Scientific Measurement

Size: px
Start display at page:

Download "Scientific Measurement"

Transcription

1 Scientific Measurement SPA-4103 Dr Alston J Misquitta Lecture 5 - The Binomial Probability Distribution

2 Binomial Distribution Probability of k successes in n trials. Gaussian/Normal Distribution Poisson Distribution Probability of k events in an interval 2

3 Binomial Distribution Probability of k successes in n trials. Probability of k heads in n tosses with probability p of a head in a single toss. 3

4 l Consider 6 tosses of a coin (equivalent to single toss of 6 coins) l How often does this result in 6 heads (6h)? l P(6h) = (½) 6 = 1/64 = 1.6% l Repeat this experiment 100 times: we expect 6h to happen 1 or 2 times (maybe 0 or 3 times) l What is probability of 1 head & 5 tails i.e. P(1h)? (½) 1 x (½) 5? NO! This is P(httttt) what about P(thtttt) etc? P(1h) = 6(½) 1 x (½) 5 allows h on any of the 6 tosses P(1h) = 6/64 = 9.4% Quite likely to occur in 100 identical experiments 4

5 Binomial Distribution l What about P(4h)? P(4h) = (½) 4 x (½) 2 x N N = Number of combinations of getting 4 out of 6 No. of h N h h h h t t h h h t h t h h t h h t... h h h t t t h h t h t t h t h h t t... 4 h is like 2 h etc... Number of combinations of k from n 5

6 Binomial Distribution Number of ways of picking 4 heads from 6 tosses is: Here we took P(h) = P(t) = ½ i.e. P(success) = P(fail) What if P(success) P(fail)? If p = P(success) Binomial Distribution 6

7 Binomial Distribution Probability of k successes in n trials. Probability of k heads in n tosses with probability p of a head in a single toss. 7

8 Sir Francis Galton 8

9 Museum of Science, Boston 9

10 Binomial Distribution Probability of k successes in n trials. This is a discrete distribution. It describes distributions of true/false outcomes. The average value of k in n measurements (tosses of a coin; 1 for heads and 0 for tails) is: And standard deviation is 10

11 Binomial Distribution l In general p 0.5 e.g. Probability England winning next match. l Binomial statistics used for true/false type experiments l Example: opinion polls Ask a sample of people a question. Allow only yes/no answers Would you prefer to see the re-introduction of the death penalty to the UK? Poll 1000 randomly selected people n = 1000 Yes = 500 No (or Don't know ) = 500 Thus p = 500/1000 = 0.5 (50%!) What is the uncertainty? 11

12 Binomial Distribution l To reduce this error by factor of three to 1% we need to work very hard Need to increase n by factor of 10 for a factor 10 reduction in error! 12

13 Binomial Distribution Probability of k successes in n trials. Gaussian/Normal Distribution Poisson Distribution Probability of k events in an interval 13

14 Binomial Distribution Binomial distribution for various n values with p=0.4 Note the distribution is discrete - lines between points are to guide the eye f(k;n,p) f(k;n,p) is asymmetric around the peak Asymmetry reduces as n increases k 14

15 Binomial distribution to Gaussian/Normal distribution 15

16 Central Limit Theorem Why is the Gaussian Distribution so important? The Central Limit Theorem The mean of a large number of independent samples each of size n from the same probability distribution (not necessarily Gaussian) has approximately a Gaussian distribution centred on the population mean and variance which reduces as 1/n 16

17 Restatement of the Central Limit Theorem Form 2: If are independent random variables each drawn from the same distribution with expectation value and standard deviation, then the sample mean has an approximately normal distribution with expected value deviation when is sufficiently large. and standard True no matter what form the distribution of the random variables takes. How large n must be depends on the underlying distribution of. The random variables must be independent! Theorem can be generalised to the case where the random variables exhibit different distributions. 17

18 Illustration of the Central Limit Theorem See how the probablity distribution functions tend to the normal distribution as the number of dice throws increases. Here we have rolled n dice many times (till the distribution converges!) and have plotted the average of the values on the n dice. Wikipedia 18

19 Why is this relevant? many measurements table true length average Return to the measurement of our table Repeat this 100 times We will see a spread of measurements Spread arises from many small random effects Central Limit Theorem tells us that the spread will be Gaussian This explains why Gaussian errors appear everywhere! Dr Eram Rizvi Scientific Measurement - Lecture 6 19

20 The normal distribution arises no matter what the starting probabilities are! 5.5 Graphical illustration of the central limit theorem 165 p 1 = 1 / 6 p 2 = 1 / 6 p 3 = 1 / 6 p 4 = 1 / 6 p 5 = 1 / 6 p 6 = 1 / 6 Understanding Probability Henk Tijms (2ed, Cambridge) n=5 n=10 n=15 n=20 Fig Probability histogram for the unbiased die. 20

21 The normal distribution arises no matter what the starting probabilities are! 166 Probability and statistics Understanding Probability Henk Tijms (2ed, Cambridge) p 1 =0.2 p 2 =0.1 p 3 =0.0 p 4 =0.0 p 5 =0.3 p 6 =0.4 n=5 n=10 It takes more rolls of the biased die for a normal distribution to arise, but arise it does! n=15 n=20 Fig Probability histogram for a biased die. 21

