

More information

UNIT-V MOMENT DISTRIBUTION METHOD

UNIT-V MOMENT DISTRIBUTION METHOD UNIT-V MOMENT DISTRIBUTION METHOD Distribution and carryover of moments Stiffness and carry over factors Analysis of continuous beams Plane rigid frames with and without sway Neylor s simplification. Hardy

More information

Structural Analysis III Moment Distribution

Structural Analysis III Moment Distribution Structural Analysis III oment Distribution 2009/10 Dr. Colin Caprani 1 Contents 1. Introduction... 4 1.1 Overview... 4 1.2 The Basic Idea... 5 2. Development... 10 2.1 Carry-Over Factor... 10 2.2 Fixed-End

More information

Lecture 6: The Flexibility Method - Beams. Flexibility Method

Lecture 6: The Flexibility Method - Beams. Flexibility Method lexibility Method In 1864 James Clerk Maxwell published the first consistent treatment of the flexibility method for indeterminate structures. His method was based on considering deflections, but the presentation

More information

UNIT II SLOPE DEFLECION AND MOMENT DISTRIBUTION METHOD

UNIT II SLOPE DEFLECION AND MOMENT DISTRIBUTION METHOD SIDDHARTH GROUP OF INSTITUTIONS :: PUTTUR Siddharth Nagar, Narayanavanam Road 517583 QUESTION BANK (DESCRIPTIVE) Subject with Code : SA-II (13A01505) Year & Sem: III-B.Tech & I-Sem Course & Branch: B.Tech

More information

techie-touch.blogspot.com DEPARTMENT OF CIVIL ENGINEERING ANNA UNIVERSITY QUESTION BANK CE 2302 STRUCTURAL ANALYSIS-I TWO MARK QUESTIONS UNIT I DEFLECTION OF DETERMINATE STRUCTURES 1. Write any two important

More information

SLOPE-DEFLECTION METHOD

SLOPE-DEFLECTION METHOD SLOPE-DEFLECTION ETHOD The slope-deflection method uses displacements as unknowns and is referred to as a displacement method. In the slope-deflection method, the moments at the ends of the members are

More information

M.S Comprehensive Examination Analysis

M.S Comprehensive Examination Analysis UNIVERSITY OF CALIFORNIA, BERKELEY Spring Semester 2014 Dept. of Civil and Environmental Engineering Structural Engineering, Mechanics and Materials Name:......................................... M.S Comprehensive

More information

Chapter 4.1: Shear and Moment Diagram

Chapter 4.1: Shear and Moment Diagram Chapter 4.1: Shear and Moment Diagram Chapter 5: Stresses in Beams Chapter 6: Classical Methods Beam Types Generally, beams are classified according to how the beam is supported and according to crosssection

More information

SAB2223 Mechanics of Materials and Structures

SAB2223 Mechanics of Materials and Structures S2223 Mechanics of Materials and Structures TOPIC 2 SHER FORCE ND ENDING MOMENT Lecturer: Dr. Shek Poi Ngian TOPIC 2 SHER FORCE ND ENDING MOMENT Shear Force and ending Moment Introduction Types of beams

More information

Structural Analysis III Compatibility of Displacements & Principle of Superposition

Structural Analysis III Compatibility of Displacements & Principle of Superposition Structural Analysis III Compatibility of Displacements & Principle of Superposition 2007/8 Dr. Colin Caprani, Chartered Engineer 1 1. Introduction 1.1 Background In the case of 2-dimensional structures

More information

Ph.D. Preliminary Examination Analysis

Ph.D. Preliminary Examination Analysis UNIVERSITY OF CALIFORNIA, BERKELEY Spring Semester 2017 Dept. of Civil and Environmental Engineering Structural Engineering, Mechanics and Materials Name:......................................... Ph.D.

More information

, and M A , R B. , and then draw the shear-force and bending-moment diagrams, labeling all critical ordinates. Solution 10.

