4. Discrete Probability Distributions. Introduction & Binomial Distribution

Size: px
Start display at page:

Download "4. Discrete Probability Distributions. Introduction & Binomial Distribution"

Transcription

1 4. Discrete Probability Distributions Introduction & Binomial Distribution

2 Aim & Objectives 1

3 Aims u Introduce discrete probability distributions v Binomial distribution v Poisson distribution 2

4 Objectives u Define random and Bernoulli variables u Describe a probability distribution u Compute the mean and variance of discrete random variables u Describe and utilise the Binomial distribution u Describe and utilise a Poisson distribution 3

5 4.1 Motivating Exercises 4

6 Motivating Exercise 1: Summer 2011 Q3b Scenario The probability of being in blood group B is 9%. You randomly select 6 people. Questions to Explore (i) How likely is it that none of them are blood group B? [11 marks] (ii) How likely is it that at most two are blood group B? [8 marks] (iii) What is the mean number in blood group B? [3 marks] (iv) What is the standard deviation of the number in blood group B? [3 marks] 5

7 Motivating Exercise 2: Summer 2011 Q4b Scenario The number of tadpoles scattered randomly through a pond follows a Poisson distribution with mean of 15 per litre. Questions to Explore I. Find the probability that a random sample of 1 litre of pond water will contain 5 tadpoles. [4 marks] II. Find the probability that a random sample of 0.1 litres of pond water will contain more than one tadpole. [8 marks] III. What is the probability that there will be exactly 2 tadpoles in a random sample of 0.1 litres of pond water? [6 marks] IV. What is the probability that there will be exactly 20 tadpoles in 2 litres of pond water? [6 marks] V. What is the mean number of tadpoles in a random sample of 1 litre of pond water? [2 marks] VI. What is the standard deviation of the number of tadpoles in a random sample of 1 litre of pond water? [2 marks] 6

8 4.2 Introduction 7

9 Random Variable u A random variable, X, is the numerical outcome of an experiment u Examples Experiment: Roll of a dice RV: value of the face (1, 2, 3, 4, 5, 6) Experiment: Flip of a coin: RV: 1 = Head, 2 = Tail Experiment: Opinion poll RV: 1 if in favour, 0 if not 8

10 Random Variable u For some experiments the outcomes are not numeric u A coding system is used to assign numbers to the outcomes u A random variable, X, is discrete if it can only have integer values u Examples of discrete RV s are counts of items v number of disease outbreaks per year v number of glassware breakages per week v number of hours per week spent on exercise v number of minor oil leakages in a region per month u It is not possible for the variable to have values that are fractions or decimals 9

11 Bernoulli Variable u Bernoulli variable is a very common and simple type of discrete RV u A Bernoulli variable has only two possible values: v 0 and 1 u Variable is appropriate for experiments in which there are only two outcomes u Example Experiment: Determination of whether a disease is present Possible Outcomes: {disease, no disease} Code 1= disease, 0 = no disease The outcome is a Bernoulli variable 10

12 Probability Distribution u Associated with each value (outcome) of a discrete RV is its probability of occurrence u Probability distribution is the way in which the total probability of 1 is distributed among the possible values of the discrete RV u Probability distribution of a discrete RV, is defined for every possible value, x, as P(X = x) 11

13 Probability Distribution u Probability distributions can be estimated by sampling from the population u A frequency distribution is calculated from the sample u Frequency in each class or each class interval is converted to a relative frequency u Relative frequencies are the estimated probabilities 12

14 Probability Distribution: Example u Suppose we wish to know that the probability distribution of eye colour of students Colour Number of Students Relative Frequency Estimated Probability Blue Brown Other u As we will see later, in certain circumstances, the probability distribution may also be generated by a mathematical function 13

15 4.3 Mean and Variance of Discrete Random Variable 14

16 Exercise u Consider a random variable, X, with the following probability distribution: X Probability K 15

17 Exercise X Probability K u What is the value of K? Why? 0.1, probabilities sum to zero 16

18 Exercise u What is the expected value of X? X Probability X x Probability Sum u Expected value of X = Mean value of X= E(X) =

19 Exercise u What is the variability (standard deviation)? u E(X) = 0.65 X Probability X 2 X 2 x Probability Sum u V(X)=E(X 2 )-[E(X)] 2 = = u SD(X) = =1.01 E(X 2 ) 18

20 Formulae u Mean of a discrete RV, X, is given by: E(X) = Σ {x} xp(x) u Variance of a discrete RV, X, is given by: V(X) = E(X 2 ) [E(X)] 2 E(X)= xp(x) { x} 2 2 E(X )= x P(x) { x} 19

21 4.4 Binomial Distribution 20

22 Binomial Distribution u Binomial experiment has the following properties: v a sequence of n Bernoulli trials v each trial is independent v the probability of success in a single trial is constant u Random variable X, defined to be the number of successes in the n trials, is a Binomial variable u Binomial variable has two parameters: v n: the number of trials v p: the probability of success in a single trial. u If a RV X, is Binomial, we denote this by: X ~ Bin(n, p) 21

23 Binomial Distribution u Formula for generating the probability distribution for a Binomial variable is given by: v where r can be any value from 0 to n u Formula for calculating n r n-r P(X=r)=Crp (1-p) v Known as a combination and is a subset of r items taken from a total of n items C = n r n! r!(n-r)! 22

24 Binomial Distribution u For example: 20 20! 20x19 C 2 = = = 190 2!(20-2)! 2x1 u Most calculators have this function 23

