Hydrodynamics of wetting phenomena. Jacco Snoeijer PHYSICS OF FLUIDS

Size: px
Start display at page:

Download "Hydrodynamics of wetting phenomena. Jacco Snoeijer PHYSICS OF FLUIDS"

Transcription

1 Hydrodynamics of wetting phenomena Jacco Snoeijer PHYSICS OF FLUIDS

2 Outline 1. Creeping flow: hydrodynamics at low Reynolds numbers (2 hrs) 2. Thin films and lubrication flows (3 hrs + problem session 1.5 hrs) A. Bubble entrapment, instabilities, coalescence B. Landau-Levich films C. Problem session (from classic and recent papers) 3. Static and moving contact lines (3 hrs) hidden theme: 4. Wetting on soft substrates (depending on time) scaling & similarity solutions

3 Influence of air pressure on impact event 1 atm 0.2 atm Xu, Zhang, Nagel, PRL (2005)

4 Earlier indications on role of air: Air bubble entrapment Van Dam, Le Clerc, Phys. Fluids (2004)

5 Sketch of impacting drop falling droplet pressure buildup! Dimple-formation!

6 Thin film interference Oil films Use the information coded in the color! Soap bubbles Applications in e.g. anti-reflective coatings

7

8 Maximum air bubble Bouwhuis et al, Phys. Rev. Lett. (2012)

9 Bubbles: a major nuisance Immersion Lithography

10 Bubbles: a major nuisance before after Keij, Winkels, Casteleijns, Riepen & Snoeijer, submitted to Phys. Fluids

11 Lubrication for capillary flows nonlinear PDE for h(x,t) h t + 1 3η x [h 3 { γ 3 h x 3 Φ x }] =0 gravity: van der Waals: Φ = ρgh Φ = A 12πh 2

12 merging of steps polysterene films ( nm) McGraw, Salez, Baumchen, Raphael, Dalnoki-Veress, Phys. Rev. Lett. 2012

13 merging of steps polysterene films McGraw, Salez, Baumchen, Raphael, Dalnoki-Veress, Phys. Rev. Lett. 2012

14 capillary flows: intermediate conclusion - lubrication theory: extremely useful - similarity solutions can often be used - next: coalescence phenomena

15 capillary flows: intermediate conclusion - lubrication theory: extremely useful - similarity solutions can often be used - next: coalescence phenomena

16 coalescence R reduction capillary energy E γr 2 surface tension

17 coalescence spherical water drops (timescale ~ millisecond) r(t) Aarts et al. Phys. Rev. Lett. 2005

18 w r

19 w = r2 R w r

20 p γ w γr r 2 w = r2 R w r

21 surface tension vs inertia p γr r 2 p ρ ( dr dt ) 2 w r(t) r(t) t 1/2 Eggers, Lister & Stone, J. Fluid Mech Duchemin, Josserand & Eggers, J. Fluid Mech. 2003

22 2 regimes r ~ t 1/2 inertial r ~ t viscous Paulsen, Burton & Nagel, Phys. Rev. Lett Paulsen et al, PNAS 2012

23

24 sessile drops

25 sessile drops complications: geometry solid wall: no slip moving contact line!

26 sessile drops very viscous silicone oil r(t) experimentally: r(t) ~ t 1/2 Ristenpart, McCalla, Roy & Stone, Phys. Rev. Lett 2006 Narhe, Beysens & Pomeau, Europhys. Lett. 2008

27 coalescence of drops on substrate silicone oil (12.500x water) 100 µm 1D lubrication model

28 mechanism silicone oil (12.500x water) low capillary pressure: p ~ - γ/h flux: Q ~ - dp/dx liquid flux Q

29 mechanism silicone oil (12.500x water) low capillary pressure: p ~ - γ/h flux: Q ~ - dp/dx liquid flux Q mass conservation: h t + Q x =0

30 bridge growth silicone oil (12.500x water) h0 coalescence dynamics: h0(t)?

31 bridge growth h0 ~ t

32 bridge shape silicone oil (12.500x water) x h(x,t) shape of bridge: h(x,t)?

33 self-similarity! h/h0 x θ/h0

34 bridge shape silicone oil (12.500x water) shape of bridge: h(x,t)?

35 self-similarity! h/h0 x θ/h0 Problem session: Hernandez-Sanchez, Lubbers, Eddi & Snoeijer Phys. Rev. Lett. 2012

36 lubrication theory h t + Q x =0 h t + γ 3η x ( h 3 3 h x 3 ) =0

37 back to topview... r ~ t 1/2?

38 geometry T =0 = = T = T = w ~ h ~ t H X w ~ r 2 /R Ristenpart, McCalla, Roy & Stone, Phys. Rev. Lett 2006 Narhe, Beysens & Pomeau, Europhys. Lett r ~ t 1/2!