, and M A , R B. , and then draw the shear-force and bending-moment diagrams, labeling all critical ordinates. Solution 10. SETIN 0. ethod of Superposition 63 roblem 0.- The propped cantilever beam shown in the figure supports a uniform load of intensity on the left-hand half of the beam. Find the reactions R, R, and, and then

More information

Deflection of Beams. Equation of the Elastic Curve. Boundary Conditions

Deflection of Beams. Equation of the Elastic Curve. Boundary Conditions Deflection of Beams Equation of the Elastic Curve The governing second order differential equation for the elastic curve of a beam deflection is EI d d = where EI is the fleural rigidit, is the bending

More information

FORMULA FOR FORCED VIBRATION ANALYSIS OF STRUCTURES USING STATIC FACTORED RESPONSE AS EQUIVALENT DYNAMIC RESPONSE

FORMULA FOR FORCED VIBRATION ANALYSIS OF STRUCTURES USING STATIC FACTORED RESPONSE AS EQUIVALENT DYNAMIC RESPONSE FORMULA FOR FORCED VIBRATION ANALYSIS OF STRUCTURES USING STATIC FACTORED RESPONSE AS EQUIVALENT DYNAMIC RESPONSE ABSTRACT By G. C. Ezeokpube, M. Eng. Department of Civil Engineering Anambra State University,

More information

Module 4. Analysis of Statically Indeterminate Structures by the Direct Stiffness Method. Version 2 CE IIT, Kharagpur

Module 4. Analysis of Statically Indeterminate Structures by the Direct Stiffness Method. Version 2 CE IIT, Kharagpur Module Analysis of Statically Indeterminate Structures by the Direct Stiffness Method Version CE IIT, Kharagur Lesson 9 The Direct Stiffness Method: Beams (Continued) Version CE IIT, Kharagur Instructional

More information

STRUCTURAL ANALYSIS BFC Statically Indeterminate Beam & Frame

STRUCTURAL ANALYSIS BFC Statically Indeterminate Beam & Frame STRUCTURA ANAYSIS BFC 21403 Statically Indeterminate Beam & Frame Introduction Analysis for indeterminate structure of beam and frame: 1. Slope-deflection method 2. Moment distribution method Displacement

More information

Lecture 11: The Stiffness Method. Introduction

Lecture 11: The Stiffness Method. Introduction Introduction Although the mathematical formulation of the flexibility and stiffness methods are similar, the physical concepts involved are different. We found that in the flexibility method, the unknowns

More information

Chapter 8 Supplement: Deflection in Beams Double Integration Method

Chapter 8 Supplement: Deflection in Beams Double Integration Method Chapter 8 Supplement: Deflection in Beams Double Integration Method 8.5 Beam Deflection Double Integration Method In this supplement, we describe the methods for determining the equation of the deflection

More information

Module 4 : Deflection of Structures Lecture 4 : Strain Energy Method

Module 4 : Deflection of Structures Lecture 4 : Strain Energy Method Module 4 : Deflection of Structures Lecture 4 : Strain Energy Method Objectives In this course you will learn the following Deflection by strain energy method. Evaluation of strain energy in member under

More information

7.4 The Elementary Beam Theory

7.4 The Elementary Beam Theory 7.4 The Elementary Beam Theory In this section, problems involving long and slender beams are addressed. s with pressure vessels, the geometry of the beam, and the specific type of loading which will be

More information

Finite Element Analysis Prof. Dr. B. N. Rao Department of Civil Engineering Indian Institute of Technology, Madras. Module - 01 Lecture - 11

Finite Element Analysis Prof. Dr. B. N. Rao Department of Civil Engineering Indian Institute of Technology, Madras. Module - 01 Lecture - 11 Finite Element Analysis Prof. Dr. B. N. Rao Department of Civil Engineering Indian Institute of Technology, Madras Module - 01 Lecture - 11 Last class, what we did is, we looked at a method called superposition

More information

Due Tuesday, September 21 st, 12:00 midnight

Due Tuesday, September 21 st, 12:00 midnight Due Tuesday, September 21 st, 12:00 midnight The first problem discusses a plane truss with inclined supports. You will need to modify the MatLab software from homework 1. The next 4 problems consider

More information

UNIT III DEFLECTION OF BEAMS 1. What are the methods for finding out the slope and deflection at a section? The important methods used for finding out the slope and deflection at a section in a loaded

More information

- Beams are structural member supporting lateral loadings, i.e., these applied perpendicular to the axes.

