Computing Transfer Function Dominant Poles of Large Second-Order Systems

Size: px
Start display at page:

Download "Computing Transfer Function Dominant Poles of Large Second-Order Systems"

Transcription

1 Computing Transfer Function Dominant Poles of Large Second-Order Systems Joost Rommes Mathematical Institute Utrecht University joint work with Nelson Martins March 22, Joost Rommes 1/24

2 1 Introduction 2 Transfer functions and dominant poles 3 Quadratic Dominant Pole Algorithm 4 Results 5 Conclusions Joost Rommes 2/24

3 Introduction Large-scale second-order dynamical systems arise in electrical circuit simulation structural engineering acoustics Transfer function is used for simulation stability analysis controller design Relatively few transfer function poles of practical importance Which poles, and how to compute? Joost Rommes 3/24

4 Second-order dynamical systems Second-order SISO dynamical system { Mẍ(t) + Cẋ(t) + Kx(t) = bu(t) y(t) = c x(t) + du(t), where u(t), y(t), d R, input, output, direct i/o x(t), b, c R n, state, input-to-, -to-output, M R n n mass matrix, C R n n damping matrix, K R n n stiffness matrix. Joost Rommes 4/24

5 Transfer function Second-order SISO dynamical system (d = 0): { Mẍ(t) + Cẋ(t) + Kx(t) = bu(t), y(t) = c x(t). Second-order transfer function: H(s) = c (s 2 M + sc + K) 1 b. Poles are λ C for which det(λ 2 M + λc + K) = 0 Joost Rommes 5/24

6 First-order transfer function H(s) = c (se A) 1 b Can be expressed as where residues R i are H(s) = n i=1 R i s λ i, R i = (c x i )(y i b), and (λ i, x i, y i ) are eigentriplets (i = 1,..., n) Ax i = λ i Ex i, right eigenpairs y i A = λ i y i E, left eigenpairs y i Ex i = 1, normalization y j Ex i = 0 (i j), E-orthogonality Joost Rommes 6/24

7 Dominant poles of first-order transfer functions H(s) = n i=1 Pole λ i dominant if R i s λ i with R i = (c x i )(y i b) R i Re(λ i ) large Dominant poles cause peaks in Bode-plot (ω, H(iω) ) Effective transfer function behavior: H k (s) = k i=1 R i s λ i, where k n and (λ i, R i ) ordered by decreasing dominance Joost Rommes 7/24

8 35 Bodeplot Gain (db) Frequency (Hz) Figure: Bode plot (ω, H(iω) ). Pole λ j dominant if R j Re(λ j ) large. Joost Rommes 8/24

9 2nd-order transfer function H(s) = c (s 2 M + sc + K) 1 b Can be expressed as where residues R i are H(s) = 2n i=1 R i s λ i, R i = (c x i )(y i b)λ i, and (λ i, x i, y i ) eigentriplets of QEP (i = 1,..., 2n) (λ 2 i M + λ i C + K)x i = 0, right eigenpairs y i (λ 2 i M + λ i C + K) = 0, left eigenparis y i Kx i + λ 2 i y i Mx i = 1, normalization Joost Rommes 9/24

10 Dominant poles of second-order transfer functions H(s) = 2n i=1 Pole λ i dominant if R i s λ i with R i = (c x i )(y i b)λ i R i Re(λ i ) large Dominant poles cause peaks in Bode-plot (ω, H(iω) ) Effective transfer function behavior: H k (s) = k i=1 R i s λ i, where k 2n and (λ i, R i ) ordered by decreasing dominance Joost Rommes 10/24

11 Quadratic Dominant Pole Algorithm (QDPA) QDPA [R., Martins (2007)] computes dominant poles of H(s) = c (s 2 M + sc + K) 1 b 1 Newton scheme 2 Subspace acceleration and selection 3 Deflation Joost Rommes 11/24

12 Quadratic Dominant Pole Algorithm Dominant pole λ of H(s) = c (s 2 M + sc + K) 1 b: Apply Newton to 1/H(s): s k+1 = s k + 1 H 2 (s k ) H(s k ) H (s k ) lim s λ 1 H(s) = 0 c (sk 2 = s k M + s kc + K) 1 b c (sk 2M + s kc + K) 1 (2s k M + C)(sk 2M + s kc + K) 1 b c v = s k w (2s k M + C)v, where v = (s 2 k M + s kc + K) 1 b and w = (s 2 k M + s kc + K) c. Joost Rommes 12/24

13 Quadratic Dominant Pole Algorithm [R., Martins (2007)] 1: Initial pole estimate s 1, tolerance ɛ 1 2: for k = 1, 2,... do 3: Solve v k C n from (s 2 k M + s kc + K)v k = b 4: Solve w k C n from (s 2 k M + s kc + K) w k = c 5: Compute the new pole estimate c v k s k+1 = s k wk (2s km + C)v k 6: The pole λ = s k+1 with x = v k and y = w k has converged if 7: end for (s 2 k+1 M + s k+1c + K)v k 2 < ɛ Joost Rommes 13/24

14 Subspace acceleration and selection Keep approximations v k and w k in search spaces V and W Petrov-Galerkin leads to projected QEP where (θ 2 M + θ C + K) x = 0, ỹ (θ 2 M + θ C + K) = 0, M = W MV, C = W CV, and K = W KV C k k. Gives 2k approximations (θ i, ˆx i = V x i, ŷ i = W ỹ i ) in iteration k Select approximation with largest residue: (c ˆx i )(ŷi s k+1 = argmax b)θ i i Re(θ i ) (with ˆx i = ŷ i 2 = 1) Joost Rommes 14/24

15 Deflation for H(s) = c (se A) 1 b Triplet (λ, x, y): Ax = λx and y A = λy E New search spaces: V E y and W Ex Deflate via (every iteration) v k (I xy E)v k w k (I yx E )w k More efficient: deflate only once b d (I Exy )b v k = (s k E A) 1 b d E y c d (I E yx )c w k = (s k E A) c d Ex Note that y b d = c d x = 0 Joost Rommes 15/24

