Numerical Methods for Large Scale Eigenvalue Problems

Size: px
Start display at page:

Download "Numerical Methods for Large Scale Eigenvalue Problems"

Transcription

1 MAX PLANCK INSTITUTE Summer School in Trogir, Croatia Oktober 12, 2011 Numerical Methods for Large Scale Eigenvalue Problems Patrick Kürschner Max Planck Institute for Dynamics of Complex Technical Systems Computational Methods in Systems and Control Theory FOR DYNAMICS OF COMPLEX TECHNICAL SYSTEMS MAGDEBURG Max Planck Institute Magdeburg Patrick Kürschner, Numerical Methods for Large Scale Eigenvalue Problems 1/6

2 Eigenvalue Problems Introduction Eigenvalue problems Goal: find eigenvalues λ C and eigenvectors x C n \{0} solving standard eigenvalue problems Ax = λx, A C n n, nonlinear eigenvalue problems T (λ)x = 0, T : C C n n. Here, the defining matrices are large and sparse. Max Planck Institute Magdeburg Patrick Kürschner, Numerical Methods for Large Scale Eigenvalue Problems 2/6

3 Eigenvalue Problems Application Relation to dynamical systems Consider the linear time invariant control system ẋ(t) = Ax(t) + Bu(t), y(t) = Cx(t) The transfer function is H(s) = C(sI n A) 1 B. Its poles are the eigenvalues of T (λ) = λi n A (standard eigenvalue problem). Max Planck Institute Magdeburg Patrick Kürschner, Numerical Methods for Large Scale Eigenvalue Problems 3/6

4 Eigenvalue Problems Application Relation to dynamical systems Consider the linear time invariant control system Mẍ(t) + Dẋ(t) + Kx(t) = Bu(t), y(t) = Cx(t) The transfer function is H(s) = C(s 2 M + sd + K) 1 B. Its poles are the eigenvalues of T (λ) = λ 2 M + λd + K (quadratic eigenvalue problem). Max Planck Institute Magdeburg Patrick Kürschner, Numerical Methods for Large Scale Eigenvalue Problems 3/6

5 Eigenvalue Problems Application Relation to dynamical systems Consider the linear time invariant control system ẋ(t) = Ax(t) + Gx(t τ)bu(t), τ > 0 y(t) = Cx(t) The transfer function is H(s) = C(sI n A e τs G) 1 B. Its poles are the eigenvalues of T (λ) = λi n A e τλ G (delay eigenvalue problem). Max Planck Institute Magdeburg Patrick Kürschner, Numerical Methods for Large Scale Eigenvalue Problems 3/6

6 Newton s Method Small Nonlinear Problems Note that an eigenpair (λ, x) of T (λ) is a root of the nonlinear function [ ] T (λ)x F (x, λ) = w H, F : C n+1 C n+1. x 1 First idea: apply Newton s method. Initial approximation (θ, v) (λ, x), Newton system for the next (hopefully better) approximation (θ +, v + ) is [ v+ θ + ] = [ v θ ] [ F (v, θ)] 1 F (v, θ). Max Planck Institute Magdeburg Patrick Kürschner, Numerical Methods for Large Scale Eigenvalue Problems 4/6

7 Newton s Method Small Nonlinear Problems Note that an eigenpair (λ, x) of T (λ) is a root of the nonlinear function [ ] T (λ)x F (x, λ) = w H, F : C n+1 C n+1. x 1 First idea: apply Newton s method. Initial approximation (θ, v) (λ, x), Newton system for the next (hopefully better) approximation (θ +, v + ) is [ ] [ v+ v = θ + θ] [ ] 1 [ ] T (θ) Ṫ (θ)v T (λ)v w H 0 w H. v 1 Max Planck Institute Magdeburg Patrick Kürschner, Numerical Methods for Large Scale Eigenvalue Problems 4/6

8 Newton s Method Small Nonlinear Problems Note that an eigenpair (λ, x) of T (λ) is a root of the nonlinear function [ ] T (λ)x F (x, λ) = w H, F : C n+1 C n+1. x 1 First idea: apply Newton s method. Initial approximation (θ, v) (λ, x), Newton system for the next (hopefully better) approximation (θ +, v + ) is [ ] [ v+ v = θ + θ] [ ] 1 [ ] T (θ) Ṫ (θ)v T (λ)v w H 0 w H. v 1 Drawbacks Requires good initial approximations (θ, v) Matrix inversion infeasible for large problems Max Planck Institute Magdeburg Patrick Kürschner, Numerical Methods for Large Scale Eigenvalue Problems 4/6

9 Nonlinear Jacobi-Davidson Large-Scale Nonlinear Problems 1 Project the operator T (λ) onto a low-dimensional subspace V C n, dim(v) = k n V H T (λ) V = H(λ) Max Planck Institute Magdeburg Patrick Kürschner, Numerical Methods for Large Scale Eigenvalue Problems 5/6

10 Nonlinear Jacobi-Davidson Large-Scale Nonlinear Problems 1 Project the operator T (λ) onto a low-dimensional subspace V C n, dim(v) = k n V H T (λ) V = H(λ) 2 Solve the small problem H(θ)q = 0, e.g., using Newton type methods or variations of thereof. Max Planck Institute Magdeburg Patrick Kürschner, Numerical Methods for Large Scale Eigenvalue Problems 5/6

11 Nonlinear Jacobi-Davidson Large-Scale Nonlinear Problems 1 Project the operator T (λ) onto a low-dimensional subspace V C n, dim(v) = k n V H T (λ) V = H(λ) 2 Solve the small problem H(θ)q = 0, e.g., using Newton type methods or variations of thereof. 3 Expand V orthogonally by t v := Vq, obtained from the approximate solution of the Jacobi-Davidson correction equation ( I Ṫ (θ)vv H v HṪ (θ)v ) T (θ) ( I vv H) t = r = T (θ)v. Max Planck Institute Magdeburg Patrick Kürschner, Numerical Methods for Large Scale Eigenvalue Problems 5/6

