Bernoulli Trials and Binomial Distribution

Size: px
Start display at page:

Download "Bernoulli Trials and Binomial Distribution"

Transcription

1 Bernoulli Trials and Binomial Distribution Sec Cathy Poliak, Ph.D. Office in Fleming 11c Department of Mathematics University of Houston Lecture Cathy Poliak, Ph.D. Office in Fleming 11c Sec (Department of Mathematics University of Houston Lecture ) / 16

2 Outline 1 Bernoulli Random Variables Cathy Poliak, Ph.D. cathy@math.uh.edu Office in Fleming 11c Sec (Department of Mathematics University of Houston Lecture ) / 16

3 Popper Set Up Fill in all of the proper bubbles. Make sure your ID number is correct. Make sure the filled in circles are very dark. This is popper number 05. Cathy Poliak, Ph.D. Office in Fleming 11c Sec (Department of Mathematics University of Houston Lecture ) / 16

4 Popper #05 Questions The following is a probability distribution: X Probability Determine the expected value (mean) of this probability distribution. a) 0 b) 2 c) -2 d) Determine the variance of this probability distribution. a) 20 b) 100 c) 96 d) 0 Cathy Poliak, Ph.D. cathy@math.uh.edu Office in Fleming 11c Sec (Department of Mathematics University of Houston Lecture ) / 16

5 Popper #05 Questions Suppose a random variable X has a mean of 20, E(X) = 20 and standard deviation of 5, SD(X) = 5. We have a new random variable Y, where Y = 3X What is the mean (epxected value) of Y? a) 20 b) 70 c) 60 d) What is the standard deviation of Y? a) 15 b) 25 c) 75 d) 5 Cathy Poliak, Ph.D. cathy@math.uh.edu Office in Fleming 11c Sec (Department of Mathematics University of Houston Lecture ) / 16

6 Introduction Question Wallen Accounting Services specializes in tax preparation for individual tax returns. Data collected from past records reveals that 9% of the returns prepared by Wallen have been selected for audit by the Internal Revenue Service (IRS). 1. What is the probability that a customer of Wallen will be selected for audit? a b c. 1 d What is the probabiity that a customer is not selected for audit? a b c. 1 d. 0 Cathy Poliak, Ph.D. cathy@math.uh.edu Office in Fleming 11c Sec (Department of Mathematics University of Houston Lecture ) / 16

7 Bernoulli Random Variable A Bernoulli random variable has only two possible values, usually desginated as 1 and 0. Suppose we look at the i th cusotmer of Wallen Accounting services. Let X be the random variable that indicates that the customer is selected for audit. Thus X = 1 is the customer is selected for audit, X = 0 if not seclected for audit. Selected for audit is the "success" and not selected for audit is "failure." The probabiity of succes is p and the probabiltiy of failure is 1 p. e.g. a coin is flipped (heads or tails), someone is either audited or not audited, p = 0.09, 1 - p = Cathy Poliak, Ph.D. cathy@math.uh.edu Office in Fleming 11c Sec (Department of Mathematics University of Houston Lecture ) / 16

8 Probability Function for Bernoulli Variable p, if x = 1 f (x) = P(x) = 1 p, if x = 0 0, if x 0, 1 A compact way of writing this is: f (x) = P(x) = p x (1 p) 1 x Cathy Poliak, Ph.D. cathy@math.uh.edu Office in Fleming 11c Sec (Department of Mathematics University of Houston Lecture ) / 16

9 Audit Example Today, Wallen has six new customers. Assume the chances of these six customers being audited are independent. This is a sequence of Bernoulli trials. We are interested in calculation the probabiltiy of obtaining a certian number of people being selected for audit. Let X i indicate the i th customer being selected for audit. Let Y = X 1 + X 2 + X 3 + X 4 + X 5 + X 6. What does Y represent? What is the probability that Y = 0? What is the probabiltiy that Y = 1? What is the probabiltiy that Y = 2? What is the probability that Y = n where n = 0, 1, 2, 3, 4, 5, 6? Cathy Poliak, Ph.D. cathy@math.uh.edu Office in Fleming 11c Sec (Department of Mathematics University of Houston Lecture ) / 16

10

11

12 Binomial Probability Distribution The distribution of the count X of successes in the Binomial setting has a Binomial probability distribution. Where the parameters for a binomial probability distribution is: n the number of observations p is the probability of a success on any one observation The possible values of X are the whole numbers from 0 to n. As an abbreviation we say, X B(n, p). Binomial probabilities are calculated with the following formula: P(X = k) = n C k p k (1 p) n k Cathy Poliak, Ph.D. cathy@math.uh.edu Office in Fleming 11c Sec (Department of Mathematics University of Lecture Houston 9) / 16

13 Stopping at an intersection Suppose that only 25% of all drivers come to a complete stop at an intersection with a stop sign when not other cars are visible. What is the probability that of the 20 randomly chosen drivers, 1. Exactly 6 will come to a complete stop? 2. No one will come to complete stop? 3. At least one will come to a complete stop? 4. At most 6 will come to a complete stop? Cathy Poliak, Ph.D. cathy@math.uh.edu Office in Fleming 11c Sec (Department of Mathematics University of Lecture Houston 9) / 16