25 Binomial Distribution Mean and Variance of a Binomial Variable 24

26 Mean and Variance of a Binomial Variable If X ~ Bin(n, p), then E(X) = np V(X) = np(1 p). 25

27 Binomial Distribution: In-class Exercise Summer 2010 Q3(b) A population of paradise flycatchers has 60% brown males and 40% white. Your field assistant captures 5 male flycatchers at random. u How likely is it that none of the flycatchers are brown? [11 marks] u How likely is it that at most one flycatcher is brown? [8 marks] u What is the mean number of brown flycatchers? [3 marks] u What is the standard deviation of the number of brown flycatchers? [3 marks] 26

28 Binomial Distribution: In-class Exercise Summer 2009 Q2(b) In a certain developing country, 30% of children are malnourished. If a random sample of 5 children from this country is chosen how likely is it that (i) None of the children are malnourished? (ii) At least 1 child is malnourished? What is the mean number of children that are malnourished? What is the standard deviation of the number malnourished? 27

29 Summary u Defined v Random variable v Bernoulli variable u Introduced probability distribution u Computed the mean and variance of a discrete RV u Described the Binomial distribution u Applied the Binomial distribution 28

30 What next? u Discrete probability distributions v Poisson distribution 29

31 4. Discrete Probability Distributions Poisson Distribution

32 Summary of Previous Lecture u A Bernoulli variable has only two possible values: 0 and 1 u Probability distribution is the way in which the total probability of 1 is distributed among the possible values of the discrete RV u Binomial experiment has a sequence of n Bernoulli trials, each trial is independent, the probability of success in a single trial is constant u Binomial variable has two parameters, n: the number of trials, p: the probability of success in a single trial u If a RV X, is Binomial, we denote this by: X ~ Bin(n, p) P(X=r)=C p (1-p) n r n-r r u Mean of a Binomial RV= E(X)=np; Variance of a Binomial RV=V(X)=np(1-p) 31

33 Aim & Objectives 32

34 Objectives u Define random and Bernoulli variables u Describe a probability distribution u Compute the mean and variance of discrete random variables u Describe and utilise the Binomial distribution u Describe and utilise a Poisson distribution 33

35 4.5 Poisson Distribution 34

36 Poisson Distribution u A Poisson variable is typically a count of relatively rare occurrences Examples u Number of outbreaks of disease per year u Number of barnacles per m 2 of rock u Number of sightings of flocks of migratory birds per day 35

37 Poisson Distribution: Example u The Poisson distribution has one parameter, λ, the mean number of occurrences per unit measurement u If a RV X, is Poisson, we denote this by: X ~ Poi(λ) u The formula for generating the probability distribution for a Poisson variable is given by: P(X=r) = -λ r e λ r! v where r can be any value from 0 upwards 36

38 Poisson Distribution Mean and Variance of a Poisson Variable

39 Mean and Variance of a Poisson Variable If X ~ Poi(λ), then E(X) = λ V(X) = λ. 38

40 Poisson Distribution: Example u Since 1994, the number of outbreaks of Ebola in Gabon is a Poisson variable with mean 0.7 outbreaks per year. In the next year what is the probability of I. no outbreaks? II. III. at most 2 outbreaks? at least 2 outbreaks? 39

41 Poisson Distribution: In-class Exercise Summer 2010 Q4(b) An experiment measures the number of particle emissions from a radioactive substance. The number of emissions follows a Poisson distribution with mean number of emissions per week of 0.3. I. Find the probability that in any given week there will be at least one emission. [8 marks] II. III. IV. Find the probability that in any given week there will be exactly two emissions. [4 marks] What is the probability that there will be exactly 2 emissions in the next fortnight? [6 marks] What is the probability that there will be exactly 2 emissions in the next year? [6 marks] V. What is the mean number of particle emissions in one week? [2 marks] VI. What is the standard deviation of the number of particle emissions in one week? [2 marks] 40

42 Poisson Distribution: In-class Exercise Summer 2009 Q2(c) The mean number of accidents per year in a large factory is five. Assuming the number of accidents follows a Poisson distribution find the probability that in the current year there will be: I. Three accidents II. At most one accident What is the probability that there will be exactly 10 accidents in the next 2 years? 41

43 Summary u Described the Poisson distribution u Applied the Poisson distribution 42

44 What next? u Motivating exercises 43

45 Summary of Poisson Distribution u A Poisson variable is typically a count of relatively rare occurrences u The Poisson distribution has one parameter, λ, the mean number of occurrences per unit measurement u If a RV X, is Poisson, we denote this by: X ~ Poi(λ) P(X=r) = e λ r! -λ r u Mean of a Poisson RV= E(X)= λ; Variance of a Poisson RV=V(X)= λ 44

46 4.1 Motivating Exercises 45

47 Motivating Exercise 1: Summer 2011 Q3b Scenario The probability of being in blood group B is 9%. You randomly select 6 people. Questions to Explore (i) How likely is it that none of them are blood group B? [11 marks] (ii) How likely is it that at most two are blood group B? [8 marks] (iii) What is the mean number in blood group B? [3 marks] (iv) What is the standard deviation of the number in blood group B? [3 marks] 46