12 Nonlinear Jacobi-Davidson Large-Scale Nonlinear Problems 1 Project the operator T (λ) onto a low-dimensional subspace V C n, dim(v) = k n V H T (λ) V = H(λ) 2 Solve the small problem H(θ)q = 0, e.g., using Newton type methods or variations of thereof. 3 Expand V orthogonally by t v := Vq, obtained from the approximate solution of the Jacobi-Davidson correction equation ( I Ṫ (θ)vv H v HṪ (θ)v ) T (θ) ( I vv H) t = r = T (θ)v. 4 Repeat process with V = [V, t] until convergence. Max Planck Institute Magdeburg Patrick Kürschner, Numerical Methods for Large Scale Eigenvalue Problems 5/6

13 Nonlinear Jacobi-Davidson Large-Scale Nonlinear Problems 1 Project the operator T (λ) onto a low-dimensional subspace V C n, dim(v) = k n V H T (λ) V = H(λ) 2 Solve the small problem H(θ)q = 0, e.g., using Newton type methods or variations of thereof. 3 Expand V orthogonally by t v := Vq, obtained from the approximate solution of the Jacobi-Davidson correction equation ( I Ṫ (θ)vv H v HṪ (θ)v ) T (θ) ( I vv H) t = r = T (θ)v. 4 Repeat process with V = [V, t] until convergence. Advantage Applies only cheap operations compared to Newton s method. Max Planck Institute Magdeburg Patrick Kürschner, Numerical Methods for Large Scale Eigenvalue Problems 5/6

14 Nonlinear Jacobi-Davidson Large-Scale Nonlinear Problems Disadvantage Newton s type method: Still highly dependent on initial data. A lot of freedom w.r.t. program settings. Max Planck Institute Magdeburg Patrick Kürschner, Numerical Methods for Large Scale Eigenvalue Problems 6/6

15 Nonlinear Jacobi-Davidson Large-Scale Nonlinear Problems Disadvantage Newton s type method: Still highly dependent on initial data. A lot of freedom w.r.t. program settings. How to solve the small nonlinear problem? How to solve the correction equation inexactly? what accuracy, which solution method (GMRES, QMR,...), what kind of preconditioner? Computation of several eigenpairs. Incorporation of left eigenvectors for faster convergence?... Max Planck Institute Magdeburg Patrick Kürschner, Numerical Methods for Large Scale Eigenvalue Problems 6/6

16 Linear Jacobi-Davidson Large-Scale Linear Problems Linear Problems Ax = λbx: Solution strategies for some of the previous issues. Max Planck Institute Magdeburg Patrick Kürschner, Numerical Methods for Large Scale Eigenvalue Problems 7/6

17 Linear Jacobi-Davidson Large-Scale Linear Problems Linear Problems Ax = λbx: Solution strategies for some of the previous issues. How to solve the small problem? Easy: QZ method. How to solve the correction equation inexactly? what accuracy, solution method: criteria for controlling the inner accuracy w.r.t. outer accucary. what kind of preconditioner? E.g. ilu of A τb. Computation of several eigenpairs: Orthogonalize against found eigenvectors. Incorporation of left eigenvectors for faster convergence? Two-sided Jacobi-Davidson... Max Planck Institute Magdeburg Patrick Kürschner, Numerical Methods for Large Scale Eigenvalue Problems 7/6

Model order reduction of large-scale dynamical systems with Jacobi-Davidson style eigensolvers

Model order reduction of large-scale dynamical systems with Jacobi-Davidson style eigensolvers MAX PLANCK INSTITUTE International Conference on Communications, Computing and Control Applications March 3-5, 2011, Hammamet, Tunisia. Model order reduction of large-scale dynamical systems with Jacobi-Davidson

More information

235 Final exam review questions

235 Final exam review questions 5 Final exam review questions Paul Hacking December 4, 0 () Let A be an n n matrix and T : R n R n, T (x) = Ax the linear transformation with matrix A. What does it mean to say that a vector v R n is an

More information

On Dominant Poles and Model Reduction of Second Order Time-Delay Systems

On Dominant Poles and Model Reduction of Second Order Time-Delay Systems On Dominant Poles and Model Reduction of Second Order Time-Delay Systems Maryam Saadvandi Joint work with: Prof. Karl Meerbergen and Dr. Elias Jarlebring Department of Computer Science, KULeuven ModRed

More information

Reduction of nonlinear eigenproblems with JD

Reduction of nonlinear eigenproblems with JD Reduction of nonlinear eigenproblems with JD Henk van der Vorst H.A.vanderVorst@math.uu.nl Mathematical Institute Utrecht University July 13, 2005, SIAM Annual New Orleans p.1/16 Outline Polynomial Eigenproblems

More information

Lecture 3: Inexact inverse iteration with preconditioning

Lecture 3: Inexact inverse iteration with preconditioning Lecture 3: Department of Mathematical Sciences CLAPDE, Durham, July 2008 Joint work with M. Freitag (Bath), and M. Robbé & M. Sadkane (Brest) 1 Introduction 2 Preconditioned GMRES for Inverse Power Method

More information

Two-sided Eigenvalue Algorithms for Modal Approximation

Two-sided Eigenvalue Algorithms for Modal Approximation Two-sided Eigenvalue Algorithms for Modal Approximation Master s thesis submitted to Faculty of Mathematics at Chemnitz University of Technology presented by: Supervisor: Advisor: B.sc. Patrick Kürschner

More information

Identification Methods for Structural Systems

Identification Methods for Structural Systems Prof. Dr. Eleni Chatzi System Stability Fundamentals Overview System Stability Assume given a dynamic system with input u(t) and output x(t). The stability property of a dynamic system can be defined from

More information

Final A. Problem Points Score Total 100. Math115A Nadja Hempel 03/23/2017

Final A. Problem Points Score Total 100. Math115A Nadja Hempel 03/23/2017 Final A Math115A Nadja Hempel 03/23/2017 nadja@math.ucla.edu Name: UID: Problem Points Score 1 10 2 20 3 5 4 5 5 9 6 5 7 7 8 13 9 16 10 10 Total 100 1 2 Exercise 1. (10pt) Let T : V V be a linear transformation.