14 Using R To find P(X =k) use dbinom(k,n,p). From previous example P(X = 6), k = 6, n = 20, p = > dbinom(6,20,.25) [1] To find P(X k) use pbinom(k,n,p). From previous example P(X 6) > pbinom(6,20,0.25) [1] What is the probability that less than 6 will come to a complete stop? What is the probability of at least 6? Cathy Poliak, Ph.D. cathy@math.uh.edu Office in Fleming 11c Sec (Department of Mathematics University of Lecture Houston 9) / 16

15 Example #2 A fair coin is flipped 30 times. 1. What is the probability that the coin comes up heads exactly 12 times? P(X = 12), n = 30, p = 0.5 > dbinom(12,30,0.5) [1] What is the probability that the coin comes up heads less than 12 times? P(X < 12) = P(X 11) > pbinom(11,30,0.5) [1] What is the probability that the coin comes up heads more than 12 times? P(X > 12) = 1 P(X 12) > 1-pbinom(12,30,0.5) [1] What is the probability that the coin comes up heads between 9 and 13 times, inclusive? P(9 X 13) = P(X 13) P(X 8) > pbinom(13,30,0.5)-pbinom(8,30,.5) [1] Cathy Poliak, Ph.D. cathy@math.uh.edu Office in Fleming 11c Sec (Department of Mathematics University of Lecture Houston 9) / 16

16

17 Mean and Variance of a Binomial Distribution If a count X has the Binomial distribution with number of observations n and probability of success p, the mean and variance of X are µ X = E[X] = np σ 2 X = Var[X] = np(1 p) Then the standard deviation is the square root of the variance. Cathy Poliak, Ph.D. cathy@math.uh.edu Office in Fleming 11c Sec (Department of Mathematics University of Lecture Houston 9) / 16

18 Example #3 Suppose it is known that 80% of the people exposed to the flu virus will contract the flu. Out of a family of five exposed to the virus, what is the probability that: 1. No one will contract the flu? 2. All will contract the flu? 3. Exactly two will get the flu? 4. At least two will get the flu? Cathy Poliak, Ph.D. cathy@math.uh.edu Office in Fleming 11c Sec (Department of Mathematics University of Lecture Houston 9) / 16

19 Example Continued Suppose it is known that 80% of the people exposed to the flu virus will contract the flu. Suppose we have a family of five that were exposed to the flu. 1. Find the mean 2. Find the variance of this distribution. Cathy Poliak, Ph.D. cathy@math.uh.edu Office in Fleming 11c Sec (Department of Mathematics University of Lecture Houston 9) / 16

Bernoulli Trials and Binomial Distribution

Bernoulli Trials and Binomial Distribution Bernoulli Trials and Binomial Distribution Sec 4.4-4.5 Cathy Poliak, Ph.D. cathy@math.uh.edu Office in Fleming 11c Department of Mathematics University of Houston Lecture 10-3339 Cathy Poliak, Ph.D. cathy@math.uh.edu

More information

Bernoulli Trials, Binomial and Cumulative Distributions

Bernoulli Trials, Binomial and Cumulative Distributions Bernoulli Trials, Binomial and Cumulative Distributions Sec 4.4-4.6 Cathy Poliak, Ph.D. cathy@math.uh.edu Office in Fleming 11c Department of Mathematics University of Houston Lecture 9-3339 Cathy Poliak,

More information

Density Curves & Normal Distributions

Density Curves & Normal Distributions Density Curves & Normal Distributions Sections 4.1 & 4.2 Cathy Poliak, Ph.D. cathy@math.uh.edu Office in Fleming 11c Department of Mathematics University of Houston Lecture 9-2311 Cathy Poliak, Ph.D. cathy@math.uh.edu

More information

Inverse Normal Distribution and Sampling Distributions

Inverse Normal Distribution and Sampling Distributions Inverse Normal Distribution and Sampling Distributions Section 4.3 & 4.4 Cathy Poliak, Ph.D. cathy@math.uh.edu Department of Mathematics University of Houston Lecture 11-2311 Cathy Poliak, Ph.D. cathy@math.uh.edu

More information

Expected Values, Exponential and Gamma Distributions

Expected Values, Exponential and Gamma Distributions Expected Values, Exponential and Gamma Distributions Sections 5.2 & 5.4 Cathy Poliak, Ph.D. cathy@math.uh.edu Office in Fleming 11c Department of Mathematics University of Houston Lecture 13-3339 Cathy

More information

Confidence Intervals for Two Means

Confidence Intervals for Two Means Confidence Intervals for Two Means Section 7.5 Cathy Poliak, Ph.D. cathy@math.uh.edu Office in Fleming 11c Department of Mathematics University of Houston Lecture 21-2311 Cathy Poliak, Ph.D. cathy@math.uh.edu

More information

Test 1 Review. Review. Cathy Poliak, Ph.D. Office in Fleming 11c (Department Reveiw of Mathematics University of Houston Exam 1)

Test 1 Review. Review. Cathy Poliak, Ph.D. Office in Fleming 11c (Department Reveiw of Mathematics University of Houston Exam 1) Test 1 Review Review Cathy Poliak, Ph.D. cathy@math.uh.edu Office in Fleming 11c Department of Mathematics University of Houston Exam 1 Review Cathy Poliak, Ph.D. cathy@math.uh.edu Office in Fleming 11c