48 Motivating Exercise 2: Summer 2011 Q4b Scenario The number of tadpoles scattered randomly through a pond follows a Poisson distribution with mean of 15 per litre. Questions to Explore I. Find the probability that a random sample of 1 litre of pond water will contain 5 tadpoles. [4 marks] II. Find the probability that a random sample of 0.1 litres of pond water will contain more than one tadpole. [8 marks] III. What is the probability that there will be exactly 2 tadpoles in a random sample of 0.1 litres of pond water? [6 marks] IV. What is the probability that there will be exactly 20 tadpoles in 2 litres of pond water? [6 marks] V. What is the mean number of tadpoles in a random sample of 1 litre of pond water? [2 marks] VI. What is the standard deviation of the number of tadpoles in a random sample of 1 litre of pond water? [2 marks] 47

Binomial and Poisson Probability Distributions

Binomial and Poisson Probability Distributions Binomial and Poisson Probability Distributions Esra Akdeniz March 3, 2016 Bernoulli Random Variable Any random variable whose only possible values are 0 or 1 is called a Bernoulli random variable. What

More information

Lecture 2: Probability and Distributions

Lecture 2: Probability and Distributions Lecture 2: Probability and Distributions Ani Manichaikul amanicha@jhsph.edu 17 April 2007 1 / 65 Probability: Why do we care? Probability helps us by: Allowing us to translate scientific questions info

More information

Lecture 3. Discrete Random Variables

Lecture 3. Discrete Random Variables Math 408 - Mathematical Statistics Lecture 3. Discrete Random Variables January 23, 2013 Konstantin Zuev (USC) Math 408, Lecture 3 January 23, 2013 1 / 14 Agenda Random Variable: Motivation and Definition

More information

Random Variable. Discrete Random Variable. Continuous Random Variable. Discrete Random Variable. Discrete Probability Distribution

Random Variable. Discrete Random Variable. Continuous Random Variable. Discrete Random Variable. Discrete Probability Distribution Random Variable Theoretical Probability Distribution Random Variable Discrete Probability Distributions A variable that assumes a numerical description for the outcome of a random eperiment (by chance).

More information

Probability: Why do we care? Lecture 2: Probability and Distributions. Classical Definition. What is Probability?

Probability: Why do we care? Lecture 2: Probability and Distributions. Classical Definition. What is Probability? Probability: Why do we care? Lecture 2: Probability and Distributions Sandy Eckel seckel@jhsph.edu 22 April 2008 Probability helps us by: Allowing us to translate scientific questions into mathematical

More information

CS 361: Probability & Statistics

CS 361: Probability & Statistics February 26, 2018 CS 361: Probability & Statistics Random variables The discrete uniform distribution If every value of a discrete random variable has the same probability, then its distribution is called

More information

Chapter 7: Theoretical Probability Distributions Variable - Measured/Categorized characteristic

Chapter 7: Theoretical Probability Distributions Variable - Measured/Categorized characteristic BSTT523: Pagano & Gavreau, Chapter 7 1 Chapter 7: Theoretical Probability Distributions Variable - Measured/Categorized characteristic Random Variable (R.V.) X Assumes values (x) by chance Discrete R.V.

More information

Common Discrete Distributions

Common Discrete Distributions Common Discrete Distributions Statistics 104 Autumn 2004 Taken from Statistics 110 Lecture Notes Copyright c 2004 by Mark E. Irwin Common Discrete Distributions There are a wide range of popular discrete

More information

Random Variables Example:

Random Variables Example: Random Variables Example: We roll a fair die 6 times. Suppose we are interested in the number of 5 s in the 6 rolls. Let X = number of 5 s. Then X could be 0, 1, 2, 3, 4, 5, 6. X = 0 corresponds to the

More information

Lecture 13. Poisson Distribution. Text: A Course in Probability by Weiss 5.5. STAT 225 Introduction to Probability Models February 16, 2014

Lecture 13. Poisson Distribution. Text: A Course in Probability by Weiss 5.5. STAT 225 Introduction to Probability Models February 16, 2014 Lecture 13 Text: A Course in Probability by Weiss 5.5 STAT 225 Introduction to Probability Models February 16, 2014 Whitney Huang Purdue University 13.1 Agenda 1 2 3 13.2 Review So far, we have seen discrete

More information

9/6/2016. Section 5.1 Probability. Equally Likely Model. The Division Rule: P(A)=#(A)/#(S) Some Popular Randomizers.

9/6/2016. Section 5.1 Probability. Equally Likely Model. The Division Rule: P(A)=#(A)/#(S) Some Popular Randomizers. Chapter 5: Probability and Discrete Probability Distribution Learn. Probability Binomial Distribution Poisson Distribution Some Popular Randomizers Rolling dice Spinning a wheel Flipping a coin Drawing

More information

Chapter (4) Discrete Probability Distributions Examples

Chapter (4) Discrete Probability Distributions Examples Chapter (4) Discrete Probability Distributions Examples Example () Two balanced dice are rolled. Let X be the sum of the two dice. Obtain the probability distribution of X. Solution When the two balanced

More information

MATH/STAT 395. Introduction to Probability Models. Jan 7, 2013

MATH/STAT 395. Introduction to Probability Models. Jan 7, 2013 MATH/STAT 395 Introduction to Probability Models Jan 7, 2013 1.0 Random Variables Definition: A random variable X is a measurable function from the sample space Ω to the real line R. X : Ω R Ω is the set

More information

Probability and Probability Distributions. Dr. Mohammed Alahmed

Probability and Probability Distributions. Dr. Mohammed Alahmed Probability and Probability Distributions 1 Probability and Probability Distributions Usually we want to do more with data than just describing them! We might want to test certain specific inferences about

