More discrete distributions

Size: px
Start display at page:

Download "More discrete distributions"

Transcription

1 Will Monroe July 14, 217 with materials by Mehran Sahami and Chris Piech More discrete distributions

2 Announcements: Problem Set 3 Posted yesterday on the course website. Due next Wednesday, 7/19, at 12:3pm (before class). (election prediction) (Moby Dick)

3 Announcements: Problem Set 3 Posted yesterday on the course website. Due next Wednesday, 7/19, at 12:3pm (before class). Everybody gets an extra late day! (4 total) (election prediction) (Moby Dick)

4 Review: Bernoulli random variable An indicator variable (a possibly biased coin flip) obeys a Bernoulli distribution. Bernoulli random variables can be or 1. X Ber ( p) p X (1)= p p X ()=1 p ( elsewhere)

5 Review: Bernoulli fact sheet? X Ber ( p) probability of success (heads, ad click,...) PMF: expectation: variance: p X (1)= p p X ()=1 p ( elsewhere) E [ X ]= p Var( X )= p(1 p) image (right): Gabriela Serrano

6 Review: Binomial random variable The number of heads on n (possibly biased) coin flips obeys a binomial distribution. X Bin (n, p) n p k (1 p)n k if k ℕ, k n p X (k)= k otherwise { ()

7 Review: Binomial fact sheet number of trials (flips, program runs,...) X Bin (n, p) probability of success (heads, crash,...) PMF: expectation: variance: n p k (1 p)n k if k ℕ, k n p X (k )= k otherwise { () E [ X ]=np Var( X )=np(1 p) note: Ber ( p)=bin (1, p)

8 Review: Poisson random variable The number of occurrences of an event that occurs with constant rate λ (per unit time), in 1 unit of time, obeys a Poisson distribution. X Poi (λ) p X (k)= { λ e k λ k! if k ℤ, k otherwise

9 Review: Poisson fact sheet X Poi (λ) rate of events (requests, earthquakes, chocolate chips, ) per unit time (hour, year, cookie,...) PMF: expectation: variance: p X (k )= { e k λ if k ℤ, k k! otherwise λ E [ X ]=λ Var( X )=λ

10 Geometric random variable The number of trials it takes to get one success, if successes occur independently with probability p, obeys a geometric distribution. X Geo( p) k 1 (1 p) p if k ℤ, k 1 p X (k )= otherwise {

11 Catching Pokémon Wild Pokémon are captured by throwing Poké Balls at them. Each ball has probability p of capturing the Pokémon. How many are needed on average for a successful capture? X: number of Poké Balls until (and including) capture Ci: event that Pokémon is captured on the i-th throw C 1 C 1 C C k 1 P ( X =k )=P (C C 2 C Ck) C C =P(C ) P (C 2 ) P (C k 1 ) P (C k ) k 1 =(1 p) p

12 Geometric: Fact sheet X Geo( p) probability of success (catch, heads, crash,...) PMF: k 1 (1 p) p if k ℤ, k 1 p X (k )= otherwise {

13 Catching Pokémon X: number of Poké Balls until (and including) capture k 1 P ( X =k )=(1 p) p k 1 E [ X ]= k (1 p) p k =1 E [ X ]=(1 p) E [ X ]+1 (1 (1 p)) E [ X ]=1 p E [ X ]=1 1 E [ X ]= p k 1 = (k 1+1) (1 p) p k=1 k 1 = (k 1) (1 p) p+ (1 p) k=1 k =1 j j j= j 1 p 1 x = 1 x j= = j (1 p) p+ (1 p) p j= k 1 =(1 p) j (1 p) p+ p (1 p) j= 1 =(1 p) E [ X ]+ p 1 (1 p) =(1 p) E [ X ]+1 j= j j

14 Geometric: Fact sheet X Geo( p) probability of success (catch, heads, crash,...) PMF: expectation: k 1 (1 p) p if k ℤ, k 1 p X (k )= otherwise { 1 E[ X ]= p

15 Catching Pokémon Wild Pokémon are captured by throwing Poké Balls at them. Each ball has probability p =.1 of capturing the Pokémon. How many are needed so that probability of successful capture is at least 99%? X: number of Poké Balls until (and including) capture Ci: event that Pokémon is captured on the i-th throw P ( X k )=1 P ( X >k ) C C C =1 P(C 1 C 2 C k ) C C C =1 P(C 1 ) P (C 2 ) P(C k ) k =1 (1 p)

16 Cumulative distribution function The cumulative distribution function (CDF) of a random variable is a function giving the probability that the random variable is less than or equal to a value. F Y (k )=P(Y k ) P(Y k ) (CDF of the sum of two dice) k

17 Geometric: Fact sheet X Geo( p) probability of success (catch, heads, crash,...) PMF: CDF: expectation: k 1 (1 p) p if k ℤ, k 1 p X (k )= otherwise { { k 1 (1 p) F X (k )= 1 E[ X ]= p if k ℤ, k 1 otherwise

18 Catching Pokémon Wild Pokémon are captured by throwing Poké Balls at them. Each ball has probability p =.1 of capturing the Pokémon. How many are needed so that probability of successful capture is at least 99%? X: number of Poké Balls until (and including) capture k P ( X k )=1 (1 p).99 k.1 (1 p) log.1 k log (1 p) log k log (1 p)

19 Geometric: Fact sheet X Geo( p) probability of success (catch, heads, crash,...) PMF: CDF: expectation: variance: k 1 (1 p) p if k ℤ, k 1 p X (k )= otherwise { { k 1 (1 p) F X (k )= 1 E[ X ]= p 1 p Var( X )= 2 p if k ℤ, k 1 otherwise