16 Deflation for H(s) = c (s 2 M + sc + K) 1 b Eigenvectors can be linearly dependent: no direct deflation Consider linearization of second-order system: { Eẋ(t) = Ax(t) + bl u(t) y(t) = c l x(t), where (if K nonsingular) [ ] 0 K A =, E = K C [ ] K 0, b 0 M l = [ ] 0, c b l = [ ] [ ] (λ 2 x x M + λc + K)x = 0 A = λe λx λx Idea [Meerbergen, SISC (2001)]: deflate via linearization [ ] c. 0 Joost Rommes 16/24

17 Deflation via linearization 1/2 Triplets (λ, x, y) and (λ, φ = [x T, λx T ] T, ψ = [y T, λy T ] T ) Deflate via [ ] [ ] [ ] [ ] b 1 b d = d = (I Eφψ 0 c 1 ), and c b d = d = (I E ψφ c ) 0 b 2 d Solve expansion vectors v k and w k from ( [ ] [ ]) [ ] [ ] K 0 0 K vk b 1 s k = d 0 M K C e and ( [ ] K 0 s k 0 M [ 0 K K C c 2 d ]) [ ] wk = f b 2 d [ ] c 1 d c 2 d Joost Rommes 17/24

18 Deflation via linearization 2/2 Solve v k from ( [ ] K 0 s k 0 M [ 0 K K C ]) [ ] vk = e With e = (s 2 k M + s kc + K) 1 (s k b 2 d + b1 d ) follows v k = ( K 1 b 1 d + e)/s k [ ] b 1 d Similarly w k = ( K c 1 d + f)/ s k Solve projected QEP Select largest approximate linearized residue: [ ] (c ˆxi d )( [ ŷ θ s k+1 = argmax i iˆx i θ i ŷ ] i bd ) i Re(θ i ) b 2 d Joost Rommes 18/24

19 Butterfly gyro (Oberwolfach) (n = 17361) Modal approximation constructed by using left and right eigenspaces Y and X : M k = Y MX, C k = Y CX, K k = Y KX, b k = Y b, c k = X c Krylov reduced order model uses Y = X with colspan(x ) = K k (K 1 M, K 1 b) Krylov model is cheaper: (20 s, 40 iters) vs. (1345 s, 233 iters) Modal approximation preserves poles Joost Rommes 19/24

20 Bodeplot k=30 (QDPA) k=35 (QDPA) k=40 (PRIMA) Exact 140 Gain (db) Frequency (Hz) Figure: Butterfly gyro (n = 17361). Exact response (solid), 40th order Krylov model (dash), 35th (dash-dot) and 30th (dot) order modal approximations. Joost Rommes 20/24

21 60 40 k=40 (RKA) k=10 (QDPA) k=50 (RKA+QDPA10) Exact 20 Gain (db) Frequency (rad/sec) Figure: Breathing sphere (n = 17611). Exact transfer function (solid), 40th order SOAR RKA model (dot), 10th (dash-dot) order modal equivalent, and 50th order hybrid RKA+QDPA (dash). Joost Rommes 21/24

22 Breathing sphere ([Lampe, Voss (2006)]) (n = 17611) Two-sided rational SOAR [Bai and Su, SISC (2005)] model (k = 40, shifts 0.1, 0.5, 1, 5) misses peaks Small QDPA model (k = 10) matches some peaks, misses global response 500 s (SOAR, 80 iters) vs s (QDPA, 108 iters) Hybrid: Y = [Y QDPA, Y SOAR ] and X = [X QDPA, X SOAR ] Larger SOAR models: no improvement More poles with QDPA: expensive Use imag parts of poles as shifts for SOAR! Shifts σ 1 = 0.65i, σ 2 = 0.78i, σ 3 = 0.93i, and σ 4 = 0.1 Two-sided rational SOAR, 10-dimensional bases Joost Rommes 22/24

23 Gain (db) k=70 (RKA) Exact Rel Error Frequency (rad/sec) Figure: Breathing sphere (n = 17611). Exact transfer function (solid), 70th order SOAR RKA model (dash) using interpolation points based on dominant poles, and relative error (dash-dot). Joost Rommes 23/24

24 Concluding remarks QDPA for computation of dominant poles Subspace acceleration and efficient deflation Applications in model order reduction: Construction of modal approximations Interpolation points for rational Krylov Preservation of poles Generalizations: Higher-order systems MIMO systems Computation of dominant zeros z: H(z) = 0 For preprints and more info, see Joost Rommes 24/24

Efficient computation of transfer function dominant poles of large second-order dynamical systems

Efficient computation of transfer function dominant poles of large second-order dynamical systems Chapter 6 Efficient computation of transfer function dominant poles of large second-order dynamical systems Abstract This chapter presents a new algorithm for the computation of dominant poles of transfer

More information

On Dominant Poles and Model Reduction of Second Order Time-Delay Systems

On Dominant Poles and Model Reduction of Second Order Time-Delay Systems On Dominant Poles and Model Reduction of Second Order Time-Delay Systems Maryam Saadvandi Joint work with: Prof. Karl Meerbergen and Dr. Elias Jarlebring Department of Computer Science, KULeuven ModRed

More information

Algorithms for eigenvalue problems arising in model reduction

Algorithms for eigenvalue problems arising in model reduction Algorithms for eigenvalue problems arising in model reduction Joost Rommes Mentor Graphics MorTrans 2015, Berlin May 19, 2015 Introduction Eigenvalue problems Stability analysis and spurious eigenvalues

More information

Efficient computation of multivariable transfer function dominant poles

Efficient computation of multivariable transfer function dominant poles Chapter 4 Efficient computation of multivariable transfer function dominant poles Abstract. This chapter describes a new algorithm to compute the dominant poles of a high-order multi-input multi-output