39 water drops on substrate (inertial) - exponent 1/2? - self-similarity? Anonin Eddi, Koen Winkels & JHS, submitted

40 water drops Photron SA1.1 Synchronization and computer 10X Lens Photron APX-RS

41 water drops - side view frames/second

42 self-similar! 9 Rescaled profiles for frames 7,15,25,40,70 h/h Y/h b X/h b x/h0

43 self-similar! h/h0 2D Potential flow: Billigham & King, JFM 2005 x/h0

44 exponent: 2/3 2/3

45 exponent: 2/3 Keller and Miksis (1983) P iner ρv 2 v h 0 t P cap γ w w = h 0 tan θ h 0 ( γ tan θ ρ ) 1/3t 2/3

46 exponent: 2/3 h 0 = D 0 ( γ tan θ ρ ) 1/3t 2/3 2/3 D 0 =0.89

47 capillary flows - lubrication theory: extremely useful - similarity solutions can often be used - coalescence phenomena (show movie Marangoni)

48 Outline 1. Creeping flow: hydrodynamics at low Reynolds numbers (2 hrs) 2. Thin films and lubrication flows (3 hrs + problem session 1.5 hrs) A. Bubble entrapment, instabilities, coalescence B. Landau-Levich films C. Problem session (from classic and recent papers) 3. Static and moving contact lines (3 hrs) 4. Wetting on soft substrates (depending on time)

contact line dynamics

contact line dynamics contact line dynamics part 2: hydrodynamics dynamic contact angle? lubrication: Cox-Voinov theory maximum speed for instability corner shape? dimensional analysis: speed U position r viscosity η pressure

More information

Hydrodynamics of wetting phenomena. Jacco Snoeijer PHYSICS OF FLUIDS

Hydrodynamics of wetting phenomena. Jacco Snoeijer PHYSICS OF FLUIDS Hydrodynamics of wetting phenomena Jacco Snoeijer PHYSICS OF FLUIDS Outline 1. Creeping flow: hydrodynamics at low Reynolds numbers (2 hrs) 2. Thin films and lubrication flows (3 hrs + problem session

More information

contact line dynamics

contact line dynamics contact line dynamics Jacco Snoeijer Physics of Fluids - University of Twente sliding drops flow near contact line static contact line Ingbrigtsen & Toxvaerd (2007) γ γ sv θ e γ sl molecular scales macroscopic

More information

Drops sliding down an incline: Singular corners.

Drops sliding down an incline: Singular corners. Drops sliding down an incline: Singular corners. Laurent Limat Laboratoire Matière et Systèmes Complexes, MSC, Paris Diderot University limat@pmmh.espci.fr with: -Jean-Marc Flesselles, Thomas Podgorski

More information

Numerical simulations of drop impacts

Numerical simulations of drop impacts Numerical simulations of drop impacts Christophe Josserand Institut D Alembert, CNRS-UPMC L. Duchemin, Z. Jian, P. Ray and S. Zaleski Numerical simulations of drop impacts Christophe Josserand Institut

More information

FLOW ASSURANCE: DROP COALESCENCE IN THE PRESENCE OF SURFACTANTS

FLOW ASSURANCE: DROP COALESCENCE IN THE PRESENCE OF SURFACTANTS FLOW ASSURANCE: DROP COALESCENCE IN THE PRESENCE OF SURFACTANTS Vishrut Garg and Osman A. Basaran Davidson School of Chemical Engineering Purdue University With special thanks to: Krish Sambath (now at

More information

FLOW ASSURANCE : DROP AND BUBBLE COALESCENCE AND THIN FILM RUPTURE*

FLOW ASSURANCE : DROP AND BUBBLE COALESCENCE AND THIN FILM RUPTURE* FLOW ASSURANCE : DROP AND BUBBLE COALESCENCE AND THIN FILM RUPTURE* Osman A. Basaran and Vishrut Garg Purdue Process Safety and Assurance Center (P2SAC) Davidson School of Chemical Engineering Purdue University

More information

Jacco Snoeijer PHYSICS OF FLUIDS

Jacco Snoeijer PHYSICS OF FLUIDS Jacco Snoeijer PHYSICS OF FLUIDS dynamics dynamics freezing dynamics freezing microscopics of capillarity Menu 1. surface tension: thermodynamics & microscopics 2. wetting (statics): thermodynamics & microscopics

More information

On the Landau-Levich Transition

On the Landau-Levich Transition 10116 Langmuir 2007, 23, 10116-10122 On the Landau-Levich Transition Maniya Maleki Institute for AdVanced Studies in Basic Sciences (IASBS), Zanjan 45195, P.O. Box 45195-1159, Iran Etienne Reyssat and

More information

Nearly-zero contact angle hysteresis on lubricated surfaces. Dan Daniel, IMRE, A*STAR

Nearly-zero contact angle hysteresis on lubricated surfaces. Dan Daniel, IMRE, A*STAR Nearly-zero contact angle hysteresis on lubricated surfaces Dan Daniel, IMRE, A*STAR 2011 1 mm Oleoplaning droplets on lubricated surfaces lubricant film lubricant film 2011 Lubricated repels blood and

More information

Capillarity and Wetting Phenomena

Capillarity and Wetting Phenomena ? Pierre-Gilles de Gennes Frangoise Brochard-Wyart David Quere Capillarity and Wetting Phenomena Drops, Bubbles, Pearls, Waves Translated by Axel Reisinger With 177 Figures Springer Springer New York Berlin

More information

Instabilities in the Flow of Thin Liquid Films

Instabilities in the Flow of Thin Liquid Films Instabilities in the Flow of Thin Liquid Films Lou Kondic Department of Mathematical Sciences Center for Applied Mathematics and Statistics New Jersey Institute of Technology Presented at Annual Meeting

More information

Module 3: "Thin Film Hydrodynamics" Lecture 11: "" The Lecture Contains: Micro and Nano Scale Hydrodynamics with and without Free Surfaces

Module 3: Thin Film Hydrodynamics Lecture 11:  The Lecture Contains: Micro and Nano Scale Hydrodynamics with and without Free Surfaces The Lecture Contains: Micro and Nano Scale Hydrodynamics with and without Free Surfaces Order of Magnitude Analysis file:///e /courses/colloid_interface_science/lecture11/11_1.htm[6/16/2012 1:39:56 PM]