20 Break time!

21 Negative binomial random variable The number of trials it takes to get r successes, if successes occur independently with probability p, obeys a negative binomial distribution. X NegBin (r, p) n 1 pr (1 p)n r if n ℤ, n r p X (n)= r 1 otherwise { ( )

22 Getting that degree A conference accepts papers (independently and randomly?) with probability p =.25. A hypothetical grad student needs 3 accepted papers to graduate. What is the probability this takes exactly 1 submissions? X: number of tries to get 3 accepts Y: number of accepts in first 9 tries accept on 1th try P( X =1)=P(Y =2) p = (1 p) p p.75 2 ()

23 Getting that degree A conference accepts papers (independently and randomly?) with probability p. A hypothetical grad student needs r accepted papers to graduate. What is the probability this takes exactly n submissions? X: number of tries to get r accepts Y: number of accepts in first n 1 tries accept on nth try P( X =1)=P(Y =r 1) p n r r 1 n 1 = (1 p) p p r 1 ( )

24 Negative binomial: Fact sheet number of sucesses (heads, crash,...) X NegBin (r, p) number of trials (flips, program runs,...) PMF: probability of success n 1 pr (1 p)n r if n ℤ, n r p X (n)= r 1 otherwise { ( )

25 Getting that degree A conference accepts papers (independently and randomly?) with probability p =.25. A hypothetical grad student needs 3 accepted papers to graduate. How many submissions will be necessary on average? X: number of tries to get 3 accepts E [ X ]=? A) 3.25 B) 3.25 C) D) Room: CS19SUMMER17

26 Getting that degree A conference accepts papers (independently and randomly?) with probability p. A hypothetical grad student needs r accepted papers to graduate. How many submissions will be necessary on average? X: number of tries to get r accepts r E [ X ]= p Room: CS19SUMMER17

27 Negative binomial: Fact sheet number of sucesses (heads, crash,...) X NegBin (r, p) number of trials (flips, program runs,...) PMF: expectation: variance: probability of success n 1 pr (1 p)n r if n ℤ, n r p X (n)= r 1 otherwise r E[ X ]= p r (1 p) note: Var( X )= 2 p Geo( p)=negbin (1, p) { ( )

28 A few optional (but hopefully interesting) distributions (these won t be on tests or problem sets)

29 Hypergeometric distribution balls to draw number of red balls X HypG (n, N, m) number of red balls drawn without replacement m N m k n k ( )( ) PMF: p (k)= N (n) X { expectation: E [ X ]=n total number of balls (black + red) if k ℤ, k min (n,m) otherwise m N variance: Var ( X )= n m( N2 n)( N m) N ( N 1)

30 Benford distribution base of number system (e.g. 1) X Benford (b) first digit of naturally occurring number 1 log b (1+ ) if d ℤ, d <b PMF: p X (d)= d otherwise {.35 Benford's Law Physical Constants.3 Frequency First Digit

31 Zipf distribution power law exponent (often close to 1) X Zipf (s, N ) rank of randomly chosen word PMF: p X (k)= { vocabulary size 1/k N s if k ℤ, k N s (1/n ) n=1 otherwise

32 A grid of random variables number of successes One trial X Ber( p) n=1 Several trials Interval of time X Bin(n, p) X Poi(λ) time to get successes X Geo( p) One success r=1 X NegBin (r, p) X Exp(λ) (coming soon!) Several successes One success after interval of time

33 Rapid-fire random variables number of Snapchats you receive today A) Ber ( p) D) Geo( p) B) Bin (n, p) E) NegBin (r, p) C) Poi(λ) Room: CS19SUMMER17

34 Rapid-fire random variables number of children until the first one with brown eyes A) Ber ( p) D) Geo( p) B) Bin (n, p) E) NegBin (r, p) with r = 1 C) Poi(λ) Room: CS19SUMMER17

35 Rapid-fire random variables whether the stock market went up today (1 = up, = down) A) Ber ( p) D) Geo( p) B) Bin (n, p) E) NegBin (r, p) with n = 1 C) Poi(λ) Room: CS19SUMMER17

36 Rapid-fire random variables number of years in some decade with more than 6 Atlantic hurricanes A) Ber ( p) D) Geo( p) B) Bin (n, p) E) NegBin (r, p) C) Poi(λ) Room: CS19SUMMER17

Bernoulli and Binomial

Bernoulli and Binomial Bernoulli and Binomial Will Monroe July 1, 217 image: Antoine Taveneaux with materials by Mehran Sahami and Chris Piech Announcements: Problem Set 2 Due this Wednesday, 7/12, at 12:3pm (before class).

More information

Binomial in the Limit

Binomial in the Limit Lisa Yan CS 09 Lecture Notes #8 July 3, 208 The Poisson Distribution and other Discrete Distributions Based on a chapter by Chris Piech Binomial in the Limit Recall the example of sending a bit string

More information

Lecture 08: Poisson and More. Lisa Yan July 13, 2018

Lecture 08: Poisson and More. Lisa Yan July 13, 2018 Lecture 08: Poisson and More Lisa Yan July 13, 2018 Announcements PS1: Grades out later today Solutions out after class today PS2 due today PS3 out today (due next Friday 7/20) 2 Midterm announcement Tuesday,

More information

Independent random variables

Independent random variables Will Monroe July 4, 017 with materials by Mehran Sahami and Chris Piech Independent random variables Announcements: Midterm Tomorrow! Tuesday, July 5, 7:00-9:00pm Building 30-105 (main quad, Geology Corner)

More information

The Normal Distribution

The Normal Distribution The Normal Distribution image: Etsy Will Monroe July 19, 017 with materials by Mehran Sahami and Chris Piech Announcements: Midterm A week from yesterday: Tuesday, July 5, 7:00-9:00pm Building 30-105 One