22 Gaussian/Normal Distribution 22

23 Binomial Distribution Probability of k successes in n trials. Gaussian/Normal Distribution Poisson Distribution Probability of k events in an interval 23

24 Binomial distribution to Poisson distribution Discrete distribution k is a positive integer λ is the average number of events in an interval Describes probability of events in a period. (radioactive decay) Siméon Denis Poisson 24

25 1837 : Siméon-Denis Poisson ( ) published his Recherches sur la Probabilité des Jugements en Matière Criminelle et en Matière Civile : L. von Bortkiewicz explained the importance of the distribution in his book Das Gesetz der Kleinen Zahlen (The laws of small numbers). Example from book: Number of Prussian cavalry deaths attributed to fatal horse kicks in each of the years between 1875 and Here we have a large number of trials (cavalry men) and a small probability of success (a fatal horse kick). 25

26 Poisson Distribution Relevant for counting experiments Describes statistics of events occurring at a random but at a definite rate e.g. number of radioactive decays in 1 min interval number of births in UK per 24 hours Experiment: count number of radioactive decays in 1 min interval: k Assume 100% efficient detector - no error on k Repeat experiment get different k statistical fluctuation! n nuclei p prob of single decay in 1 min k decays measured in 1 min n ~ p ~ n p ~ finite As n and p 0 with np λ (const) then binomial dist gives Poisson dist. Probability of observing k counts if mean number of counts is λ λ = n x p = mean no. of counts k = observed no. of counts 26

27 Expectation value of a random variable X that is Poisson distributed: Therefore, to define a Poisson distribution all we need do is find the expectation value! 27

28 Important properties of the Poisson distribution In other words: measurement of k gives estimate of λ measurement of k gives estimate of σ i.e. the true mean is given by the mean of k and also k gives the true variance σ 2 Poisson dist. skewed for small λ More symmetric as λ increases One measurement gives λ and σ Thus error decreases as k increases but only as the square root! So to get an accurate radioactive decay count reading we need only one measurement, but it needs to be a very long one! 28

29 Binomial Distribution Probability of k successes in n trials. Gaussian/Normal Distribution Poisson Distribution Probability of k events in an interval 29

Error analysis in biology

Error analysis in biology Error analysis in biology Marek Gierliński Division of Computational Biology Hand-outs available at http://is.gd/statlec Errors, like straws, upon the surface flow; He who would search for pearls must

More information

Lecture 2 Binomial and Poisson Probability Distributions

Lecture 2 Binomial and Poisson Probability Distributions Binomial Probability Distribution Lecture 2 Binomial and Poisson Probability Distributions Consider a situation where there are only two possible outcomes (a Bernoulli trial) Example: flipping a coin James

More information

STT 315 Problem Set #3

STT 315 Problem Set #3 1. A student is asked to calculate the probability that x = 3.5 when x is chosen from a normal distribution with the following parameters: mean=3, sd=5. To calculate the answer, he uses this command: >

More information

Chapter 4: An Introduction to Probability and Statistics

Chapter 4: An Introduction to Probability and Statistics Chapter 4: An Introduction to Probability and Statistics 4. Probability The simplest kinds of probabilities to understand are reflected in everyday ideas like these: (i) if you toss a coin, the probability

More information

Random Variable. Discrete Random Variable. Continuous Random Variable. Discrete Random Variable. Discrete Probability Distribution

Random Variable. Discrete Random Variable. Continuous Random Variable. Discrete Random Variable. Discrete Probability Distribution Random Variable Theoretical Probability Distribution Random Variable Discrete Probability Distributions A variable that assumes a numerical description for the outcome of a random eperiment (by chance).

More information

CS 361: Probability & Statistics

CS 361: Probability & Statistics February 26, 2018 CS 361: Probability & Statistics Random variables The discrete uniform distribution If every value of a discrete random variable has the same probability, then its distribution is called

More information

Lecture 2. Binomial and Poisson Probability Distributions

Lecture 2. Binomial and Poisson Probability Distributions Durkin, Lecture 2, Page of 6 Lecture 2 Binomial and Poisson Probability Distributions ) Bernoulli Distribution or Binomial Distribution: Consider a situation where there are only two possible outcomes

More information

14 - PROBABILITY Page 1 ( Answers at the end of all questions )

14 - PROBABILITY Page 1 ( Answers at the end of all questions ) - PROBABILITY Page ( ) Three houses are available in a locality. Three persons apply for the houses. Each applies for one house without consulting others. The probability that all the three apply for the

More information

Week 4: Chap. 3 Statistics of Radioactivity

Week 4: Chap. 3 Statistics of Radioactivity Week 4: Chap. 3 Statistics of Radioactivity Vacuum Technology General use of Statistical Distributions in Radiation Measurements -- Fluctuations in Number --- distribution function models -- Fluctuations