- Beams are structural member supporting lateral loadings, i.e., these applied perpendicular to the axes. 4. Shear and Moment functions - Beams are structural member supporting lateral loadings, i.e., these applied perpendicular to the aes. - The design of such members requires a detailed knowledge of the

More information

Discontinuous Distributions in Mechanics of Materials

Discontinuous Distributions in Mechanics of Materials Discontinuous Distributions in Mechanics of Materials J.E. Akin, Rice University 1. Introduction The study of the mechanics of materials continues to change slowly. The student needs to learn about software

More information

Theory of Structures

Theory of Structures SAMPLE STUDY MATERIAL Postal Correspondence Course GATE, IES & PSUs Civil Engineering Theory of Structures C O N T E N T 1. ARCES... 3-14. ROLLING LOADS AND INFLUENCE LINES. 15-9 3. DETERMINACY AND INDETERMINACY..

More information

3 Relation between complete and natural degrees of freedom

3 Relation between complete and natural degrees of freedom Stiffness matrix for D tapered beams by ouie. Yaw, PhD, PE, SE Walla Walla University March 9, 9 Introduction This article presents information necessary for the construction of the stiffness matrix of

More information

BEAM A horizontal or inclined structural member that is designed to resist forces acting to its axis is called a beam

BEAM A horizontal or inclined structural member that is designed to resist forces acting to its axis is called a beam BEM horizontal or inclined structural member that is designed to resist forces acting to its axis is called a beam INTERNL FORCES IN BEM Whether or not a beam will break, depend on the internal resistances

More information

Deflection of Flexural Members - Macaulay s Method 3rd Year Structural Engineering

Deflection of Flexural Members - Macaulay s Method 3rd Year Structural Engineering Deflection of Flexural Members - Macaulay s Method 3rd Year Structural Engineering 008/9 Dr. Colin Caprani 1 Contents 1. Introduction... 3 1.1 General... 3 1. Background... 4 1.3 Discontinuity Functions...

More information

Shear force and bending moment of beams 2.1 Beams 2.2 Classification of beams 1. Cantilever Beam Built-in encastre' Cantilever

Shear force and bending moment of beams 2.1 Beams 2.2 Classification of beams 1. Cantilever Beam Built-in encastre' Cantilever CHAPTER TWO Shear force and bending moment of beams 2.1 Beams A beam is a structural member resting on supports to carry vertical loads. Beams are generally placed horizontally; the amount and extent of

More information

Using the finite element method of structural analysis, determine displacements at nodes 1 and 2.

Using the finite element method of structural analysis, determine displacements at nodes 1 and 2. Question 1 A pin-jointed plane frame, shown in Figure Q1, is fixed to rigid supports at nodes and 4 to prevent their nodal displacements. The frame is loaded at nodes 1 and by a horizontal and a vertical

More information

Deflection of Flexural Members - Macaulay s Method 3rd Year Structural Engineering

Deflection of Flexural Members - Macaulay s Method 3rd Year Structural Engineering Deflection of Flexural Members - Macaulay s Method 3rd Year Structural Engineering 009/10 Dr. Colin Caprani 1 Contents 1. Introduction... 4 1.1 General... 4 1. Background... 5 1.3 Discontinuity Functions...

More information

Work and energy method. Exercise 1 : Beam with a couple. Exercise 1 : Non-linear loaddisplacement. Exercise 2 : Horizontally loaded frame

Work and energy method. Exercise 1 : Beam with a couple. Exercise 1 : Non-linear loaddisplacement. Exercise 2 : Horizontally loaded frame Work and energy method EI EI T x-axis Exercise 1 : Beam with a coupe Determine the rotation at the right support of the construction dispayed on the right, caused by the coupe T using Castigiano s nd theorem.