More information

Two-sided Eigenvalue Algorithms for Modal Approximation

Two-sided Eigenvalue Algorithms for Modal Approximation Two-sided Eigenvalue Algorithms for Modal Approximation Master s thesis submitted to Faculty of Mathematics at Chemnitz University of Technology presented by: Supervisor: Advisor: B.sc. Patrick Kürschner

More information

Model order reduction of large-scale dynamical systems with Jacobi-Davidson style eigensolvers

Model order reduction of large-scale dynamical systems with Jacobi-Davidson style eigensolvers MAX PLANCK INSTITUTE International Conference on Communications, Computing and Control Applications March 3-5, 2011, Hammamet, Tunisia. Model order reduction of large-scale dynamical systems with Jacobi-Davidson

More information

Subspace accelerated DPA and Jacobi-Davidson style methods

Subspace accelerated DPA and Jacobi-Davidson style methods Chapter 3 Subspace accelerated DPA and Jacobi-Davidson style methods Abstract. This chapter describes a new algorithm for the computation of the dominant poles of a high-order scalar transfer function.

More information

Approximation of the Linearized Boussinesq Equations

Approximation of the Linearized Boussinesq Equations Approximation of the Linearized Boussinesq Equations Alan Lattimer Advisors Jeffrey Borggaard Serkan Gugercin Department of Mathematics Virginia Tech SIAM Talk Series, Virginia Tech, April 22, 2014 Alan

More information

Solving Regularized Total Least Squares Problems

Solving Regularized Total Least Squares Problems Solving Regularized Total Least Squares Problems Heinrich Voss voss@tu-harburg.de Hamburg University of Technology Institute of Numerical Simulation Joint work with Jörg Lampe TUHH Heinrich Voss Total

More information

COMPUTING DOMINANT POLES OF TRANSFER FUNCTIONS

COMPUTING DOMINANT POLES OF TRANSFER FUNCTIONS COMPUTING DOMINANT POLES OF TRANSFER FUNCTIONS GERARD L.G. SLEIJPEN AND JOOST ROMMES Abstract. The transfer function describes the response of a dynamical system to periodic inputs. Dominant poles are

More information

Methods for eigenvalue problems with applications in model order reduction

Methods for eigenvalue problems with applications in model order reduction Methods for eigenvalue problems with applications in model order reduction Methoden voor eigenwaardeproblemen met toepassingen in model orde reductie (met een samenvatting in het Nederlands) Proefschrift

More information

Chris Beattie and Serkan Gugercin

Chris Beattie and Serkan Gugercin Krylov-based model reduction of second-order systems with proportional damping Chris Beattie and Serkan Gugercin Department of Mathematics, Virginia Tech, USA 44th IEEE Conference on Decision and Control

More information

Model Reduction for Unstable Systems

Model Reduction for Unstable Systems Model Reduction for Unstable Systems Klajdi Sinani Virginia Tech klajdi@vt.edu Advisor: Serkan Gugercin October 22, 2015 (VT) SIAM October 22, 2015 1 / 26 Overview 1 Introduction 2 Interpolatory Model

More information

Numerical Methods for Large Scale Eigenvalue Problems

Numerical Methods for Large Scale Eigenvalue Problems MAX PLANCK INSTITUTE Summer School in Trogir, Croatia Oktober 12, 2011 Numerical Methods for Large Scale Eigenvalue Problems Patrick Kürschner Max Planck Institute for Dynamics of Complex Technical Systems

More information

Eigenvalue Problems CHAPTER 1 : PRELIMINARIES

Eigenvalue Problems CHAPTER 1 : PRELIMINARIES Eigenvalue Problems CHAPTER 1 : PRELIMINARIES Heinrich Voss voss@tu-harburg.de Hamburg University of Technology Institute of Mathematics TUHH Heinrich Voss Preliminaries Eigenvalue problems 2012 1 / 14

More information

Model order reduction of large-scale dynamical systems with Jacobi-Davidson style eigensolvers Benner, P.; Hochstenbach, M.E.; Kürschner, P.

Model order reduction of large-scale dynamical systems with Jacobi-Davidson style eigensolvers Benner, P.; Hochstenbach, M.E.; Kürschner, P. Model order reduction of large-scale dynamical systems with Jacobi-Davidson style eigensolvers Benner, P.; Hochstenbach, M.E.; Kürschner, P. Published: 01/01/2011 Document Version Publisher s PDF, also

More information

Autonomous system = system without inputs

Autonomous system = system without inputs Autonomous system = system without inputs State space representation B(A,C) = {y there is x, such that σx = Ax, y = Cx } x is the state, n := dim(x) is the state dimension, y is the output Polynomial representation

More information

A Structure-Preserving Method for Large Scale Eigenproblems. of Skew-Hamiltonian/Hamiltonian (SHH) Pencils

A Structure-Preserving Method for Large Scale Eigenproblems. of Skew-Hamiltonian/Hamiltonian (SHH) Pencils A Structure-Preserving Method for Large Scale Eigenproblems of Skew-Hamiltonian/Hamiltonian (SHH) Pencils Yangfeng Su Department of Mathematics, Fudan University Zhaojun Bai Department of Computer Science,

More information

Reduction of nonlinear eigenproblems with JD

Reduction of nonlinear eigenproblems with JD Reduction of nonlinear eigenproblems with JD Henk van der Vorst H.A.vanderVorst@math.uu.nl Mathematical Institute Utrecht University July 13, 2005, SIAM Annual New Orleans p.1/16 Outline Polynomial Eigenproblems

More information

Iterative Rational Krylov Algorithm for Unstable Dynamical Systems and Generalized Coprime Factorizations

Iterative Rational Krylov Algorithm for Unstable Dynamical Systems and Generalized Coprime Factorizations Iterative Rational Krylov Algorithm for Unstable Dynamical Systems and Generalized Coprime Factorizations Klajdi Sinani Thesis submitted to the Faculty of the Virginia Polytechnic Institute and State University

More information

Institut für Mathematik

Institut für Mathematik U n i v e r s i t ä t A u g s b u r g Institut für Mathematik Serkan Gugercin, Tatjana Stykel, Sarah Wyatt Model Reduction of Descriptor Systems by Interpolatory Projection Methods Preprint Nr. 3/213 29.

