Statistics, Data Analysis, and Simulation SS 2017

Size: px
Start display at page:

Download "Statistics, Data Analysis, and Simulation SS 2017"

Transcription

1 Statistics, Data Analysis, and Simulation SS Statistik, Datenanalyse und Simulation Dr. Michael O. Distler Mainz, 27. April 2017 Dr. Michael O. Distler Statistics, Data Analysis, and Simulation SS / 55

2 What we ve learned so far Fundamental concepts random variable, probability frequentist vs. bayesian interpretation Dr. Michael O. Distler Statistics, Data Analysis, and Simulation SS / 55

3 1.2 Probability density function probability mass function (pmf) probability density function (pdf) of a measured value (=random variable) f(n) n f(x) f (n) discrete f (x) continuous Normalization: f (n) 0 f (n) = 1 f (x) 0 f (x) dx = 1 Probability: n p(n 1 n n 2 ) = n 2 x n 1 f (n) p(x 1 x x 2 ) = x2 x 1 f (x)dx Dr. Michael O. Distler <distler@uni-mainz.de> Statistics, Data Analysis, and Simulation SS / 55

4 Definitions Cumulative distribution function (CDF): F(x) = x f (x )dx, F( ) = 0, F( ) = 1 Example: Decay time t of a radioactive nucleus with mean life time τ: f (t) = 1 τ e t/τ F(t) = 1 e t/τ f(t)*12s F(t) t/s Dr. Michael O. Distler <distler@uni-mainz.de> Statistics, Data Analysis, and Simulation SS / 55

5 Expectation values and moments Mean: A random variable X takes on the values X 1, X 2,..., X n with probability p(x i ), then the expected value of X ( mean ) is X = X = n X i p(x i ) i=1 The expected value of an arbitrary function h(x) for a continuous random variable is: E[h(x)] = The mean ist the expected value of x: E[x] = x = h(x) f (x)dx x f (x)dx Dr. Michael O. Distler <distler@uni-mainz.de> Statistics, Data Analysis, and Simulation SS / 55

6 Expectation values and moments standard deviation = {mean (deviation from x) 2 } 1/2 σ 2 = (x x) 2 = = (x x) 2 f (x)dx (x 2 2x x + x 2 ) f (x)dx = x 2 2 x x + x 2 = x 2 x 2 σ 2 = Variance, σ = Standard deviation Discrete distributions: ( x 2 ( x) 2 ) σ 2 = 1 N N Attention: This is the definition of the variance! To get a bias free estimation of the variance, 1 1 N will be replaced by N 1. Dr. Michael O. Distler <distler@uni-mainz.de> Statistics, Data Analysis, and Simulation SS / 55

7 Expectation values and moments Moments are the expected value of x n and of (x x ) n. They are called nth algebraic moment µ n and nth central moment µ n, respectivly. Skewness v(x) is a measure of the asymmetry of the probability distribution of a random variable x: v = µ 3 σ 3 = E[(x E[x])3 ] σ 3 Kurtosis is a measure of the peakedness of the probability distribution of a random variable x. β 2 = µ 4 σ 4 = E[(x E[x])4 ] σ 4 γ 2 = β 2 3 (excess kurtosis) Dr. Michael O. Distler <distler@uni-mainz.de> Statistics, Data Analysis, and Simulation SS / 55

8 Example distributions Negative Skew Positive Skew Kurtosis of well-known distributions D: Laplace distribution, γ 2 = 3 S: hyperbolic secant distribution, γ 2 = 2 L: logistic distribution, γ 2 = 1.2 N: normal distribution, γ 2 = 0 C: raised cosine distribution, γ 2 = W: Wigner semicircle distribution, γ 2 = 1 U: uniform distribution, γ 2 = 1.2 Dr. Michael O. Distler <distler@uni-mainz.de> Statistics, Data Analysis, and Simulation SS / 55

9 Descriptive statistics Describing the distribution of a single variable, including its central tendency median, mode, mean dispersion range, quantiles, measures of spread: variance and standard deviation, rms, FWHM shape skewness, kurtosis,... Characteristics of a variable s distribution may also be depicted in graphical or tabular format, including histograms. Dr. Michael O. Distler <distler@uni-mainz.de> Statistics, Data Analysis, and Simulation SS / 55

10 Binomial distribution The binomial distribution is the discrete probability distribution of the number of successes r in a sequence of n independent yes/no experiments, each of which yields success with probability p (Bernoulli experiment). P(r) = ( n r ) p r (1 p) n r P(r) is normalized. Proof: Binomial theorem with q = 1 p. The mean of r is: n r = E[r] = rp(r)= np The variance σ 2 is V [r] = E[(r r ) 2 ] = r=0 n (r r ) 2 P(r)= np(1 p) r=0 Dr. Michael O. Distler <distler@uni-mainz.de> Statistics, Data Analysis, and Simulation SS / 55

11 Example: How big is the chance to get with n = 6 throws of a dice exactly zero times the 6, exactly twice the 6, and at least once the 6? For a correct dice is p = 1/6 and ( ) 1 0 ( ) 5 6 ( ) 6 P(0) = = 33.5% ( ) 1 2 ( ) 5 4 ( ) 6 P(2) = = 20.1% P( 1) = (1 P(0)) = 66.5% Dr. Michael O. Distler <distler@uni-mainz.de> Statistics, Data Analysis, and Simulation SS / 55

12 Benford s law Benford s law, also called the first-digit law, refers to the frequency distribution of digits in many (but not all) real-life sources of data (atomic weights, baseball results, electricity bills,...): digit probability 30.1% 17.6% 12.5% 9.7% 7.9% digit probability 6.7% 5.8% 5.1% 4.6% A set of numbers is said to satisfy Benford s law if the leading digit d occurs with probability p(d) = log 10 (d + 1) log 10 (d) Dr. Michael O. Distler <distler@uni-mainz.de> Statistics, Data Analysis, and Simulation SS / 55