More information

Thickness and Shape of Films Driven by a Marangoni Flow

Thickness and Shape of Films Driven by a Marangoni Flow Langmuir 1996, 12, 5875-5880 5875 Thickness and Shape of Films Driven by a Marangoni Flow X. Fanton, A. M. Cazabat,* and D. Quéré Laboratoire de Physique de la Matière Condensée, Collège de France, 11

More information

Precursors to droplet splashing on a solid surface

Precursors to droplet splashing on a solid surface Precursors to droplet splashing on a solid surface Shreyas Mandre, Madhav Mani, and Michael P. Brenner School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138 (Dated: November

More information

arxiv: v1 [cond-mat.soft] 22 Sep 2012

arxiv: v1 [cond-mat.soft] 22 Sep 2012 Beyond Tanner s Law: Crossover between Spreading Regimes of a Viscous Droplet on an Identical Film Sara L. Cormier,1 Joshua D. McGraw,1 Thomas Salez,2 Elie Raphae l,2 and Kari Dalnoki-Veress1, 1 arxiv:129.4983v1

More information

INTERFACIAL PHENOMENA GRADING SCHEME

INTERFACIAL PHENOMENA GRADING SCHEME 18.357 INTERFACIAL PHENOMENA Professor John W. M. Bush Fall 2010 Office 2-346 MW 2-3:30 Phone: 253-4387 (office) Room 2-135 email: bush@math.mit.edu Office hours: after class, available upon request GRADING

More information

The effects of gravity on the capillary instability in tubes

The effects of gravity on the capillary instability in tubes J. Fluid Mech. (2006), vol. 556, pp. 217 226. c 2006 Cambridge University Press doi:10.1017/s0022112006009505 Printed in the United Kingdom 217 The effects of gravity on the capillary instability in tubes

More information

Characteristic lengths at moving contact lines for a perfectly wetting fluid: the influence of speed on the dynamic contact angle

Characteristic lengths at moving contact lines for a perfectly wetting fluid: the influence of speed on the dynamic contact angle Under consideration for publication in J. Fluid Mech. 1 Characteristic lengths at moving contact lines for a perfectly wetting fluid: the influence of speed on the dynamic contact angle By Jens Eggers

More information

Droplet levitation over a moving wall with a steady air film

Droplet levitation over a moving wall with a steady air film Downloaded from https://www.cambridge.org/core. IP address: 148.251.232.83, on 29 Jan 219 at 22:4:25, subject to the Cambridge Core terms of use, available at https://www.cambridge.org/core/terms. https://doi.org/1.117/jfm.218.952

More information

Derivation of continuum models for the moving contact line problem based on thermodynamic principles. Abstract

Derivation of continuum models for the moving contact line problem based on thermodynamic principles. Abstract Derivation of continuum models for the moving contact line problem based on thermodynamic principles Weiqing Ren Courant Institute of Mathematical Sciences, New York University, New York, NY 002, USA Weinan

More information

Cornered drops and rivulets

Cornered drops and rivulets Cornered drops and rivulets PHYSICS OF FLUIDS 19, 042104 2007 J. H. Snoeijer School of Mathematics, University of Bristol, University Walk, Bristol BS8 1TW, United Kingdom; Laboratoire MSC, UMR 7057 of

More information

Complete Wetting of Acrylic Solid Substrate with Silicone Oil at the Center of the Substrate

Complete Wetting of Acrylic Solid Substrate with Silicone Oil at the Center of the Substrate Complete Wetting of Acrylic Solid Substrate with Silicone Oil at the Center of the Substrate Derrick O. Njobuenwu * Department of Chemical Engineering, Loughborough University Leicestershire LE11 3TU,

More information

Cornered drops and rivulets

Cornered drops and rivulets Cornered drops and rivulets J. H. Snoeijer 1,2, N. Le Grand-Piteira 2, L. Limat 2, H.A. Stone 3, and J. Eggers 1 1 School of Mathematics, University of Bristol, University Walk, Bristol BS8 1TW, United

More information

arxiv: v2 [physics.flu-dyn] 24 Oct 2013

arxiv: v2 [physics.flu-dyn] 24 Oct 2013 Supporting Information: Short and long time drop dynamics on lubricated substrates Andreas Carlson1,3,4,, Pilnam Kim2,4, Gustav Amberg3, and Howard A. Stone4, arxiv:1309.6339v2 [physics.flu-dyn] 24 Oct

More information

Deformation of a droplet adhering to a solid surface in shear flow: onset of interfacial sliding

Deformation of a droplet adhering to a solid surface in shear flow: onset of interfacial sliding J. Fluid Mech. (27), vol. 58, pp. 451 466. c 27 Cambridge University Press doi:1.117/s2211275721 Printed in the United Kingdom 451 Deformation of a droplet adhering to a solid surface in shear flow: onset

More information

arxiv: v1 [physics.flu-dyn] 14 Jul 2015

arxiv: v1 [physics.flu-dyn] 14 Jul 2015 arxiv:1507.03912v1 [physics.flu-dyn] 14 Jul 2015 Similarity and singularity in adhesive elastohydrodynamic touchdown ndreas Carlson 1, a) 1,2, b) and L. Mahadevan 1) Paulson School of Engineering and pplied

More information

arxiv:cond-mat/ v1 17 Jan 1994

arxiv:cond-mat/ v1 17 Jan 1994 Submitted to Journal de Physique II (December, 1993) Capillary Rise in Tubes with sharp Grooves Lei-Han Tang arxiv:cond-mat/9401031v1 17 Jan 1994 Institut für Theoretische Physik, Universität zu Köln Zülpicher