More information

Lecture 16. Lectures 1-15 Review

Lecture 16. Lectures 1-15 Review 18.440: Lecture 16 Lectures 1-15 Review Scott Sheffield MIT 1 Outline Counting tricks and basic principles of probability Discrete random variables 2 Outline Counting tricks and basic principles of probability

More information

Introduction to Probability and Statistics Slides 3 Chapter 3

Introduction to Probability and Statistics Slides 3 Chapter 3 Introduction to Probability and Statistics Slides 3 Chapter 3 Ammar M. Sarhan, asarhan@mathstat.dal.ca Department of Mathematics and Statistics, Dalhousie University Fall Semester 2008 Dr. Ammar M. Sarhan

More information

BNAD 276 Lecture 5 Discrete Probability Distributions Exercises 1 11

BNAD 276 Lecture 5 Discrete Probability Distributions Exercises 1 11 1 / 15 BNAD 276 Lecture 5 Discrete Probability Distributions 1 11 Phuong Ho May 14, 2017 Exercise 1 Suppose we have the probability distribution for the random variable X as follows. X f (x) 20.20 25.15

More information

Discrete random variables and probability distributions

Discrete random variables and probability distributions Discrete random variables and probability distributions random variable is a mapping from the sample space to real numbers. notation: X, Y, Z,... Example: Ask a student whether she/he works part time or

More information

Bernoulli Trials, Binomial and Cumulative Distributions

Bernoulli Trials, Binomial and Cumulative Distributions Bernoulli Trials, Binomial and Cumulative Distributions Sec 4.4-4.6 Cathy Poliak, Ph.D. cathy@math.uh.edu Office in Fleming 11c Department of Mathematics University of Houston Lecture 9-3339 Cathy Poliak,

More information

BINOMIAL DISTRIBUTION

BINOMIAL DISTRIBUTION BINOMIAL DISTRIBUTION The binomial distribution is a particular type of discrete pmf. It describes random variables which satisfy the following conditions: 1 You perform n identical experiments (called

More information

success and failure independent from one trial to the next?

success and failure independent from one trial to the next? , section 8.4 The Binomial Distribution Notes by Tim Pilachowski Definition of Bernoulli trials which make up a binomial experiment: The number of trials in an experiment is fixed. There are exactly two

More information

Lecture 2 Binomial and Poisson Probability Distributions

Lecture 2 Binomial and Poisson Probability Distributions Binomial Probability Distribution Lecture 2 Binomial and Poisson Probability Distributions Consider a situation where there are only two possible outcomes (a Bernoulli trial) Example: flipping a coin James

More information

Random Variables. Definition: A random variable (r.v.) X on the probability space (Ω, F, P) is a mapping

Random Variables. Definition: A random variable (r.v.) X on the probability space (Ω, F, P) is a mapping Random Variables Example: We roll a fair die 6 times. Suppose we are interested in the number of 5 s in the 6 rolls. Let X = number of 5 s. Then X could be 0, 1, 2, 3, 4, 5, 6. X = 0 corresponds to the

More information

Lecture 2: Discrete Probability Distributions

Lecture 2: Discrete Probability Distributions Lecture 2: Discrete Probability Distributions IB Paper 7: Probability and Statistics Carl Edward Rasmussen Department of Engineering, University of Cambridge February 1st, 2011 Rasmussen (CUED) Lecture

More information

Discrete Random Variables

Discrete Random Variables Discrete Random Variables An Undergraduate Introduction to Financial Mathematics J. Robert Buchanan Introduction The markets can be thought of as a complex interaction of a large number of random processes,

More information

Discrete Distributions

Discrete Distributions Discrete Distributions STA 281 Fall 2011 1 Introduction Previously we defined a random variable to be an experiment with numerical outcomes. Often different random variables are related in that they have

More information

2. In a clinical trial of certain new treatment, we may be interested in the proportion of patients cured.

2. In a clinical trial of certain new treatment, we may be interested in the proportion of patients cured. Discrete probability distributions January 21, 2013 Debdeep Pati Random Variables 1. Events are not very convenient to use. 2. In a clinical trial of certain new treatment, we may be interested in the

More information

Chapter 3 Probability Distribution

Chapter 3 Probability Distribution Chapter 3 Probability Distribution Probability Distributions A probability function is a function which assigns probabilities to the values of a random variable. Individual probability values may be denoted

More information

Bernoulli Trials and Binomial Distribution

Bernoulli Trials and Binomial Distribution Bernoulli Trials and Binomial Distribution Sec 4.4-4.5 Cathy Poliak, Ph.D. cathy@math.uh.edu Office in Fleming 11c Department of Mathematics University of Houston Lecture 10-3339 Cathy Poliak, Ph.D. cathy@math.uh.edu

More information

Conditional Probability

Conditional Probability Conditional Probability Idea have performed a chance experiment but don t know the outcome (ω), but have some partial information (event A) about ω. Question: given this partial information what s the

More information

DISCRETE VARIABLE PROBLEMS ONLY

DISCRETE VARIABLE PROBLEMS ONLY DISCRETE VARIABLE PROBLEMS ONLY. A biased die with four faces is used in a game. A player pays 0 counters to roll the die. The table below shows the possible scores on the die, the probability of each

More information

Chapter 3 Discrete Random Variables

Chapter 3 Discrete Random Variables MICHIGAN STATE UNIVERSITY STT 351 SECTION 2 FALL 2008 LECTURE NOTES Chapter 3 Discrete Random Variables Nao Mimoto Contents 1 Random Variables 2 2 Probability Distributions for Discrete Variables 3 3 Expected