13 Benford s law Example: The size of the files in my home directory: d n d p / % p(d) theor. /% ± ± ± ± ± ± ± ± ± Dr. Michael O. Distler <distler@uni-mainz.de> Statistics, Data Analysis, and Simulation SS / 55

14 Benford s law find ~ -type f -printf "%s\n" awk { l=log($1)/log(10); a[int(exp(log(10)*(l-int(l))))]++; N++; }END{ print N; for (i=1;i<10;i++) { printf "%d %5d %5.1f +/- %3.1f %5.1f\n", i,a[i],100*a[i]/n,100*sqrt(a[i])/n, 100*(log(i+1)-log(i))/log(10); } } Dr. Michael O. Distler <distler@uni-mainz.de> Statistics, Data Analysis, and Simulation SS / 55

15 1.3 Special discrete distributions (Poisson distribution) The Poisson distribution gives the probability of getting exactly r events when the number of trials is very large and the probability of the occurrence of an event in a single trial p is very small, with a finite mean r = µ = np. The Poisson distribution can be derived as a limit of the binomial distribution and has only one parameter, namely the mean µ. The Poisson distribution is given as: P(r) = µr e µ r! The Poisson distribution occurs in many cases where one counts things or events, such as the number of nuclear reactions or particle decays or the number of fish caught in a fishing competition. Dr. Michael O. Distler <distler@uni-mainz.de> Statistics, Data Analysis, and Simulation SS / 55

16 Poisson distribution The Poisson distribution ist given by: The mean is: The variance is: The skewness is: P(r) = µr e µ r! r = µ V [r] = σ 2 = µ v = µ 3 σ 3 = 1 µ The excess kurtosis is: γ 2 = 1 µ µ = µ = µ = µ = Dr. Michael O. Distler <distler@uni-mainz.de> Statistics, Data Analysis, and Simulation SS / 55

17 Death by horse kicks in the Prussian army Since 1898 the number of over a period of 20 years killed cavalrymen in the Prussian army is given in many textbooks. Deaths r Σ Years per corps with r deaths Expected # The total number of deaths is 122, and the mean number of deaths per corps and year is µ = 122/200 = The agreement between the expected and observed numbers is very good - actually too well. More examples: Radioactive decay Printing errors per page in books Simultaneously made scientific discoveries Dr. Michael O. Distler <distler@uni-mainz.de> Statistics, Data Analysis, and Simulation SS / 55

18 1.4 Special probability densities Uniform distribution: This probability distribution is constant in between the limits x = a and x = b: f (x) = Mean and variance: { 1 b a a x < b 0 otherwise x = E[x] = a + b 2 V [x] = σ 2 = (b a)2 12 Dr. Michael O. Distler <distler@uni-mainz.de> Statistics, Data Analysis, and Simulation SS / 55

19 Gaussian distribution The most important probability distribution - also called normal distribution: f (x) = 1 e (x µ)2 2σ 2 2πσ The Gaussian distribution has two parameters, the mean µ and the variance σ 2. The probability distribution with mean µ = 0 and variance σ 2 = 1 is named standard normal distribution or short N(0, 1). The Gaussian distribution can be derived from the binomial distribution for large values of n and r and similarly from the Poisson distribution for large values of µ. Dr. Michael O. Distler <distler@uni-mainz.de> Statistics, Data Analysis, and Simulation SS / 55

20 Gaussian distribution dx N(0, 1) = = ( ) dx N(0, 1) = = ( ) dx N(0, 1) = = ( ) FWHM: useful to estimate the standard deviation: FWHM = 2σ 2ln2 = 2.355σ Dr. Michael O. Distler <distler@uni-mainz.de> Statistics, Data Analysis, and Simulation SS / 55

21 Gaussian distribution Left side: The binomial distribution for n = 10 and p = 0.6 in comparison to the Gaussian distribution for µ = np = 6 and σ = np(1 p) = 2.4. Right side: The Poisson distribution for µ = 6 and σ = 6 in comparison to the Gaussian distribution. Dr. Michael O. Distler <distler@uni-mainz.de> Statistics, Data Analysis, and Simulation SS / 55

22 Cumulative Gaussian distribution The cumulative Gaussian distribution Φ(x) = 1 2πσ x e (t µ) 2 2σ 2 dt. cannot be expressed analytically and must be evaluated numerically. F(x) = 1 z e x2 2. 2π However it can be expressed in terms of the Gaussian error function erf(x) which is available on many modern calculators or computer libraries erf(x) = 2 π x Φ(x) = e t2 dt. ( ( )) x µ 1 + erf. 2σ Dr. Michael O. Distler <distler@uni-mainz.de> Statistics, Data Analysis, and Simulation SS / 55

23 Cumulative Gaussian distribution *(1+erf(x/sqrt(2))) 0.4*exp(-0.5*x*x) Dr. Michael O. Distler <distler@uni-mainz.de> Statistics, Data Analysis, and Simulation SS / 55

24 Full moon and accidents Do more accidents happen on days with full moon? To discover such an effect the number of accidents in many German cities are compared. We find that in Hamburg, the average number of accidents on days with full moon 10.0 with a standard deviation of 1.0, and on the other days it is 7.0 with negligible error. This effect is significant? Dr. Michael O. Distler <distler@uni-mainz.de> Statistics, Data Analysis, and Simulation SS / 55