More information

Lecture 6: Flow regimes fluid-like

Lecture 6: Flow regimes fluid-like Granular Flows 1 Lecture 6: Flow regimes fluid-like Quasi-static granular flows have plasticity laws, gaseous granular flows have kinetic theory -- how to model fluid-like flows? Intermediate, dense regime:

More information

Solvability condition for the moving contact line

Solvability condition for the moving contact line PHYSICAL REVIEW E 78, 564 28 Solvability condition for the moving contact line L. M. Pismen 1 and Jens Eggers 2 1 Department of Chemical Engineering and Minerva Center for Nonlinear Physics of Complex

More information

Differential criterion of a bubble collapse in viscous liquids

Differential criterion of a bubble collapse in viscous liquids PHYSICAL REVIEW E VOLUME 60, NUMBER 1 JULY 1999 Differential criterion of a bubble collapse in viscous liquids Vladislav A. Bogoyavlenskiy* Low Temperature Physics Department, Moscow State University,

More information

Wetting contact angle

Wetting contact angle Wetting contact angle Minh Do-Quang www.flow.kth.se Outline Statics; capillarity and wetting Dynamics; models describing dynamic wetting Hydrodynamics (Tanner-Cox-Voinov law) Molecular kinetics theory

More information

Bridging by Light. Robert Schroll Wendy Zhang. University of Chicago. 9/17/2004 Brown Bag Talk p. 1

Bridging by Light. Robert Schroll Wendy Zhang. University of Chicago. 9/17/2004 Brown Bag Talk p. 1 Bridging by Light Robert Schroll Wendy Zhang University of Chicago 9/17/2004 Brown Bag Talk p. 1 Experiment Experiment done by Alexis Casner and Jean-Pierre Delville, Université Bordeaux I Prepare a microemulsion,

More information

Dynamics of Deforming Drops. Wilco Bouwhuis

Dynamics of Deforming Drops. Wilco Bouwhuis Dynamics of Deforming Drops Wilco Bouwhuis DYNAMICS OF DEFORMING DROPS Wilco Bouwhuis Samenstelling promotiecommissie: Prof. dr. Hans Hilgenkamp (voorzitter) Prof. dr. Jacco H. Snoeijer (promotor) Prof.

More information

characterize antiadhesive surfaces

characterize antiadhesive surfaces Capillary bridge formation and breakage: a test to characterize antiadhesive surfaces TITLE RUNNING HEAD: Capillary bridge for antiadhesive surfaces. Laurianne Vagharchakian 1, Frédéric Restagno 2, Liliane

More information

Depinning of 2d and 3d droplets blocked by a hydrophobic defect

Depinning of 2d and 3d droplets blocked by a hydrophobic defect Depinning of 2d and 3d droplets blocked by a hydrophobic defect P. Beltrame 1, P. Hänggi 1, E. Knobloch 2, and U. Thiele 3 1 Institut für Physik, Universität Augsburg, D-86135 Augsburg, Germany 2 Department

More information

A shallow water type model to describe the dynamic. of thin partially wetting films

A shallow water type model to describe the dynamic. of thin partially wetting films A shallow water type model to describe the dynamic of thin partially wetting films J. LALLEMENT a, P. VILLEDIEU a, P. TRONTIN a, C. LAURENT a a. Onera - The French Aerospace Lab Toulouse) - ONERA - F-31055

More information

On the Effect of an Atmosphere of Nitrogen on the Evaporation of Sessile Droplets of Water

On the Effect of an Atmosphere of Nitrogen on the Evaporation of Sessile Droplets of Water On the Effect of an Atmosphere of Nitrogen on the Evaporation of Sessile Droplets of Water S. K. Wilson 1, K. Sefiane 2, S. David 2, G. J. Dunn 1 and B. R. Duffy 1 1 Department of Mathematics, University

More information

Maximal deformation of an impacting drop

Maximal deformation of an impacting drop J. Fluid Mech. (24), vol. 57, pp. 99 28. c 24 Cambridge University Press DOI:.7/S222494 Printed in the United Kingdom 99 Maximal deformation of an impacting drop By CHRISTOPHE CLANET, CÉDRIC BÉGUIN, DENIS

More information

Experimental and Theoretical Study of Motion of Drops on Horizontal Solid Surfaces with a Wettability Gradient Nadjoua Moumen

Experimental and Theoretical Study of Motion of Drops on Horizontal Solid Surfaces with a Wettability Gradient Nadjoua Moumen Experimental and Theoretical Study of Motion of Drops on Horizontal Solid Surfaces with a Wettability Gradient Nadjoua Moumen Department of Chemical and Biomolecular Engineering Clarkson University Outline

More information

PHYSICS OF FLUID SPREADING ON ROUGH SURFACES

PHYSICS OF FLUID SPREADING ON ROUGH SURFACES INTERNATIONAL JOURNAL OF NUMERICAL ANALYSIS AND MODELING Volume 5, Supp, Pages 85 92 c 2008 Institute for Scientific Computing and Information PHYSICS OF FLUID SPREADING ON ROUGH SURFACES K. M. HAY AND

More information

Four-phase merging in sessile compound drops

Four-phase merging in sessile compound drops J. Fluid Mech. (00), vol. 45, pp. 4 40. c 00 Cambridge University Press DOI: 0.07/S000000708 Printed in the United Kingdom 4 Four-phase merging in sessile compound drops By L. M A H A D E V A N, M. A D

More information

Chapter 10. Solids and Fluids

Chapter 10. Solids and Fluids Chapter 10 Solids and Fluids Surface Tension Net force on molecule A is zero Pulled equally in all directions Net force on B is not zero No molecules above to act on it Pulled toward the center of the

More information

Lecture notes Breakup of cylindrical jets Singularities and self-similar solutions

Lecture notes Breakup of cylindrical jets Singularities and self-similar solutions Lecture notes Breakup of cylindrical jets Singularities and self-similar solutions by Stephane Popinet and Arnaud Antkowiak June 8, 2011 Table of contents 1 Equations of motion for axisymmetric jets...........................