More information

Sections 5.1 and 5.2

Sections 5.1 and 5.2 Sections 5.1 and 5.2 Shiwen Shen Department of Statistics University of South Carolina Elementary Statistics for the Biological and Life Sciences (STAT 205) 1 / 19 Sampling variability A random sample

More information

Binomial and Poisson Probability Distributions

Binomial and Poisson Probability Distributions Binomial and Poisson Probability Distributions Esra Akdeniz March 3, 2016 Bernoulli Random Variable Any random variable whose only possible values are 0 or 1 is called a Bernoulli random variable. What

More information

Probability Theory and Simulation Methods. April 6th, Lecture 19: Special distributions

Probability Theory and Simulation Methods. April 6th, Lecture 19: Special distributions April 6th, 2018 Lecture 19: Special distributions Week 1 Chapter 1: Axioms of probability Week 2 Chapter 3: Conditional probability and independence Week 4 Chapters 4, 6: Random variables Week 9 Chapter

More information

Basic probability. Inferential statistics is based on probability theory (we do not have certainty, but only confidence).

Basic probability. Inferential statistics is based on probability theory (we do not have certainty, but only confidence). Basic probability Inferential statistics is based on probability theory (we do not have certainty, but only confidence). I Events: something that may or may not happen: A; P(A)= probability that A happens;

More information

success and failure independent from one trial to the next?

success and failure independent from one trial to the next? , section 8.4 The Binomial Distribution Notes by Tim Pilachowski Definition of Bernoulli trials which make up a binomial experiment: The number of trials in an experiment is fixed. There are exactly two

More information

Chapter 8: An Introduction to Probability and Statistics

Chapter 8: An Introduction to Probability and Statistics Course S3, 200 07 Chapter 8: An Introduction to Probability and Statistics This material is covered in the book: Erwin Kreyszig, Advanced Engineering Mathematics (9th edition) Chapter 24 (not including

More information

Lecture 1: Probability Fundamentals

Lecture 1: Probability Fundamentals Lecture 1: Probability Fundamentals IB Paper 7: Probability and Statistics Carl Edward Rasmussen Department of Engineering, University of Cambridge January 22nd, 2008 Rasmussen (CUED) Lecture 1: Probability

More information

2.3 Estimating PDFs and PDF Parameters

2.3 Estimating PDFs and PDF Parameters .3 Estimating PDFs and PDF Parameters estimating means - discrete and continuous estimating variance using a known mean estimating variance with an estimated mean estimating a discrete pdf estimating a

More information

n N CHAPTER 1 Atoms Thermodynamics Molecules Statistical Thermodynamics (S.T.)

n N CHAPTER 1 Atoms Thermodynamics Molecules Statistical Thermodynamics (S.T.) CHAPTER 1 Atoms Thermodynamics Molecules Statistical Thermodynamics (S.T.) S.T. is the key to understanding driving forces. e.g., determines if a process proceeds spontaneously. Let s start with entropy

More information

Special distributions

Special distributions Special distributions August 22, 2017 STAT 101 Class 4 Slide 1 Outline of Topics 1 Motivation 2 Bernoulli and binomial 3 Poisson 4 Uniform 5 Exponential 6 Normal STAT 101 Class 4 Slide 2 What distributions

More information

Probabilities and distributions

Probabilities and distributions Appendix B Probabilities and distributions B.1 Expectation value and variance Definition B.1. Suppose a (not necessarily quantum) experiment to measure a quantity Q can yield any one of N possible outcomes

More information

4. Discrete Probability Distributions. Introduction & Binomial Distribution

4. Discrete Probability Distributions. Introduction & Binomial Distribution 4. Discrete Probability Distributions Introduction & Binomial Distribution Aim & Objectives 1 Aims u Introduce discrete probability distributions v Binomial distribution v Poisson distribution 2 Objectives

More information

Probability Distributions

Probability Distributions The ASTRO509-3 dark energy puzzle Probability Distributions I have had my results for a long time: but I do not yet know how I am to arrive at them. Johann Carl Friedrich Gauss 1777-1855 ASTR509 Jasper

More information

Useful material for the course

Useful material for the course Useful material for the course Suggested textbooks: Mood A.M., Graybill F.A., Boes D.C., Introduction to the Theory of Statistics. McGraw-Hill, New York, 1974. [very complete] M.C. Whitlock, D. Schluter,

More information

UNIT NUMBER PROBABILITY 6 (Statistics for the binomial distribution) A.J.Hobson

UNIT NUMBER PROBABILITY 6 (Statistics for the binomial distribution) A.J.Hobson JUST THE MATHS UNIT NUMBER 19.6 PROBABILITY 6 (Statistics for the binomial distribution) by A.J.Hobson 19.6.1 Construction of histograms 19.6.2 Mean and standard deviation of a binomial distribution 19.6.3

More information

18440: Probability and Random variables Quiz 1 Friday, October 17th, 2014

18440: Probability and Random variables Quiz 1 Friday, October 17th, 2014 18440: Probability and Random variables Quiz 1 Friday, October 17th, 014 You will have 55 minutes to complete this test. Each of the problems is worth 5 % of your exam grade. No calculators, notes, or