More information

Inference for Proportions, Variance and Standard Deviation

Inference for Proportions, Variance and Standard Deviation Inference for Proportions, Variance and Standard Deviation Sections 7.10 & 7.6 Cathy Poliak, Ph.D. cathy@math.uh.edu Office Fleming 11c Department of Mathematics University of Houston Lecture 12 Cathy

More information

Expected Values, Exponential and Gamma Distributions

Expected Values, Exponential and Gamma Distributions Expected Values, Exponential and Gamma Distributions Sections 5.2-5.4 Cathy Poliak, Ph.D. cathy@math.uh.edu Office in Fleming 11c Department of Mathematics University of Houston Lecture 14-3339 Cathy Poliak,

More information

Suppose that you have three coins. Coin A is fair, coin B shows heads with probability 0.6 and coin C shows heads with probability 0.8.

Suppose that you have three coins. Coin A is fair, coin B shows heads with probability 0.6 and coin C shows heads with probability 0.8. Suppose that you have three coins. Coin A is fair, coin B shows heads with probability 0.6 and coin C shows heads with probability 0.8. Coin A is flipped until a head appears, then coin B is flipped until

More information

Hypergeometric, Poisson & Joint Distributions

Hypergeometric, Poisson & Joint Distributions Hypergeometric, Poisson & Joint Distributions Sec 4.7-4.9 Cathy Poliak, Ph.D. cathy@math.uh.edu Office in Fleming 11c Department of Mathematics University of Houston Lecture 6-3339 Cathy Poliak, Ph.D.

More information

Binomial and Poisson Probability Distributions

Binomial and Poisson Probability Distributions Binomial and Poisson Probability Distributions Esra Akdeniz March 3, 2016 Bernoulli Random Variable Any random variable whose only possible values are 0 or 1 is called a Bernoulli random variable. What

More information

Standard Normal Calculations

Standard Normal Calculations Standard Normal Calculations Section 4.3 Cathy Poliak, Ph.D. cathy@math.uh.edu Office in Fleming 11c Department of Mathematics University of Houston Lecture 10-2311 Cathy Poliak, Ph.D. cathy@math.uh.edu

More information

Least Squares Regression

Least Squares Regression Least Squares Regression Sections 5.3 & 5.4 Cathy Poliak, Ph.D. cathy@math.uh.edu Office in Fleming 11c Department of Mathematics University of Houston Lecture 14-2311 Cathy Poliak, Ph.D. cathy@math.uh.edu

More information

EXAM. Exam #1. Math 3342 Summer II, July 21, 2000 ANSWERS

EXAM. Exam #1. Math 3342 Summer II, July 21, 2000 ANSWERS EXAM Exam # Math 3342 Summer II, 2 July 2, 2 ANSWERS i pts. Problem. Consider the following data: 7, 8, 9, 2,, 7, 2, 3. Find the first quartile, the median, and the third quartile. Make a box and whisker

More information

STAT509: Discrete Random Variable

STAT509: Discrete Random Variable University of South Carolina September 16, 2014 Motivation So far, we have already known how to calculate probabilities of events. Suppose we toss a fair coin three times, we know that the probability

More information

Random Variable. Discrete Random Variable. Continuous Random Variable. Discrete Random Variable. Discrete Probability Distribution

Random Variable. Discrete Random Variable. Continuous Random Variable. Discrete Random Variable. Discrete Probability Distribution Random Variable Theoretical Probability Distribution Random Variable Discrete Probability Distributions A variable that assumes a numerical description for the outcome of a random eperiment (by chance).

More information

Lecture 16. Lectures 1-15 Review

Lecture 16. Lectures 1-15 Review 18.440: Lecture 16 Lectures 1-15 Review Scott Sheffield MIT 1 Outline Counting tricks and basic principles of probability Discrete random variables 2 Outline Counting tricks and basic principles of probability

More information

success and failure independent from one trial to the next?

success and failure independent from one trial to the next? , section 8.4 The Binomial Distribution Notes by Tim Pilachowski Definition of Bernoulli trials which make up a binomial experiment: The number of trials in an experiment is fixed. There are exactly two

More information

Topic 3: The Expectation of a Random Variable

Topic 3: The Expectation of a Random Variable Topic 3: The Expectation of a Random Variable Course 003, 2017 Page 0 Expectation of a discrete random variable Definition (Expectation of a discrete r.v.): The expected value (also called the expectation

More information

Lecture 4: Random Variables and Distributions

Lecture 4: Random Variables and Distributions Lecture 4: Random Variables and Distributions Goals Random Variables Overview of discrete and continuous distributions important in genetics/genomics Working with distributions in R Random Variables A

More information

CMPSCI 240: Reasoning Under Uncertainty

CMPSCI 240: Reasoning Under Uncertainty CMPSCI 240: Reasoning Under Uncertainty Lecture 5 Prof. Hanna Wallach wallach@cs.umass.edu February 7, 2012 Reminders Pick up a copy of B&T Check the course website: http://www.cs.umass.edu/ ~wallach/courses/s12/cmpsci240/

More information

STT 315 Problem Set #3

STT 315 Problem Set #3 1. A student is asked to calculate the probability that x = 3.5 when x is chosen from a normal distribution with the following parameters: mean=3, sd=5. To calculate the answer, he uses this command: >