More information

Krylov Techniques for Model Reduction of Second-Order Systems

Krylov Techniques for Model Reduction of Second-Order Systems Krylov Techniques for Model Reduction of Second-Order Systems A Vandendorpe and P Van Dooren February 4, 2004 Abstract The purpose of this paper is to present a Krylov technique for model reduction of

More information

Passivity Preserving Model Reduction for Large-Scale Systems. Peter Benner.

Passivity Preserving Model Reduction for Large-Scale Systems. Peter Benner. Passivity Preserving Model Reduction for Large-Scale Systems Peter Benner Mathematik in Industrie und Technik Fakultät für Mathematik Sonderforschungsbereich 393 S N benner@mathematik.tu-chemnitz.de SIMULATION

More information

A Multi-Step Hybrid Method for Multi-Input Partial Quadratic Eigenvalue Assignment with Time Delay

A Multi-Step Hybrid Method for Multi-Input Partial Quadratic Eigenvalue Assignment with Time Delay A Multi-Step Hybrid Method for Multi-Input Partial Quadratic Eigenvalue Assignment with Time Delay Zheng-Jian Bai Mei-Xiang Chen Jin-Ku Yang April 14, 2012 Abstract A hybrid method was given by Ram, Mottershead,

More information

ẋ n = f n (x 1,...,x n,u 1,...,u m ) (5) y 1 = g 1 (x 1,...,x n,u 1,...,u m ) (6) y p = g p (x 1,...,x n,u 1,...,u m ) (7)

ẋ n = f n (x 1,...,x n,u 1,...,u m ) (5) y 1 = g 1 (x 1,...,x n,u 1,...,u m ) (6) y p = g p (x 1,...,x n,u 1,...,u m ) (7) EEE582 Topical Outline A.A. Rodriguez Fall 2007 GWC 352, 965-3712 The following represents a detailed topical outline of the course. It attempts to highlight most of the key concepts to be covered and

More information

ELEC 3035, Lecture 3: Autonomous systems Ivan Markovsky

ELEC 3035, Lecture 3: Autonomous systems Ivan Markovsky ELEC 3035, Lecture 3: Autonomous systems Ivan Markovsky Equilibrium points and linearization Eigenvalue decomposition and modal form State transition matrix and matrix exponential Stability ELEC 3035 (Part

More information

Gramians of structured systems and an error bound for structure-preserving model reduction

Gramians of structured systems and an error bound for structure-preserving model reduction Gramians of structured systems and an error bound for structure-preserving model reduction D.C. Sorensen and A.C. Antoulas e-mail:{sorensen@rice.edu, aca@rice.edu} September 3, 24 Abstract In this paper

More information

The quadratic eigenvalue problem (QEP) is to find scalars λ and nonzero vectors u satisfying

The quadratic eigenvalue problem (QEP) is to find scalars λ and nonzero vectors u satisfying I.2 Quadratic Eigenvalue Problems 1 Introduction The quadratic eigenvalue problem QEP is to find scalars λ and nonzero vectors u satisfying where Qλx = 0, 1.1 Qλ = λ 2 M + λd + K, M, D and K are given

More information

KU Leuven Department of Computer Science

KU Leuven Department of Computer Science Parametric Dominant Pole Algorithm for Parametric Model Order Reduction Maryam Saadvandi Karl Meerbergen Wim Desmet Report TW 625, March 2013 KU Leuven Department of Computer Science Celestijnenlaan 200A

More information

Automatic Order Reduction for Finite Element Models

Automatic Order Reduction for Finite Element Models Automatic Order Reduction for Finite Element Models Andreas Greiner, Jan Lienemann, Evgenii Rudnyi, and Jan G. Korvink IMTEK, Albert-Ludwigs-Universität Freiburg Geroges-Köhler-Allee 103, D-79110 Freiburg,

More information

Model Reduction of Inhomogeneous Initial Conditions

Model Reduction of Inhomogeneous Initial Conditions Model Reduction of Inhomogeneous Initial Conditions Caleb Magruder Abstract Our goal is to develop model reduction processes for linear dynamical systems with non-zero initial conditions. Standard model

More information

Krylov-Subspace Based Model Reduction of Nonlinear Circuit Models Using Bilinear and Quadratic-Linear Approximations

Krylov-Subspace Based Model Reduction of Nonlinear Circuit Models Using Bilinear and Quadratic-Linear Approximations Krylov-Subspace Based Model Reduction of Nonlinear Circuit Models Using Bilinear and Quadratic-Linear Approximations Peter Benner and Tobias Breiten Abstract We discuss Krylov-subspace based model reduction

More information

Krylov Subspace Methods for Nonlinear Model Reduction

Krylov Subspace Methods for Nonlinear Model Reduction MAX PLANCK INSTITUT Conference in honour of Nancy Nichols 70th birthday Reading, 2 3 July 2012 Krylov Subspace Methods for Nonlinear Model Reduction Peter Benner and Tobias Breiten Max Planck Institute

More information

Nonlinear Eigenvalue Problems: An Introduction

Nonlinear Eigenvalue Problems: An Introduction Nonlinear Eigenvalue Problems: An Introduction Cedric Effenberger Seminar for Applied Mathematics ETH Zurich Pro*Doc Workshop Disentis, August 18 21, 2010 Cedric Effenberger (SAM, ETHZ) NLEVPs: An Introduction

More information

ABSTRACT. Name: Daniil R. Sarkissian Department: Mathematical Sciences

ABSTRACT. Name: Daniil R. Sarkissian Department: Mathematical Sciences ABSTRACT Name: Daniil R. Sarkissian Department: Mathematical Sciences Title: Theory and Computations of Partial Eigenvalue and Eigenstructure Assignment Problems in Matrix Second-Order and Distributed-Parameter

More information

AMS526: Numerical Analysis I (Numerical Linear Algebra)