More information

Lecture 10: Bayes' Theorem, Expected Value and Variance Lecturer: Lale Özkahya

Lecture 10: Bayes' Theorem, Expected Value and Variance Lecturer: Lale Özkahya BBM 205 Discrete Mathematics Hacettepe University http://web.cs.hacettepe.edu.tr/ bbm205 Lecture 10: Bayes' Theorem, Expected Value and Variance Lecturer: Lale Özkahya Resources: Kenneth Rosen, Discrete

More information

II. Probability. II.A General Definitions

II. Probability. II.A General Definitions II. Probability II.A General Definitions The laws of thermodynamics are based on observations of macroscopic bodies, and encapsulate their thermal properties. On the other hand, matter is composed of atoms

More information

Random Variables Example:

Random Variables Example: Random Variables Example: We roll a fair die 6 times. Suppose we are interested in the number of 5 s in the 6 rolls. Let X = number of 5 s. Then X could be 0, 1, 2, 3, 4, 5, 6. X = 0 corresponds to the

More information

ΔP(x) Δx. f "Discrete Variable x" (x) dp(x) dx. (x) f "Continuous Variable x" Module 3 Statistics. I. Basic Statistics. A. Statistics and Physics

ΔP(x) Δx. f Discrete Variable x (x) dp(x) dx. (x) f Continuous Variable x Module 3 Statistics. I. Basic Statistics. A. Statistics and Physics Module 3 Statistics I. Basic Statistics A. Statistics and Physics 1. Why Statistics Up to this point, your courses in physics and engineering have considered systems from a macroscopic point of view. For

More information

CSE 103 Homework 8: Solutions November 30, var(x) = np(1 p) = P r( X ) 0.95 P r( X ) 0.

CSE 103 Homework 8: Solutions November 30, var(x) = np(1 p) = P r( X ) 0.95 P r( X ) 0. () () a. X is a binomial distribution with n = 000, p = /6 b. The expected value, variance, and standard deviation of X is: E(X) = np = 000 = 000 6 var(x) = np( p) = 000 5 6 666 stdev(x) = np( p) = 000

More information

Econ 325: Introduction to Empirical Economics

Econ 325: Introduction to Empirical Economics Econ 325: Introduction to Empirical Economics Lecture 2 Probability Copyright 2010 Pearson Education, Inc. Publishing as Prentice Hall Ch. 3-1 3.1 Definition Random Experiment a process leading to an uncertain

More information

Chapter 7 Wednesday, May 26th

Chapter 7 Wednesday, May 26th Chapter 7 Wednesday, May 26 th Random event A random event is an event that the outcome is unpredictable. Example: There are 45 students in this class. What is the probability that if I select one student,

More information

CMPSCI 240: Reasoning Under Uncertainty

CMPSCI 240: Reasoning Under Uncertainty CMPSCI 240: Reasoning Under Uncertainty Lecture 5 Prof. Hanna Wallach wallach@cs.umass.edu February 7, 2012 Reminders Pick up a copy of B&T Check the course website: http://www.cs.umass.edu/ ~wallach/courses/s12/cmpsci240/

More information

University of California, Berkeley, Statistics 134: Concepts of Probability. Michael Lugo, Spring Exam 1

University of California, Berkeley, Statistics 134: Concepts of Probability. Michael Lugo, Spring Exam 1 University of California, Berkeley, Statistics 134: Concepts of Probability Michael Lugo, Spring 2011 Exam 1 February 16, 2011, 11:10 am - 12:00 noon Name: Solutions Student ID: This exam consists of seven

More information

Distribusi Binomial, Poisson, dan Hipergeometrik

Distribusi Binomial, Poisson, dan Hipergeometrik Distribusi Binomial, Poisson, dan Hipergeometrik CHAPTER TOPICS The Probability of a Discrete Random Variable Covariance and Its Applications in Finance Binomial Distribution Poisson Distribution Hypergeometric

More information

Statistics, Data Analysis, and Simulation SS 2017

Statistics, Data Analysis, and Simulation SS 2017 Statistics, Data Analysis, and Simulation SS 2017 08.128.730 Statistik, Datenanalyse und Simulation Dr. Michael O. Distler Mainz, 27. April 2017 Dr. Michael O. Distler

More information

Lecture 10: Probability distributions TUESDAY, FEBRUARY 19, 2019

Lecture 10: Probability distributions TUESDAY, FEBRUARY 19, 2019 Lecture 10: Probability distributions DANIEL WELLER TUESDAY, FEBRUARY 19, 2019 Agenda What is probability? (again) Describing probabilities (distributions) Understanding probabilities (expectation) Partial

More information

MATH 10 INTRODUCTORY STATISTICS

MATH 10 INTRODUCTORY STATISTICS MATH 10 INTRODUCTORY STATISTICS Ramesh Yapalparvi Week 2 Chapter 4 Bivariate Data Data with two/paired variables, Pearson correlation coefficient and its properties, general variance sum law Chapter 6

More information

CISC 1100/1400 Structures of Comp. Sci./Discrete Structures Chapter 7 Probability. Outline. Terminology and background. Arthur G.