More information

Conditional distributions

Conditional distributions Conditional distributions Will Monroe July 6, 017 with materials by Mehran Sahami and Chris Piech Independence of discrete random variables Two random variables are independent if knowing the value of

More information

Continuous Variables Chris Piech CS109, Stanford University

Continuous Variables Chris Piech CS109, Stanford University Continuous Variables Chris Piech CS109, Stanford University 1906 Earthquak Magnitude 7.8 Learning Goals 1. Comfort using new discrete random variables 2. Integrate a density function (PDF) to get a probability

More information

Will Monroe July 5, with materials by Mehran Sahami and Chris Piech. image: Therightclicks. Independence

Will Monroe July 5, with materials by Mehran Sahami and Chris Piech. image: Therightclicks. Independence Will Monroe July 5, 2017 with materials by Mehran Sahami and Chris Piech image: Therightclicks Independence Announcements: Problem Set 1 due! Solutions to be posted next Wednesday (no submissions allowed

More information

ELEG 3143 Probability & Stochastic Process Ch. 2 Discrete Random Variables

ELEG 3143 Probability & Stochastic Process Ch. 2 Discrete Random Variables Department of Electrical Engineering University of Arkansas ELEG 3143 Probability & Stochastic Process Ch. 2 Discrete Random Variables Dr. Jingxian Wu wuj@uark.edu OUTLINE 2 Random Variable Discrete Random

More information

a zoo of (discrete) random variables

a zoo of (discrete) random variables discrete uniform random variables A discrete random variable X equally liely to tae any (integer) value between integers a and b, inclusive, is uniform. Notation: X ~ Unif(a,b) a zoo of (discrete) random

More information

Poisson Chris Piech CS109, Stanford University. Piech, CS106A, Stanford University

Poisson Chris Piech CS109, Stanford University. Piech, CS106A, Stanford University Poisson Chris Piech CS109, Stanford University Piech, CS106A, Stanford University Probability for Extreme Weather? Piech, CS106A, Stanford University Four Prototypical Trajectories Review Binomial Random

More information

Lecture 3. Discrete Random Variables

Lecture 3. Discrete Random Variables Math 408 - Mathematical Statistics Lecture 3. Discrete Random Variables January 23, 2013 Konstantin Zuev (USC) Math 408, Lecture 3 January 23, 2013 1 / 14 Agenda Random Variable: Motivation and Definition

More information

Random Variables Example:

Random Variables Example: Random Variables Example: We roll a fair die 6 times. Suppose we are interested in the number of 5 s in the 6 rolls. Let X = number of 5 s. Then X could be 0, 1, 2, 3, 4, 5, 6. X = 0 corresponds to the

More information

Debugging Intuition. How to calculate the probability of at least k successes in n trials?

Debugging Intuition. How to calculate the probability of at least k successes in n trials? How to calculate the probability of at least k successes in n trials? X is number of successes in n trials each with probability p # ways to choose slots for success Correct: Debugging Intuition P (X k)

More information

Fundamental Tools - Probability Theory II

Fundamental Tools - Probability Theory II Fundamental Tools - Probability Theory II MSc Financial Mathematics The University of Warwick September 29, 2015 MSc Financial Mathematics Fundamental Tools - Probability Theory II 1 / 22 Measurable random

More information

HW on Ch Let X be a discrete random variable with V (X) = 8.6, then V (3X+5.6) is. V (3X + 5.6) = 3 2 V (X) = 9(8.6) = 77.4.

HW on Ch Let X be a discrete random variable with V (X) = 8.6, then V (3X+5.6) is. V (3X + 5.6) = 3 2 V (X) = 9(8.6) = 77.4. HW on Ch 3 Name: Questions:. Let X be a discrete random variable with V (X) = 8.6, then V (3X+5.6) is. V (3X + 5.6) = 3 2 V (X) = 9(8.6) = 77.4. 2. Let X be a discrete random variable with E(X 2 ) = 9.75

More information

CS 237: Probability in Computing

CS 237: Probability in Computing CS 237: Probability in Computing Wayne Snyder Computer Science Department Boston University Lecture 11: Geometric Distribution Poisson Process Poisson Distribution Geometric Distribution The Geometric

More information

Math/Stat 352 Lecture 8

Math/Stat 352 Lecture 8 Math/Stat 352 Lecture 8 Sections 4.3 and 4.4 Commonly Used Distributions: Poisson, hypergeometric, geometric, and negative binomial. 1 The Poisson Distribution Poisson random variable counts the number

More information

4. Discrete Probability Distributions. Introduction & Binomial Distribution

4. Discrete Probability Distributions. Introduction & Binomial Distribution 4. Discrete Probability Distributions Introduction & Binomial Distribution Aim & Objectives 1 Aims u Introduce discrete probability distributions v Binomial distribution v Poisson distribution 2 Objectives

More information

Some Special Discrete Distributions

Some Special Discrete Distributions Mathematics Department De La Salle University Manila February 6, 2017 Some Discrete Distributions Often, the observations generated by different statistical experiments have the same general type of behaviour.

More information

(Ch 3.4.1, 3.4.2, 4.1, 4.2, 4.3)

(Ch 3.4.1, 3.4.2, 4.1, 4.2, 4.3) 3 Probability Distributions (Ch 3.4.1, 3.4.2, 4.1, 4.2, 4.3) Probability Distribution Functions Probability distribution function (pdf): Function for mapping random variables to real numbers. Discrete

More information

4. Suppose that we roll two die and let X be equal to the maximum of the two rolls. Find P (X {1, 3, 5}) and draw the PMF for X.