25 Full moon and accidents Do more accidents happen on days with full moon? To discover such an effect the number of accidents in many German cities are compared. We find that in Hamburg, the average number of accidents on days with full moon 10.0 with a standard deviation of 1.0, and on the other days it is 7.0 with negligible error. This effect is significant? But this doesn t mean anything in reality. If one is conducting this investigation in 200 cities, then the probability that the accident rate differs more than 3 standard deviations from the mean in any one city is: And this probability is not small = 0.23 Dr. Michael O. Distler <distler@uni-mainz.de> Statistics, Data Analysis, and Simulation SS / 55

26 press any key Dr. Michael O. Distler Statistics, Data Analysis, and Simulation SS / 55

27 Chi-square distribution If x 1, x 2,..., x n are independend random variables distributed according to the standard Gaussian distribution with mean 0 and variance 1, then the sum u = χ 2 = n i=1 x 2 i ist distributed according to a χ 2 distribution f n (u) = f n (χ 2 ) where n is called the number of degrees of freedom. f n (u) = ( 1 u ) n/ e u/2 Γ(n/2) The χ 2 distribution has a maximum at (n 2). The mean is found to be n and the variance is 2n. Dr. Michael O. Distler <distler@uni-mainz.de> Statistics, Data Analysis, and Simulation SS / 55

28 Chi-square distribution pdf(2,x) pdf(3,x) pdf(4,x) pdf(5,x) pdf(6,x) pdf(7,x) pdf(8,x) pdf(9,x) Dr. Michael O. Distler <distler@uni-mainz.de> Statistics, Data Analysis, and Simulation SS / 55

29 Chi-square cumulative distribution function The probability for χ 2 n to take on a value in the interval [0, x] cdf(2,x) cdf(3,x) cdf(4,x) cdf(5,x) cdf(6,x) cdf(7,x) cdf(8,x) cdf(9,x) Dr. Michael O. Distler <distler@uni-mainz.de> Statistics, Data Analysis, and Simulation SS / 55

30 χ 2 vs. χ 2 red. Dr. Michael O. Distler <distler@uni-mainz.de> Statistics, Data Analysis, and Simulation SS / 55

31 Chi-square distribution with 5 d.o.f % c.l. [ ] Dr. Michael O. Distler <distler@uni-mainz.de> Statistics, Data Analysis, and Simulation SS / 55

Statistics, Data Analysis, and Simulation SS 2013

Statistics, Data Analysis, and Simulation SS 2013 Statistics, Data Analysis, and Simulation SS 213 8.128.73 Statistik, Datenanalyse und Simulation Dr. Michael O. Distler Mainz, 23. April 213 What we ve learned so far Fundamental

More information

Statistics, Data Analysis, and Simulation SS 2015

Statistics, Data Analysis, and Simulation SS 2015 Statistics, Data Analysis, and Simulation SS 2015 08.128.730 Statistik, Datenanalyse und Simulation Dr. Michael O. Distler Mainz, 27. April 2015 Dr. Michael O. Distler

More information

Numerical Methods for Data Analysis

Numerical Methods for Data Analysis Michael O. Distler distler@uni-mainz.de Bosen (Saar), August 29 - September 3, 2010 Fundamentals Probability distributions Expectation values, error propagation Parameter estimation Regression analysis

More information

Statistics and data analyses

Statistics and data analyses Statistics and data analyses Designing experiments Measuring time Instrumental quality Precision Standard deviation depends on Number of measurements Detection quality Systematics and methology σ tot =

More information

Random Variables and Their Distributions

Random Variables and Their Distributions Chapter 3 Random Variables and Their Distributions A random variable (r.v.) is a function that assigns one and only one numerical value to each simple event in an experiment. We will denote r.vs by capital

More information

Statistics, Data Analysis, and Simulation SS 2013

Statistics, Data Analysis, and Simulation SS 2013 Statistics, Data Analysis, and Simulation SS 2013 08.128.730 Statistik, Datenanalyse und Simulation Dr. Michael O. Distler Mainz, May 21, 2013 3. Parameter estimation 1 Consistency:

More information

Week 1 Quantitative Analysis of Financial Markets Distributions A

Week 1 Quantitative Analysis of Financial Markets Distributions A Week 1 Quantitative Analysis of Financial Markets Distributions A Christopher Ting http://www.mysmu.edu/faculty/christophert/ Christopher Ting : christopherting@smu.edu.sg : 6828 0364 : LKCSB 5036 October

More information

PROBABILITY DISTRIBUTION

PROBABILITY DISTRIBUTION PROBABILITY DISTRIBUTION DEFINITION: If S is a sample space with a probability measure and x is a real valued function defined over the elements of S, then x is called a random variable. Types of Random

More information

Probability Distributions - Lecture 5

Probability Distributions - Lecture 5 Probability Distributions - Lecture 5 1 Introduction There are a number of mathematical models of probability density functions that represent the behavior of physical systems. In this lecture we explore

More information

II. The Normal Distribution

II. The Normal Distribution II. The Normal Distribution The normal distribution (a.k.a., a the Gaussian distribution or bell curve ) is the by far the best known random distribution. It s discovery has had such a far-reaching impact

More information

Physics 403 Probability Distributions II: More Properties of PDFs and PMFs

Physics 403 Probability Distributions II: More Properties of PDFs and PMFs Physics 403 Probability Distributions II: More Properties of PDFs and PMFs Segev BenZvi Department of Physics and Astronomy University of Rochester Table of Contents 1 Last Time: Common Probability Distributions

More information

Statistics, Data Analysis, and Simulation SS 2015

Statistics, Data Analysis, and Simulation SS 2015 Statistics, Data Analysis, and Simulation SS 2015 08.128.730 Statistik, Datenanalyse und Simulation Dr. Michael O. Distler Mainz, June 2, 2015 Dr. Michael O. Distler

More information

A Probability Primer. A random walk down a probabilistic path leading to some stochastic thoughts on chance events and uncertain outcomes.