CISC 1100/1400 Structures of Comp. Sci./Discrete Structures Chapter 7 Probability. Outline. Terminology and background. Arthur G. CISC 1100/1400 Structures of Comp. Sci./Discrete Structures Chapter 7 Probability Arthur G. Werschulz Fordham University Department of Computer and Information Sciences Copyright Arthur G. Werschulz, 2017.

More information

Probability Rules. MATH 130, Elements of Statistics I. J. Robert Buchanan. Fall Department of Mathematics

Probability Rules. MATH 130, Elements of Statistics I. J. Robert Buchanan. Fall Department of Mathematics Probability Rules MATH 130, Elements of Statistics I J. Robert Buchanan Department of Mathematics Fall 2018 Introduction Probability is a measure of the likelihood of the occurrence of a certain behavior

More information

Statistics, Data Analysis, and Simulation SS 2013

Statistics, Data Analysis, and Simulation SS 2013 Statistics, Data Analysis, and Simulation SS 213 8.128.73 Statistik, Datenanalyse und Simulation Dr. Michael O. Distler Mainz, 23. April 213 What we ve learned so far Fundamental

More information

Introduction to Probability, Fall 2013

Introduction to Probability, Fall 2013 Introduction to Probability, Fall 2013 Math 30530 Section 01 Homework 4 Solutions 1. Chapter 2, Problem 1 2. Chapter 2, Problem 2 3. Chapter 2, Problem 3 4. Chapter 2, Problem 5 5. Chapter 2, Problem 6

More information

Probability and Probability Distributions. Dr. Mohammed Alahmed

Probability and Probability Distributions. Dr. Mohammed Alahmed Probability and Probability Distributions 1 Probability and Probability Distributions Usually we want to do more with data than just describing them! We might want to test certain specific inferences about

More information

Chapter 7: Theoretical Probability Distributions Variable - Measured/Categorized characteristic

Chapter 7: Theoretical Probability Distributions Variable - Measured/Categorized characteristic BSTT523: Pagano & Gavreau, Chapter 7 1 Chapter 7: Theoretical Probability Distributions Variable - Measured/Categorized characteristic Random Variable (R.V.) X Assumes values (x) by chance Discrete R.V.

More information

Men. Women. Men. Men. Women. Women

Men. Women. Men. Men. Women. Women Math 203 Topics for second exam Statistics: the science of data Chapter 5: Producing data Statistics is all about drawing conclusions about the opinions/behavior/structure of large populations based on

More information

Lecture 14: Course Review. Physics 3719 Spring Semester 2011

Lecture 14: Course Review. Physics 3719 Spring Semester 2011 Lecture 14: Course Review Physics 3719 Spring Semester 2011 Lab 4 Experiments Gravitational Constant G Ramirez, Thomas (PM) Speed of Light C Richards, Topham (AM) Electron Charge-to-Mass Ratio e/m Jensen,

More information

Lecture notes for probability. Math 124

Lecture notes for probability. Math 124 Lecture notes for probability Math 124 What is probability? Probabilities are ratios, expressed as fractions, decimals, or percents, determined by considering results or outcomes of experiments whose result

More information

Engineering Mathematics III

Engineering Mathematics III The Binomial, Poisson, and Normal Distributions Probability distributions We use probability distributions because they work they fit lots of data in real world 100 80 60 40 20 Std. Dev = 14.76 Mean =

More information

STEP Support Programme. Statistics STEP Questions

STEP Support Programme. Statistics STEP Questions STEP Support Programme Statistics STEP Questions This is a selection of STEP I and STEP II questions. The specification is the same for both papers, with STEP II questions designed to be more difficult.

More information

Lecture 2: Probability and Distributions

Lecture 2: Probability and Distributions Lecture 2: Probability and Distributions Ani Manichaikul amanicha@jhsph.edu 17 April 2007 1 / 65 Probability: Why do we care? Probability helps us by: Allowing us to translate scientific questions info

More information

Statistics Random Variables

Statistics Random Variables 1 Statistics Statistics are used in a variety of ways in neuroscience. Perhaps the most familiar example is trying to decide whether some experimental results are reliable, using tests such as the t-test.

More information

P (A) = P (B) = P (C) = P (D) =

P (A) = P (B) = P (C) = P (D) = STAT 145 CHAPTER 12 - PROBABILITY - STUDENT VERSION The probability of a random event, is the proportion of times the event will occur in a large number of repititions. For example, when flipping a coin,

More information

Example 1. The sample space of an experiment where we flip a pair of coins is denoted by:

Example 1. The sample space of an experiment where we flip a pair of coins is denoted by: Chapter 8 Probability 8. Preliminaries Definition (Sample Space). A Sample Space, Ω, is the set of all possible outcomes of an experiment. Such a sample space is considered discrete if Ω has finite cardinality.