AMS526: Numerical Analysis I (Numerical Linear Algebra) AMS526: Numerical Analysis I (Numerical Linear Algebra) Lecture 21: Sensitivity of Eigenvalues and Eigenvectors; Conjugate Gradient Method Xiangmin Jiao Stony Brook University Xiangmin Jiao Numerical Analysis

More information

Passive Interconnect Macromodeling Via Balanced Truncation of Linear Systems in Descriptor Form

Passive Interconnect Macromodeling Via Balanced Truncation of Linear Systems in Descriptor Form Passive Interconnect Macromodeling Via Balanced Truncation of Linear Systems in Descriptor Form Boyuan Yan, Sheldon X.-D. Tan,PuLiu and Bruce McGaughy Department of Electrical Engineering, University of

More information

Krylov subspace projection methods

Krylov subspace projection methods I.1.(a) Krylov subspace projection methods Orthogonal projection technique : framework Let A be an n n complex matrix and K be an m-dimensional subspace of C n. An orthogonal projection technique seeks

More information

Model reduction of large-scale dynamical systems

Model reduction of large-scale dynamical systems Model reduction of large-scale dynamical systems Lecture III: Krylov approximation and rational interpolation Thanos Antoulas Rice University and Jacobs University email: aca@rice.edu URL: www.ece.rice.edu/

More information

arxiv: v3 [math.na] 6 Jul 2018

arxiv: v3 [math.na] 6 Jul 2018 A Connection Between Time Domain Model Order Reduction and Moment Matching for LTI Systems arxiv:181.785v3 [math.na] 6 Jul 218 Manuela Hund a and Jens Saak a a Max Planck Institute for Dynamics of Complex

More information

Model Reduction for Linear Dynamical Systems

Model Reduction for Linear Dynamical Systems Summer School on Numerical Linear Algebra for Dynamical and High-Dimensional Problems Trogir, October 10 15, 2011 Model Reduction for Linear Dynamical Systems Peter Benner Max Planck Institute for Dynamics

More information

Control Systems Design

Control Systems Design ELEC4410 Control Systems Design Lecture 13: Stability Julio H. Braslavsky julio@ee.newcastle.edu.au School of Electrical Engineering and Computer Science Lecture 13: Stability p.1/20 Outline Input-Output

More information

A Jacobi Davidson Method for Nonlinear Eigenproblems

A Jacobi Davidson Method for Nonlinear Eigenproblems A Jacobi Davidson Method for Nonlinear Eigenproblems Heinrich Voss Section of Mathematics, Hamburg University of Technology, D 21071 Hamburg voss @ tu-harburg.de http://www.tu-harburg.de/mat/hp/voss Abstract.

More information

H 2 optimal model reduction - Wilson s conditions for the cross-gramian

H 2 optimal model reduction - Wilson s conditions for the cross-gramian H 2 optimal model reduction - Wilson s conditions for the cross-gramian Ha Binh Minh a, Carles Batlle b a School of Applied Mathematics and Informatics, Hanoi University of Science and Technology, Dai

More information

Polynomial Jacobi Davidson Method for Large/Sparse Eigenvalue Problems

Polynomial Jacobi Davidson Method for Large/Sparse Eigenvalue Problems Polynomial Jacobi Davidson Method for Large/Sparse Eigenvalue Problems Tsung-Ming Huang Department of Mathematics National Taiwan Normal University, Taiwan April 28, 2011 T.M. Huang (Taiwan Normal Univ.)

More information

ECEN 420 LINEAR CONTROL SYSTEMS. Lecture 6 Mathematical Representation of Physical Systems II 1/67

ECEN 420 LINEAR CONTROL SYSTEMS. Lecture 6 Mathematical Representation of Physical Systems II 1/67 1/67 ECEN 420 LINEAR CONTROL SYSTEMS Lecture 6 Mathematical Representation of Physical Systems II State Variable Models for Dynamic Systems u 1 u 2 u ṙ. Internal Variables x 1, x 2 x n y 1 y 2. y m Figure

More information

CONTROL DESIGN FOR SET POINT TRACKING

CONTROL DESIGN FOR SET POINT TRACKING Chapter 5 CONTROL DESIGN FOR SET POINT TRACKING In this chapter, we extend the pole placement, observer-based output feedback design to solve tracking problems. By tracking we mean that the output is commanded

More information

Iterative projection methods for sparse nonlinear eigenvalue problems

Iterative projection methods for sparse nonlinear eigenvalue problems Iterative projection methods for sparse nonlinear eigenvalue problems Heinrich Voss voss@tu-harburg.de Hamburg University of Technology Institute of Mathematics TUHH Heinrich Voss Iterative projection

More information

Parametric Model Order Reduction for Linear Control Systems

Parametric Model Order Reduction for Linear Control Systems Parametric Model Order Reduction for Linear Control Systems Peter Benner HRZZ Project Control of Dynamical Systems (ConDys) second project meeting Zagreb, 2 3 November 2017 Outline 1. Introduction 2. PMOR

More information

AA242B: MECHANICAL VIBRATIONS

AA242B: MECHANICAL VIBRATIONS AA242B: MECHANICAL VIBRATIONS 1 / 17 AA242B: MECHANICAL VIBRATIONS Solution Methods for the Generalized Eigenvalue Problem These slides are based on the recommended textbook: M. Géradin and D. Rixen, Mechanical

More information

AA242B: MECHANICAL VIBRATIONS

AA242B: MECHANICAL VIBRATIONS AA242B: MECHANICAL VIBRATIONS 1 / 50 AA242B: MECHANICAL VIBRATIONS Undamped Vibrations of n-dof Systems These slides are based on the recommended textbook: M. Géradin and D. Rixen, Mechanical Vibrations:

More information

Problem Weight Score Total 100

Problem Weight Score Total 100 EE 350 EXAM IV 15 December 2010 Last Name (Print): First Name (Print): ID number (Last 4 digits): Section: DO NOT TURN THIS PAGE UNTIL YOU ARE TOLD TO DO SO Problem Weight Score 1 25 2 25 3 25 4 25 Total