More information

Introduction to Statistical Data Analysis Lecture 3: Probability Distributions

Introduction to Statistical Data Analysis Lecture 3: Probability Distributions Introduction to Statistical Data Analysis Lecture 3: Probability Distributions James V. Lambers Department of Mathematics The University of Southern Mississippi James V. Lambers Statistical Data Analysis

More information

CS 237: Probability in Computing

CS 237: Probability in Computing CS 237: Probability in Computing Wayne Snyder Computer Science Department Boston University Lecture 11: Geometric Distribution Poisson Process Poisson Distribution Geometric Distribution The Geometric

More information

Discrete Distributions

Discrete Distributions Discrete Distributions Applications of the Binomial Distribution A manufacturing plant labels items as either defective or acceptable A firm bidding for contracts will either get a contract or not A marketing

More information

Example continued. Math 425 Intro to Probability Lecture 37. Example continued. Example

Example continued. Math 425 Intro to Probability Lecture 37. Example continued. Example continued : Coin tossing Math 425 Intro to Probability Lecture 37 Kenneth Harris kaharri@umich.edu Department of Mathematics University of Michigan April 8, 2009 Consider a Bernoulli trials process with

More information

ST 371 (V): Families of Discrete Distributions

ST 371 (V): Families of Discrete Distributions ST 371 (V): Families of Discrete Distributions Certain experiments and associated random variables can be grouped into families, where all random variables in the family share a certain structure and a

More information

Lecture 14. Text: A Course in Probability by Weiss 5.6. STAT 225 Introduction to Probability Models February 23, Whitney Huang Purdue University

Lecture 14. Text: A Course in Probability by Weiss 5.6. STAT 225 Introduction to Probability Models February 23, Whitney Huang Purdue University Lecture 14 Text: A Course in Probability by Weiss 5.6 STAT 225 Introduction to Probability Models February 23, 2014 Whitney Huang Purdue University 14.1 Agenda 14.2 Review So far, we have covered Bernoulli

More information

4. Discrete Probability Distributions. Introduction & Binomial Distribution

4. Discrete Probability Distributions. Introduction & Binomial Distribution 4. Discrete Probability Distributions Introduction & Binomial Distribution Aim & Objectives 1 Aims u Introduce discrete probability distributions v Binomial distribution v Poisson distribution 2 Objectives

More information

Common Discrete Distributions

Common Discrete Distributions Common Discrete Distributions Statistics 104 Autumn 2004 Taken from Statistics 110 Lecture Notes Copyright c 2004 by Mark E. Irwin Common Discrete Distributions There are a wide range of popular discrete

More information

ANOVA: Comparing More Than Two Means

ANOVA: Comparing More Than Two Means ANOVA: Comparing More Than Two Means Chapter 11 Cathy Poliak, Ph.D. cathy@math.uh.edu Office Fleming 11c Department of Mathematics University of Houston Lecture 25-3339 Cathy Poliak, Ph.D. cathy@math.uh.edu

More information

Probability and Statistics Concepts

Probability and Statistics Concepts University of Central Florida Computer Science Division COT 5611 - Operating Systems. Spring 014 - dcm Probability and Statistics Concepts Random Variable: a rule that assigns a numerical value to each

More information

Lecture 3. Discrete Random Variables

Lecture 3. Discrete Random Variables Math 408 - Mathematical Statistics Lecture 3. Discrete Random Variables January 23, 2013 Konstantin Zuev (USC) Math 408, Lecture 3 January 23, 2013 1 / 14 Agenda Random Variable: Motivation and Definition

More information

Discrete Probability Distributions

Discrete Probability Distributions Discrete Probability Distributions Data Science: Jordan Boyd-Graber University of Maryland JANUARY 18, 2018 Data Science: Jordan Boyd-Graber UMD Discrete Probability Distributions 1 / 1 Refresher: Random

More information

The Normal Distribuions

The Normal Distribuions The Normal Distribuions Sections 5.4 & 5.5 Cathy Poliak, Ph.D. cathy@math.uh.edu Office in Fleming 11c Department of Mathematics University of Houston Lecture 15-3339 Cathy Poliak, Ph.D. cathy@math.uh.edu

More information

ELEG 3143 Probability & Stochastic Process Ch. 2 Discrete Random Variables

ELEG 3143 Probability & Stochastic Process Ch. 2 Discrete Random Variables Department of Electrical Engineering University of Arkansas ELEG 3143 Probability & Stochastic Process Ch. 2 Discrete Random Variables Dr. Jingxian Wu wuj@uark.edu OUTLINE 2 Random Variable Discrete Random

More information

Lecture 10. Variance and standard deviation

Lecture 10. Variance and standard deviation 18.440: Lecture 10 Variance and standard deviation Scott Sheffield MIT 1 Outline Defining variance Examples Properties Decomposition trick 2 Outline Defining variance Examples Properties Decomposition

More information

Gamma and Normal Distribuions

Gamma and Normal Distribuions Gamma and Normal Distribuions Sections 5.4 & 5.5 Cathy Poliak, Ph.D. cathy@math.uh.edu Office in Fleming 11c Department of Mathematics University of Houston Lecture 15-3339 Cathy Poliak, Ph.D. cathy@math.uh.edu

More information

Chapter 3: Discrete Random Variable

Chapter 3: Discrete Random Variable Chapter 3: Discrete Random Variable Shiwen Shen University of South Carolina 2017 Summer 1 / 63 Random Variable Definition: A random variable is a function from a sample space S into the real numbers.