4. Suppose that we roll two die and let X be equal to the maximum of the two rolls. Find P (X {1, 3, 5}) and draw the PMF for X. Math 10B with Professor Stankova Worksheet, Midterm #2; Wednesday, 3/21/2018 GSI name: Roy Zhao 1 Problems 1.1 Bayes Theorem 1. Suppose a test is 99% accurate and 1% of people have a disease. What is the

More information

Introduction to Probability 2017/18 Supplementary Problems

Introduction to Probability 2017/18 Supplementary Problems Introduction to Probability 2017/18 Supplementary Problems Problem 1: Let A and B denote two events with P(A B) 0. Show that P(A) 0 and P(B) 0. A A B implies P(A) P(A B) 0, hence P(A) 0. Similarly B A

More information

Relationship between probability set function and random variable - 2 -

Relationship between probability set function and random variable - 2 - 2.0 Random Variables A rat is selected at random from a cage and its sex is determined. The set of possible outcomes is female and male. Thus outcome space is S = {female, male} = {F, M}. If we let X be

More information

a zoo of (discrete) random variables

a zoo of (discrete) random variables a zoo of (discrete) random variables 42 uniform random variable Takes each possible value, say {1..n} with equal probability. Say random variable uniform on S Recall envelopes problem on homework... Randomization

More information

Notes 12 Autumn 2005

Notes 12 Autumn 2005 MAS 08 Probability I Notes Autumn 005 Conditional random variables Remember that the conditional probability of event A given event B is P(A B) P(A B)/P(B). Suppose that X is a discrete random variable.

More information

Lecture 13. Poisson Distribution. Text: A Course in Probability by Weiss 5.5. STAT 225 Introduction to Probability Models February 16, 2014

Lecture 13. Poisson Distribution. Text: A Course in Probability by Weiss 5.5. STAT 225 Introduction to Probability Models February 16, 2014 Lecture 13 Text: A Course in Probability by Weiss 5.5 STAT 225 Introduction to Probability Models February 16, 2014 Whitney Huang Purdue University 13.1 Agenda 1 2 3 13.2 Review So far, we have seen discrete

More information

Binomial and Poisson Probability Distributions

Binomial and Poisson Probability Distributions Binomial and Poisson Probability Distributions Esra Akdeniz March 3, 2016 Bernoulli Random Variable Any random variable whose only possible values are 0 or 1 is called a Bernoulli random variable. What

More information

CSE 312, 2011 Winter, W.L.Ruzzo. 6. random variables

CSE 312, 2011 Winter, W.L.Ruzzo. 6. random variables CSE 312, 2011 Winter, W.L.Ruzzo 6. random variables random variables 23 numbered balls Ross 4.1 ex 1b 24 first head 25 probability mass functions 26 head count Let X be the number of heads observed in

More information

STAT2201. Analysis of Engineering & Scientific Data. Unit 3

STAT2201. Analysis of Engineering & Scientific Data. Unit 3 STAT2201 Analysis of Engineering & Scientific Data Unit 3 Slava Vaisman The University of Queensland School of Mathematics and Physics What we learned in Unit 2 (1) We defined a sample space of a random

More information

Week 6, 9/24/12-9/28/12, Notes: Bernoulli, Binomial, Hypergeometric, and Poisson Random Variables

Week 6, 9/24/12-9/28/12, Notes: Bernoulli, Binomial, Hypergeometric, and Poisson Random Variables Week 6, 9/24/12-9/28/12, Notes: Bernoulli, Binomial, Hypergeometric, and Poisson Random Variables 1 Monday 9/24/12 on Bernoulli and Binomial R.V.s We are now discussing discrete random variables that have

More information

Random Variable. Discrete Random Variable. Continuous Random Variable. Discrete Random Variable. Discrete Probability Distribution

Random Variable. Discrete Random Variable. Continuous Random Variable. Discrete Random Variable. Discrete Probability Distribution Random Variable Theoretical Probability Distribution Random Variable Discrete Probability Distributions A variable that assumes a numerical description for the outcome of a random eperiment (by chance).

More information

Common Discrete Distributions

Common Discrete Distributions Common Discrete Distributions Statistics 104 Autumn 2004 Taken from Statistics 110 Lecture Notes Copyright c 2004 by Mark E. Irwin Common Discrete Distributions There are a wide range of popular discrete

More information

(Ch 3.4.1, 3.4.2, 4.1, 4.2, 4.3)

(Ch 3.4.1, 3.4.2, 4.1, 4.2, 4.3) 3 Probability Distributions (Ch 3.4.1, 3.4.2, 4.1, 4.2, 4.3) Probability Distribution Functions Probability distribution function (pdf): Function for mapping random variables to real numbers. Discrete

More information

UC Berkeley Department of Electrical Engineering and Computer Science. EE 126: Probablity and Random Processes. Solutions 5 Spring 2006

UC Berkeley Department of Electrical Engineering and Computer Science. EE 126: Probablity and Random Processes. Solutions 5 Spring 2006 Review problems UC Berkeley Department of Electrical Engineering and Computer Science EE 6: Probablity and Random Processes Solutions 5 Spring 006 Problem 5. On any given day your golf score is any integer

More information

Notes for Math 324, Part 17

Notes for Math 324, Part 17 126 Notes for Math 324, Part 17 Chapter 17 Common discrete distributions 17.1 Binomial Consider an experiment consisting by a series of trials. The only possible outcomes of the trials are success and

More information

CSE 312: Foundations of Computing II Quiz Section #10: Review Questions for Final Exam (solutions)