More information

Research Matters. February 25, The Nonlinear Eigenvalue Problem. Nick Higham. Part III. Director of Research School of Mathematics

Research Matters. February 25, The Nonlinear Eigenvalue Problem. Nick Higham. Part III. Director of Research School of Mathematics Research Matters February 25, 2009 The Nonlinear Eigenvalue Problem Nick Higham Part III Director of Research School of Mathematics Françoise Tisseur School of Mathematics The University of Manchester

More information

Issues in Interpolatory Model Reduction: Inexact Solves, Second-order Systems and DAEs

Issues in Interpolatory Model Reduction: Inexact Solves, Second-order Systems and DAEs Issues in Interpolatory Model Reduction: Inexact Solves, Second-order Systems and DAEs Sarah Wyatt Dissertation submitted to the Faculty of the Virginia Polytechnic Institute and State University in partial

More information

MODEL REDUCTION BY A CROSS-GRAMIAN APPROACH FOR DATA-SPARSE SYSTEMS

MODEL REDUCTION BY A CROSS-GRAMIAN APPROACH FOR DATA-SPARSE SYSTEMS MODEL REDUCTION BY A CROSS-GRAMIAN APPROACH FOR DATA-SPARSE SYSTEMS Ulrike Baur joint work with Peter Benner Mathematics in Industry and Technology Faculty of Mathematics Chemnitz University of Technology

More information

Progress in Parametric Model Reduction. J. Mohring, Paris,

Progress in Parametric Model Reduction. J. Mohring, Paris, Progress in Parametric Model Reduction J. Mohring, Paris, 15.12.2009 Overview Need for parametric model reduction Optimal H 2 controller for LMS concrete car benchmark The LBF acoustic aquarium Numerical

More information

Model Order Reduction for Parameter-Varying Systems

Model Order Reduction for Parameter-Varying Systems Model Order Reduction for Parameter-Varying Systems Xingang Cao Promotors: Wil Schilders Siep Weiland Supervisor: Joseph Maubach Eindhoven University of Technology CASA Day November 1, 216 Xingang Cao

More information

1 Some Facts on Symmetric Matrices

1 Some Facts on Symmetric Matrices 1 Some Facts on Symmetric Matrices Definition: Matrix A is symmetric if A = A T. Theorem: Any symmetric matrix 1) has only real eigenvalues; 2) is always iagonalizable; 3) has orthogonal eigenvectors.

More information

Identification Methods for Structural Systems

Identification Methods for Structural Systems Prof. Dr. Eleni Chatzi System Stability Fundamentals Overview System Stability Assume given a dynamic system with input u(t) and output x(t). The stability property of a dynamic system can be defined from

More information

System Identification by Nuclear Norm Minimization

System Identification by Nuclear Norm Minimization Dept. of Information Engineering University of Pisa (Italy) System Identification by Nuclear Norm Minimization eng. Sergio Grammatico grammatico.sergio@gmail.com Class of Identification of Uncertain Systems

More information

BALANCING-RELATED MODEL REDUCTION FOR DATA-SPARSE SYSTEMS

BALANCING-RELATED MODEL REDUCTION FOR DATA-SPARSE SYSTEMS BALANCING-RELATED Peter Benner Professur Mathematik in Industrie und Technik Fakultät für Mathematik Technische Universität Chemnitz Computational Methods with Applications Harrachov, 19 25 August 2007

More information

An Arnoldi Method for Nonlinear Symmetric Eigenvalue Problems

An Arnoldi Method for Nonlinear Symmetric Eigenvalue Problems An Arnoldi Method for Nonlinear Symmetric Eigenvalue Problems H. Voss 1 Introduction In this paper we consider the nonlinear eigenvalue problem T (λ)x = 0 (1) where T (λ) R n n is a family of symmetric

More information

Krylov-based model reduction of second-order systems with proportional damping

Krylov-based model reduction of second-order systems with proportional damping Krylov-based model reduction of second-order systems with proportional damping Christopher A Beattie and Serkan Gugercin Abstract In this note, we examine Krylov-based model reduction of second order systems

More information

Power System Control

Power System Control Power System Control Basic Control Engineering Prof. Wonhee Kim School of Energy Systems Engineering, Chung-Ang University 2 Contents Why feedback? System Modeling in Frequency Domain System Modeling in

More information

A Jacobi-Davidson method for two real parameter nonlinear eigenvalue problems arising from delay differential equations

A Jacobi-Davidson method for two real parameter nonlinear eigenvalue problems arising from delay differential equations A Jacobi-Davidson method for two real parameter nonlinear eigenvalue problems arising from delay differential equations Heinrich Voss voss@tuhh.de Joint work with Karl Meerbergen (KU Leuven) and Christian

More information

Second-Order Balanced Truncation for Passive Order Reduction of RLCK Circuits

Second-Order Balanced Truncation for Passive Order Reduction of RLCK Circuits IEEE RANSACIONS ON CIRCUIS AND SYSEMS II, VOL XX, NO. XX, MONH X Second-Order Balanced runcation for Passive Order Reduction of RLCK Circuits Boyuan Yan, Student Member, IEEE, Sheldon X.-D. an, Senior

More information

Fast Frequency Response Analysis using Model Order Reduction

Fast Frequency Response Analysis using Model Order Reduction Fast Frequency Response Analysis using Model Order Reduction Peter Benner EU MORNET Exploratory Workshop Applications of Model Order Reduction Methods in Industrial Research and Development Luxembourg,

More information

Interpolatory Model Reduction of Large-scale Dynamical Systems

Interpolatory Model Reduction of Large-scale Dynamical Systems Interpolatory Model Reduction of Large-scale Dynamical Systems Athanasios C. Antoulas, Christopher A. Beattie, and Serkan Gugercin Abstract Large-scale simulations play a crucial role in the study of a

More information

Topic # Feedback Control. State-Space Systems Closed-loop control using estimators and regulators. Dynamics output feedback