More information

Computing Transfer Function Dominant Poles of Large Second-Order Systems

Computing Transfer Function Dominant Poles of Large Second-Order Systems Computing Transfer Function Dominant Poles of Large Second-Order Systems Joost Rommes Mathematical Institute Utrecht University rommes@math.uu.nl http://www.math.uu.nl/people/rommes joint work with Nelson

More information

Preconditioned inverse iteration and shift-invert Arnoldi method

Preconditioned inverse iteration and shift-invert Arnoldi method Preconditioned inverse iteration and shift-invert Arnoldi method Melina Freitag Department of Mathematical Sciences University of Bath CSC Seminar Max-Planck-Institute for Dynamics of Complex Technical

More information

A Jacobi Davidson Method for Nonlinear Eigenproblems

A Jacobi Davidson Method for Nonlinear Eigenproblems A Jacobi Davidson Method for Nonlinear Eigenproblems Heinrich Voss Section of Mathematics, Hamburg University of Technology, D 21071 Hamburg voss @ tu-harburg.de http://www.tu-harburg.de/mat/hp/voss Abstract.

More information

MATH 304 Linear Algebra Lecture 20: The Gram-Schmidt process (continued). Eigenvalues and eigenvectors.

MATH 304 Linear Algebra Lecture 20: The Gram-Schmidt process (continued). Eigenvalues and eigenvectors. MATH 304 Linear Algebra Lecture 20: The Gram-Schmidt process (continued). Eigenvalues and eigenvectors. Orthogonal sets Let V be a vector space with an inner product. Definition. Nonzero vectors v 1,v

More information

LARGE SPARSE EIGENVALUE PROBLEMS. General Tools for Solving Large Eigen-Problems

LARGE SPARSE EIGENVALUE PROBLEMS. General Tools for Solving Large Eigen-Problems LARGE SPARSE EIGENVALUE PROBLEMS Projection methods The subspace iteration Krylov subspace methods: Arnoldi and Lanczos Golub-Kahan-Lanczos bidiagonalization General Tools for Solving Large Eigen-Problems

More information

MICHIEL E. HOCHSTENBACH

MICHIEL E. HOCHSTENBACH VARIATIONS ON HARMONIC RAYLEIGH RITZ FOR STANDARD AND GENERALIZED EIGENPROBLEMS MICHIEL E. HOCHSTENBACH Abstract. We present several variations on the harmonic Rayleigh Ritz method. First, we introduce

More information

LARGE SPARSE EIGENVALUE PROBLEMS

LARGE SPARSE EIGENVALUE PROBLEMS LARGE SPARSE EIGENVALUE PROBLEMS Projection methods The subspace iteration Krylov subspace methods: Arnoldi and Lanczos Golub-Kahan-Lanczos bidiagonalization 14-1 General Tools for Solving Large Eigen-Problems

More information

MATH 423 Linear Algebra II Lecture 33: Diagonalization of normal operators.

MATH 423 Linear Algebra II Lecture 33: Diagonalization of normal operators. MATH 423 Linear Algebra II Lecture 33: Diagonalization of normal operators. Adjoint operator and adjoint matrix Given a linear operator L on an inner product space V, the adjoint of L is a transformation

More information

Eigenvalue Problems CHAPTER 1 : PRELIMINARIES

Eigenvalue Problems CHAPTER 1 : PRELIMINARIES Eigenvalue Problems CHAPTER 1 : PRELIMINARIES Heinrich Voss voss@tu-harburg.de Hamburg University of Technology Institute of Mathematics TUHH Heinrich Voss Preliminaries Eigenvalue problems 2012 1 / 14

More information

Final Review Written by Victoria Kala SH 6432u Office Hours R 12:30 1:30pm Last Updated 11/30/2015

Final Review Written by Victoria Kala SH 6432u Office Hours R 12:30 1:30pm Last Updated 11/30/2015 Final Review Written by Victoria Kala vtkala@mathucsbedu SH 6432u Office Hours R 12:30 1:30pm Last Updated 11/30/2015 Summary This review contains notes on sections 44 47, 51 53, 61, 62, 65 For your final,

More information

A Domain Decomposition Based Jacobi-Davidson Algorithm for Quantum Dot Simulation

A Domain Decomposition Based Jacobi-Davidson Algorithm for Quantum Dot Simulation A Domain Decomposition Based Jacobi-Davidson Algorithm for Quantum Dot Simulation Tao Zhao 1, Feng-Nan Hwang 2 and Xiao-Chuan Cai 3 Abstract In this paper, we develop an overlapping domain decomposition

More information

Math 4153 Exam 3 Review. The syllabus for Exam 3 is Chapter 6 (pages ), Chapter 7 through page 137, and Chapter 8 through page 182 in Axler.

Math 4153 Exam 3 Review. The syllabus for Exam 3 is Chapter 6 (pages ), Chapter 7 through page 137, and Chapter 8 through page 182 in Axler. Math 453 Exam 3 Review The syllabus for Exam 3 is Chapter 6 (pages -2), Chapter 7 through page 37, and Chapter 8 through page 82 in Axler.. You should be sure to know precise definition of the terms we

More information

Polynomial Jacobi Davidson Method for Large/Sparse Eigenvalue Problems

Polynomial Jacobi Davidson Method for Large/Sparse Eigenvalue Problems Polynomial Jacobi Davidson Method for Large/Sparse Eigenvalue Problems Tsung-Ming Huang Department of Mathematics National Taiwan Normal University, Taiwan April 28, 2011 T.M. Huang (Taiwan Normal Univ.)

More information

1 Some Facts on Symmetric Matrices

1 Some Facts on Symmetric Matrices 1 Some Facts on Symmetric Matrices Definition: Matrix A is symmetric if A = A T. Theorem: Any symmetric matrix 1) has only real eigenvalues; 2) is always iagonalizable; 3) has orthogonal eigenvectors.