More information

Lecture 8: Flexibility Method. Example

Lecture 8: Flexibility Method. Example ecture 8: lexibility Method Example The plane frame shown at the left has fixed supports at A and C. The frame is acted upon by the vertical load P as shown. In the analysis account for both flexural and

More information

Advanced Structural Analysis Prof. Devdas Menon Department of Civil Engineering Indian Institute of Technology, Madras

Advanced Structural Analysis Prof. Devdas Menon Department of Civil Engineering Indian Institute of Technology, Madras Advanced Structural Analysis Prof. Devdas Menon Department of Civil Engineering Indian Institute of Technology, Madras Module No. # 5.1 Lecture No. # 27 Matrix Analysis of Beams and Grids Good morning,

More information

Chapter Objectives. Copyright 2011 Pearson Education South Asia Pte Ltd

Chapter Objectives. Copyright 2011 Pearson Education South Asia Pte Ltd Chapter Objectives To generalize the procedure by formulating equations that can be plotted so that they describe the internal shear and moment throughout a member. To use the relations between distributed

More information

dv dx Slope of the shear diagram = - Value of applied loading dm dx Slope of the moment curve = Shear Force

dv dx Slope of the shear diagram = - Value of applied loading dm dx Slope of the moment curve = Shear Force Beams SFD and BMD Shear and Moment Relationships w dv dx Slope of the shear diagram = - Value of applied loading V dm dx Slope of the moment curve = Shear Force Both equations not applicable at the point

More information

Engineering Mechanics Statics

Engineering Mechanics Statics Mechanical Systems Engineering _ 2016 Engineering Mechanics Statics 7. Equilibrium of a Rigid Body Dr. Rami Zakaria Conditions for Rigid-Body Equilibrium Forces on a particle Forces on a rigid body The

More information

INELASTIC SEISMIC DISPLACEMENT RESPONSE PREDICTION OF MDOF SYSTEMS BY EQUIVALENT LINEARIZATION

INELASTIC SEISMIC DISPLACEMENT RESPONSE PREDICTION OF MDOF SYSTEMS BY EQUIVALENT LINEARIZATION INEASTIC SEISMIC DISPACEMENT RESPONSE PREDICTION OF MDOF SYSTEMS BY EQUIVAENT INEARIZATION M. S. Günay 1 and H. Sucuoğlu 1 Research Assistant, Dept. of Civil Engineering, Middle East Technical University,

More information

Theoretical Mechanics Practicums

Theoretical Mechanics Practicums + ALEKSANDRAS STULGINSKIS UNIVERSITY Faculty of Agricultural Engineering Department of Mechanics Eglė Jotautienė Theoretical Mechanics Practicums KAUNAS - AKADEMIJA 2012 UDK 629.1:631.374 Eglė Jotautienė

More information

7 STATICALLY DETERMINATE PLANE TRUSSES

7 STATICALLY DETERMINATE PLANE TRUSSES 7 STATICALLY DETERMINATE PLANE TRUSSES OBJECTIVES: This chapter starts with the definition of a truss and briefly explains various types of plane truss. The determinancy and stability of a truss also will

More information

Preliminaries: Beam Deflections Virtual Work

Preliminaries: Beam Deflections Virtual Work Preliminaries: Beam eflections Virtual Work There are several methods available to calculate deformations (displacements and rotations) in beams. They include: Formulating moment equations and then integrating

More information

Moment Distribution Method

Moment Distribution Method Moment Distribution Method Lesson Objectives: 1) Identify the formulation and sign conventions associated with the Moment Distribution Method. 2) Derive the Moment Distribution Method equations using mechanics

More information

structural analysis Excessive beam deflection can be seen as a mode of failure.

structural analysis Excessive beam deflection can be seen as a mode of failure. Structure Analysis I Chapter 8 Deflections Introduction Calculation of deflections is an important part of structural analysis Excessive beam deflection can be seen as a mode of failure. Extensive glass

More information

2. Determine the deflection at C of the beam given in fig below. Use principal of virtual work. W L/2 B A L C

2. Determine the deflection at C of the beam given in fig below. Use principal of virtual work. W L/2 B A L C CE-1259, Strength of Materials UNIT I STRESS, STRAIN DEFORMATION OF SOLIDS Part -A 1. Define strain energy density. 2. State Maxwell s reciprocal theorem. 3. Define proof resilience. 4. State Castigliano