More information

p. 4-1 Random Variables

p. 4-1 Random Variables Random Variables A Motivating Example Experiment: Sample k students without replacement from the population of all n students (labeled as 1, 2,, n, respectively) in our class. = {all combinations} = {{i

More information

Lecture 1: Probability Fundamentals

Lecture 1: Probability Fundamentals Lecture 1: Probability Fundamentals IB Paper 7: Probability and Statistics Carl Edward Rasmussen Department of Engineering, University of Cambridge January 22nd, 2008 Rasmussen (CUED) Lecture 1: Probability

More information

Lecture 4: Random Variables and Distributions

Lecture 4: Random Variables and Distributions Lecture 4: Random Variables and Distributions Goals Random Variables Overview of discrete and continuous distributions important in genetics/genomics Working with distributions in R Random Variables A

More information

Discrete Probability Distributions

Discrete Probability Distributions Discrete Probability Distributions EGR 260 R. Van Til Industrial & Systems Engineering Dept. Copyright 2013. Robert P. Van Til. All rights reserved. 1 What s It All About? The behavior of many random processes

More information

Chapter 3. Discrete Random Variables and Their Probability Distributions

Chapter 3. Discrete Random Variables and Their Probability Distributions Chapter 3. Discrete Random Variables and Their Probability Distributions 2.11 Definition of random variable 3.1 Definition of a discrete random variable 3.2 Probability distribution of a discrete random

More information

37.3. The Poisson Distribution. Introduction. Prerequisites. Learning Outcomes

37.3. The Poisson Distribution. Introduction. Prerequisites. Learning Outcomes The Poisson Distribution 37.3 Introduction In this Section we introduce a probability model which can be used when the outcome of an experiment is a random variable taking on positive integer values and

More information

Statistical Methods in Particle Physics

Statistical Methods in Particle Physics Statistical Methods in Particle Physics Lecture 3 October 29, 2012 Silvia Masciocchi, GSI Darmstadt s.masciocchi@gsi.de Winter Semester 2012 / 13 Outline Reminder: Probability density function Cumulative

More information

Expectations. Definition Let X be a discrete rv with set of possible values D and pmf p(x). The expected value or mean value of X, denoted by E(X ) or

Expectations. Definition Let X be a discrete rv with set of possible values D and pmf p(x). The expected value or mean value of X, denoted by E(X ) or Expectations Expectations Definition Let X be a discrete rv with set of possible values D and pmf p(x). The expected value or mean value of X, denoted by E(X ) or µ X, is E(X ) = µ X = x D x p(x) Expectations

More information

Guidelines for Solving Probability Problems

Guidelines for Solving Probability Problems Guidelines for Solving Probability Problems CS 1538: Introduction to Simulation 1 Steps for Problem Solving Suggested steps for approaching a problem: 1. Identify the distribution What distribution does

More information

Notes slides from before lecture. CSE 21, Winter 2017, Section A00. Lecture 16 Notes. Class URL:

Notes slides from before lecture. CSE 21, Winter 2017, Section A00. Lecture 16 Notes. Class URL: Notes slides from before lecture CSE 21, Winter 2017, Section A00 Lecture 16 Notes Class URL: http://vlsicad.ucsd.edu/courses/cse21-w17/ Notes slides from before lecture Notes March 8 (1) This week: Days

More information

STAT509: Discrete Random Variable

STAT509: Discrete Random Variable University of South Carolina September 16, 2014 Motivation So far, we have already known how to calculate probabilities of events. Suppose we toss a fair coin three times, we know that the probability

More information

University of Jordan Fall 2009/2010 Department of Mathematics

University of Jordan Fall 2009/2010 Department of Mathematics handouts Part 1 (Chapter 1 - Chapter 5) University of Jordan Fall 009/010 Department of Mathematics Chapter 1 Introduction to Introduction; Some Basic Concepts Statistics is a science related to making

More information

Some Special Discrete Distributions

Some Special Discrete Distributions Mathematics Department De La Salle University Manila February 6, 2017 Some Discrete Distributions Often, the observations generated by different statistical experiments have the same general type of behaviour.

More information

Statistical Experiment A statistical experiment is any process by which measurements are obtained.

Statistical Experiment A statistical experiment is any process by which measurements are obtained. (التوزيعات الا حتمالية ( Distributions Probability Statistical Experiment A statistical experiment is any process by which measurements are obtained. Examples of Statistical Experiments Counting the number

More information

Exercise 1. Exercise 2. Lesson 2 Theoretical Foundations Probabilities Solutions You ip a coin three times.

Exercise 1. Exercise 2. Lesson 2 Theoretical Foundations Probabilities Solutions You ip a coin three times. Lesson 2 Theoretical Foundations Probabilities Solutions monia.ranalli@uniroma3.it Exercise 1 You ip a coin three times. 1. Use a tree diagram to show the possible outcome patterns. How many outcomes are

More information

Statistics and Sampling distributions

Statistics and Sampling distributions Statistics and Sampling distributions a statistic is a numerical summary of sample data. It is a rv. The distribution of a statistic is called its sampling distribution. The rv s X 1, X 2,, X n are said

More information

Scientific Measurement

Scientific Measurement Scientific Measurement SPA-4103 Dr Alston J Misquitta Lecture 5 - The Binomial Probability Distribution Binomial Distribution Probability of k successes in n trials. Gaussian/Normal Distribution Poisson