More information

A Jacobi-Davidson method for two real parameter nonlinear eigenvalue problems arising from delay differential equations

A Jacobi-Davidson method for two real parameter nonlinear eigenvalue problems arising from delay differential equations A Jacobi-Davidson method for two real parameter nonlinear eigenvalue problems arising from delay differential equations Heinrich Voss voss@tuhh.de Joint work with Karl Meerbergen (KU Leuven) and Christian

More information

Inexact inverse iteration with preconditioning

Inexact inverse iteration with preconditioning Department of Mathematical Sciences Computational Methods with Applications Harrachov, Czech Republic 24th August 2007 (joint work with M. Robbé and M. Sadkane (Brest)) 1 Introduction 2 Preconditioned

More information

Solution of eigenvalue problems. Subspace iteration, The symmetric Lanczos algorithm. Harmonic Ritz values, Jacobi-Davidson s method

Solution of eigenvalue problems. Subspace iteration, The symmetric Lanczos algorithm. Harmonic Ritz values, Jacobi-Davidson s method Solution of eigenvalue problems Introduction motivation Projection methods for eigenvalue problems Subspace iteration, The symmetric Lanczos algorithm Nonsymmetric Lanczos procedure; Implicit restarts

More information

AMS526: Numerical Analysis I (Numerical Linear Algebra)

AMS526: Numerical Analysis I (Numerical Linear Algebra) AMS526: Numerical Analysis I (Numerical Linear Algebra) Lecture 21: Sensitivity of Eigenvalues and Eigenvectors; Conjugate Gradient Method Xiangmin Jiao Stony Brook University Xiangmin Jiao Numerical Analysis

More information

2. Review of Linear Algebra

2. Review of Linear Algebra 2. Review of Linear Algebra ECE 83, Spring 217 In this course we will represent signals as vectors and operators (e.g., filters, transforms, etc) as matrices. This lecture reviews basic concepts from linear

More information

Model order reduction of large-scale dynamical systems with Jacobi-Davidson style eigensolvers Benner, P.; Hochstenbach, M.E.; Kürschner, P.

Model order reduction of large-scale dynamical systems with Jacobi-Davidson style eigensolvers Benner, P.; Hochstenbach, M.E.; Kürschner, P. Model order reduction of large-scale dynamical systems with Jacobi-Davidson style eigensolvers Benner, P.; Hochstenbach, M.E.; Kürschner, P. Published: 01/01/2011 Document Version Publisher s PDF, also

More information

HARMONIC RAYLEIGH RITZ EXTRACTION FOR THE MULTIPARAMETER EIGENVALUE PROBLEM

HARMONIC RAYLEIGH RITZ EXTRACTION FOR THE MULTIPARAMETER EIGENVALUE PROBLEM HARMONIC RAYLEIGH RITZ EXTRACTION FOR THE MULTIPARAMETER EIGENVALUE PROBLEM MICHIEL E. HOCHSTENBACH AND BOR PLESTENJAK Abstract. We study harmonic and refined extraction methods for the multiparameter

More information

of dimension n 1 n 2, one defines the matrix determinants

of dimension n 1 n 2, one defines the matrix determinants HARMONIC RAYLEIGH RITZ FOR THE MULTIPARAMETER EIGENVALUE PROBLEM MICHIEL E. HOCHSTENBACH AND BOR PLESTENJAK Abstract. We study harmonic and refined extraction methods for the multiparameter eigenvalue

More information

The Eigenvalue Problem: Perturbation Theory

The Eigenvalue Problem: Perturbation Theory Jim Lambers MAT 610 Summer Session 2009-10 Lecture 13 Notes These notes correspond to Sections 7.2 and 8.1 in the text. The Eigenvalue Problem: Perturbation Theory The Unsymmetric Eigenvalue Problem Just

More information

Properties of Linear Transformations from R n to R m

Properties of Linear Transformations from R n to R m Properties of Linear Transformations from R n to R m MATH 322, Linear Algebra I J. Robert Buchanan Department of Mathematics Spring 2015 Topic Overview Relationship between the properties of a matrix transformation

More information

Module 09 From s-domain to time-domain From ODEs, TFs to State-Space Modern Control

Module 09 From s-domain to time-domain From ODEs, TFs to State-Space Modern Control Module 09 From s-domain to time-domain From ODEs, TFs to State-Space Modern Control Ahmad F. Taha EE 3413: Analysis and Desgin of Control Systems Email: ahmad.taha@utsa.edu Webpage: http://engineering.utsa.edu/

More information

ITERATIVE PROJECTION METHODS FOR SPARSE LINEAR SYSTEMS AND EIGENPROBLEMS CHAPTER 11 : JACOBI DAVIDSON METHOD

ITERATIVE PROJECTION METHODS FOR SPARSE LINEAR SYSTEMS AND EIGENPROBLEMS CHAPTER 11 : JACOBI DAVIDSON METHOD ITERATIVE PROJECTION METHODS FOR SPARSE LINEAR SYSTEMS AND EIGENPROBLEMS CHAPTER 11 : JACOBI DAVIDSON METHOD Heinrich Voss voss@tu-harburg.de Hamburg University of Technology Institute of Numerical Simulation

More information

Solution of eigenvalue problems. Subspace iteration, The symmetric Lanczos algorithm. Harmonic Ritz values, Jacobi-Davidson s method

Solution of eigenvalue problems. Subspace iteration, The symmetric Lanczos algorithm. Harmonic Ritz values, Jacobi-Davidson s method Solution of eigenvalue problems Introduction motivation Projection methods for eigenvalue problems Subspace iteration, The symmetric Lanczos algorithm Nonsymmetric Lanczos procedure; Implicit restarts

More information

Chapter 7 Iterative Techniques in Matrix Algebra

Chapter 7 Iterative Techniques in Matrix Algebra Chapter 7 Iterative Techniques in Matrix Algebra Per-Olof Persson persson@berkeley.edu Department of Mathematics University of California, Berkeley Math 128B Numerical Analysis Vector Norms Definition