A Probability Primer. A random walk down a probabilistic path leading to some stochastic thoughts on chance events and uncertain outcomes. A Probability Primer A random walk down a probabilistic path leading to some stochastic thoughts on chance events and uncertain outcomes. Are you holding all the cards?? Random Events A random event, E,

More information

Useful material for the course

Useful material for the course Useful material for the course Suggested textbooks: Mood A.M., Graybill F.A., Boes D.C., Introduction to the Theory of Statistics. McGraw-Hill, New York, 1974. [very complete] M.C. Whitlock, D. Schluter,

More information

Statistical Methods in Particle Physics

Statistical Methods in Particle Physics Statistical Methods in Particle Physics. Probability Distributions Prof. Dr. Klaus Reygers (lectures) Dr. Sebastian Neubert (tutorials) Heidelberg University WS 07/8 Gaussian g(x; µ, )= p exp (x µ) https://en.wikipedia.org/wiki/normal_distribution

More information

Lecture 2: Repetition of probability theory and statistics

Lecture 2: Repetition of probability theory and statistics Algorithms for Uncertainty Quantification SS8, IN2345 Tobias Neckel Scientific Computing in Computer Science TUM Lecture 2: Repetition of probability theory and statistics Concept of Building Block: Prerequisites:

More information

Brief Review of Probability

Brief Review of Probability Maura Department of Economics and Finance Università Tor Vergata Outline 1 Distribution Functions Quantiles and Modes of a Distribution 2 Example 3 Example 4 Distributions Outline Distribution Functions

More information

Probability Distributions Columns (a) through (d)

Probability Distributions Columns (a) through (d) Discrete Probability Distributions Columns (a) through (d) Probability Mass Distribution Description Notes Notation or Density Function --------------------(PMF or PDF)-------------------- (a) (b) (c)

More information

Chapter 2. Random Variable. Define single random variables in terms of their PDF and CDF, and calculate moments such as the mean and variance.

Chapter 2. Random Variable. Define single random variables in terms of their PDF and CDF, and calculate moments such as the mean and variance. Chapter 2 Random Variable CLO2 Define single random variables in terms of their PDF and CDF, and calculate moments such as the mean and variance. 1 1. Introduction In Chapter 1, we introduced the concept

More information

Probability Theory and Simulation Methods. April 6th, Lecture 19: Special distributions

Probability Theory and Simulation Methods. April 6th, Lecture 19: Special distributions April 6th, 2018 Lecture 19: Special distributions Week 1 Chapter 1: Axioms of probability Week 2 Chapter 3: Conditional probability and independence Week 4 Chapters 4, 6: Random variables Week 9 Chapter

More information

Introduction to Probability and Statistics (Continued)

Introduction to Probability and Statistics (Continued) Introduction to Probability and Statistics (Continued) Prof. icholas Zabaras Center for Informatics and Computational Science https://cics.nd.edu/ University of otre Dame otre Dame, Indiana, USA Email:

More information

Continuous Random Variables and Continuous Distributions

Continuous Random Variables and Continuous Distributions Continuous Random Variables and Continuous Distributions Continuous Random Variables and Continuous Distributions Expectation & Variance of Continuous Random Variables ( 5.2) The Uniform Random Variable

More information

Physics 6720 Introduction to Statistics April 4, 2017

Physics 6720 Introduction to Statistics April 4, 2017 Physics 6720 Introduction to Statistics April 4, 2017 1 Statistics of Counting Often an experiment yields a result that can be classified according to a set of discrete events, giving rise to an integer

More information

Statistical Methods in Particle Physics

Statistical Methods in Particle Physics Statistical Methods in Particle Physics Lecture 3 October 29, 2012 Silvia Masciocchi, GSI Darmstadt s.masciocchi@gsi.de Winter Semester 2012 / 13 Outline Reminder: Probability density function Cumulative

More information

Scientific Measurement

Scientific Measurement Scientific Measurement SPA-4103 Dr Alston J Misquitta Lecture 5 - The Binomial Probability Distribution Binomial Distribution Probability of k successes in n trials. Gaussian/Normal Distribution Poisson

More information

Multiple Random Variables

Multiple Random Variables Multiple Random Variables Joint Probability Density Let X and Y be two random variables. Their joint distribution function is F ( XY x, y) P X x Y y. F XY ( ) 1, < x

More information

Joint Probability Distributions and Random Samples (Devore Chapter Five)

Joint Probability Distributions and Random Samples (Devore Chapter Five) Joint Probability Distributions and Random Samples (Devore Chapter Five) 1016-345-01: Probability and Statistics for Engineers Spring 2013 Contents 1 Joint Probability Distributions 2 1.1 Two Discrete

More information

Continuous Random Variables. and Probability Distributions. Continuous Random Variables and Probability Distributions ( ) ( ) Chapter 4 4.