More information

Finite Element Analysis Prof. Dr. B. N. Rao Department of Civil Engineering Indian Institute of Technology, Madras. Module - 01 Lecture - 13

Finite Element Analysis Prof. Dr. B. N. Rao Department of Civil Engineering Indian Institute of Technology, Madras. Module - 01 Lecture - 13 Finite Element Analysis Prof. Dr. B. N. Rao Department of Civil Engineering Indian Institute of Technology, Madras (Refer Slide Time: 00:25) Module - 01 Lecture - 13 In the last class, we have seen how

More information

Multi Linear Elastic and Plastic Link in SAP2000

Multi Linear Elastic and Plastic Link in SAP2000 26/01/2016 Marco Donà Multi Linear Elastic and Plastic Link in SAP2000 1 General principles Link object connects two joints, i and j, separated by length L, such that specialized structural behaviour may

More information

UNIT II 1. Sketch qualitatively the influence line for shear at D for the beam [M/J-15]

UNIT II 1. Sketch qualitatively the influence line for shear at D for the beam [M/J-15] UNIT II 1. Sketch qualitatively the influence line for shear at D for the beam [M/J-15] 2. Draw the influence line for shear to the left of B for the overhanging beam shown in Fig. Q. No. 4 [M/J-15] 3.

More information

29. Define Stiffness matrix method. 30. What is the compatibility condition used in the flexibility method?

29. Define Stiffness matrix method. 30. What is the compatibility condition used in the flexibility method? CLASS: III YEAR / VI SEMESTER CIVIL SUBJECTCODE AND NAME: CE 2351 - STRUCTURAL ANALYSIS-II UNIT1 FLEXIBILITY MATRIX METHOD. PART A 1. What is meant by indeterminate structures? 2. What are the conditions

More information

Part IB Paper 2: Structures. Examples Paper 2/3 Elastic structural analysis

Part IB Paper 2: Structures. Examples Paper 2/3 Elastic structural analysis ISSUEB 011 15 NOV 2013 1 Engineering Tripos Part IB SECOND YEAR Part IB Paper 2: Structures Examples Paper 2/3 Elastic structural analysis Straightforward questions are marked by t; Tripos standard questions

More information

GLOBAL EDITION. Structural Analysis. Ninth Edition in SI Units. R. C. Hibbeler

GLOBAL EDITION. Structural Analysis. Ninth Edition in SI Units. R. C. Hibbeler GLOAL EDITION Structural Analysis Ninth Edition in SI Units R. C. Hibbeler STRUCTURAL ANALYSIS NINTH EDITION IN SI UNITS R. C. HIELER SI Conversion by Kai eng Yap oston Columbus Indianapolis New York San

More information

EQUATIONS OF EQUILIBRIUM & TWO- AND THREE-FORCE MEMEBERS

EQUATIONS OF EQUILIBRIUM & TWO- AND THREE-FORCE MEMEBERS EQUATIONS OF EQUILIBRIUM & TWO- AND THREE-FORCE MEMEBERS Today s Objectives: Students will be able to: a) Apply equations of equilibrium to solve for unknowns, and b) Recognize two-force members. In-Class

More information

Level 7 Postgraduate Diploma in Engineering Computational mechanics using finite element method

Level 7 Postgraduate Diploma in Engineering Computational mechanics using finite element method 9210-203 Level 7 Postgraduate Diploma in Engineering Computational mechanics using finite element method You should have the following for this examination one answer book No additional data is attached

More information

Structural Analysis III The Moment Area Method Mohr s Theorems

Structural Analysis III The Moment Area Method Mohr s Theorems Structural Analysis III The Moment Area Method Mohr s Theorems 010/11 Dr. Colin Caprani 1 Contents 1. Introduction... 4 1.1 Purpose... 4. Theory... 5.1 asis... 5. Mohr s First Theorem (Mohr I)... 7.3 Mohr

More information

Structural Continuity

Structural Continuity Architecture 324 Structures II Structural Continuity Continuity in Beams Deflection Method Slope Method Three-Moment Theorem Millennium Bridge, London Foster and Partners + Arup Photo by Ryan Donaghy University