More information

Dept. of Linguistics, Indiana University Fall 2015

Dept. of Linguistics, Indiana University Fall 2015 L645 Dept. of Linguistics, Indiana University Fall 2015 1 / 34 To start out the course, we need to know something about statistics and This is only an introduction; for a fuller understanding, you would

More information

MATH 10 INTRODUCTORY STATISTICS

MATH 10 INTRODUCTORY STATISTICS MATH 10 INTRODUCTORY STATISTICS Ramesh Yapalparvi Week 2 Chapter 4 Bivariate Data Data with two/paired variables, Pearson correlation coefficient and its properties, general variance sum law Chapter 6

More information

1 Bernoulli Distribution: Single Coin Flip

1 Bernoulli Distribution: Single Coin Flip STAT 350 - An Introduction to Statistics Named Discrete Distributions Jeremy Troisi Bernoulli Distribution: Single Coin Flip trial of an experiment that yields either a success or failure. X Bern(p),X

More information

CMPSCI 240: Reasoning Under Uncertainty

CMPSCI 240: Reasoning Under Uncertainty CMPSCI 240: Reasoning Under Uncertainty Lecture 5 Prof. Hanna Wallach wallach@cs.umass.edu February 7, 2012 Reminders Pick up a copy of B&T Check the course website: http://www.cs.umass.edu/ ~wallach/courses/s12/cmpsci240/

More information

(Ch 3.4.1, 3.4.2, 4.1, 4.2, 4.3)

(Ch 3.4.1, 3.4.2, 4.1, 4.2, 4.3) 3 Probability Distributions (Ch 3.4.1, 3.4.2, 4.1, 4.2, 4.3) Probability Distribution Functions Probability distribution function (pdf): Function for mapping random variables to real numbers. Discrete

More information

Lecture 08: Poisson and More. Lisa Yan July 13, 2018

Lecture 08: Poisson and More. Lisa Yan July 13, 2018 Lecture 08: Poisson and More Lisa Yan July 13, 2018 Announcements PS1: Grades out later today Solutions out after class today PS2 due today PS3 out today (due next Friday 7/20) 2 Midterm announcement Tuesday,

More information

Lecture 2. Binomial and Poisson Probability Distributions

Lecture 2. Binomial and Poisson Probability Distributions Durkin, Lecture 2, Page of 6 Lecture 2 Binomial and Poisson Probability Distributions ) Bernoulli Distribution or Binomial Distribution: Consider a situation where there are only two possible outcomes

More information

Probability Theory. Introduction to Probability Theory. Principles of Counting Examples. Principles of Counting. Probability spaces.

Probability Theory. Introduction to Probability Theory. Principles of Counting Examples. Principles of Counting. Probability spaces. Probability Theory To start out the course, we need to know something about statistics and probability Introduction to Probability Theory L645 Advanced NLP Autumn 2009 This is only an introduction; for

More information

Random variables. Lecture 5 - Discrete Distributions. Discrete Probability distributions. Example - Discrete probability model

Random variables. Lecture 5 - Discrete Distributions. Discrete Probability distributions. Example - Discrete probability model Random Variables Random variables Lecture 5 - Discrete Distributions Sta02 / BME02 Colin Rundel Setember 8, 204 A random variable is a numeric uantity whose value deends on the outcome of a random event

More information

Discrete Random Variables

Discrete Random Variables Discrete Random Variables An Undergraduate Introduction to Financial Mathematics J. Robert Buchanan 2014 Introduction The markets can be thought of as a complex interaction of a large number of random

More information

Bernoulli Trials and Binomial Distribution

Bernoulli Trials and Binomial Distribution Bernoulli Trials and Binomial Distribution Sec 4.4-4.5 Cathy Poliak, Ph.D. cathy@math.uh.edu Office in Fleming 11c Department of Mathematics University of Houston Lecture 9-3339 Cathy Poliak, Ph.D. cathy@math.uh.edu

More information

STAT/SOC/CSSS 221 Statistical Concepts and Methods for the Social Sciences. Random Variables

STAT/SOC/CSSS 221 Statistical Concepts and Methods for the Social Sciences. Random Variables STAT/SOC/CSSS 221 Statistical Concepts and Methods for the Social Sciences Random Variables Christopher Adolph Department of Political Science and Center for Statistics and the Social Sciences University

More information

More discrete distributions

More discrete distributions Will Monroe July 14, 217 with materials by Mehran Sahami and Chris Piech More discrete distributions Announcements: Problem Set 3 Posted yesterday on the course website. Due next Wednesday, 7/19, at 12:3pm

More information

Example 1. The sample space of an experiment where we flip a pair of coins is denoted by:

Example 1. The sample space of an experiment where we flip a pair of coins is denoted by: Chapter 8 Probability 8. Preliminaries Definition (Sample Space). A Sample Space, Ω, is the set of all possible outcomes of an experiment. Such a sample space is considered discrete if Ω has finite cardinality.

More information

Probability and Sample space

Probability and Sample space Probability and Sample space We call a phenomenon random if individual outcomes are uncertain but there is a regular distribution of outcomes in a large number of repetitions. The probability of any outcome

More information

Single Maths B: Introduction to Probability

Single Maths B: Introduction to Probability Single Maths B: Introduction to Probability Overview Lecturer Email Office Homework Webpage Dr Jonathan Cumming j.a.cumming@durham.ac.uk CM233 None! http://maths.dur.ac.uk/stats/people/jac/singleb/ 1 Introduction

More information

The probability of an event is viewed as a numerical measure of the chance that the event will occur.