More information

Guidelines for Solving Probability Problems

Guidelines for Solving Probability Problems Guidelines for Solving Probability Problems CS 1538: Introduction to Simulation 1 Steps for Problem Solving Suggested steps for approaching a problem: 1. Identify the distribution What distribution does

More information

Estimation and Confidence Intervals

Estimation and Confidence Intervals Estimation and Confidence Intervals Sections 7.1-7.3 Cathy Poliak, Ph.D. cathy@math.uh.edu Office in Fleming 11c Department of Mathematics University of Houston Lecture 17-3339 Cathy Poliak, Ph.D. cathy@math.uh.edu

More information

Discrete Distributions

Discrete Distributions Discrete Distributions STA 281 Fall 2011 1 Introduction Previously we defined a random variable to be an experiment with numerical outcomes. Often different random variables are related in that they have

More information

DEFINITION: IF AN OUTCOME OF A RANDOM EXPERIMENT IS CONVERTED TO A SINGLE (RANDOM) NUMBER (E.G. THE TOTAL

DEFINITION: IF AN OUTCOME OF A RANDOM EXPERIMENT IS CONVERTED TO A SINGLE (RANDOM) NUMBER (E.G. THE TOTAL CHAPTER 5: RANDOM VARIABLES, BINOMIAL AND POISSON DISTRIBUTIONS DEFINITION: IF AN OUTCOME OF A RANDOM EXPERIMENT IS CONVERTED TO A SINGLE (RANDOM) NUMBER (E.G. THE TOTAL NUMBER OF DOTS WHEN ROLLING TWO

More information

Lecture 13. Poisson Distribution. Text: A Course in Probability by Weiss 5.5. STAT 225 Introduction to Probability Models February 16, 2014

Lecture 13. Poisson Distribution. Text: A Course in Probability by Weiss 5.5. STAT 225 Introduction to Probability Models February 16, 2014 Lecture 13 Text: A Course in Probability by Weiss 5.5 STAT 225 Introduction to Probability Models February 16, 2014 Whitney Huang Purdue University 13.1 Agenda 1 2 3 13.2 Review So far, we have seen discrete

More information

Random variables. Lecture 5 - Discrete Distributions. Discrete Probability distributions. Example - Discrete probability model

Random variables. Lecture 5 - Discrete Distributions. Discrete Probability distributions. Example - Discrete probability model Random Variables Random variables Lecture 5 - Discrete Distributions Sta02 / BME02 Colin Rundel Setember 8, 204 A random variable is a numeric uantity whose value deends on the outcome of a random event

More information

Example 1. The sample space of an experiment where we flip a pair of coins is denoted by:

Example 1. The sample space of an experiment where we flip a pair of coins is denoted by: Chapter 8 Probability 8. Preliminaries Definition (Sample Space). A Sample Space, Ω, is the set of all possible outcomes of an experiment. Such a sample space is considered discrete if Ω has finite cardinality.

More information

Outline PMF, CDF and PDF Mean, Variance and Percentiles Some Common Distributions. Week 5 Random Variables and Their Distributions

Outline PMF, CDF and PDF Mean, Variance and Percentiles Some Common Distributions. Week 5 Random Variables and Their Distributions Week 5 Random Variables and Their Distributions Week 5 Objectives This week we give more general definitions of mean value, variance and percentiles, and introduce the first probability models for discrete

More information

STAT 516 Midterm Exam 2 Friday, March 7, 2008

STAT 516 Midterm Exam 2 Friday, March 7, 2008 STAT 516 Midterm Exam 2 Friday, March 7, 2008 Name Purdue student ID (10 digits) 1. The testing booklet contains 8 questions. 2. Permitted Texas Instruments calculators: BA-35 BA II Plus BA II Plus Professional

More information

1 INFO Sep 05

1 INFO Sep 05 Events A 1,...A n are said to be mutually independent if for all subsets S {1,..., n}, p( i S A i ) = p(a i ). (For example, flip a coin N times, then the events {A i = i th flip is heads} are mutually

More information

Page Max. Possible Points Total 100

Page Max. Possible Points Total 100 Math 3215 Exam 2 Summer 2014 Instructor: Sal Barone Name: GT username: 1. No books or notes are allowed. 2. You may use ONLY NON-GRAPHING and NON-PROGRAMABLE scientific calculators. All other electronic

More information

Review for Exam Spring 2018

Review for Exam Spring 2018 Review for Exam 1 18.05 Spring 2018 Extra office hours Tuesday: David 3 5 in 2-355 Watch web site for more Friday, Saturday, Sunday March 9 11: no office hours March 2, 2018 2 / 23 Exam 1 Designed to be

More information

BINOMIAL DISTRIBUTION

BINOMIAL DISTRIBUTION BINOMIAL DISTRIBUTION The binomial distribution is a particular type of discrete pmf. It describes random variables which satisfy the following conditions: 1 You perform n identical experiments (called

More information

Exponential, Gamma and Normal Distribuions

Exponential, Gamma and Normal Distribuions Exponential, Gamma and Normal Distribuions Sections 5.4, 5.5 & 6.5 Cathy Poliak, Ph.D. cathy@math.uh.edu Office in Fleming 11c Department of Mathematics University of Houston Lecture 9-3339 Cathy Poliak,