Continuous Random Variables. and Probability Distributions. Continuous Random Variables and Probability Distributions ( ) ( ) Chapter 4 4. UCLA STAT 11 A Applied Probability & Statistics for Engineers Instructor: Ivo Dinov, Asst. Prof. In Statistics and Neurology Teaching Assistant: Christopher Barr University of California, Los Angeles,

More information

Lecture 2: Discrete Probability Distributions

Lecture 2: Discrete Probability Distributions Lecture 2: Discrete Probability Distributions IB Paper 7: Probability and Statistics Carl Edward Rasmussen Department of Engineering, University of Cambridge February 1st, 2011 Rasmussen (CUED) Lecture

More information

Probability Distribution Summary Dr. Mohammed Hawa October 2007

Probability Distribution Summary Dr. Mohammed Hawa October 2007 Probability Distribution Summary Dr. Mohammed Hawa October 2007 There are many probability distributions that have been studied over the years. Each of which was developed based on observations of a particular

More information

MA/ST 810 Mathematical-Statistical Modeling and Analysis of Complex Systems

MA/ST 810 Mathematical-Statistical Modeling and Analysis of Complex Systems MA/ST 810 Mathematical-Statistical Modeling and Analysis of Complex Systems Review of Basic Probability The fundamentals, random variables, probability distributions Probability mass/density functions

More information

What s for today. More on Binomial distribution Poisson distribution. c Mikyoung Jun (Texas A&M) stat211 lecture 7 February 8, / 16

What s for today. More on Binomial distribution Poisson distribution. c Mikyoung Jun (Texas A&M) stat211 lecture 7 February 8, / 16 What s for today More on Binomial distribution Poisson distribution c Mikyoung Jun (Texas A&M) stat211 lecture 7 February 8, 2011 1 / 16 Review: Binomial distribution Question: among the following, what

More information

Special Discrete RV s. Then X = the number of successes is a binomial RV. X ~ Bin(n,p).

Special Discrete RV s. Then X = the number of successes is a binomial RV. X ~ Bin(n,p). Sect 3.4: Binomial RV Special Discrete RV s 1. Assumptions and definition i. Experiment consists of n repeated trials ii. iii. iv. There are only two possible outcomes on each trial: success (S) or failure

More information

Error analysis in biology

Error analysis in biology Error analysis in biology Marek Gierliński Division of Computational Biology Hand-outs available at http://is.gd/statlec Errors, like straws, upon the surface flow; He who would search for pearls must

More information

3. Probability and Statistics

3. Probability and Statistics FE661 - Statistical Methods for Financial Engineering 3. Probability and Statistics Jitkomut Songsiri definitions, probability measures conditional expectations correlation and covariance some important

More information

Topic 2: Probability & Distributions. Road Map Probability & Distributions. ECO220Y5Y: Quantitative Methods in Economics. Dr.

Topic 2: Probability & Distributions. Road Map Probability & Distributions. ECO220Y5Y: Quantitative Methods in Economics. Dr. Topic 2: Probability & Distributions ECO220Y5Y: Quantitative Methods in Economics Dr. Nick Zammit University of Toronto Department of Economics Room KN3272 n.zammit utoronto.ca November 21, 2017 Dr. Nick

More information

15 Discrete Distributions

15 Discrete Distributions Lecture Note 6 Special Distributions (Discrete and Continuous) MIT 4.30 Spring 006 Herman Bennett 5 Discrete Distributions We have already seen the binomial distribution and the uniform distribution. 5.

More information

Distributions of Functions of Random Variables. 5.1 Functions of One Random Variable

Distributions of Functions of Random Variables. 5.1 Functions of One Random Variable Distributions of Functions of Random Variables 5.1 Functions of One Random Variable 5.2 Transformations of Two Random Variables 5.3 Several Random Variables 5.4 The Moment-Generating Function Technique

More information

Brief reminder on statistics

Brief reminder on statistics Brief reminder on statistics by Eric Marsden 1 Summary statistics If you have a sample of n values x i, the mean (sometimes called the average), μ, is the sum of the

More information

1.6 Families of Distributions

1.6 Families of Distributions Your text 1.6. FAMILIES OF DISTRIBUTIONS 15 F(x) 0.20 1.0 0.15 0.8 0.6 Density 0.10 cdf 0.4 0.05 0.2 0.00 a b c 0.0 x Figure 1.1: N(4.5, 2) Distribution Function and Cumulative Distribution Function for

More information

Continuous Random Variables. and Probability Distributions. Continuous Random Variables and Probability Distributions ( ) ( )

Continuous Random Variables. and Probability Distributions. Continuous Random Variables and Probability Distributions ( ) ( ) UCLA STAT 35 Applied Computational and Interactive Probability Instructor: Ivo Dinov, Asst. Prof. In Statistics and Neurology Teaching Assistant: Chris Barr Continuous Random Variables and Probability

More information

STAT2201. Analysis of Engineering & Scientific Data. Unit 3

STAT2201. Analysis of Engineering & Scientific Data. Unit 3 STAT2201 Analysis of Engineering & Scientific Data Unit 3 Slava Vaisman The University of Queensland School of Mathematics and Physics What we learned in Unit 2 (1) We defined a sample space of a random

More information

Basic probability. Inferential statistics is based on probability theory (we do not have certainty, but only confidence).

Basic probability. Inferential statistics is based on probability theory (we do not have certainty, but only confidence). Basic probability Inferential statistics is based on probability theory (we do not have certainty, but only confidence). I Events: something that may or may not happen: A; P(A)= probability that A happens;

More information

Continuous Probability Distributions. Uniform Distribution

Continuous Probability Distributions. Uniform Distribution Continuous Probability Distributions Uniform Distribution Important Terms & Concepts Learned Probability Mass Function (PMF) Cumulative Distribution Function (CDF) Complementary Cumulative Distribution

More information

System Simulation Part II: Mathematical and Statistical Models Chapter 5: Statistical Models

System Simulation Part II: Mathematical and Statistical Models Chapter 5: Statistical Models System Simulation Part II: Mathematical and Statistical Models Chapter 5: Statistical Models Fatih Cavdur fatihcavdur@uludag.edu.tr March 20, 2012 Introduction Introduction The world of the model-builder

More information

STA 111: Probability & Statistical Inference

STA 111: Probability & Statistical Inference STA 111: Probability & Statistical Inference Lecture Four Expectation and Continuous Random Variables Instructor: Olanrewaju Michael Akande Department of Statistical Science, Duke University Instructor:

More information

Probability Distributions

Probability Distributions 02/07/07 PHY310: Statistical Data Analysis 1 PHY310: Lecture 05 Probability Distributions Road Map The Gausssian Describing Distributions Expectation Value Variance Basic Distributions Generating Random

More information

Topic 3 - Discrete distributions

Topic 3 - Discrete distributions Topic 3 - Discrete distributions Basics of discrete distributions Mean and variance of a discrete distribution Binomial distribution Poisson distribution and process 1 A random variable is a function which

More information

Introducing the Normal Distribution

Introducing the Normal Distribution Department of Mathematics Ma 3/103 KC Border Introduction to Probability and Statistics Winter 2017 Lecture 10: Introducing the Normal Distribution Relevant textbook passages: Pitman [5]: Sections 1.2,

More information

Lecture 10: Probability distributions TUESDAY, FEBRUARY 19, 2019

Lecture 10: Probability distributions TUESDAY, FEBRUARY 19, 2019 Lecture 10: Probability distributions DANIEL WELLER TUESDAY, FEBRUARY 19, 2019 Agenda What is probability? (again) Describing probabilities (distributions) Understanding probabilities (expectation) Partial

More information

Discrete Probability distribution Discrete Probability distribution

Discrete Probability distribution Discrete Probability distribution 438//9.4.. Discrete Probability distribution.4.. Binomial P.D. The outcomes belong to either of two relevant categories. A binomial experiment requirements: o There is a fixed number of trials (n). o On

More information

λ = pn µt = µ(dt)(n) Phylomath Lecture 4

λ = pn µt = µ(dt)(n) Phylomath Lecture 4 Phylomath Lecture 4 Brigid O Donnell (17 February 2004) A return to sojourn times We began by returning to the idea of sojourn times, or the time period until the next disruption event occurs for a given

More information

ECE 313 Probability with Engineering Applications Fall 2000

ECE 313 Probability with Engineering Applications Fall 2000 Exponential random variables Exponential random variables arise in studies of waiting times, service times, etc X is called an exponential random variable with parameter λ if its pdf is given by f(u) =

More information

Fourier and Stats / Astro Stats and Measurement : Stats Notes

Fourier and Stats / Astro Stats and Measurement : Stats Notes Fourier and Stats / Astro Stats and Measurement : Stats Notes Andy Lawrence, University of Edinburgh Autumn 2013 1 Probabilities, distributions, and errors Laplace once said Probability theory is nothing

More information

Analysis of Experimental Designs

Analysis of Experimental Designs Analysis of Experimental Designs p. 1/? Analysis of Experimental Designs Gilles Lamothe Mathematics and Statistics University of Ottawa Analysis of Experimental Designs p. 2/? Review of Probability A short

More information

Chapter 3: Random Variables 1

Chapter 3: Random Variables 1 Chapter 3: Random Variables 1 Yunghsiang S. Han Graduate Institute of Communication Engineering, National Taipei University Taiwan E-mail: yshan@mail.ntpu.edu.tw 1 Modified from the lecture notes by Prof.

More information

Continuous Random Variables. What continuous random variables are and how to use them. I can give a definition of a continuous random variable.

Continuous Random Variables. What continuous random variables are and how to use them. I can give a definition of a continuous random variable. Continuous Random Variables Today we are learning... What continuous random variables are and how to use them. I will know if I have been successful if... I can give a definition of a continuous random

More information

Chapter 2: Discrete Distributions. 2.1 Random Variables of the Discrete Type

Chapter 2: Discrete Distributions. 2.1 Random Variables of the Discrete Type Chapter 2: Discrete Distributions 2.1 Random Variables of the Discrete Type 2.2 Mathematical Expectation 2.3 Special Mathematical Expectations 2.4 Binomial Distribution 2.5 Negative Binomial Distribution

More information

Introduction to Error Analysis

Introduction to Error Analysis Introduction to Error Analysis Part 1: the Basics Andrei Gritsan based on lectures by Petar Maksimović February 1, 2010 Overview Definitions Reporting results and rounding Accuracy vs precision systematic

More information

Continuous r.v. s: cdf s, Expected Values

Continuous r.v. s: cdf s, Expected Values Continuous r.v. s: cdf s, Expected Values Engineering Statistics Section 4.2 Josh Engwer TTU 29 February 2016 Josh Engwer (TTU) Continuous r.v. s: cdf s, Expected Values 29 February 2016 1 / 17 PART I

More information

Department of Mathematics

Department of Mathematics Department of Mathematics Ma 3/103 KC Border Introduction to Probability and Statistics Winter 2017 Supplement 2: Review Your Distributions Relevant textbook passages: Pitman [10]: pages 476 487. Larsen

More information

Continuous Probability Distributions. Uniform Distribution

Continuous Probability Distributions. Uniform Distribution Continuous Probability Distributions Uniform Distribution Important Terms & Concepts Learned Probability Mass Function (PMF) Cumulative Distribution Function (CDF) Complementary Cumulative Distribution

More information

Probability Distributions for Continuous Variables. Probability Distributions for Continuous Variables

Probability Distributions for Continuous Variables. Probability Distributions for Continuous Variables Probability Distributions for Continuous Variables Probability Distributions for Continuous Variables Let X = lake depth at a randomly chosen point on lake surface If we draw the histogram so that the

More information

BMIR Lecture Series on Probability and Statistics Fall, 2015 Uniform Distribution

BMIR Lecture Series on Probability and Statistics Fall, 2015 Uniform Distribution Lecture #5 BMIR Lecture Series on Probability and Statistics Fall, 2015 Department of Biomedical Engineering and Environmental Sciences National Tsing Hua University s 5.1 Definition ( ) A continuous random