More information

16.31 Fall 2005 Lecture Presentation Mon 31-Oct-05 ver 1.1

16.31 Fall 2005 Lecture Presentation Mon 31-Oct-05 ver 1.1 16.31 Fall 2005 Lecture Presentation Mon 31-Oct-05 ver 1.1 Charles P. Coleman October 31, 2005 1 / 40 : Controllability Tests Observability Tests LEARNING OUTCOMES: Perform controllability tests Perform

More information

Autonomous system = system without inputs

Autonomous system = system without inputs Autonomous system = system without inputs State space representation B(A,C) = {y there is x, such that σx = Ax, y = Cx } x is the state, n := dim(x) is the state dimension, y is the output Polynomial representation

More information

Model reduction of large-scale dynamical systems

Model reduction of large-scale dynamical systems Model reduction of large-scale dynamical systems Lecture III: Krylov approximation and rational interpolation Thanos Antoulas Rice University and Jacobs University email: aca@rice.edu URL: www.ece.rice.edu/

More information

Solving Symmetric Indefinite Systems with Symmetric Positive Definite Preconditioners

Solving Symmetric Indefinite Systems with Symmetric Positive Definite Preconditioners Solving Symmetric Indefinite Systems with Symmetric Positive Definite Preconditioners Eugene Vecharynski 1 Andrew Knyazev 2 1 Department of Computer Science and Engineering University of Minnesota 2 Department

More information

Lecture Note 1: Background

Lecture Note 1: Background ECE5463: Introduction to Robotics Lecture Note 1: Background Prof. Wei Zhang Department of Electrical and Computer Engineering Ohio State University Columbus, Ohio, USA Spring 2018 Lecture 1 (ECE5463 Sp18)

More information

Linear System Theory

Linear System Theory Linear System Theory Wonhee Kim Lecture 4 Apr. 4, 2018 1 / 40 Recap Vector space, linear space, linear vector space Subspace Linearly independence and dependence Dimension, Basis, Change of Basis 2 / 40

More information

A Multi-Step Hybrid Method for Multi-Input Partial Quadratic Eigenvalue Assignment with Time Delay

A Multi-Step Hybrid Method for Multi-Input Partial Quadratic Eigenvalue Assignment with Time Delay A Multi-Step Hybrid Method for Multi-Input Partial Quadratic Eigenvalue Assignment with Time Delay Zheng-Jian Bai Mei-Xiang Chen Jin-Ku Yang April 14, 2012 Abstract A hybrid method was given by Ram, Mottershead,

More information

ECEN 605 LINEAR SYSTEMS. Lecture 7 Solution of State Equations 1/77

ECEN 605 LINEAR SYSTEMS. Lecture 7 Solution of State Equations 1/77 1/77 ECEN 605 LINEAR SYSTEMS Lecture 7 Solution of State Equations Solution of State Space Equations Recall from the previous Lecture note, for a system: ẋ(t) = A x(t) + B u(t) y(t) = C x(t) + D u(t),

More information

State space transformations

State space transformations Capitolo 0. INTRODUCTION. State space transformations Let us consider the following linear time-invariant system: { ẋ(t) = A(t)+Bu(t) y(t) = C(t)+Du(t) () A state space transformation can be obtained using

More information

Davidson Method CHAPTER 3 : JACOBI DAVIDSON METHOD

Davidson Method CHAPTER 3 : JACOBI DAVIDSON METHOD Davidson Method CHAPTER 3 : JACOBI DAVIDSON METHOD Heinrich Voss voss@tu-harburg.de Hamburg University of Technology The Davidson method is a popular technique to compute a few of the smallest (or largest)

More information

ABSTRACT OF DISSERTATION. Ping Zhang

ABSTRACT OF DISSERTATION. Ping Zhang ABSTRACT OF DISSERTATION Ping Zhang The Graduate School University of Kentucky 2009 Iterative Methods for Computing Eigenvalues and Exponentials of Large Matrices ABSTRACT OF DISSERTATION A dissertation

More information

A Tuned Preconditioner for Inexact Inverse Iteration for Generalised Eigenvalue Problems

A Tuned Preconditioner for Inexact Inverse Iteration for Generalised Eigenvalue Problems A Tuned Preconditioner for for Generalised Eigenvalue Problems Department of Mathematical Sciences University of Bath, United Kingdom IWASEP VI May 22-25, 2006 Pennsylvania State University, University

More information

Solutions to Final Practice Problems Written by Victoria Kala Last updated 12/5/2015

Solutions to Final Practice Problems Written by Victoria Kala Last updated 12/5/2015 Solutions to Final Practice Problems Written by Victoria Kala vtkala@math.ucsb.edu Last updated /5/05 Answers This page contains answers only. See the following pages for detailed solutions. (. (a x. See

More information

An Arnoldi Method for Nonlinear Symmetric Eigenvalue Problems

An Arnoldi Method for Nonlinear Symmetric Eigenvalue Problems An Arnoldi Method for Nonlinear Symmetric Eigenvalue Problems H. Voss 1 Introduction In this paper we consider the nonlinear eigenvalue problem T (λ)x = 0 (1) where T (λ) R n n is a family of symmetric

More information

ẋ n = f n (x 1,...,x n,u 1,...,u m ) (5) y 1 = g 1 (x 1,...,x n,u 1,...,u m ) (6) y p = g p (x 1,...,x n,u 1,...,u m ) (7)

ẋ n = f n (x 1,...,x n,u 1,...,u m ) (5) y 1 = g 1 (x 1,...,x n,u 1,...,u m ) (6) y p = g p (x 1,...,x n,u 1,...,u m ) (7) EEE582 Topical Outline A.A. Rodriguez Fall 2007 GWC 352, 965-3712 The following represents a detailed topical outline of the course. It attempts to highlight most of the key concepts to be covered and

More information

Jacobi s Ideas on Eigenvalue Computation in a modern context

Jacobi s Ideas on Eigenvalue Computation in a modern context Jacobi s Ideas on Eigenvalue Computation in a modern context Henk van der Vorst vorst@math.uu.nl Mathematical Institute Utrecht University June 3, 2006, Michel Crouzeix p.1/18 General remarks Ax = λx Nonlinear