More information

functions Poisson distribution Normal distribution Arbitrary functions

functions Poisson distribution Normal distribution Arbitrary functions Physics 433: Computational Physics Lecture 6 Random number distributions Generation of random numbers of various distribuition functions Normal distribution Poisson distribution Arbitrary functions Random

More information

ECS /1 Part III.2 Dr.Prapun

ECS /1 Part III.2 Dr.Prapun Sirindhorn International Institute of Technology Thammasat University School of Information, Computer and Communication Technology ECS315 2011/1 Part III.2 Dr.Prapun 8.2 Families of Discrete Random Variables

More information

Name: Firas Rassoul-Agha

Name: Firas Rassoul-Agha Midterm 1 - Math 5010 - Spring 016 Name: Firas Rassoul-Agha Solve the following 4 problems. You have to clearly explain your solution. The answer carries no points. Only the work does. CALCULATORS ARE

More information

Lecture 5 : The Poisson Distribution

Lecture 5 : The Poisson Distribution Random events in time and space Lecture 5 : The Poisson Distribution Jonathan Marchini Many experimental situations occur in which we observe the counts of events within a set unit of time, area, volume,

More information

Department of Mathematics

Department of Mathematics Department of Mathematics Ma 3/103 KC Border Introduction to Probability and Statistics Winter 2017 Lecture 12: The Law of Small Numbers Relevant textbook passages: Pitman [11]: Sections 2.4,3.8, 4.2 Larsen

More information

Introduction to Probability. Experiments. Sample Space. Event. Basic Requirements for Assigning Probabilities. Experiments

Introduction to Probability. Experiments. Sample Space. Event. Basic Requirements for Assigning Probabilities. Experiments Introduction to Probability Experiments These are processes that generate welldefined outcomes Experiments Counting Rules Combinations Permutations Assigning Probabilities Experiment Experimental Outcomes

More information

Discrete Random Variable

Discrete Random Variable Discrete Random Variable Outcome of a random experiment need not to be a number. We are generally interested in some measurement or numerical attribute of the outcome, rather than the outcome itself. n

More information

CME 106: Review Probability theory

CME 106: Review Probability theory : Probability theory Sven Schmit April 3, 2015 1 Overview In the first half of the course, we covered topics from probability theory. The difference between statistics and probability theory is the following:

More information

Chapter 2: Discrete Distributions. 2.1 Random Variables of the Discrete Type

Chapter 2: Discrete Distributions. 2.1 Random Variables of the Discrete Type Chapter 2: Discrete Distributions 2.1 Random Variables of the Discrete Type 2.2 Mathematical Expectation 2.3 Special Mathematical Expectations 2.4 Binomial Distribution 2.5 Negative Binomial Distribution

More information

The Binomial, Poisson, and Normal Distributions. Engineering Mathematics III

The Binomial, Poisson, and Normal Distributions. Engineering Mathematics III The Binomial, Poisson, and Normal Distributions Probability distributions We use probability distributions because they work they fit lots of data in real world 8 6 4 Std. Dev = 4.76 Mean = 35.3 N = 73..

More information

Probability: Why do we care? Lecture 2: Probability and Distributions. Classical Definition. What is Probability?

Probability: Why do we care? Lecture 2: Probability and Distributions. Classical Definition. What is Probability? Probability: Why do we care? Lecture 2: Probability and Distributions Sandy Eckel seckel@jhsph.edu 22 April 2008 Probability helps us by: Allowing us to translate scientific questions into mathematical

More information

Introductory Probability

Introductory Probability Introductory Probability Bernoulli Trials and Binomial Probability Distributions Dr. Nguyen nicholas.nguyen@uky.edu Department of Mathematics UK February 04, 2019 Agenda Bernoulli Trials and Probability

More information

Probability and Statistics. Joyeeta Dutta-Moscato June 29, 2015

Probability and Statistics. Joyeeta Dutta-Moscato June 29, 2015 Probability and Statistics Joyeeta Dutta-Moscato June 29, 2015 Terms and concepts Sample vs population Central tendency: Mean, median, mode Variance, standard deviation Normal distribution Cumulative distribution

More information

Discrete Probability. Chemistry & Physics. Medicine

Discrete Probability. Chemistry & Physics. Medicine Discrete Probability The existence of gambling for many centuries is evidence of long-running interest in probability. But a good understanding of probability transcends mere gambling. The mathematics

More information

Chapter 2: The Random Variable

Chapter 2: The Random Variable Chapter : The Random Variable The outcome of a random eperiment need not be a number, for eample tossing a coin or selecting a color ball from a bo. However we are usually interested not in the outcome

More information

PHYS 6710: Nuclear and Particle Physics II

PHYS 6710: Nuclear and Particle Physics II Data Analysis Content (~7 Classes) Uncertainties and errors Random variables, expectation value, (co)variance Distributions and samples Binomial, Poisson, and Normal Distribution Student's t-distribution

More information

Math 493 Final Exam December 01

Math 493 Final Exam December 01 Math 493 Final Exam December 01 NAME: ID NUMBER: Return your blue book to my office or the Math Department office by Noon on Tuesday 11 th. On all parts after the first show enough work in your exam booklet

More information

REPEATED TRIALS. p(e 1 ) p(e 2 )... p(e k )