CSE 312: Foundations of Computing II Quiz Section #10: Review Questions for Final Exam (solutions) CSE 312: Foundations of Computing II Quiz Section #10: Review Questions for Final Exam (solutions) 1. (Confidence Intervals, CLT) Let X 1,..., X n be iid with unknown mean θ and known variance σ 2. Assume

More information

What is a random variable

What is a random variable OKAN UNIVERSITY FACULTY OF ENGINEERING AND ARCHITECTURE MATH 256 Probability and Random Processes 04 Random Variables Fall 20 Yrd. Doç. Dr. Didem Kivanc Tureli didemk@ieee.org didem.kivanc@okan.edu.tr

More information

Lecture 10: Probability distributions TUESDAY, FEBRUARY 19, 2019

Lecture 10: Probability distributions TUESDAY, FEBRUARY 19, 2019 Lecture 10: Probability distributions DANIEL WELLER TUESDAY, FEBRUARY 19, 2019 Agenda What is probability? (again) Describing probabilities (distributions) Understanding probabilities (expectation) Partial

More information

random variables T T T T H T H H

random variables T T T T H T H H random variables T T T T H T H H random variables A random variable X assigns a real number to each outcome in a probability space. Ex. Let H be the number of Heads when 20 coins are tossed Let T be the

More information

CMPSCI 240: Reasoning Under Uncertainty

CMPSCI 240: Reasoning Under Uncertainty CMPSCI 240: Reasoning Under Uncertainty Lecture 5 Prof. Hanna Wallach wallach@cs.umass.edu February 7, 2012 Reminders Pick up a copy of B&T Check the course website: http://www.cs.umass.edu/ ~wallach/courses/s12/cmpsci240/

More information

What does independence look like?

What does independence look like? What does independence look like? Independence S AB A Independence Definition 1: P (AB) =P (A)P (B) AB S = A S B S B Independence Definition 2: P (A B) =P (A) AB B = A S Independence? S A Independence

More information

STAT509: Discrete Random Variable

STAT509: Discrete Random Variable University of South Carolina September 16, 2014 Motivation So far, we have already known how to calculate probabilities of events. Suppose we toss a fair coin three times, we know that the probability

More information

Math 183 Statistical Methods

Math 183 Statistical Methods Math 183 Statistical Methods Eddie Aamari S.E.W. Assistant Professor eaamari@ucsd.edu math.ucsd.edu/~eaamari/ AP&M 5880A Today: Chapter 3 (continued) Negative Binomial Model Poisson Model Practice these

More information

Chapter 3 Single Random Variables and Probability Distributions (Part 1)

Chapter 3 Single Random Variables and Probability Distributions (Part 1) Chapter 3 Single Random Variables and Probability Distributions (Part 1) Contents What is a Random Variable? Probability Distribution Functions Cumulative Distribution Function Probability Density Function

More information

p. 4-1 Random Variables

p. 4-1 Random Variables Random Variables A Motivating Example Experiment: Sample k students without replacement from the population of all n students (labeled as 1, 2,, n, respectively) in our class. = {all combinations} = {{i

More information

Special Discrete RV s. Then X = the number of successes is a binomial RV. X ~ Bin(n,p).

Special Discrete RV s. Then X = the number of successes is a binomial RV. X ~ Bin(n,p). Sect 3.4: Binomial RV Special Discrete RV s 1. Assumptions and definition i. Experiment consists of n repeated trials ii. iii. iv. There are only two possible outcomes on each trial: success (S) or failure

More information

IEOR 3106: Introduction to Operations Research: Stochastic Models. Professor Whitt. SOLUTIONS to Homework Assignment 1

IEOR 3106: Introduction to Operations Research: Stochastic Models. Professor Whitt. SOLUTIONS to Homework Assignment 1 IEOR 3106: Introduction to Operations Research: Stochastic Models Professor Whitt SOLUTIONS to Homework Assignment 1 Probability Review: Read Chapters 1 and 2 in the textbook, Introduction to Probability

More information

Random Variables. Definition: A random variable (r.v.) X on the probability space (Ω, F, P) is a mapping

Random Variables. Definition: A random variable (r.v.) X on the probability space (Ω, F, P) is a mapping Random Variables Example: We roll a fair die 6 times. Suppose we are interested in the number of 5 s in the 6 rolls. Let X = number of 5 s. Then X could be 0, 1, 2, 3, 4, 5, 6. X = 0 corresponds to the

More information

MA 250 Probability and Statistics. Nazar Khan PUCIT Lecture 15

MA 250 Probability and Statistics. Nazar Khan PUCIT Lecture 15 MA 250 Probability and Statistics Nazar Khan PUCIT Lecture 15 RANDOM VARIABLES Random Variables Random variables come in 2 types 1. Discrete set of outputs is real valued, countable set 2. Continuous set

More information

Chapter 3 Discrete Random Variables

Chapter 3 Discrete Random Variables MICHIGAN STATE UNIVERSITY STT 351 SECTION 2 FALL 2008 LECTURE NOTES Chapter 3 Discrete Random Variables Nao Mimoto Contents 1 Random Variables 2 2 Probability Distributions for Discrete Variables 3 3 Expected

More information

MATH MW Elementary Probability Course Notes Part I: Models and Counting

MATH MW Elementary Probability Course Notes Part I: Models and Counting MATH 2030 3.00MW Elementary Probability Course Notes Part I: Models and Counting Tom Salisbury salt@yorku.ca York University Winter 2010 Introduction [Jan 5] Probability: the mathematics used for Statistics

More information

STA 4321/5325 Solution to Extra Homework 1 February 8, 2017

STA 4321/5325 Solution to Extra Homework 1 February 8, 2017 STA 431/535 Solution to Etra Homework 1 February 8, 017 1. Show that for any RV X, V (X 0. (You can assume X to be discrete, but this result holds in general. Hence or otherwise show that E(X E (X. Solution.