More information

12.1 Viscous potential flow (VPF)

12.1 Viscous potential flow (VPF) 1 Energy equation for irrotational theories of gas-liquid flow:: viscous potential flow (VPF), viscous potential flow with pressure correction (VCVPF), dissipation method (DM) 1.1 Viscous potential flow

More information

Frieder Mugele. Physics of Complex Fluids. University of Twente. Jacco Snoeier Physics of Fluids / UT

Frieder Mugele. Physics of Complex Fluids. University of Twente. Jacco Snoeier Physics of Fluids / UT coorganizers: Frieder Mugele Physics of Comple Fluids Jacco Snoeier Physics of Fluids / UT University of Twente Anton Darhuber Mesoscopic Transport Phenomena / Tu/e speakers: José Bico (ESPCI Paris) Daniel

More information

Supplementary Information on Thermally Enhanced Self-Propelled Droplet Motion on Gradient Surfaces

Supplementary Information on Thermally Enhanced Self-Propelled Droplet Motion on Gradient Surfaces Electronic Supplementary Material (ESI) for RSC Advances. This journal is The Royal Society of Chemistry 2015 Supplementary Information on Thermally Enhanced Self-Propelled Droplet Motion on Gradient Surfaces

More information

Transient behaviour of deposition of liquid metal droplets on a solid substrate

Transient behaviour of deposition of liquid metal droplets on a solid substrate Transient behaviour of deposition of liquid metal droplets on a solid substrate J. Chapuis 1 E. Romero 2 F. Soulié 2 C. Bordreuil 2 G. Fras 2 Abstract This paper investigates the mechanisms that contribute

More information

Soft Matter PAPER. Universal spreading of water drops on complex surfaces. 1 Introduction

Soft Matter PAPER. Universal spreading of water drops on complex surfaces. 1 Introduction PAPER Cite this: Soft Matter, 2014, 10, 2641 Received 19th September 2013 Accepted 10th January 2014 DOI: 10.1039/c3sm52464g www.rsc.org/softmatter Universal spreading of water drops on complex surfaces

More information

Coalescence of sessile drops

Coalescence of sessile drops Coalescence of sessile drops Vadim Nikolayev, Daniel Beysens, Yves Pomeau, Claire Andrieu To cite this version: Vadim Nikolayev, Daniel Beysens, Yves Pomeau, Claire Andrieu. Coalescence of sessile drops.

More information

Introduction and Fundamental Concepts (Lectures 1-7)

Introduction and Fundamental Concepts (Lectures 1-7) Introduction and Fundamental Concepts (Lectures -7) Q. Choose the crect answer (i) A fluid is a substance that (a) has the same shear stress at a point regardless of its motion (b) is practicall incompressible

More information

The Microscopic and Macroscopic Structure of the Precursor Layer in Spreading Viscous Drops

The Microscopic and Macroscopic Structure of the Precursor Layer in Spreading Viscous Drops The Microscopic and Macroscopic Structure of the Precursor Layer in Spreading Viscous Drops H. Pirouz Kavehpour a), Ben Ovryn b), Gareth H. McKinley a) a) Hatsopoulos Microfluids Laboratory, Department

More information

Journal of Theoretical and Applied Mechanics, Sofia, 2011, vol. 41, No. 2, pp STATIC EQUILIBRIUM OF THIN FILMS ON AXISYMMETRIC SUBSTRATES

Journal of Theoretical and Applied Mechanics, Sofia, 2011, vol. 41, No. 2, pp STATIC EQUILIBRIUM OF THIN FILMS ON AXISYMMETRIC SUBSTRATES Journal of Theoretical and pplied Mechanics, Sofia, 2011, vol. 41, No. 2, pp. 37 48 FLUID MECHNICS STTIC EQUILIBRIUM OF THIN FILMS ON XISYMMETRIC SUBSTRTES S. Tabakova Department of Mechanics, TU Sofia,

More information

On supercooled water drops impacting on superhydrophobic textures

On supercooled water drops impacting on superhydrophobic textures of On supercooled water drops impacting on superhydrophobic textures Tanmoy Maitra, Carlo Antonini, Manish K. Tiwari a, Adrian Mularczyk, Zulkufli Imeri, Philippe Schoch and imos Poulikakos * Laboratory

More information

Effects of Interfacial and Viscous Properties of Liquids on Drop Spread Dynamics

Effects of Interfacial and Viscous Properties of Liquids on Drop Spread Dynamics ILASS Americas, nd Annual Conference on Liquid Atomization and Spray Systems, Cincinnati, OH, May 00 Effects of Interfacial and Viscous Properties of Liquids on Drop Spread Dynamics V. Ravi, M. A. Jog

More information

Contents. Preface XIII. 1 General Introduction 1 References 6

Contents. Preface XIII. 1 General Introduction 1 References 6 VII Contents Preface XIII 1 General Introduction 1 References 6 2 Interparticle Interactions and Their Combination 7 2.1 Hard-Sphere Interaction 7 2.2 Soft or Electrostatic Interaction 7 2.3 Steric Interaction