The probability of an event is viewed as a numerical measure of the chance that the event will occur. Chapter 5 This chapter introduces probability to quantify randomness. Section 5.1: How Can Probability Quantify Randomness? The probability of an event is viewed as a numerical measure of the chance that

More information

Find the value of n in order for the player to get an expected return of 9 counters per roll.

Find the value of n in order for the player to get an expected return of 9 counters per roll. . A biased die with four faces is used in a game. A player pays 0 counters to roll the die. The table below shows the possible scores on the die, the probability of each score and the number of counters

More information

ELEG 3143 Probability & Stochastic Process Ch. 2 Discrete Random Variables

ELEG 3143 Probability & Stochastic Process Ch. 2 Discrete Random Variables Department of Electrical Engineering University of Arkansas ELEG 3143 Probability & Stochastic Process Ch. 2 Discrete Random Variables Dr. Jingxian Wu wuj@uark.edu OUTLINE 2 Random Variable Discrete Random

More information

Analysis of Engineering and Scientific Data. Semester

Analysis of Engineering and Scientific Data. Semester Analysis of Engineering and Scientific Data Semester 1 2019 Sabrina Streipert s.streipert@uq.edu.au Example: Draw a random number from the interval of real numbers [1, 3]. Let X represent the number. Each

More information

Random Variable And Probability Distribution. Is defined as a real valued function defined on the sample space S. We denote it as X, Y, Z,

Random Variable And Probability Distribution. Is defined as a real valued function defined on the sample space S. We denote it as X, Y, Z, Random Variable And Probability Distribution Introduction Random Variable ( r.v. ) Is defined as a real valued function defined on the sample space S. We denote it as X, Y, Z, T, and denote the assumed

More information

Discrete probability distributions

Discrete probability distributions Discrete probability s BSAD 30 Dave Novak Fall 08 Source: Anderson et al., 05 Quantitative Methods for Business th edition some slides are directly from J. Loucks 03 Cengage Learning Covered so far Chapter

More information

Relationship between probability set function and random variable - 2 -

Relationship between probability set function and random variable - 2 - 2.0 Random Variables A rat is selected at random from a cage and its sex is determined. The set of possible outcomes is female and male. Thus outcome space is S = {female, male} = {F, M}. If we let X be

More information

Lecture 8 : The Geometric Distribution

Lecture 8 : The Geometric Distribution 0/ 24 The geometric distribution is a special case of negative binomial, it is the case r = 1. It is so important we give it special treatment. Motivating example Suppose a couple decides to have children

More information

Statistics for Economists Lectures 6 & 7. Asrat Temesgen Stockholm University

Statistics for Economists Lectures 6 & 7. Asrat Temesgen Stockholm University Statistics for Economists Lectures 6 & 7 Asrat Temesgen Stockholm University 1 Chapter 4- Bivariate Distributions 41 Distributions of two random variables Definition 41-1: Let X and Y be two random variables

More information

Binomial random variable

Binomial random variable Binomial random variable Toss a coin with prob p of Heads n times X: # Heads in n tosses X is a Binomial random variable with parameter n,p. X is Bin(n, p) An X that counts the number of successes in many

More information

CSC Discrete Math I, Spring Discrete Probability

CSC Discrete Math I, Spring Discrete Probability CSC 125 - Discrete Math I, Spring 2017 Discrete Probability Probability of an Event Pierre-Simon Laplace s classical theory of probability: Definition of terms: An experiment is a procedure that yields

More information

Advanced Herd Management Probabilities and distributions

Advanced Herd Management Probabilities and distributions Advanced Herd Management Probabilities and distributions Anders Ringgaard Kristensen Slide 1 Outline Probabilities Conditional probabilities Bayes theorem Distributions Discrete Continuous Distribution

More information

Fundamental Tools - Probability Theory II

Fundamental Tools - Probability Theory II Fundamental Tools - Probability Theory II MSc Financial Mathematics The University of Warwick September 29, 2015 MSc Financial Mathematics Fundamental Tools - Probability Theory II 1 / 22 Measurable random

More information

Bernoulli and Binomial

Bernoulli and Binomial Bernoulli and Binomial Will Monroe July 1, 217 image: Antoine Taveneaux with materials by Mehran Sahami and Chris Piech Announcements: Problem Set 2 Due this Wednesday, 7/12, at 12:3pm (before class).

More information

Chapter 8. Some Approximations to Probability Distributions: Limit Theorems

Chapter 8. Some Approximations to Probability Distributions: Limit Theorems Chapter 8. Some Approximations to Probability Distributions: Limit Theorems Sections 8.2 -- 8.3: Convergence in Probability and in Distribution Jiaping Wang Department of Mathematical Science 04/22/2013,

More information

An-Najah National University Faculty of Engineering Industrial Engineering Department. Course : Quantitative Methods (65211)

An-Najah National University Faculty of Engineering Industrial Engineering Department. Course : Quantitative Methods (65211) An-Najah National University Faculty of Engineering Industrial Engineering Department Course : Quantitative Methods (65211) Instructor: Eng. Tamer Haddad 2 nd Semester 2009/2010 Chapter 3 Discrete Random

More information

EDEXCEL S2 PAPERS MARK SCHEMES AVAILABLE AT:

EDEXCEL S2 PAPERS MARK SCHEMES AVAILABLE AT: EDEXCEL S2 PAPERS 2009-2007. MARK SCHEMES AVAILABLE AT: http://www.physicsandmathstutor.com/a-level-maths-papers/s2-edexcel/ JUNE 2009 1. A bag contains a large number of counters of which 15% are coloured