REPEATED TRIALS. p(e 1 ) p(e 2 )... p(e k ) REPEATED TRIALS We first note a basic fact about probability and counting. Suppose E 1 and E 2 are independent events. For example, you could think of E 1 as the event of tossing two dice and getting a

More information

Chapter 18 Sampling Distribution Models

Chapter 18 Sampling Distribution Models Chapter 18 Sampling Distribution Models The histogram above is a simulation of what we'd get if we could see all the proportions from all possible samples. The distribution has a special name. It's called

More information

ACCESS TO SCIENCE, ENGINEERING AND AGRICULTURE: MATHEMATICS 2 MATH00040 SEMESTER / Probability

ACCESS TO SCIENCE, ENGINEERING AND AGRICULTURE: MATHEMATICS 2 MATH00040 SEMESTER / Probability ACCESS TO SCIENCE, ENGINEERING AND AGRICULTURE: MATHEMATICS 2 MATH00040 SEMESTER 2 2017/2018 DR. ANTHONY BROWN 5.1. Introduction to Probability. 5. Probability You are probably familiar with the elementary

More information

Horse Kick Example: Chi-Squared Test for Goodness of Fit with Unknown Parameters

Horse Kick Example: Chi-Squared Test for Goodness of Fit with Unknown Parameters Math 3080 1. Treibergs Horse Kick Example: Chi-Squared Test for Goodness of Fit with Unknown Parameters Name: Example April 4, 014 This R c program explores a goodness of fit test where the parameter is

More information

Lecture 2. Distributions and Random Variables

Lecture 2. Distributions and Random Variables Lecture 2. Distributions and Random Variables Igor Rychlik Chalmers Department of Mathematical Sciences Probability, Statistics and Risk, MVE300 Chalmers March 2013. Click on red text for extra material.

More information

MAT Mathematics in Today's World

MAT Mathematics in Today's World MAT 1000 Mathematics in Today's World Last Time We discussed the four rules that govern probabilities: 1. Probabilities are numbers between 0 and 1 2. The probability an event does not occur is 1 minus

More information

Introduction to Probability. Ariel Yadin. Lecture 1. We begin with an example [this is known as Bertrand s paradox]. *** Nov.

Introduction to Probability. Ariel Yadin. Lecture 1. We begin with an example [this is known as Bertrand s paradox]. *** Nov. Introduction to Probability Ariel Yadin Lecture 1 1. Example: Bertrand s Paradox We begin with an example [this is known as Bertrand s paradox]. *** Nov. 1 *** Question 1.1. Consider a circle of radius

More information

Statistical Methods in Particle Physics

Statistical Methods in Particle Physics Statistical Methods in Particle Physics Lecture 3 October 29, 2012 Silvia Masciocchi, GSI Darmstadt s.masciocchi@gsi.de Winter Semester 2012 / 13 Outline Reminder: Probability density function Cumulative

More information

Fourier and Stats / Astro Stats and Measurement : Stats Notes

Fourier and Stats / Astro Stats and Measurement : Stats Notes Fourier and Stats / Astro Stats and Measurement : Stats Notes Andy Lawrence, University of Edinburgh Autumn 2013 1 Probabilities, distributions, and errors Laplace once said Probability theory is nothing

More information

Statistics, Probability Distributions & Error Propagation. James R. Graham

Statistics, Probability Distributions & Error Propagation. James R. Graham Statistics, Probability Distributions & Error Propagation James R. Graham Sample & Parent Populations Make measurements x x In general do not expect x = x But as you take more and more measurements a pattern

More information

4. Suppose that we roll two die and let X be equal to the maximum of the two rolls. Find P (X {1, 3, 5}) and draw the PMF for X.

4. Suppose that we roll two die and let X be equal to the maximum of the two rolls. Find P (X {1, 3, 5}) and draw the PMF for X. Math 10B with Professor Stankova Worksheet, Midterm #2; Wednesday, 3/21/2018 GSI name: Roy Zhao 1 Problems 1.1 Bayes Theorem 1. Suppose a test is 99% accurate and 1% of people have a disease. What is the

More information

MAT 271E Probability and Statistics

MAT 271E Probability and Statistics MAT 71E Probability and Statistics Spring 013 Instructor : Class Meets : Office Hours : Textbook : Supp. Text : İlker Bayram EEB 1103 ibayram@itu.edu.tr 13.30 1.30, Wednesday EEB 5303 10.00 1.00, Wednesday

More information

Essentials of Statistics and Probability

Essentials of Statistics and Probability May 22, 2007 Department of Statistics, NC State University dbsharma@ncsu.edu SAMSI Undergrad Workshop Overview Practical Statistical Thinking Introduction Data and Distributions Variables and Distributions

More information

Senior Math Circles November 19, 2008 Probability II

Senior Math Circles November 19, 2008 Probability II University of Waterloo Faculty of Mathematics Centre for Education in Mathematics and Computing Senior Math Circles November 9, 2008 Probability II Probability Counting There are many situations where

More information

Probability and Statistics. Terms and concepts

Probability and Statistics. Terms and concepts Probability and Statistics Joyeeta Dutta Moscato June 30, 2014 Terms and concepts Sample vs population Central tendency: Mean, median, mode Variance, standard deviation Normal distribution Cumulative distribution

More information

Summer School in Statistics for Astronomers & Physicists June 5-10, 2005

Summer School in Statistics for Astronomers & Physicists June 5-10, 2005 Summer School in Statistics for Astronomers & Physicists June 5-10, 2005 Session on Statistical Inference for Astronomers Poisson Processes and Gaussian Processes Donald Richards Department of Statistics

More information

MA 1125 Lecture 33 - The Sign Test. Monday, December 4, Objectives: Introduce an example of a non-parametric test.