More information

Lecture 18: Central Limit Theorem. Lisa Yan August 6, 2018

Lecture 18: Central Limit Theorem. Lisa Yan August 6, 2018 Lecture 18: Central Limit Theorem Lisa Yan August 6, 2018 Announcements PS5 due today Pain poll PS6 out today Due next Monday 8/13 (1:30pm) (will not be accepted after Wed 8/15) Programming part: Java,

More information

Probability Distributions Columns (a) through (d)

Probability Distributions Columns (a) through (d) Discrete Probability Distributions Columns (a) through (d) Probability Mass Distribution Description Notes Notation or Density Function --------------------(PMF or PDF)-------------------- (a) (b) (c)

More information

Conditional Probability

Conditional Probability Conditional Probability Idea have performed a chance experiment but don t know the outcome (ω), but have some partial information (event A) about ω. Question: given this partial information what s the

More information

Discrete Random Variable Practice

Discrete Random Variable Practice IB Math High Level Year Discrete Probability Distributions - MarkScheme Discrete Random Variable Practice. A biased die with four faces is used in a game. A player pays 0 counters to roll the die. The

More information

MgtOp 215 Chapter 5 Dr. Ahn

MgtOp 215 Chapter 5 Dr. Ahn MgtOp 215 Chapter 5 Dr. Ahn Random variable: a variable that assumes its values corresponding to a various outcomes of a random experiment, therefore its value cannot be predicted with certainty. Discrete

More information

BINOMIAL DISTRIBUTION

BINOMIAL DISTRIBUTION BINOMIAL DISTRIBUTION The binomial distribution is a particular type of discrete pmf. It describes random variables which satisfy the following conditions: 1 You perform n identical experiments (called

More information

The Random Variable for Probabilities Chris Piech CS109, Stanford University

The Random Variable for Probabilities Chris Piech CS109, Stanford University The Random Variable for Probabilities Chris Piech CS109, Stanford University Assignment Grades 10 20 30 40 50 60 70 80 90 100 10 20 30 40 50 60 70 80 90 100 Frequency Frequency 10 20 30 40 50 60 70 80

More information

Expectations. Definition Let X be a discrete rv with set of possible values D and pmf p(x). The expected value or mean value of X, denoted by E(X ) or

Expectations. Definition Let X be a discrete rv with set of possible values D and pmf p(x). The expected value or mean value of X, denoted by E(X ) or Expectations Expectations Definition Let X be a discrete rv with set of possible values D and pmf p(x). The expected value or mean value of X, denoted by E(X ) or µ X, is E(X ) = µ X = x D x p(x) Expectations

More information

Analysis of Engineering and Scientific Data. Semester

Analysis of Engineering and Scientific Data. Semester Analysis of Engineering and Scientific Data Semester 1 2019 Sabrina Streipert s.streipert@uq.edu.au Example: Draw a random number from the interval of real numbers [1, 3]. Let X represent the number. Each

More information

6.041/6.431 Spring 2009 Quiz 1 Wednesday, March 11, 7:30-9:30 PM. SOLUTIONS

6.041/6.431 Spring 2009 Quiz 1 Wednesday, March 11, 7:30-9:30 PM. SOLUTIONS 6.0/6.3 Spring 009 Quiz Wednesday, March, 7:30-9:30 PM. SOLUTIONS Name: Recitation Instructor: Question Part Score Out of 0 all 0 a 5 b c 5 d 5 e 5 f 5 3 a b c d 5 e 5 f 5 g 5 h 5 Total 00 Write your solutions

More information

Discrete random variables and probability distributions

Discrete random variables and probability distributions Discrete random variables and probability distributions random variable is a mapping from the sample space to real numbers. notation: X, Y, Z,... Example: Ask a student whether she/he works part time or

More information

Mathematical Statistics 1 Math A 6330

Mathematical Statistics 1 Math A 6330 Mathematical Statistics 1 Math A 6330 Chapter 3 Common Families of Distributions Mohamed I. Riffi Department of Mathematics Islamic University of Gaza September 28, 2015 Outline 1 Subjects of Lecture 04

More information

Probability Theory and Statistics (EE/TE 3341) Homework 3 Solutions

Probability Theory and Statistics (EE/TE 3341) Homework 3 Solutions Probability Theory and Statistics (EE/TE 3341) Homework 3 Solutions Yates and Goodman 3e Solution Set: 3.2.1, 3.2.3, 3.2.10, 3.2.11, 3.3.1, 3.3.3, 3.3.10, 3.3.18, 3.4.3, and 3.4.4 Problem 3.2.1 Solution

More information

Chapter 3: Discrete Random Variable

Chapter 3: Discrete Random Variable Chapter 3: Discrete Random Variable Shiwen Shen University of South Carolina 2017 Summer 1 / 63 Random Variable Definition: A random variable is a function from a sample space S into the real numbers.