More information

Lecture 2: Discrete Probability Distributions

Lecture 2: Discrete Probability Distributions Lecture 2: Discrete Probability Distributions IB Paper 7: Probability and Statistics Carl Edward Rasmussen Department of Engineering, University of Cambridge February 1st, 2011 Rasmussen (CUED) Lecture

More information

Lecture 2: Probability and Distributions

Lecture 2: Probability and Distributions Lecture 2: Probability and Distributions Ani Manichaikul amanicha@jhsph.edu 17 April 2007 1 / 65 Probability: Why do we care? Probability helps us by: Allowing us to translate scientific questions info

More information

CSE 103 Homework 8: Solutions November 30, var(x) = np(1 p) = P r( X ) 0.95 P r( X ) 0.

CSE 103 Homework 8: Solutions November 30, var(x) = np(1 p) = P r( X ) 0.95 P r( X ) 0. () () a. X is a binomial distribution with n = 000, p = /6 b. The expected value, variance, and standard deviation of X is: E(X) = np = 000 = 000 6 var(x) = np( p) = 000 5 6 666 stdev(x) = np( p) = 000

More information

STA 4321/5325 Solution to Extra Homework 1 February 8, 2017

STA 4321/5325 Solution to Extra Homework 1 February 8, 2017 STA 431/535 Solution to Etra Homework 1 February 8, 017 1. Show that for any RV X, V (X 0. (You can assume X to be discrete, but this result holds in general. Hence or otherwise show that E(X E (X. Solution.

More information

PubH 5450 Biostatistics I Prof. Carlin. Lecture 13

PubH 5450 Biostatistics I Prof. Carlin. Lecture 13 PubH 5450 Biostatistics I Prof. Carlin Lecture 13 Outline Outline Sample Size Counts, Rates and Proportions Part I Sample Size Type I Error and Power Type I error rate: probability of rejecting the null

More information

Binomial random variable

Binomial random variable Binomial random variable Toss a coin with prob p of Heads n times X: # Heads in n tosses X is a Binomial random variable with parameter n,p. X is Bin(n, p) An X that counts the number of successes in many

More information

3 Multiple Discrete Random Variables

3 Multiple Discrete Random Variables 3 Multiple Discrete Random Variables 3.1 Joint densities Suppose we have a probability space (Ω, F,P) and now we have two discrete random variables X and Y on it. They have probability mass functions f

More information

Massachusetts Institute of Technology

Massachusetts Institute of Technology Summary of Results for Special Random Variables Discrete Uniform over [a, b]: { 1 p X (k) = b a +1, if k = a, a +1,...,b, 0, otherwise, E[X] = a + b 2 a)(b a + 2), var(x) =(b. 12 Bernoulli with Parameter

More information

An-Najah National University Faculty of Engineering Industrial Engineering Department. Course : Quantitative Methods (65211)

An-Najah National University Faculty of Engineering Industrial Engineering Department. Course : Quantitative Methods (65211) An-Najah National University Faculty of Engineering Industrial Engineering Department Course : Quantitative Methods (65211) Instructor: Eng. Tamer Haddad 2 nd Semester 2009/2010 Chapter 3 Discrete Random

More information

STAT 418: Probability and Stochastic Processes

STAT 418: Probability and Stochastic Processes STAT 418: Probability and Stochastic Processes Spring 2016; Homework Assignments Latest updated on April 29, 2016 HW1 (Due on Jan. 21) Chapter 1 Problems 1, 8, 9, 10, 11, 18, 19, 26, 28, 30 Theoretical

More information

Probability: Why do we care? Lecture 2: Probability and Distributions. Classical Definition. What is Probability?

Probability: Why do we care? Lecture 2: Probability and Distributions. Classical Definition. What is Probability? Probability: Why do we care? Lecture 2: Probability and Distributions Sandy Eckel seckel@jhsph.edu 22 April 2008 Probability helps us by: Allowing us to translate scientific questions into mathematical

More information

Discrete probability distributions

Discrete probability distributions Discrete probability s BSAD 30 Dave Novak Fall 08 Source: Anderson et al., 05 Quantitative Methods for Business th edition some slides are directly from J. Loucks 03 Cengage Learning Covered so far Chapter

More information

Great Theoretical Ideas in Computer Science

Great Theoretical Ideas in Computer Science 15-251 Great Theoretical Ideas in Computer Science Probability Theory: Counting in Terms of Proportions Lecture 10 (September 27, 2007) Some Puzzles Teams A and B are equally good In any one game, each

More information

Lecture 10: Probability distributions TUESDAY, FEBRUARY 19, 2019

Lecture 10: Probability distributions TUESDAY, FEBRUARY 19, 2019 Lecture 10: Probability distributions DANIEL WELLER TUESDAY, FEBRUARY 19, 2019 Agenda What is probability? (again) Describing probabilities (distributions) Understanding probabilities (expectation) Partial

More information

Math Key Homework 3 (Chapter 4)

Math Key Homework 3 (Chapter 4) Math 3339 - Key Homework 3 (Chapter 4) Name: PeopleSoft ID: Instructions: Homework will NOT be accepted through email or in person. Homework must be submitted through CourseWare BEFORE the deadline. Print