More information

CHAPTER -6- BENDING Part -1-

CHAPTER -6- BENDING Part -1- Ishik University / Sulaimani Civil Engineering Department Mechanics of Materials CE 211 CHAPTER -6- BENDING Part -1-1 CHAPTER -6- Bending Outlines of this chapter: 6.1. Chapter Objectives 6.2. Shear and

More information

BEAM DEFLECTION THE ELASTIC CURVE

BEAM DEFLECTION THE ELASTIC CURVE BEAM DEFLECTION Samantha Ramirez THE ELASTIC CURVE The deflection diagram of the longitudinal axis that passes through the centroid of each cross-sectional area of a beam. Supports that apply a moment

More information

Rigid and Braced Frames

Rigid and Braced Frames RH 331 Note Set 12.1 F2014abn Rigid and raced Frames Notation: E = modulus of elasticit or Young s modulus F = force component in the direction F = force component in the direction FD = free bod diagram

More information

INFLUENCE LINE. Structural Analysis. Reference: Third Edition (2005) By Aslam Kassimali

INFLUENCE LINE. Structural Analysis. Reference: Third Edition (2005) By Aslam Kassimali INFLUENCE LINE Reference: Structural Analsis Third Edition (2005) B Aslam Kassimali DEFINITION An influence line is a graph of a response function of a structure as a function of the position of a downward

More information

Deflections. Deflections. Deflections. Deflections. Deflections. Deflections. dx dm V. dx EI. dx EI dx M. dv w

Deflections. Deflections. Deflections. Deflections. Deflections. Deflections. dx dm V. dx EI. dx EI dx M. dv w CIVL 311 - Conjugate eam 1/5 Conjugate beam method The development of the conjugate beam method has been atributed to several strucutral engineers. any credit Heinrich üller-reslau (1851-195) with the

More information

8-5 Conjugate-Beam method. 8-5 Conjugate-Beam method. 8-5 Conjugate-Beam method. 8-5 Conjugate-Beam method

8-5 Conjugate-Beam method. 8-5 Conjugate-Beam method. 8-5 Conjugate-Beam method. 8-5 Conjugate-Beam method The basis for the method comes from the similarity of eqn.1 &. to eqn 8. & 8. To show this similarity, we can write these eqn as shown dv dx w d θ M dx d M w dx d v M dx Here the shear V compares with

More information

BOOK OF COURSE WORKS ON STRENGTH OF MATERIALS FOR THE 2 ND YEAR STUDENTS OF THE UACEG

BOOK OF COURSE WORKS ON STRENGTH OF MATERIALS FOR THE 2 ND YEAR STUDENTS OF THE UACEG BOOK OF COURSE WORKS ON STRENGTH OF MATERIALS FOR THE ND YEAR STUDENTS OF THE UACEG Assoc.Prof. Dr. Svetlana Lilkova-Markova, Chief. Assist. Prof. Dimitar Lolov Sofia, 011 STRENGTH OF MATERIALS GENERAL

More information

Assumptions: beam is initially straight, is elastically deformed by the loads, such that the slope and deflection of the elastic curve are

Assumptions: beam is initially straight, is elastically deformed by the loads, such that the slope and deflection of the elastic curve are *12.4 SLOPE & DISPLACEMENT BY THE MOMENT-AREA METHOD Assumptions: beam is initially straight, is elastically deformed by the loads, such that the slope and deflection of the elastic curve are very small,

More information

Engineering Mechanics: Statics in SI Units, 12e

Engineering Mechanics: Statics in SI Units, 12e Engineering Mechanics: Statics in SI Units, 12e 5 Equilibrium of a Rigid Body Chapter Objectives Develop the equations of equilibrium for a rigid body Concept of the free-body diagram for a rigid body

More information

CE601-Structura Anaysis I UNIT-IV SOPE-DEFECTION METHOD 1. What are the assumptions made in sope-defection method? (i) Between each pair of the supports the beam section is constant. (ii) The joint in

More information

PURE BENDING. If a simply supported beam carries two point loads of 10 kn as shown in the following figure, pure bending occurs at segment BC.