More information

Domain decomposition on different levels of the Jacobi-Davidson method

Domain decomposition on different levels of the Jacobi-Davidson method hapter 5 Domain decomposition on different levels of the Jacobi-Davidson method Abstract Most computational work of Jacobi-Davidson [46], an iterative method suitable for computing solutions of large dimensional

More information

Last lecture: Recurrence relations and differential equations. The solution to the differential equation dx

Last lecture: Recurrence relations and differential equations. The solution to the differential equation dx Last lecture: Recurrence relations and differential equations The solution to the differential equation dx = ax is x(t) = ce ax, where c = x() is determined by the initial conditions x(t) Let X(t) = and

More information

Math 108b: Notes on the Spectral Theorem

Math 108b: Notes on the Spectral Theorem Math 108b: Notes on the Spectral Theorem From section 6.3, we know that every linear operator T on a finite dimensional inner product space V has an adjoint. (T is defined as the unique linear operator

More information

AMS526: Numerical Analysis I (Numerical Linear Algebra) Lecture 23: GMRES and Other Krylov Subspace Methods; Preconditioning

AMS526: Numerical Analysis I (Numerical Linear Algebra) Lecture 23: GMRES and Other Krylov Subspace Methods; Preconditioning AMS526: Numerical Analysis I (Numerical Linear Algebra) Lecture 23: GMRES and Other Krylov Subspace Methods; Preconditioning Xiangmin Jiao SUNY Stony Brook Xiangmin Jiao Numerical Analysis I 1 / 18 Outline

More information

ELEC 3035, Lecture 3: Autonomous systems Ivan Markovsky

ELEC 3035, Lecture 3: Autonomous systems Ivan Markovsky ELEC 3035, Lecture 3: Autonomous systems Ivan Markovsky Equilibrium points and linearization Eigenvalue decomposition and modal form State transition matrix and matrix exponential Stability ELEC 3035 (Part

More information

LINEAR ALGEBRA: NUMERICAL METHODS. Version: August 12,

LINEAR ALGEBRA: NUMERICAL METHODS. Version: August 12, LINEAR ALGEBRA: NUMERICAL METHODS. Version: August 12, 2000 74 6 Summary Here we summarize the most important information about theoretical and numerical linear algebra. MORALS OF THE STORY: I. Theoretically

More information

Iterative Methods for Solving A x = b

Iterative Methods for Solving A x = b Iterative Methods for Solving A x = b A good (free) online source for iterative methods for solving A x = b is given in the description of a set of iterative solvers called templates found at netlib: http

More information

Linear Algebra. P R E R E Q U I S I T E S A S S E S S M E N T Ahmad F. Taha August 24, 2015

Linear Algebra. P R E R E Q U I S I T E S A S S E S S M E N T Ahmad F. Taha August 24, 2015 THE UNIVERSITY OF TEXAS AT SAN ANTONIO EE 5243 INTRODUCTION TO CYBER-PHYSICAL SYSTEMS P R E R E Q U I S I T E S A S S E S S M E N T Ahmad F. Taha August 24, 2015 The objective of this exercise is to assess

More information

Linear System Theory

Linear System Theory Linear System Theory Wonhee Kim Lecture 3 Mar. 21, 2017 1 / 38 Overview Recap Nonlinear systems: existence and uniqueness of a solution of differential equations Preliminaries Fields and Vector Spaces

More information

MATH 220 FINAL EXAMINATION December 13, Name ID # Section #

MATH 220 FINAL EXAMINATION December 13, Name ID # Section # MATH 22 FINAL EXAMINATION December 3, 2 Name ID # Section # There are??multiple choice questions. Each problem is worth 5 points. Four possible answers are given for each problem, only one of which is

More information

What s Eigenanalysis? Matrix eigenanalysis is a computational theory for the matrix equation

What s Eigenanalysis? Matrix eigenanalysis is a computational theory for the matrix equation Eigenanalysis What s Eigenanalysis? Fourier s Eigenanalysis Model is a Replacement Process Powers and Fourier s Model Differential Equations and Fourier s Model Fourier s Model Illustrated What is Eigenanalysis?

More information

The Conjugate Gradient Method

The Conjugate Gradient Method The Conjugate Gradient Method Classical Iterations We have a problem, We assume that the matrix comes from a discretization of a PDE. The best and most popular model problem is, The matrix will be as large

More information

Iterative projection methods for sparse nonlinear eigenvalue problems

Iterative projection methods for sparse nonlinear eigenvalue problems Iterative projection methods for sparse nonlinear eigenvalue problems Heinrich Voss voss@tu-harburg.de Hamburg University of Technology Institute of Mathematics TUHH Heinrich Voss Iterative projection

More information

Multigrid absolute value preconditioning

Multigrid absolute value preconditioning Multigrid absolute value preconditioning Eugene Vecharynski 1 Andrew Knyazev 2 (speaker) 1 Department of Computer Science and Engineering University of Minnesota 2 Department of Mathematical and Statistical

More information

Balanced Truncation 1

Balanced Truncation 1 Massachusetts Institute of Technology Department of Electrical Engineering and Computer Science 6.242, Fall 2004: MODEL REDUCTION Balanced Truncation This lecture introduces balanced truncation for LTI

More information

HOMOGENEOUS JACOBI DAVIDSON. 1. Introduction. We study a homogeneous Jacobi Davidson variant for the polynomial eigenproblem

HOMOGENEOUS JACOBI DAVIDSON. 1. Introduction. We study a homogeneous Jacobi Davidson variant for the polynomial eigenproblem HOMOGENEOUS JACOBI DAVIDSON MICHIEL E. HOCHSTENBACH AND YVAN NOTAY Abstract. We study a homogeneous variant of the Jacobi Davidson method for the generalized and polynomial eigenvalue problem. Special

More information

Summer Session Practice Final Exam

Summer Session Practice Final Exam Math 2F Summer Session 25 Practice Final Exam Time Limit: Hours Name (Print): Teaching Assistant This exam contains pages (including this cover page) and 9 problems. Check to see if any pages are missing.

More information

MATH 423 Linear Algebra II Lecture 20: Geometry of linear transformations. Eigenvalues and eigenvectors. Characteristic polynomial.