More information

Algorithms for Uncertainty Quantification

Algorithms for Uncertainty Quantification Algorithms for Uncertainty Quantification Tobias Neckel, Ionuț-Gabriel Farcaș Lehrstuhl Informatik V Summer Semester 2017 Lecture 2: Repetition of probability theory and statistics Example: coin flip Example

More information

Continuous random variables

Continuous random variables Continuous random variables Continuous r.v. s take an uncountably infinite number of possible values. Examples: Heights of people Weights of apples Diameters of bolts Life lengths of light-bulbs We cannot

More information

Department of Mathematics

Department of Mathematics Department of Mathematics Ma 3/103 KC Border Introduction to Probability and Statistics Winter 2018 Supplement 2: Review Your Distributions Relevant textbook passages: Pitman [10]: pages 476 487. Larsen

More information

MATH : EXAM 2 INFO/LOGISTICS/ADVICE

MATH : EXAM 2 INFO/LOGISTICS/ADVICE MATH 3342-004: EXAM 2 INFO/LOGISTICS/ADVICE INFO: WHEN: Friday (03/11) at 10:00am DURATION: 50 mins PROBLEM COUNT: Appropriate for a 50-min exam BONUS COUNT: At least one TOPICS CANDIDATE FOR THE EXAM:

More information

Probability Midterm Exam 2:15-3:30 pm Thursday, 21 October 1999

Probability Midterm Exam 2:15-3:30 pm Thursday, 21 October 1999 Name: 2:15-3:30 pm Thursday, 21 October 1999 You may use a calculator and your own notes but may not consult your books or neighbors. Please show your work for partial credit, and circle your answers.

More information

Statistics and Data Analysis

Statistics and Data Analysis Statistics and Data Analysis The Crash Course Physics 226, Fall 2013 "There are three kinds of lies: lies, damned lies, and statistics. Mark Twain, allegedly after Benjamin Disraeli Statistics and Data

More information

Chapter 3, 4 Random Variables ENCS Probability and Stochastic Processes. Concordia University

Chapter 3, 4 Random Variables ENCS Probability and Stochastic Processes. Concordia University Chapter 3, 4 Random Variables ENCS6161 - Probability and Stochastic Processes Concordia University ENCS6161 p.1/47 The Notion of a Random Variable A random variable X is a function that assigns a real

More information

Random variables. DS GA 1002 Probability and Statistics for Data Science.

Random variables. DS GA 1002 Probability and Statistics for Data Science. Random variables DS GA 1002 Probability and Statistics for Data Science http://www.cims.nyu.edu/~cfgranda/pages/dsga1002_fall17 Carlos Fernandez-Granda Motivation Random variables model numerical quantities

More information

IV. The Normal Distribution

IV. The Normal Distribution IV. The Normal Distribution The normal distribution (a.k.a., a the Gaussian distribution or bell curve ) is the by far the best known random distribution. It s discovery has had such a far-reaching impact

More information

Introducing the Normal Distribution

Introducing the Normal Distribution Department of Mathematics Ma 3/13 KC Border Introduction to Probability and Statistics Winter 219 Lecture 1: Introducing the Normal Distribution Relevant textbook passages: Pitman [5]: Sections 1.2, 2.2,

More information

Physics Sep Example A Spin System

Physics Sep Example A Spin System Physics 30 7-Sep-004 4- Example A Spin System In the last lecture, we discussed the binomial distribution. Now, I would like to add a little physical content by considering a spin system. Actually this

More information

Chapter 3: Random Variables 1

Chapter 3: Random Variables 1 Chapter 3: Random Variables 1 Yunghsiang S. Han Graduate Institute of Communication Engineering, National Taipei University Taiwan E-mail: yshan@mail.ntpu.edu.tw 1 Modified from the lecture notes by Prof.

More information

Experimental Design and Statistics - AGA47A

Experimental Design and Statistics - AGA47A Experimental Design and Statistics - AGA47A Czech University of Life Sciences in Prague Department of Genetics and Breeding Fall/Winter 2014/2015 Matúš Maciak (@ A 211) Office Hours: M 14:00 15:30 W 15:30

More information

Probability and Estimation. Alan Moses

Probability and Estimation. Alan Moses Probability and Estimation Alan Moses Random variables and probability A random variable is like a variable in algebra (e.g., y=e x ), but where at least part of the variability is taken to be stochastic.

More information

Chap 2.1 : Random Variables

Chap 2.1 : Random Variables Chap 2.1 : Random Variables Let Ω be sample space of a probability model, and X a function that maps every ξ Ω, toa unique point x R, the set of real numbers. Since the outcome ξ is not certain, so is

More information

IV. The Normal Distribution

IV. The Normal Distribution IV. The Normal Distribution The normal distribution (a.k.a., the Gaussian distribution or bell curve ) is the by far the best known random distribution. It s discovery has had such a far-reaching impact

More information

37.3. The Poisson Distribution. Introduction. Prerequisites. Learning Outcomes

37.3. The Poisson Distribution. Introduction. Prerequisites. Learning Outcomes The Poisson Distribution 37.3 Introduction In this Section we introduce a probability model which can be used when the outcome of an experiment is a random variable taking on positive integer values and

More information

3 Continuous Random Variables

3 Continuous Random Variables Jinguo Lian Math437 Notes January 15, 016 3 Continuous Random Variables Remember that discrete random variables can take only a countable number of possible values. On the other hand, a continuous random

More information

Data Analysis and Monte Carlo Methods

Data Analysis and Monte Carlo Methods Lecturer: Allen Caldwell, Max Planck Institute for Physics & TUM Recitation Instructor: Oleksander (Alex) Volynets, MPP & TUM General Information: - Lectures will be held in English, Mondays 16-18:00 -