More information

Lecture 2 Fluid dynamics in microfluidic systems

Lecture 2 Fluid dynamics in microfluidic systems Lecture 2 Fluid dynamics in microfluidic systems 1) The range of validity of the fluid mechanics equations The hypothesis of the continuum in fluid mechanics (Batchelor, Introduction to Fluids Dynamics)

More information

Relaxation of a dewetting contact line Part 1: A full-scale hydrodynamic calculation

Relaxation of a dewetting contact line Part 1: A full-scale hydrodynamic calculation Under consideration for publication in J. Fluid Mech. Relaxation of a dewetting contact line Part : A full-scale hydrodynamic calculation By JACCO H. SNOEIJER, BRUNO ANDREOTTI, GILES DELON AND MARC FERMIGIER

More information

Measurements of Dispersions (turbulent diffusion) Rates and Breaking up of Oil Droplets in Turbulent Flows

Measurements of Dispersions (turbulent diffusion) Rates and Breaking up of Oil Droplets in Turbulent Flows Measurements of Dispersions (turbulent diffusion) Rates and Breaking up of Oil Droplets in Turbulent Flows Balaji Gopalan PI: Dr Joseph Katz Where do we come in? Turbulent diffusion of slightly buoyant

More information

Kinetic Slip Condition, van der Waals Forces, and Dynamic. Contact Angle. Abstract

Kinetic Slip Condition, van der Waals Forces, and Dynamic. Contact Angle. Abstract Kinetic Slip Condition, van der Waals Forces, and Dynamic Contact Angle Len M. Pismen and Boris Y. Rubinstein Department of Chemical Engineering, Technion Israel Institute of Technology, Haifa 3000, Israel.

More information

The Flow of Thin Liquid Layers on Circular Cylinders

The Flow of Thin Liquid Layers on Circular Cylinders The Flow of Thin Liquid Layers on Circular Cylinders Leonard W. Schwartz and Thomas A. Cender Department of Mechanical Engineering, University of Delaware, Newark, DE 19716 ISCST-20180917PM-A-CF4 Presented

More information

Supplementary Information. for

Supplementary Information. for Supplementary Information for Discrete Element Model for Suppression of Coffee-Ring Effect Ting Xu, 1 Miu Ling Lam, 2,3,4 and Ting-Hsuan Chen 1,2,3,4 1 Department of Mechanical and Biomedical Engineering,

More information

Thermocapillary Migration of a Drop

Thermocapillary Migration of a Drop Thermocapillary Migration of a Drop An Exact Solution with Newtonian Interfacial Rheology and Stretching/Shrinkage of Interfacial Area Elements for Small Marangoni Numbers R. BALASUBRAMANIAM a AND R. SHANKAR

More information

[Supplementary Figures]

[Supplementary Figures] [Supplementary Figures] Supplementary Figure 1 Fabrication of epoxy microchannels. (a) PDMS replica is generated from SU-8 master via soft lithography. (b) PDMS master is peeled away from PDMS replica

More information

Surfactants role on the deformation of colliding small bubbles

Surfactants role on the deformation of colliding small bubbles Colloids and Surfaces A: Physicochemical and Engineering Aspects 156 (1999) 547 566 www.elsevier.nl/locate/colsurfa Surfactants role on the deformation of colliding small bubbles D.S. Valkovska, K.D. Danov

More information

ATOMISTIC/CONTINUUM MULTISCALE COUPLING

ATOMISTIC/CONTINUUM MULTISCALE COUPLING ATOMISTIC/CONTINUUM MULTISCALE COUPLING Michael Moseler Multiscale Modelling and Tribosimulation Fraunhofer Institute for Mechanics of Materials IWM Multiscale Materials Modelling (MMM) Continuum models

More information

Supplementary table I. Table of contact angles of the different solutions on the surfaces used here. Supplementary Notes

Supplementary table I. Table of contact angles of the different solutions on the surfaces used here. Supplementary Notes 1 Supplementary Figure 1. Sketch of the experimental setup (not to scale) : it consists of a thin mylar sheet (0, 02 4 3cm 3 ) held fixed vertically. The spacing y 0 between the glass plate and the upper

More information

Relaxation of a dewetting contact line Part 2: Experiments

Relaxation of a dewetting contact line Part 2: Experiments Under consideration for publication in J. Fluid Mech. 1 Relaxation of a dewetting contact line Part 2: Experiments By GILES DELON 1, MARC FERMIGIER 1, JACCO H. SNOEIJER 1,2 AND BRUNO ANDREOTTI 1 1 Physique

More information

Surfactant effect on the motion of long bubbles in horizontal capillary tubes

Surfactant effect on the motion of long bubbles in horizontal capillary tubes Surfactant effect on the motion of long bubbles in horizontal capillary tubes Prabir Daripa 1, and G. Paşa 2 1 Department of Mathematics, Texas A&M University, College Station, TX-77843 2 Institute of

More information

14 8 Freezing droplets

14 8 Freezing droplets 8 Freezing droplets Task Place a water droplet on a plate cooled down to around -20 C. As it freezes, the shape of the droplet may become cone-like with a sharp top. Investigate this effect. 2 Equipment

More information

Relaxation of a dewetting contact line. Part 1. A full-scale hydrodynamic calculation

Relaxation of a dewetting contact line. Part 1. A full-scale hydrodynamic calculation J. Fluid Mech. (7), vol. 579, pp. 63 83. c 7 Cambridge University Press doi:1.117/s117516 Printed in the United Kingdom 63 Relaxation of a dewetting contact line. Part 1. A full-scale hydrodynamic calculation