More information

1. Analysis of Grouped Data

1. Analysis of Grouped Data Old Business - Books ew Business - Analysis of grouped data - Hypergeometric distribution - Poisson distribution 1. Analysis of Grouped Data Grouped Data (frequency table or frequency distribution) Often

More information

Discrete Distributions

Discrete Distributions A simplest example of random experiment is a coin-tossing, formally called Bernoulli trial. It happens to be the case that many useful distributions are built upon this simplest form of experiment, whose

More information

Discrete Random Variable

Discrete Random Variable Discrete Random Variable Outcome of a random experiment need not to be a number. We are generally interested in some measurement or numerical attribute of the outcome, rather than the outcome itself. n

More information

Chapter 2: Discrete Distributions. 2.1 Random Variables of the Discrete Type

Chapter 2: Discrete Distributions. 2.1 Random Variables of the Discrete Type Chapter 2: Discrete Distributions 2.1 Random Variables of the Discrete Type 2.2 Mathematical Expectation 2.3 Special Mathematical Expectations 2.4 Binomial Distribution 2.5 Negative Binomial Distribution

More information

Basics on Probability. Jingrui He 09/11/2007

Basics on Probability. Jingrui He 09/11/2007 Basics on Probability Jingrui He 09/11/2007 Coin Flips You flip a coin Head with probability 0.5 You flip 100 coins How many heads would you expect Coin Flips cont. You flip a coin Head with probability

More information

Discrete Distributions

Discrete Distributions Discrete Distributions STA 281 Fall 2011 1 Introduction Previously we defined a random variable to be an experiment with numerical outcomes. Often different random variables are related in that they have

More information

Page Max. Possible Points Total 100

Page Max. Possible Points Total 100 Math 3215 Exam 2 Summer 2014 Instructor: Sal Barone Name: GT username: 1. No books or notes are allowed. 2. You may use ONLY NON-GRAPHING and NON-PROGRAMABLE scientific calculators. All other electronic

More information

EECS 126 Probability and Random Processes University of California, Berkeley: Fall 2014 Kannan Ramchandran September 23, 2014.

EECS 126 Probability and Random Processes University of California, Berkeley: Fall 2014 Kannan Ramchandran September 23, 2014. EECS 126 Probability and Random Processes University of California, Berkeley: Fall 2014 Kannan Ramchandran September 23, 2014 Midterm Exam 1 Last name First name SID Rules. DO NOT open the exam until instructed

More information

Discrete Random Variables

Discrete Random Variables Discrete Random Variables An Undergraduate Introduction to Financial Mathematics J. Robert Buchanan Introduction The markets can be thought of as a complex interaction of a large number of random processes,

More information

Discrete Random Variables

Discrete Random Variables CPSC 53 Systems Modeling and Simulation Discrete Random Variables Dr. Anirban Mahanti Department of Computer Science University of Calgary mahanti@cpsc.ucalgary.ca Random Variables A random variable is

More information

n px p x (1 p) n x. p x n(n 1)... (n x + 1) x!

n px p x (1 p) n x. p x n(n 1)... (n x + 1) x! Lectures 3-4 jacques@ucsd.edu 7. Classical discrete distributions D. The Poisson Distribution. If a coin with heads probability p is flipped independently n times, then the number of heads is Bin(n, p)

More information

Will Monroe August 9, with materials by Mehran Sahami and Chris Piech. image: Arito. Parameter learning

Will Monroe August 9, with materials by Mehran Sahami and Chris Piech. image: Arito. Parameter learning Will Monroe August 9, 07 with aterials by Mehran Sahai and Chris Piech iage: Arito Paraeter learning Announceent: Proble Set #6 Goes out tonight. Due the last day of class, Wednesday, August 6 (before

More information

Name: Firas Rassoul-Agha

Name: Firas Rassoul-Agha Midterm 1 - Math 5010 - Spring 016 Name: Firas Rassoul-Agha Solve the following 4 problems. You have to clearly explain your solution. The answer carries no points. Only the work does. CALCULATORS ARE

More information

Outline PMF, CDF and PDF Mean, Variance and Percentiles Some Common Distributions. Week 5 Random Variables and Their Distributions

Outline PMF, CDF and PDF Mean, Variance and Percentiles Some Common Distributions. Week 5 Random Variables and Their Distributions Week 5 Random Variables and Their Distributions Week 5 Objectives This week we give more general definitions of mean value, variance and percentiles, and introduce the first probability models for discrete

More information

ECE313 Summer Problem Set 5. Note: It is very important that you solve the problems first and check the solutions. 0, if X = 2k, = 3.

ECE313 Summer Problem Set 5. Note: It is very important that you solve the problems first and check the solutions. 0, if X = 2k, = 3. ECE Summer 20 Problem Set 5 Reading: Independence, Important Discrete RVs Quiz date: no quiz, this is for the midterm Note: It is very important that you solve the problems first and chec the solutions

More information

Each trial has only two possible outcomes success and failure. The possible outcomes are exactly the same for each trial.

Each trial has only two possible outcomes success and failure. The possible outcomes are exactly the same for each trial. Section 8.6: Bernoulli Experiments and Binomial Distribution We have already learned how to solve problems such as if a person randomly guesses the answers to 10 multiple choice questions, what is the

More information

An-Najah National University Faculty of Engineering Industrial Engineering Department. Course : Quantitative Methods (65211)

An-Najah National University Faculty of Engineering Industrial Engineering Department. Course : Quantitative Methods (65211) An-Najah National University Faculty of Engineering Industrial Engineering Department Course : Quantitative Methods (65211) Instructor: Eng. Tamer Haddad 2 nd Semester 2009/2010 Chapter 3 Discrete Random

More information

1. Discrete Distributions

1. Discrete Distributions Virtual Laboratories > 2. Distributions > 1 2 3 4 5 6 7 8 1. Discrete Distributions Basic Theory As usual, we start with a random experiment with probability measure P on an underlying sample space Ω.