More information

STAT 3610: Review of Probability Distributions

STAT 3610: Review of Probability Distributions STAT 3610: Review of Probability Distributions Mark Carpenter Professor of Statistics Department of Mathematics and Statistics August 25, 2015 Support of a Random Variable Definition The support of a random

More information

Exponential, Gamma and Normal Distribuions

Exponential, Gamma and Normal Distribuions Exponential, Gamma and Normal Distribuions Sections 5.4, 5.5 & 6.5 Cathy Poliak, Ph.D. cathy@math.uh.edu Office in Fleming 11c Department of Mathematics University of Houston Lecture 9-3339 Cathy Poliak,

More information

IAM 530 ELEMENTS OF PROBABILITY AND STATISTICS LECTURE 3-RANDOM VARIABLES

IAM 530 ELEMENTS OF PROBABILITY AND STATISTICS LECTURE 3-RANDOM VARIABLES IAM 530 ELEMENTS OF PROBABILITY AND STATISTICS LECTURE 3-RANDOM VARIABLES VARIABLE Studying the behavior of random variables, and more importantly functions of random variables is essential for both the

More information

Chapter 1. Sets and probability. 1.3 Probability space

Chapter 1. Sets and probability. 1.3 Probability space Random processes - Chapter 1. Sets and probability 1 Random processes Chapter 1. Sets and probability 1.3 Probability space 1.3 Probability space Random processes - Chapter 1. Sets and probability 2 Probability

More information

Chapter 1: Revie of Calculus and Probability

Chapter 1: Revie of Calculus and Probability Chapter 1: Revie of Calculus and Probability Refer to Text Book: Operations Research: Applications and Algorithms By Wayne L. Winston,Ch. 12 Operations Research: An Introduction By Hamdi Taha, Ch. 12 OR441-Dr.Khalid

More information

Introduction and Overview STAT 421, SP Course Instructor

Introduction and Overview STAT 421, SP Course Instructor Introduction and Overview STAT 421, SP 212 Prof. Prem K. Goel Mon, Wed, Fri 3:3PM 4:48PM Postle Hall 118 Course Instructor Prof. Goel, Prem E mail: goel.1@osu.edu Office: CH 24C (Cockins Hall) Phone: 614

More information

Probability and Probability Distributions. Dr. Mohammed Alahmed

Probability and Probability Distributions. Dr. Mohammed Alahmed Probability and Probability Distributions 1 Probability and Probability Distributions Usually we want to do more with data than just describing them! We might want to test certain specific inferences about

More information

Probability Density Functions

Probability Density Functions Statistical Methods in Particle Physics / WS 13 Lecture II Probability Density Functions Niklaus Berger Physics Institute, University of Heidelberg Recap of Lecture I: Kolmogorov Axioms Ingredients: Set

More information

Review of Statistics I

Review of Statistics I Review of Statistics I Hüseyin Taştan 1 1 Department of Economics Yildiz Technical University April 17, 2010 1 Review of Distribution Theory Random variables, discrete vs continuous Probability distribution

More information

Chapter 4a Probability Models

Chapter 4a Probability Models Chapter 4a Probability Models 4a.2 Probability models for a variable with a finite number of values 297 4a.1 Introduction Chapters 2 and 3 are concerned with data description (descriptive statistics) where

More information

Statistics for Data Analysis. Niklaus Berger. PSI Practical Course Physics Institute, University of Heidelberg

Statistics for Data Analysis. Niklaus Berger. PSI Practical Course Physics Institute, University of Heidelberg Statistics for Data Analysis PSI Practical Course 2014 Niklaus Berger Physics Institute, University of Heidelberg Overview You are going to perform a data analysis: Compare measured distributions to theoretical

More information

Recall the Basics of Hypothesis Testing

Recall the Basics of Hypothesis Testing Recall the Basics of Hypothesis Testing The level of significance α, (size of test) is defined as the probability of X falling in w (rejecting H 0 ) when H 0 is true: P(X w H 0 ) = α. H 0 TRUE H 1 TRUE

More information

Chapter 4: Continuous Random Variables and Probability Distributions

Chapter 4: Continuous Random Variables and Probability Distributions Chapter 4: and Probability Distributions Walid Sharabati Purdue University February 14, 2014 Professor Sharabati (Purdue University) Spring 2014 (Slide 1 of 37) Chapter Overview Continuous random variables

More information

Kinetic Theory 1 / Probabilities

Kinetic Theory 1 / Probabilities Kinetic Theory 1 / Probabilities 1. Motivations: statistical mechanics and fluctuations 2. Probabilities 3. Central limit theorem 1 The need for statistical mechanics 2 How to describe large systems In

More information

Chapter 7: Theoretical Probability Distributions Variable - Measured/Categorized characteristic

Chapter 7: Theoretical Probability Distributions Variable - Measured/Categorized characteristic BSTT523: Pagano & Gavreau, Chapter 7 1 Chapter 7: Theoretical Probability Distributions Variable - Measured/Categorized characteristic Random Variable (R.V.) X Assumes values (x) by chance Discrete R.V.

More information

Discrete Distributions

Discrete Distributions Chapter 2 Discrete Distributions 2.1 Random Variables of the Discrete Type An outcome space S is difficult to study if the elements of S are not numbers. However, we can associate each element/outcome

More information

Lectures on Statistical Data Analysis

Lectures on Statistical Data Analysis Lectures on Statistical Data Analysis London Postgraduate Lectures on Particle Physics; University of London MSci course PH4515 Glen Cowan Physics Department Royal Holloway, University of London g.cowan@rhul.ac.uk

More information