More information

Physics and Chemistry of Interfaces

Physics and Chemistry of Interfaces Hans Jürgen Butt, Karlheinz Graf, and Michael Kappl Physics and Chemistry of Interfaces Second, Revised and Enlarged Edition WILEY- VCH WILEY-VCH Verlag GmbH & Co. KGaA Contents Preface XI 1 Introduction

More information

The growth of leading-edge distortions on a viscous sheet

The growth of leading-edge distortions on a viscous sheet PHYSICS OF FLUIDS VOLUME 11, NUMBER 2 FEBRUARY 1999 The growth of leading-edge distortions on a viscous sheet L. M. Hocking Department of Mathematics, University College London, Gower Street, London WC1E

More information

Thin flow over a sphere

Thin flow over a sphere 1 University of Waterloo, Faculty of Mathematics, Waterloo, Canada 2 Ryerson University, Department of Mathematics, Toronto, Canada IMA8 2016, June 12-16, Bad Honnef, Germany Problem description Related

More information

Dip coating in the presence of a substrate-liquid interaction potential

Dip coating in the presence of a substrate-liquid interaction potential PHYSICS OF FLUIDS 17, 102105 2005 Dip coating in the presence of a substrate-liquid interaction potential R. Krechetnikov a and G. M. Homsy Department of Mechanical Engineering, University of California,

More information

Microfluidic crystals: Impossible order

Microfluidic crystals: Impossible order Microfluidic crystals: Impossible order Tsevi Beatus, Roy Bar-Ziv, T. T. Weizmann Institute International Symposium on Non-Equilibrium Soft Matter Kyoto 2008 1 Outline Micro-fluidic droplets: micron sized

More information

Inertial collapse of liquid rings

Inertial collapse of liquid rings Baptiste Darbois Texier, Keyvan Piroird, David Quéré, Christophe Clanet To cite this version: Baptiste Darbois Texier, Keyvan Piroird, David Quéré, Christophe Clanet. Inertial collapse of liquid rings.

More information

7 The Navier-Stokes Equations

7 The Navier-Stokes Equations 18.354/12.27 Spring 214 7 The Navier-Stokes Equations In the previous section, we have seen how one can deduce the general structure of hydrodynamic equations from purely macroscopic considerations and

More information

10 - FLUID MECHANICS Page 1

10 - FLUID MECHANICS Page 1 0 - FLUID MECHANICS Page Introduction Fluid is a matter in a state which can flow. Liquids, gases, molten metal and tar are examples of fluids. Fluid mechanics is studied in two parts: ( i ) Fluid statics

More information

Surface and Interfacial Tensions. Lecture 1

Surface and Interfacial Tensions. Lecture 1 Surface and Interfacial Tensions Lecture 1 Surface tension is a pull Surfaces and Interfaces 1 Thermodynamics for Interfacial Systems Work must be done to increase surface area just as work must be done

More information

Dynamics and Patterns in Sheared Granular Fluid : Order Parameter Description and Bifurcation Scenario

Dynamics and Patterns in Sheared Granular Fluid : Order Parameter Description and Bifurcation Scenario Dynamics and Patterns in Sheared Granular Fluid : Order Parameter Description and Bifurcation Scenario NDAMS Workshop @ YITP 1 st November 2011 Meheboob Alam and Priyanka Shukla Engineering Mechanics Unit

More information

1. Comparison of stability analysis to previous work

1. Comparison of stability analysis to previous work . Comparison of stability analysis to previous work The stability problem (6.4) can be understood in the context of previous work. Benjamin (957) and Yih (963) have studied the stability of fluid flowing

More information

COMPLEX FLOW OF NANOCONFINED POLYMERS

COMPLEX FLOW OF NANOCONFINED POLYMERS COMPLEX FLOW OF NANOCONFINED POLYMERS Connie B. Roth, Chris A. Murray and John R. Dutcher Department of Physics University of Guelph Guelph, Ontario, Canada N1G 2W1 OUTLINE instabilities in freely-standing

More information

Supplementary Information. In colloidal drop drying processes, multi-ring depositions are formed due to the stick-slip

Supplementary Information. In colloidal drop drying processes, multi-ring depositions are formed due to the stick-slip Electronic Supplementary Material (ESI for Soft Matter. This journal is The Royal Society of Chemistry 14 Supplementary Information A1. Contact line receding velocity of an evaporating drop In colloidal

More information

LATTICE BOLTZMANN SIMULATION OF BINARY DROP COALESCENCE AT LOW WEBER NUMBER

LATTICE BOLTZMANN SIMULATION OF BINARY DROP COALESCENCE AT LOW WEBER NUMBER City University of New York (CUNY) CUNY Academic Works Master's Theses City College of New York 2012 LATTICE BOLTZMANN SIMULATION OF BINARY DROP COALESCENCE AT LOW WEBER NUMBER Lina Baroudi CUNY City College

More information

Approach to universality in axisymmetric bubble pinch-off

Approach to universality in axisymmetric bubble pinch-off Approach to universality in axisymmetric bubble pinch-off Stephan Gekle, Jacco H. Snoeijer, Detlef Lohse, and Devaraj van der Meer Department of Applied Physics and J.M. Burgers Centre for Fluid Dynamics,

More information

arxiv: v1 [cond-mat.mtrl-sci] 24 Sep 2014

arxiv: v1 [cond-mat.mtrl-sci] 24 Sep 2014 Theory and experiments on the ice-water front propagation in droplets freezing on a subzero surface. Michael Nauenberg Department of Physics, University of California, Santa Cruz, CA 95064 arxiv:1409.7052v1