PURE BENDING. If a simply supported beam carries two point loads of 10 kn as shown in the following figure, pure bending occurs at segment BC. BENDING STRESS The effect of a bending moment applied to a cross-section of a beam is to induce a state of stress across that section. These stresses are known as bending stresses and they act normally

More information

Bending Stress. Sign convention. Centroid of an area

Bending Stress. Sign convention. Centroid of an area Bending Stress Sign convention The positive shear force and bending moments are as shown in the figure. Centroid of an area Figure 40: Sign convention followed. If the area can be divided into n parts

More information

Indeterminate Analysis Force Method 1

Indeterminate Analysis Force Method 1 Indeterminate Analysis Force Method 1 The force (flexibility) method expresses the relationships between displacements and forces that exist in a structure. Primary objective of the force method is to

More information

Chapter 2 Basis for Indeterminate Structures

Chapter 2 Basis for Indeterminate Structures Chapter - Basis for the Analysis of Indeterminate Structures.1 Introduction... 3.1.1 Background... 3.1. Basis of Structural Analysis... 4. Small Displacements... 6..1 Introduction... 6.. Derivation...

More information

Advanced Structural Analysis Prof. Devdas Menon Department of Civil Engineering Indian Institute of Technology, Madras

Advanced Structural Analysis Prof. Devdas Menon Department of Civil Engineering Indian Institute of Technology, Madras Advanced Structural Analysis Prof. Devdas Menon Department of Civil Engineering Indian Institute of Technology, Madras Module No. # 5.4 Lecture No. # 30 Matrix Analysis of Beams and Grids (Refer Slide

More information

Methods of Analysis. Force or Flexibility Method

Methods of Analysis. Force or Flexibility Method INTRODUCTION: The structural analysis is a mathematical process by which the response of a structure to specified loads is determined. This response is measured by determining the internal forces or stresses

More information

SSC-JE MAINS ONLINE TEST SERIES / CIVIL ENGINEERING SOM + TOS

SSC-JE MAINS ONLINE TEST SERIES / CIVIL ENGINEERING SOM + TOS SSC-JE MAINS ONLINE TEST SERIES / CIVIL ENGINEERING SOM + TOS Time Allowed:2 Hours Maximum Marks: 300 Attention: 1. Paper consists of Part A (Civil & Structural) Part B (Electrical) and Part C (Mechanical)

More information

Module 2. Analysis of Statically Indeterminate Structures by the Matrix Force Method

Module 2. Analysis of Statically Indeterminate Structures by the Matrix Force Method Module 2 Analysis of Statically Indeterminate Structures by the Matrix Force Method Lesson 10 The Force Method of Analysis: Trusses Instructional Objectives After reading this chapter the student will

More information

Chapter 8 Deflection. Structural Mechanics 2 Dept of Architecture

Chapter 8 Deflection. Structural Mechanics 2 Dept of Architecture Chapter 8 Deflection Structural echanics Dept of rchitecture Outline Deflection diagras and the elastic curve Elastic-bea theory The double integration ethod oent-area theores Conjugate-bea ethod 8- Deflection

More information

(2) ANALYSIS OF INDETERMINATE STRUCTRES

(2) ANALYSIS OF INDETERMINATE STRUCTRES Chapter (2) ANALYSIS OF INDETERMINATE STRUCTRES 1.1 Statically Indeterminate Structures A structure of any type is classified as statically indeterminate when the number of unknown reaction or internal

More information

D : SOLID MECHANICS. Q. 1 Q. 9 carry one mark each.

D : SOLID MECHANICS. Q. 1 Q. 9 carry one mark each. GTE 2016 Q. 1 Q. 9 carry one mark each. D : SOLID MECHNICS Q.1 single degree of freedom vibrating system has mass of 5 kg, stiffness of 500 N/m and damping coefficient of 100 N-s/m. To make the system

More information

Internal Internal Forces Forces

Internal Internal Forces Forces Internal Forces ENGR 221 March 19, 2003 Lecture Goals Internal Force in Structures Shear Forces Bending Moment Shear and Bending moment Diagrams Internal Forces and Bending The bending moment, M. Moment

More information