Topic # Feedback Control. State-Space Systems Closed-loop control using estimators and regulators. Dynamics output feedback Topic #17 16.31 Feedback Control State-Space Systems Closed-loop control using estimators and regulators. Dynamics output feedback Back to reality Copyright 21 by Jonathan How. All Rights reserved 1 Fall

More information

ME 375 EXAM #1 Friday, March 13, 2015 SOLUTION

ME 375 EXAM #1 Friday, March 13, 2015 SOLUTION ME 375 EXAM #1 Friday, March 13, 2015 SOLUTION PROBLEM 1 A system is made up of a homogeneous disk (of mass m and outer radius R), particle A (of mass m) and particle B (of mass m). The disk is pinned

More information

LMI Methods in Optimal and Robust Control

LMI Methods in Optimal and Robust Control LMI Methods in Optimal and Robust Control Matthew M. Peet Arizona State University Lecture 4: LMIs for State-Space Internal Stability Solving the Equations Find the output given the input State-Space:

More information

Module 08 Observability and State Estimator Design of Dynamical LTI Systems

Module 08 Observability and State Estimator Design of Dynamical LTI Systems Module 08 Observability and State Estimator Design of Dynamical LTI Systems Ahmad F. Taha EE 5143: Linear Systems and Control Email: ahmad.taha@utsa.edu Webpage: http://engineering.utsa.edu/ataha November

More information

Multiparameter eigenvalue problem as a structured eigenproblem

Multiparameter eigenvalue problem as a structured eigenproblem Multiparameter eigenvalue problem as a structured eigenproblem Bor Plestenjak Department of Mathematics University of Ljubljana This is joint work with M Hochstenbach Będlewo, 2932007 1/28 Overview Introduction

More information

Krylov methods for the solution of parameterized linear systems in the simulation of structures and vibrations: theory, applications and challenges

Krylov methods for the solution of parameterized linear systems in the simulation of structures and vibrations: theory, applications and challenges Krylov methods for the solution of parameterized linear systems in the simulation of structures and vibrations: theory, applications and challenges Karl Meerbergen K.U. Leuven Autumn School on Model Order

More information

Structured Krylov Subspace Methods for Eigenproblems with Spectral Symmetries

Structured Krylov Subspace Methods for Eigenproblems with Spectral Symmetries Structured Krylov Subspace Methods for Eigenproblems with Spectral Symmetries Fakultät für Mathematik TU Chemnitz, Germany Peter Benner benner@mathematik.tu-chemnitz.de joint work with Heike Faßbender

More information

Solving Polynomial Eigenproblems by Linearization

Solving Polynomial Eigenproblems by Linearization Solving Polynomial Eigenproblems by Linearization Nick Higham School of Mathematics University of Manchester higham@ma.man.ac.uk http://www.ma.man.ac.uk/~higham/ Joint work with D. Steven Mackey and Françoise

More information

State Regulator. Advanced Control. design of controllers using pole placement and LQ design rules

State Regulator. Advanced Control. design of controllers using pole placement and LQ design rules Advanced Control State Regulator Scope design of controllers using pole placement and LQ design rules Keywords pole placement, optimal control, LQ regulator, weighting matrixes Prerequisites Contact state

More information

Symmetric Matrices and Eigendecomposition

Symmetric Matrices and Eigendecomposition Symmetric Matrices and Eigendecomposition Robert M. Freund January, 2014 c 2014 Massachusetts Institute of Technology. All rights reserved. 1 2 1 Symmetric Matrices and Convexity of Quadratic Functions

More information

Model reduction via tangential interpolation

Model reduction via tangential interpolation Model reduction via tangential interpolation K. Gallivan, A. Vandendorpe and P. Van Dooren May 14, 2002 1 Introduction Although most of the theory presented in this paper holds for both continuous-time

More information

SAMPLING JITTER CORRECTION USING FACTOR GRAPHS

SAMPLING JITTER CORRECTION USING FACTOR GRAPHS 19th European Signal Processing Conference EUSIPCO 11) Barcelona, Spain, August 9 - September, 11 SAMPLING JITTER CORRECTION USING FACTOR GRAPHS Lukas Bolliger and Hans-Andrea Loeliger ETH Zurich Dept.

More information

1. Matrix multiplication and Pauli Matrices: Pauli matrices are the 2 2 matrices. 1 0 i 0. 0 i

1. Matrix multiplication and Pauli Matrices: Pauli matrices are the 2 2 matrices. 1 0 i 0. 0 i Problems in basic linear algebra Science Academies Lecture Workshop at PSGRK College Coimbatore, June 22-24, 2016 Govind S. Krishnaswami, Chennai Mathematical Institute http://www.cmi.ac.in/~govind/teaching,

More information

Observability and state estimation

Observability and state estimation EE263 Autumn 2015 S Boyd and S Lall Observability and state estimation state estimation discrete-time observability observability controllability duality observers for noiseless case continuous-time observability

More information

Last Time. Social Network Graphs Betweenness. Graph Laplacian. Girvan-Newman Algorithm. Spectral Bisection

Last Time. Social Network Graphs Betweenness. Graph Laplacian. Girvan-Newman Algorithm. Spectral Bisection Eigenvalue Problems Last Time Social Network Graphs Betweenness Girvan-Newman Algorithm Graph Laplacian Spectral Bisection λ 2, w 2 Today Small deviation into eigenvalue problems Formulation Standard eigenvalue

More information

Exercises Lecture 15

Exercises Lecture 15 AM1 Mathematical Analysis 1 Oct. 011 Feb. 01 Date: January 7 Exercises Lecture 15 Harmonic Oscillators In classical mechanics, a harmonic oscillator is a system that, when displaced from its equilibrium

More information

Control Systems Design

Control Systems Design ELEC4410 Control Systems Design Lecture 14: Controllability Julio H. Braslavsky julio@ee.newcastle.edu.au School of Electrical Engineering and Computer Science Lecture 14: Controllability p.1/23 Outline