More information

1 Bernoulli Distribution: Single Coin Flip

1 Bernoulli Distribution: Single Coin Flip STAT 350 - An Introduction to Statistics Named Discrete Distributions Jeremy Troisi Bernoulli Distribution: Single Coin Flip trial of an experiment that yields either a success or failure. X Bern(p),X

More information

POISSON RANDOM VARIABLES

POISSON RANDOM VARIABLES POISSON RANDOM VARIABLES Suppose a random phenomenon occurs with a mean rate of occurrences or happenings per unit of time or length or area or volume, etc. Note: >. Eamples: 1. Cars passing through an

More information

7. Be able to prove Rules in Section 7.3, using only the Kolmogorov axioms.

7. Be able to prove Rules in Section 7.3, using only the Kolmogorov axioms. Midterm Review Solutions for MATH 50 Solutions to the proof and example problems are below (in blue). In each of the example problems, the general principle is given in parentheses before the solution.

More information

18.175: Lecture 13 Infinite divisibility and Lévy processes

18.175: Lecture 13 Infinite divisibility and Lévy processes 18.175 Lecture 13 18.175: Lecture 13 Infinite divisibility and Lévy processes Scott Sheffield MIT Outline Poisson random variable convergence Extend CLT idea to stable random variables Infinite divisibility

More information

Copyright c 2006 Jason Underdown Some rights reserved. choose notation. n distinct items divided into r distinct groups.

Copyright c 2006 Jason Underdown Some rights reserved. choose notation. n distinct items divided into r distinct groups. Copyright & License Copyright c 2006 Jason Underdown Some rights reserved. choose notation binomial theorem n distinct items divided into r distinct groups Axioms Proposition axioms of probability probability

More information

Random Variables Example:

Random Variables Example: Random Variables Example: We roll a fair die 6 times. Suppose we are interested in the number of 5 s in the 6 rolls. Let X = number of 5 s. Then X could be 0, 1, 2, 3, 4, 5, 6. X = 0 corresponds to the

More information

Chapter 7: Theoretical Probability Distributions Variable - Measured/Categorized characteristic

Chapter 7: Theoretical Probability Distributions Variable - Measured/Categorized characteristic BSTT523: Pagano & Gavreau, Chapter 7 1 Chapter 7: Theoretical Probability Distributions Variable - Measured/Categorized characteristic Random Variable (R.V.) X Assumes values (x) by chance Discrete R.V.

More information

Expected Value - Revisited

Expected Value - Revisited Expected Value - Revisited An experiment is a Bernoulli Trial if: there are two outcomes (success and failure), the probability of success, p, is always the same, the trials are independent. Expected Value

More information

Bernoulli and Binomial

Bernoulli and Binomial Bernoulli and Binomial Will Monroe July 1, 217 image: Antoine Taveneaux with materials by Mehran Sahami and Chris Piech Announcements: Problem Set 2 Due this Wednesday, 7/12, at 12:3pm (before class).

More information

Lecture 10: Bayes' Theorem, Expected Value and Variance Lecturer: Lale Özkahya

Lecture 10: Bayes' Theorem, Expected Value and Variance Lecturer: Lale Özkahya BBM 205 Discrete Mathematics Hacettepe University http://web.cs.hacettepe.edu.tr/ bbm205 Lecture 10: Bayes' Theorem, Expected Value and Variance Lecturer: Lale Özkahya Resources: Kenneth Rosen, Discrete

More information

Probability Density Functions and the Normal Distribution. Quantitative Understanding in Biology, 1.2

Probability Density Functions and the Normal Distribution. Quantitative Understanding in Biology, 1.2 Probability Density Functions and the Normal Distribution Quantitative Understanding in Biology, 1.2 1. Discrete Probability Distributions 1.1. The Binomial Distribution Question: You ve decided to flip

More information

a zoo of (discrete) random variables

a zoo of (discrete) random variables discrete uniform random variables A discrete random variable X equally liely to tae any (integer) value between integers a and b, inclusive, is uniform. Notation: X ~ Unif(a,b) a zoo of (discrete) random

More information

Lecture 2 Binomial and Poisson Probability Distributions

Lecture 2 Binomial and Poisson Probability Distributions Binomial Probability Distribution Lecture 2 Binomial and Poisson Probability Distributions Consider a situation where there are only two possible outcomes (a Bernoulli trial) Example: flipping a coin James

More information

Test 2 VERSION B STAT 3090 Spring 2017

Test 2 VERSION B STAT 3090 Spring 2017 Multiple Choice: (Questions 1 20) Answer the following questions on the scantron provided using a #2 pencil. Bubble the response that best answers the question. Each multiple choice correct response is

More information

Bernoulli and Binomial Distributions. Notes. Bernoulli Trials. Bernoulli/Binomial Random Variables Bernoulli and Binomial Distributions.