MATH 423 Linear Algebra II Lecture 20: Geometry of linear transformations. Eigenvalues and eigenvectors. Characteristic polynomial. MATH 423 Linear Algebra II Lecture 20: Geometry of linear transformations. Eigenvalues and eigenvectors. Characteristic polynomial. Geometric properties of determinants 2 2 determinants and plane geometry

More information

5.) For each of the given sets of vectors, determine whether or not the set spans R 3. Give reasons for your answers.

5.) For each of the given sets of vectors, determine whether or not the set spans R 3. Give reasons for your answers. Linear Algebra - Test File - Spring Test # For problems - consider the following system of equations. x + y - z = x + y + 4z = x + y + 6z =.) Solve the system without using your calculator..) Find the

More information

1. Introduction. In this paper we consider the large and sparse eigenvalue problem. Ax = λx (1.1) T (λ)x = 0 (1.2)

1. Introduction. In this paper we consider the large and sparse eigenvalue problem. Ax = λx (1.1) T (λ)x = 0 (1.2) A NEW JUSTIFICATION OF THE JACOBI DAVIDSON METHOD FOR LARGE EIGENPROBLEMS HEINRICH VOSS Abstract. The Jacobi Davidson method is known to converge at least quadratically if the correction equation is solved

More information

Efficient Methods For Nonlinear Eigenvalue Problems. Diploma Thesis

Efficient Methods For Nonlinear Eigenvalue Problems. Diploma Thesis Efficient Methods For Nonlinear Eigenvalue Problems Diploma Thesis Timo Betcke Technical University of Hamburg-Harburg Department of Mathematics (Prof. Dr. H. Voß) August 2002 Abstract During the last

More information

Chapter 3. LQ, LQG and Control System Design. Dutch Institute of Systems and Control

Chapter 3. LQ, LQG and Control System Design. Dutch Institute of Systems and Control Chapter 3 LQ, LQG and Control System H 2 Design Overview LQ optimization state feedback LQG optimization output feedback H 2 optimization non-stochastic version of LQG Application to feedback system design

More information

Control Systems Design, SC4026. SC4026 Fall 2009, dr. A. Abate, DCSC, TU Delft

Control Systems Design, SC4026. SC4026 Fall 2009, dr. A. Abate, DCSC, TU Delft Control Systems Design, SC4026 SC4026 Fall 2009, dr. A. Abate, DCSC, TU Delft Lecture 4 Controllability (a.k.a. Reachability) vs Observability Algebraic Tests (Kalman rank condition & Hautus test) A few

More information

The Jordan Normal Form and its Applications

The Jordan Normal Form and its Applications The and its Applications Jeremy IMPACT Brigham Young University A square matrix A is a linear operator on {R, C} n. A is diagonalizable if and only if it has n linearly independent eigenvectors. What happens

More information

Linear Algebra Practice Problems

Linear Algebra Practice Problems Linear Algebra Practice Problems Page of 7 Linear Algebra Practice Problems These problems cover Chapters 4, 5, 6, and 7 of Elementary Linear Algebra, 6th ed, by Ron Larson and David Falvo (ISBN-3 = 978--68-78376-2,

More information

A Jacobi Davidson Method with a Multigrid Solver for the Hermitian Wilson-Dirac Operator

A Jacobi Davidson Method with a Multigrid Solver for the Hermitian Wilson-Dirac Operator A Jacobi Davidson Method with a Multigrid Solver for the Hermitian Wilson-Dirac Operator Artur Strebel Bergische Universität Wuppertal August 3, 2016 Joint Work This project is joint work with: Gunnar

More information

Solving Regularized Total Least Squares Problems

Solving Regularized Total Least Squares Problems Solving Regularized Total Least Squares Problems Heinrich Voss voss@tu-harburg.de Hamburg University of Technology Institute of Numerical Simulation Joint work with Jörg Lampe TUHH Heinrich Voss Total

More information

Lec 2: Mathematical Economics

Lec 2: Mathematical Economics Lec 2: Mathematical Economics to Spectral Theory Sugata Bag Delhi School of Economics 24th August 2012 [SB] (Delhi School of Economics) Introductory Math Econ 24th August 2012 1 / 17 Definition: Eigen

More information

Module 03 Linear Systems Theory: Necessary Background

Module 03 Linear Systems Theory: Necessary Background Module 03 Linear Systems Theory: Necessary Background Ahmad F. Taha EE 5243: Introduction to Cyber-Physical Systems Email: ahmad.taha@utsa.edu Webpage: http://engineering.utsa.edu/ taha/index.html September

More information

Definitions for Quizzes

Definitions for Quizzes Definitions for Quizzes Italicized text (or something close to it) will be given to you. Plain text is (an example of) what you should write as a definition. [Bracketed text will not be given, nor does

More information

Linear dynamical systems with inputs & outputs

Linear dynamical systems with inputs & outputs EE263 Autumn 215 S. Boyd and S. Lall Linear dynamical systems with inputs & outputs inputs & outputs: interpretations transfer function impulse and step responses examples 1 Inputs & outputs recall continuous-time

More information

Nonlinear palindromic eigenvalue problems and their numerical solution

Nonlinear palindromic eigenvalue problems and their numerical solution Nonlinear palindromic eigenvalue problems and their numerical solution TU Berlin DFG Research Center Institut für Mathematik MATHEON IN MEMORIAM RALPH BYERS Polynomial eigenvalue problems k P(λ) x = (

More information

Nonlinear Eigenvalue Problems: An Introduction

Nonlinear Eigenvalue Problems: An Introduction Nonlinear Eigenvalue Problems: An Introduction Cedric Effenberger Seminar for Applied Mathematics ETH Zurich Pro*Doc Workshop Disentis, August 18 21, 2010 Cedric Effenberger (SAM, ETHZ) NLEVPs: An Introduction

More information

A Jacobi Davidson-type projection method for nonlinear eigenvalue problems

A Jacobi Davidson-type projection method for nonlinear eigenvalue problems A Jacobi Davidson-type projection method for nonlinear eigenvalue problems Timo Betce and Heinrich Voss Technical University of Hamburg-Harburg, Department of Mathematics, Schwarzenbergstrasse 95, D-21073