More information

14 - PROBABILITY Page 1 ( Answers at the end of all questions )

14 - PROBABILITY Page 1 ( Answers at the end of all questions ) - PROBABILITY Page ( ) Three houses are available in a locality. Three persons apply for the houses. Each applies for one house without consulting others. The probability that all the three apply for the

More information

Chapter 2: The Random Variable

Chapter 2: The Random Variable Chapter : The Random Variable The outcome of a random eperiment need not be a number, for eample tossing a coin or selecting a color ball from a bo. However we are usually interested not in the outcome

More information

MgtOp 215 Chapter 5 Dr. Ahn

MgtOp 215 Chapter 5 Dr. Ahn MgtOp 215 Chapter 5 Dr. Ahn Random variable: a variable that assumes its values corresponding to a various outcomes of a random experiment, therefore its value cannot be predicted with certainty. Discrete

More information

3.4. The Binomial Probability Distribution

3.4. The Binomial Probability Distribution 3.4. The Binomial Probability Distribution Objectives. Binomial experiment. Binomial random variable. Using binomial tables. Mean and variance of binomial distribution. 3.4.1. Four Conditions that determined

More information

Discrete Random Variable Practice

Discrete Random Variable Practice IB Math High Level Year Discrete Probability Distributions - MarkScheme Discrete Random Variable Practice. A biased die with four faces is used in a game. A player pays 0 counters to roll the die. The

More information

Suppose that you have three coins. Coin A is fair, coin B shows heads with probability 0.6 and coin C shows heads with probability 0.8.

Suppose that you have three coins. Coin A is fair, coin B shows heads with probability 0.6 and coin C shows heads with probability 0.8. Suppose that you have three coins. Coin A is fair, coin B shows heads with probability 0.6 and coin C shows heads with probability 0.8. Coin A is flipped until a head appears, then coin B is flipped until

More information

(Ch 3.4.1, 3.4.2, 4.1, 4.2, 4.3)

(Ch 3.4.1, 3.4.2, 4.1, 4.2, 4.3) 3 Probability Distributions (Ch 3.4.1, 3.4.2, 4.1, 4.2, 4.3) Probability Distribution Functions Probability distribution function (pdf): Function for mapping random variables to real numbers. Discrete

More information

STA 4321/5325 Solution to Extra Homework 1 February 8, 2017

STA 4321/5325 Solution to Extra Homework 1 February 8, 2017 STA 431/535 Solution to Etra Homework 1 February 8, 017 1. Show that for any RV X, V (X 0. (You can assume X to be discrete, but this result holds in general. Hence or otherwise show that E(X E (X. Solution.

More information

Chapter Summary. 7.1 Discrete Probability 7.2 Probability Theory 7.3 Bayes Theorem 7.4 Expected value and Variance

Chapter Summary. 7.1 Discrete Probability 7.2 Probability Theory 7.3 Bayes Theorem 7.4 Expected value and Variance Chapter 7 Chapter Summary 7.1 Discrete Probability 7.2 Probability Theory 7.3 Bayes Theorem 7.4 Expected value and Variance Section 7.1 Introduction Probability theory dates back to 1526 when the Italian

More information

2.6 Tools for Counting sample points

2.6 Tools for Counting sample points 2.6 Tools for Counting sample points When the number of simple events in S is too large, manual enumeration of every sample point in S is tedious or even impossible. (Example) If S contains N equiprobable

More information

Statistics for Economists. Lectures 3 & 4

Statistics for Economists. Lectures 3 & 4 Statistics for Economists Lectures 3 & 4 Asrat Temesgen Stockholm University 1 CHAPTER 2- Discrete Distributions 2.1. Random variables of the Discrete Type Definition 2.1.1: Given a random experiment with

More information

Bayes Theorem and Hypergeometric Distribution

Bayes Theorem and Hypergeometric Distribution Bayes Theorem Bayes Theorem is a theorem of probability theory that can be seen as a way of understanding how the probability that a theory is true is affected by a new piece of evidence. It has been used

More information

Tom Salisbury

Tom Salisbury MATH 2030 3.00MW Elementary Probability Course Notes Part V: Independence of Random Variables, Law of Large Numbers, Central Limit Theorem, Poisson distribution Geometric & Exponential distributions Tom

More information

Conditional Probabilities

Conditional Probabilities Lecture Outline BIOST 514/517 Biostatistics I / pplied Biostatistics I Kathleen Kerr, Ph.D. ssociate Professor of Biostatistics University of Washington Probability Diagnostic Testing Random variables:

More information

Topic 4 Probability. Terminology. Sample Space and Event

Topic 4 Probability. Terminology. Sample Space and Event Topic 4 Probability The Sample Space is the collection of all possible outcomes Experimental outcome An outcome from a sample space with one characteristic Event May involve two or more outcomes simultaneously

More information

Brief Review of Probability

Brief Review of Probability Maura Department of Economics and Finance Università Tor Vergata Outline 1 Distribution Functions Quantiles and Modes of a Distribution 2 Example 3 Example 4 Distributions Outline Distribution Functions

More information

EXAM. Exam #1. Math 3342 Summer II, July 21, 2000 ANSWERS

EXAM. Exam #1. Math 3342 Summer II, July 21, 2000 ANSWERS EXAM Exam # Math 3342 Summer II, 2 July 2, 2 ANSWERS i pts. Problem. Consider the following data: 7, 8, 9, 2,, 7, 2, 3. Find the first quartile, the median, and the third quartile. Make a box and whisker

More information