More information

Diffuse Interface Field Approach (DIFA) to Modeling and Simulation of Particle-based Materials Processes

Diffuse Interface Field Approach (DIFA) to Modeling and Simulation of Particle-based Materials Processes Diffuse Interface Field Approach (DIFA) to Modeling and Simulation of Particle-based Materials Processes Yu U. Wang Department Michigan Technological University Motivation Extend phase field method to

More information

NO SPLASH ON THE MOON

NO SPLASH ON THE MOON UNIVERSITY OF LJUBLJANA Faculty of Mathematics and Physics Department of Physics NO SPLASH ON THE MOON Mentor: prof. Dr. RUDOLF PODGORNIK Ljubljana, February 2007 ABSTRACT The basic description of a droplet

More information

Propagation of capillary waves and ejection of small droplets in rapid droplet spreading

Propagation of capillary waves and ejection of small droplets in rapid droplet spreading Propagation of capillary waves and ejection of small droplets in rapid droplet spreading Hui Ding, E.Q. Li, F.H. Zhang, Yi Sui, Peter D.M. Spelt, S. T. Thoroddsen To cite this version: Hui Ding, E.Q. Li,

More information

arxiv:physics/ v1 [physics.flu-dyn] 10 Mar 1999

arxiv:physics/ v1 [physics.flu-dyn] 10 Mar 1999 Coalescence of Liquid Drops Jens Eggers, John R. Lister, Howard A. Stone arxiv:physics/9903017v1 [physics.flu-dyn] 10 Mar 1999 Universität Gesamthochschule Essen, Fachbereich Physik, 45117 Essen, Germany

More information

Measurement of Liquid Film Thickness in Micro Square Channel

Measurement of Liquid Film Thickness in Micro Square Channel Measurement of Liquid Film Thickness in Micro Square Channel Youngbae Han and Naoki Shikazono Department of Mechanical Engineering, The University of Tokyo Hongo 7-3-1, Bunkyo-ku, Tokyo 113-8656, Japan

More information

Thin Film Behavior after Ink Transfer in Printing Processes N. Bornemann, H. M. Sauer, E. Dörsam

Thin Film Behavior after Ink Transfer in Printing Processes N. Bornemann, H. M. Sauer, E. Dörsam Thin Film Behavior after Ink Transfer in Printing Processes N. Bornemann, H. M. Sauer, E. Dörsam 15.04.2010 Institute of Printing Science and Technology Thin Film Behavior N. Bornemann Overview Thin Film

More information

Homogeneous Rayleigh-Bénard convection

Homogeneous Rayleigh-Bénard convection Slide 1 Homogeneous Rayleigh-Bénard convection scaling, heat transport and structures E. Calzavarini and F. Toschi, D. Lohse, R. Tripiccione, C. R. Doering, J. D. Gibbon, A. Tanabe Euromech Colloquium

More information

arxiv: v1 [physics.flu-dyn] 23 May 2013

arxiv: v1 [physics.flu-dyn] 23 May 2013 Oscillating and star-shaped drops levitated by an airflow Wilco Bouwhuis 1, Koen G. Winkels 1, Ivo R. Peters 1,, Philippe Brunet 3, Devaraj van der Meer 1, and Jacco H. Snoeijer 1 1 Physics of Fluids Group,

More information

ISCST shall not be responsible for statements or opinions contained in papers or printed in its publications.

ISCST shall not be responsible for statements or opinions contained in papers or printed in its publications. Modeling of Drop Motion on Solid Surfaces with Wettability Gradients J. B. McLaughlin, Sp. S. Saravanan, N. Moumen, and R. S. Subramanian Department of Chemical Engineering Clarkson University Potsdam,

More information

Growth and Form: From Stalactites to Ponytails. Raymond E. Goldstein University of Cambridge

Growth and Form: From Stalactites to Ponytails. Raymond E. Goldstein University of Cambridge Growth and Form: From Stalactites to Ponytails Raymond E. Goldstein University of Cambridge Stalactite Growth Stalactites have featured in written accounts dating back thousands of years (Pliny, 1 st century

More information

INFLUENCE OF THE SURFACE FORCES ON THE APPARENT CONTACT ANGLE AT PARTIAL WETTING AND IN THE PRESENCE OF HEAT AND MASS TRANSFER

INFLUENCE OF THE SURFACE FORCES ON THE APPARENT CONTACT ANGLE AT PARTIAL WETTING AND IN THE PRESENCE OF HEAT AND MASS TRANSFER Proceedings of the 2 nd European Conference on Microfluidics - Microfluidics 21 - Toulouse, December 8-1, 21 µflu1-212 INFLUENCE OF THE SURFACE FORCES ON THE APPARENT CONTACT ANGLE AT PARTIAL WETTING AND

More information

Lecture 7 Contact angle phenomena and wetting

Lecture 7 Contact angle phenomena and wetting Lecture 7 Contact angle phenomena and Contact angle phenomena and wetting Young s equation Drop on the surface complete spreading Establishing finite contact angle γ cosθ = γ γ L S SL γ S γ > 0 partial

More information

Introduction to Micro/Nanofluidics. Date: 2015/03/13. Dr. Yi-Chung Tung. Outline

Introduction to Micro/Nanofluidics. Date: 2015/03/13. Dr. Yi-Chung Tung. Outline Introduction to Micro/Nanofluidics Date: 2015/03/13 Dr. Yi-Chung Tung Outline Introduction to Microfluidics Basic Fluid Mechanics Concepts Equivalent Fluidic Circuit Model Conclusion What is Microfluidics

More information