More information

Math 151. Rumbos Fall Solutions to Review Problems for Exam 2. Pr(X = 1) = ) = Pr(X = 2) = Pr(X = 3) = p X. (k) =

Math 151. Rumbos Fall Solutions to Review Problems for Exam 2. Pr(X = 1) = ) = Pr(X = 2) = Pr(X = 3) = p X. (k) = Math 5. Rumbos Fall 07 Solutions to Review Problems for Exam. A bowl contains 5 chips of the same size and shape. Two chips are red and the other three are blue. Draw three chips from the bowl at random,

More information

Special distributions

Special distributions Special distributions August 22, 2017 STAT 101 Class 4 Slide 1 Outline of Topics 1 Motivation 2 Bernoulli and binomial 3 Poisson 4 Uniform 5 Exponential 6 Normal STAT 101 Class 4 Slide 2 What distributions

More information

Closed book and notes. 120 minutes. Cover page, five pages of exam. No calculators.

Closed book and notes. 120 minutes. Cover page, five pages of exam. No calculators. IE 230 Seat # Closed book and notes. 120 minutes. Cover page, five pages of exam. No calculators. Score Final Exam, Spring 2005 (May 2) Schmeiser Closed book and notes. 120 minutes. Consider an experiment

More information

For a list of topics, look over the previous review sheets. Since the last quiz we have... Benford s Law. When does it appear? How do people use it?

For a list of topics, look over the previous review sheets. Since the last quiz we have... Benford s Law. When does it appear? How do people use it? Here are a whole lot of problems! I will keep browsing good sources of problems and posting them here until the last day of class. As always, Grinstead and Snell, Ross and problems from previous courses

More information

ST 371 (V): Families of Discrete Distributions

ST 371 (V): Families of Discrete Distributions ST 371 (V): Families of Discrete Distributions Certain experiments and associated random variables can be grouped into families, where all random variables in the family share a certain structure and a

More information

n! (k 1)!(n k)! = F (X) U(0, 1). (x, y) = n(n 1) ( F (y) F (x) ) n 2

n! (k 1)!(n k)! = F (X) U(0, 1). (x, y) = n(n 1) ( F (y) F (x) ) n 2 Order statistics Ex. 4.1 (*. Let independent variables X 1,..., X n have U(0, 1 distribution. Show that for every x (0, 1, we have P ( X (1 < x 1 and P ( X (n > x 1 as n. Ex. 4.2 (**. By using induction

More information

n(1 p i ) n 1 p i = 1 3 i=1 E(X i p = p i )P(p = p i ) = 1 3 p i = n 3 (p 1 + p 2 + p 3 ). p i i=1 P(X i = 1 p = p i )P(p = p i ) = p1+p2+p3

n(1 p i ) n 1 p i = 1 3 i=1 E(X i p = p i )P(p = p i ) = 1 3 p i = n 3 (p 1 + p 2 + p 3 ). p i i=1 P(X i = 1 p = p i )P(p = p i ) = p1+p2+p3 Introduction to Probability Due:August 8th, 211 Solutions of Final Exam Solve all the problems 1. (15 points) You have three coins, showing Head with probabilities p 1, p 2 and p 3. You perform two different

More information

Distribution of a Sum of Random Variables when the Sample Size is a Poisson Distribution

Distribution of a Sum of Random Variables when the Sample Size is a Poisson Distribution East Tennessee State University Digital Commons @ East Tennessee State University Electronic Theses and Dissertations Student Works 8-2018 Distribution of a Sum of Random Variables when the Sample Size

More information

Homework 2. Spring 2019 (Due Thursday February 7)

Homework 2. Spring 2019 (Due Thursday February 7) ECE 302: Probabilistic Methods in Electrical and Computer Engineering Spring 2019 Instructor: Prof. A. R. Reibman Homework 2 Spring 2019 (Due Thursday February 7) Homework is due on Thursday February 7

More information

Lecture 8 : The Geometric Distribution

Lecture 8 : The Geometric Distribution 0/ 24 The geometric distribution is a special case of negative binomial, it is the case r = 1. It is so important we give it special treatment. Motivating example Suppose a couple decides to have children

More information

Probability Theory and Simulation Methods. April 6th, Lecture 19: Special distributions

Probability Theory and Simulation Methods. April 6th, Lecture 19: Special distributions April 6th, 2018 Lecture 19: Special distributions Week 1 Chapter 1: Axioms of probability Week 2 Chapter 3: Conditional probability and independence Week 4 Chapters 4, 6: Random variables Week 9 Chapter

More information

Chapter 3. Discrete Random Variables and Their Probability Distributions

Chapter 3. Discrete Random Variables and Their Probability Distributions Chapter 3. Discrete Random Variables and Their Probability Distributions 1 3.4-3 The Binomial random variable The Binomial random variable is related to binomial experiments (Def 3.6) 1. The experiment

More information

MATH 3670 First Midterm February 17, No books or notes. No cellphone or wireless devices. Write clearly and show your work for every answer.

MATH 3670 First Midterm February 17, No books or notes. No cellphone or wireless devices. Write clearly and show your work for every answer. No books or notes. No cellphone or wireless devices. Write clearly and show your work for every answer. Name: Question: 1 2 3 4 Total Points: 30 20 20 40 110 Score: 1. The following numbers x i, i = 1,...,

More information

SDS 321: Introduction to Probability and Statistics

SDS 321: Introduction to Probability and Statistics SDS 321: Introduction to Probability and Statistics Lecture 10: Expectation and Variance Purnamrita Sarkar Department of Statistics and Data Science The University of Texas at Austin www.cs.cmu.edu/ psarkar/teaching

More information

Distribusi Binomial, Poisson, dan Hipergeometrik

Distribusi Binomial, Poisson, dan Hipergeometrik Distribusi Binomial, Poisson, dan Hipergeometrik CHAPTER TOPICS The Probability of a Discrete Random Variable Covariance and Its Applications in Finance Binomial Distribution Poisson Distribution Hypergeometric

More information