More information

Ma/CS 6b Class 23: Eigenvalues in Regular Graphs

Ma/CS 6b Class 23: Eigenvalues in Regular Graphs Ma/CS 6b Class 3: Eigenvalues in Regular Graphs By Adam Sheffer Recall: The Spectrum of a Graph Consider a graph G = V, E and let A be the adjacency matrix of G. The eigenvalues of G are the eigenvalues

More information

Module 02 CPS Background: Linear Systems Preliminaries

Module 02 CPS Background: Linear Systems Preliminaries Module 02 CPS Background: Linear Systems Preliminaries Ahmad F. Taha EE 5243: Introduction to Cyber-Physical Systems Email: ahmad.taha@utsa.edu Webpage: http://engineering.utsa.edu/ taha/index.html August

More information

Module 07 Controllability and Controller Design of Dynamical LTI Systems

Module 07 Controllability and Controller Design of Dynamical LTI Systems Module 07 Controllability and Controller Design of Dynamical LTI Systems Ahmad F. Taha EE 5143: Linear Systems and Control Email: ahmad.taha@utsa.edu Webpage: http://engineering.utsa.edu/ataha October

More information

RANA03-02 January Jacobi-Davidson methods and preconditioning with applications in pole-zero analysis

RANA03-02 January Jacobi-Davidson methods and preconditioning with applications in pole-zero analysis RANA03-02 January 2003 Jacobi-Davidson methods and preconditioning with applications in pole-zero analysis by J.Rommes, H.A. van der Vorst, EJ.W. ter Maten Reports on Applied and Numerical Analysis Department

More information

Eigenvectors. Prop-Defn

Eigenvectors. Prop-Defn Eigenvectors Aim lecture: The simplest T -invariant subspaces are 1-dim & these give rise to the theory of eigenvectors. To compute these we introduce the similarity invariant, the characteristic polynomial.

More information

Domain decomposition in the Jacobi-Davidson method for eigenproblems

Domain decomposition in the Jacobi-Davidson method for eigenproblems Domain decomposition in the Jacobi-Davidson method for eigenproblems Menno Genseberger Domain decomposition in the Jacobi-Davidson method for eigenproblems Domeindecompositie in de Jacobi-Davidson methode

More information

Eigenvalues, Eigenvectors and the Jordan Form

Eigenvalues, Eigenvectors and the Jordan Form EE/ME 701: Advanced Linear Systems Eigenvalues, Eigenvectors and the Jordan Form Contents 1 Introduction 3 1.1 Review of basic facts about eigenvectors and eigenvalues..... 3 1.1.1 Looking at eigenvalues

More information

Control Systems Design, SC4026. SC4026 Fall 2010, dr. A. Abate, DCSC, TU Delft

Control Systems Design, SC4026. SC4026 Fall 2010, dr. A. Abate, DCSC, TU Delft Control Systems Design, SC4026 SC4026 Fall 2010, dr. A. Abate, DCSC, TU Delft Lecture 4 Controllability (a.k.a. Reachability) and Observability Algebraic Tests (Kalman rank condition & Hautus test) A few

More information

The Nullspace free eigenvalue problem and the inexact Shift and invert Lanczos method. V. Simoncini. Dipartimento di Matematica, Università di Bologna

The Nullspace free eigenvalue problem and the inexact Shift and invert Lanczos method. V. Simoncini. Dipartimento di Matematica, Università di Bologna The Nullspace free eigenvalue problem and the inexact Shift and invert Lanczos method V. Simoncini Dipartimento di Matematica, Università di Bologna and CIRSA, Ravenna, Italy valeria@dm.unibo.it 1 The

More information

CONTROLLING INNER ITERATIONS IN THE JACOBI DAVIDSON METHOD

CONTROLLING INNER ITERATIONS IN THE JACOBI DAVIDSON METHOD CONTROLLING INNER ITERATIONS IN THE JACOBI DAVIDSON METHOD MICHIEL E. HOCHSTENBACH AND YVAN NOTAY Abstract. The Jacobi Davidson method is an eigenvalue solver which uses the iterative (and in general inaccurate)

More information

Primal-dual IPM with Asymmetric Barrier

Primal-dual IPM with Asymmetric Barrier Primal-dual IPM with Asymmetric Barrier Yurii Nesterov, CORE/INMA (UCL) September 29, 2008 (IFOR, ETHZ) Yu. Nesterov Primal-dual IPM with Asymmetric Barrier 1/28 Outline 1 Symmetric and asymmetric barriers

More information

ME 234, Lyapunov and Riccati Problems. 1. This problem is to recall some facts and formulae you already know. e Aτ BB e A τ dτ

ME 234, Lyapunov and Riccati Problems. 1. This problem is to recall some facts and formulae you already know. e Aτ BB e A τ dτ ME 234, Lyapunov and Riccati Problems. This problem is to recall some facts and formulae you already know. (a) Let A and B be matrices of appropriate dimension. Show that (A, B) is controllable if and

More information

The amount of work to construct each new guess from the previous one should be a small multiple of the number of nonzeros in A.

The amount of work to construct each new guess from the previous one should be a small multiple of the number of nonzeros in A. AMSC/CMSC 661 Scientific Computing II Spring 2005 Solution of Sparse Linear Systems Part 2: Iterative methods Dianne P. O Leary c 2005 Solving Sparse Linear Systems: Iterative methods The plan: Iterative

More information

A Parallel Scalable PETSc-Based Jacobi-Davidson Polynomial Eigensolver with Application in Quantum Dot Simulation

A Parallel Scalable PETSc-Based Jacobi-Davidson Polynomial Eigensolver with Application in Quantum Dot Simulation A Parallel Scalable PETSc-Based Jacobi-Davidson Polynomial Eigensolver with Application in Quantum Dot Simulation Zih-Hao Wei 1, Feng-Nan Hwang 1, Tsung-Ming Huang 2, and Weichung Wang 3 1 Department of

More information