Bernoulli and Binomial Distributions. Notes. Bernoulli Trials. Bernoulli/Binomial Random Variables Bernoulli and Binomial Distributions. Lecture 11 Text: A Course in Probability by Weiss 5.3 STAT 225 Introduction to Probability Models February 16, 2014 Whitney Huang Purdue University 11.1 Agenda 1 2 11.2 Bernoulli trials Many problems in

More information

STAT 414: Introduction to Probability Theory

STAT 414: Introduction to Probability Theory STAT 414: Introduction to Probability Theory Spring 2016; Homework Assignments Latest updated on April 29, 2016 HW1 (Due on Jan. 21) Chapter 1 Problems 1, 8, 9, 10, 11, 18, 19, 26, 28, 30 Theoretical Exercises

More information

Expected Value 7/7/2006

Expected Value 7/7/2006 Expected Value 7/7/2006 Definition Let X be a numerically-valued discrete random variable with sample space Ω and distribution function m(x). The expected value E(X) is defined by E(X) = x Ω x m(x), provided

More information

Some Special Discrete Distributions

Some Special Discrete Distributions Mathematics Department De La Salle University Manila February 6, 2017 Some Discrete Distributions Often, the observations generated by different statistical experiments have the same general type of behaviour.

More information

STA 111: Probability & Statistical Inference

STA 111: Probability & Statistical Inference STA 111: Probability & Statistical Inference Lecture Four Expectation and Continuous Random Variables Instructor: Olanrewaju Michael Akande Department of Statistical Science, Duke University Instructor:

More information

Chapter 3: Probability 3.1: Basic Concepts of Probability

Chapter 3: Probability 3.1: Basic Concepts of Probability Chapter 3: Probability 3.1: Basic Concepts of Probability Objectives Identify the sample space of a probability experiment and a simple event Use the Fundamental Counting Principle Distinguish classical

More information

Lecture 20 Random Samples 0/ 13

Lecture 20 Random Samples 0/ 13 0/ 13 One of the most important concepts in statistics is that of a random sample. The definition of a random sample is rather abstract. However it is critical to understand the idea behind the definition,

More information

BNAD 276 Lecture 5 Discrete Probability Distributions Exercises 1 11

BNAD 276 Lecture 5 Discrete Probability Distributions Exercises 1 11 1 / 15 BNAD 276 Lecture 5 Discrete Probability Distributions 1 11 Phuong Ho May 14, 2017 Exercise 1 Suppose we have the probability distribution for the random variable X as follows. X f (x) 20.20 25.15

More information

CSC Discrete Math I, Spring Discrete Probability

CSC Discrete Math I, Spring Discrete Probability CSC 125 - Discrete Math I, Spring 2017 Discrete Probability Probability of an Event Pierre-Simon Laplace s classical theory of probability: Definition of terms: An experiment is a procedure that yields

More information

Discrete Random Variable Practice

Discrete Random Variable Practice IB Math High Level Year Discrete Probability Distributions - MarkScheme Discrete Random Variable Practice. A biased die with four faces is used in a game. A player pays 0 counters to roll the die. The

More information

HW on Ch Let X be a discrete random variable with V (X) = 8.6, then V (3X+5.6) is. V (3X + 5.6) = 3 2 V (X) = 9(8.6) = 77.4.

HW on Ch Let X be a discrete random variable with V (X) = 8.6, then V (3X+5.6) is. V (3X + 5.6) = 3 2 V (X) = 9(8.6) = 77.4. HW on Ch 3 Name: Questions:. Let X be a discrete random variable with V (X) = 8.6, then V (3X+5.6) is. V (3X + 5.6) = 3 2 V (X) = 9(8.6) = 77.4. 2. Let X be a discrete random variable with E(X 2 ) = 9.75

More information

Kousha Etessami. U. of Edinburgh, UK. Kousha Etessami (U. of Edinburgh, UK) Discrete Mathematics (Chapter 7) 1 / 13

Kousha Etessami. U. of Edinburgh, UK. Kousha Etessami (U. of Edinburgh, UK) Discrete Mathematics (Chapter 7) 1 / 13 Discrete Mathematics & Mathematical Reasoning Chapter 7 (continued): Markov and Chebyshev s Inequalities; and Examples in probability: the birthday problem Kousha Etessami U. of Edinburgh, UK Kousha Etessami

More information

Lecture 6. Probability events. Definition 1. The sample space, S, of a. probability experiment is the collection of all

Lecture 6. Probability events. Definition 1. The sample space, S, of a. probability experiment is the collection of all Lecture 6 1 Lecture 6 Probability events Definition 1. The sample space, S, of a probability experiment is the collection of all possible outcomes of an experiment. One such outcome is called a simple

More information

CS 361: Probability & Statistics

CS 361: Probability & Statistics February 26, 2018 CS 361: Probability & Statistics Random variables The discrete uniform distribution If every value of a discrete random variable has the same probability, then its distribution is called

More information

Chernoff Bounds. Theme: try to show that it is unlikely a random variable X is far away from its expectation.

Chernoff Bounds. Theme: try to show that it is unlikely a random variable X is far away from its expectation. Chernoff Bounds Theme: try to show that it is unlikely a random variable X is far away from its expectation. The more you know about X, the better the bound you obtain. Markov s inequality: use E[X ] Chebyshev

More information

Probability Theory and Simulation Methods. April 6th, Lecture 19: Special distributions

Probability Theory and Simulation Methods. April 6th, Lecture 19: Special distributions April 6th, 2018 Lecture 19: Special distributions Week 1 Chapter 1: Axioms of probability Week 2 Chapter 3: Conditional probability and independence Week 4 Chapters 4, 6: Random variables Week 9 Chapter

More information