More information

Week Quadratic forms. Principal axes theorem. Text reference: this material corresponds to parts of sections 5.5, 8.2,

Week Quadratic forms. Principal axes theorem. Text reference: this material corresponds to parts of sections 5.5, 8.2, Math 051 W008 Margo Kondratieva Week 10-11 Quadratic forms Principal axes theorem Text reference: this material corresponds to parts of sections 55, 8, 83 89 Section 41 Motivation and introduction Consider

More information

M.A. Botchev. September 5, 2014

M.A. Botchev. September 5, 2014 Rome-Moscow school of Matrix Methods and Applied Linear Algebra 2014 A short introduction to Krylov subspaces for linear systems, matrix functions and inexact Newton methods. Plan and exercises. M.A. Botchev

More information

Balanced Truncation 1

Balanced Truncation 1 Massachusetts Institute of Technology Department of Electrical Engineering and Computer Science 6.242, Fall 2004: MODEL REDUCTION Balanced Truncation This lecture introduces balanced truncation for LTI

More information

Linear and Nonlinear Matrix Equations Arising in Model Reduction

Linear and Nonlinear Matrix Equations Arising in Model Reduction International Conference on Numerical Linear Algebra and its Applications Guwahati, January 15 18, 2013 Linear and Nonlinear Matrix Equations Arising in Model Reduction Peter Benner Tobias Breiten Max

More information

Implicit Volterra Series Interpolation for Model Reduction of Bilinear Systems

Implicit Volterra Series Interpolation for Model Reduction of Bilinear Systems Max Planck Institute Magdeburg Preprints Mian Ilyas Ahmad Ulrike Baur Peter Benner Implicit Volterra Series Interpolation for Model Reduction of Bilinear Systems MAX PLANCK INSTITUT FÜR DYNAMIK KOMPLEXER

More information

Model Order Reduction of Continuous LTI Large Descriptor System Using LRCF-ADI and Square Root Balanced Truncation

Model Order Reduction of Continuous LTI Large Descriptor System Using LRCF-ADI and Square Root Balanced Truncation , July 1-3, 15, London, U.K. Model Order Reduction of Continuous LI Large Descriptor System Using LRCF-ADI and Square Root Balanced runcation Mehrab Hossain Likhon, Shamsil Arifeen, and Mohammad Sahadet

More information

Perturbation theory for eigenvalues of Hermitian pencils. Christian Mehl Institut für Mathematik TU Berlin, Germany. 9th Elgersburg Workshop

Perturbation theory for eigenvalues of Hermitian pencils. Christian Mehl Institut für Mathematik TU Berlin, Germany. 9th Elgersburg Workshop Perturbation theory for eigenvalues of Hermitian pencils Christian Mehl Institut für Mathematik TU Berlin, Germany 9th Elgersburg Workshop Elgersburg, March 3, 2014 joint work with Shreemayee Bora, Michael

More information

Lecture 19 Observability and state estimation

Lecture 19 Observability and state estimation EE263 Autumn 2007-08 Stephen Boyd Lecture 19 Observability and state estimation state estimation discrete-time observability observability controllability duality observers for noiseless case continuous-time

More information

Ph.D. Qualifying Exam Monday Tuesday, January 4 5, 2016

Ph.D. Qualifying Exam Monday Tuesday, January 4 5, 2016 Ph.D. Qualifying Exam Monday Tuesday, January 4 5, 2016 Put your solution to each problem on a separate sheet of paper. Problem 1. (5106) Find the maximum likelihood estimate of θ where θ is a parameter

More information

Numerical Methods - Numerical Linear Algebra

Numerical Methods - Numerical Linear Algebra Numerical Methods - Numerical Linear Algebra Y. K. Goh Universiti Tunku Abdul Rahman 2013 Y. K. Goh (UTAR) Numerical Methods - Numerical Linear Algebra I 2013 1 / 62 Outline 1 Motivation 2 Solving Linear

More information

EXERCISES ON DETERMINANTS, EIGENVALUES AND EIGENVECTORS. 1. Determinants

EXERCISES ON DETERMINANTS, EIGENVALUES AND EIGENVECTORS. 1. Determinants EXERCISES ON DETERMINANTS, EIGENVALUES AND EIGENVECTORS. Determinants Ex... Let A = 0 4 4 2 0 and B = 0 3 0. (a) Compute 0 0 0 0 A. (b) Compute det(2a 2 B), det(4a + B), det(2(a 3 B 2 )). 0 t Ex..2. For

More information

A global Arnoldi method for the model reduction of second-order structural dynamical systems

A global Arnoldi method for the model reduction of second-order structural dynamical systems A global Arnoldi method for the model reduction of second-order structural dynamical systems Thomas Bonin b, Heike Faßbender a, Andreas Soppa,a, Michael Zaeh,b a TU Braunschweig, Carl-Friedrich-Gauß Fakultät,

More information

Rational Krylov methods for linear and nonlinear eigenvalue problems

Rational Krylov methods for linear and nonlinear eigenvalue problems Rational Krylov methods for linear and nonlinear eigenvalue problems Mele Giampaolo mele@mail.dm.unipi.it University of Pisa 7 March 2014 Outline Arnoldi (and its variants) for linear eigenproblems Rational

More information

PH.D. PRELIMINARY EXAMINATION MATHEMATICS

PH.D. PRELIMINARY EXAMINATION MATHEMATICS UNIVERSITY OF CALIFORNIA, BERKELEY SPRING SEMESTER 207 Dept. of Civil and Environmental Engineering Structural Engineering, Mechanics and Materials NAME PH.D. PRELIMINARY EXAMINATION MATHEMATICS Problem

More information

Topic # Feedback Control Systems

Topic # Feedback Control Systems Topic #17 16.31 Feedback Control Systems Deterministic LQR Optimal control and the Riccati equation Weight Selection Fall 2007 16.31 17 1 Linear Quadratic Regulator (LQR) Have seen the solutions to the

More information