MA 1125 Lecture 33 - The Sign Test. Monday, December 4, Objectives: Introduce an example of a non-parametric test. MA 1125 Lecture 33 - The Sign Test Monday, December 4, 2017 Objectives: Introduce an example of a non-parametric test. For the last topic of the semester we ll look at an example of a non-parametric test.

More information

X = X X n, + X 2

X = X X n, + X 2 CS 70 Discrete Mathematics for CS Fall 2003 Wagner Lecture 22 Variance Question: At each time step, I flip a fair coin. If it comes up Heads, I walk one step to the right; if it comes up Tails, I walk

More information

Probability - Lecture 4

Probability - Lecture 4 1 Introduction Probability - Lecture 4 Many methods of computation physics and the comparison of data to a mathematical representation, apply stochastic methods. These ideas were first introduced in the

More information

Lecture 7: Confidence interval and Normal approximation

Lecture 7: Confidence interval and Normal approximation Lecture 7: Confidence interval and Normal approximation 26th of November 2015 Confidence interval 26th of November 2015 1 / 23 Random sample and uncertainty Example: we aim at estimating the average height

More information

The random variable 1

The random variable 1 The random variable 1 Contents 1. Definition 2. Distribution and density function 3. Specific random variables 4. Functions of one random variable 5. Mean and variance 2 The random variable A random variable

More information

COMP6053 lecture: Sampling and the central limit theorem. Markus Brede,

COMP6053 lecture: Sampling and the central limit theorem. Markus Brede, COMP6053 lecture: Sampling and the central limit theorem Markus Brede, mb8@ecs.soton.ac.uk Populations: long-run distributions Two kinds of distributions: populations and samples. A population is the set

More information

Properties of Probability

Properties of Probability Econ 325 Notes on Probability 1 By Hiro Kasahara Properties of Probability In statistics, we consider random experiments, experiments for which the outcome is random, i.e., cannot be predicted with certainty.

More information

STAT2201. Analysis of Engineering & Scientific Data. Unit 3

STAT2201. Analysis of Engineering & Scientific Data. Unit 3 STAT2201 Analysis of Engineering & Scientific Data Unit 3 Slava Vaisman The University of Queensland School of Mathematics and Physics What we learned in Unit 2 (1) We defined a sample space of a random

More information

Introduction and Overview STAT 421, SP Course Instructor

Introduction and Overview STAT 421, SP Course Instructor Introduction and Overview STAT 421, SP 212 Prof. Prem K. Goel Mon, Wed, Fri 3:3PM 4:48PM Postle Hall 118 Course Instructor Prof. Goel, Prem E mail: goel.1@osu.edu Office: CH 24C (Cockins Hall) Phone: 614

More information

DEFINITION: IF AN OUTCOME OF A RANDOM EXPERIMENT IS CONVERTED TO A SINGLE (RANDOM) NUMBER (E.G. THE TOTAL

DEFINITION: IF AN OUTCOME OF A RANDOM EXPERIMENT IS CONVERTED TO A SINGLE (RANDOM) NUMBER (E.G. THE TOTAL CHAPTER 5: RANDOM VARIABLES, BINOMIAL AND POISSON DISTRIBUTIONS DEFINITION: IF AN OUTCOME OF A RANDOM EXPERIMENT IS CONVERTED TO A SINGLE (RANDOM) NUMBER (E.G. THE TOTAL NUMBER OF DOTS WHEN ROLLING TWO

More information

Probability Distributions - Lecture 5

Probability Distributions - Lecture 5 Probability Distributions - Lecture 5 1 Introduction There are a number of mathematical models of probability density functions that represent the behavior of physical systems. In this lecture we explore

More information

Introduction to Statistics and Error Analysis

Introduction to Statistics and Error Analysis Introduction to Statistics and Error Analysis Physics116C, 4/3/06 D. Pellett References: Data Reduction and Error Analysis for the Physical Sciences by Bevington and Robinson Particle Data Group notes

More information

Binomial random variable

Binomial random variable Binomial random variable Toss a coin with prob p of Heads n times X: # Heads in n tosses X is a Binomial random variable with parameter n,p. X is Bin(n, p) An X that counts the number of successes in many

More information

CS 361: Probability & Statistics

CS 361: Probability & Statistics February 12, 2018 CS 361: Probability & Statistics Random Variables Monty hall problem Recall the setup, there are 3 doors, behind two of them are indistinguishable goats, behind one is a car. You pick

More information