ATOMISTIC/CONTINUUM MULTISCALE COUPLING

Size: px
Start display at page:

Download "ATOMISTIC/CONTINUUM MULTISCALE COUPLING"

Transcription

1 ATOMISTIC/CONTINUUM MULTISCALE COUPLING Michael Moseler Multiscale Modelling and Tribosimulation Fraunhofer Institute for Mechanics of Materials IWM

2 Multiscale Materials Modelling (MMM) Continuum models Coarse grained models Classical Molecular Dynamics Ab initio Molecular Dynamics

3 Accelerated Molecular Dynamics Continuum models Coarse grained models Classical Molecular Dynamics Ab initio Molecular Dynamics

4 Extending the continuum regime Continuum models Coarse grained models Classical Molecular Dynamics Ab initio Molecular Dynamics

5 Multiscale modeling 10 cm MACRO 10 µm Microscale: atomistics 10 nm tim e sc al es MICRO ge Constitutive equations Material parameters Boundary conditions Corrections (e.g. finite size) Validation Continuum equations Br id Bridge length and time scales Hierarchical atomistic/continuum coupling 10 Å Continuum equations MICRO

6 Classical transport and shape evolution in small systems Today CNT growth: ACS Nano 5, 686 (2011) Capillary impregantion: NJP, 10, (2008) Wear of surfaces: Nature Mat. 10, 34 (2011) DLC growth: Science 309, 1545 (2005) Rayleigh instability: Science 289, 1165 (2000)

7 Classical molecular dynamics of nanojet formation and breakup Nanojets Moseler & Landman, Science 289, 1165 (2000).

8 Rayleigh instability and the validity of hydrodynamics on the nanoscale? Lubrication equations: Jens Eggers, Rev. Mod. Phys. 69, 865,(1997) J. Eggers, E. Villermaux, Rep. Prog. Phys. 71, (2008) Intrinsic scales: Similarity solution : threads

9 Comparison of molecular dynamics with Navier-Stokes Taking into account stress fluctuations in small systems

10 Experimental validation? Stochastic terms dominate on length scales smaller than Thermal capillary length scales: Hennequin, et al., Phys. Rev. Lett (2006) Colloidal fluids:

11 Growth of carbon nanotubes and the shape evolution of catalyst particles Bamboo structure

12 Environmental TEM experiments: Shape dynamics of Ni catalyst particles T=750 K

13 Molecular dynamics of a solid Ni nanoparticle in a double wall carbon nanotube Moseler et al., A T=1160 K EAM Ni10561 interacting via Morse potentials with a static CNT ACS Nano 5, 686 (2011)

14 Transport mechanism: surface diffusion

15 Continuum transport model Two Reservoirs: Diffusive particle current: 2 µ r = γω r Dsedge ρ s µ J = 2πr kt z dl 4B = 2 dt Ledge r µ R = γω r 1 R ( L) 2 R Mullins B: WW Mullins, J.Appl.Phys (1957) γdsedge ρ s Ω 2 B= kt

16 r 1 R ( L) edge dl 4B dl = Use from MD and solve 2 dt dt t =0 Ledge r for D sedge

17 Comparison with experiment

18 CNT with Fe-Catalyst Tip growth of (15,0) tube catalysed by Fe561 Molecular dynamics simulation with reactive Bond-Order-Potential (Albe, Nordlund) Deposition rate C/s Growth at 600 K

19 Growth at 1200K

20 Cross section of the newly grown CNT Fe (green) is incorporated in CNT-walls

21 Deposition of AgN on Au(111) Effect of deposition energy 34 ev 340 ev Count Grönhagen, Järvi et al., to be published 6 8 Height [A] experiment simulation 15 Height [A] Height [A] count 3 ev

22 Decay mechanism Decay of top monolayer Non-local effect of surface on cluster Barrier from ca. 0.4 to 0.2 ev Barrier inferred from experiment at 77 K: ca ev

23 Summary A hierarchical atomistic/continuum modelling is quite usefull for a quantitative understanding of complex shape dynamics in nanoscale systems. Acknowledgement: Uzi Landman, Georgia Institute of Technology Andreas Klemenz, Fraunhofer IWM F. Cervantes-Sodi, S.Hofmann, G. Czanyi, A. Ferrari, Cambridge Univ. Tommi Järvi, Fraunhofer IWM Thank you for your attention!

24 Topography evolution during thin film growth

25 Capillary smoothing? C impinges on ta-c with 100 ev MD with Brenner BOP, D. W. Brenner, Phys. Rev. B 42, 8458 (1990) Casiraghi, Ferrari, Ohr, Flewitt, Chu, Robertson, PRL 91, (2003)

26 Atomistic simulation of film growth The smoothing of a rough DLC film 4000 C-atoms with 100 ev hit a film with an area 7.05nm x 2.35nm

27 Downhill currents h(x) G.Carter, PRB 54, (1996 ) M.Moseler et al. Comp. Mat. Sci. 10, 452 (1998) Particle current: j (x) = ν h(x) α

28 Mesoscale description Stochastic differential equation of motion j (x, t ) = ν h(x, t ) r: deposition rate, Ω : average atomic volume Stanley&Barabasi, Fractal concepts in Surface Growth

29 The Edwards-Wilkinson equation s~t h(x, s ) hk ( s ) FT Solution: Power spectral density

30 Evolution of the experimental power spectral density Moseler, Gumbsch, Casiraghi, Ferrari, Robertson The ultrasmoothness of diamond-like carbon, Science 309, 1545 (2005)

31 Nanocapillary pumps Applications in Lab-on-Chips Non wetted (Au) Nanotribology Printing Zimmermann et al., Lab Chip 7, 119 (2007) Wetted (Au/ML)

32 τ 0+τ 1 Meniscus relaxation: Establisment of Poiseuille flow: D. Quere, Europhys.Lett. 39, 533 (1997). Washburn s law Balance of capillary and Poiseuille pressure:

33 Steady state simulations U Capillary Number: ηu Ca = γ Au: Au/ML: J. Eggers, H. A. Stone, J. Fluid Mech. 505, 309 (2004)

34 U= Navier slip law:

35 The stress singularity : d τ τ L1 L2 L3

36 Continuum mechanical modelling z Velocity from lubrication approx.+ BCs Mass flux: h(x) U Steady state: : : x

37 x (nm)

38 Extended Washburn equation

contact line dynamics

contact line dynamics contact line dynamics part 2: hydrodynamics dynamic contact angle? lubrication: Cox-Voinov theory maximum speed for instability corner shape? dimensional analysis: speed U position r viscosity η pressure

More information

Multiscale modeling of active fluids: selfpropellers and molecular motors. I. Pagonabarraga University of Barcelona

Multiscale modeling of active fluids: selfpropellers and molecular motors. I. Pagonabarraga University of Barcelona Multiscale modeling of active fluids: selfpropellers and molecular motors I. Pagonabarraga University of Barcelona Introduction Soft materials weak interactions Self-assembly Emergence large scale structures

More information

Dissipative Particle Dynamics: Foundation, Evolution and Applications

Dissipative Particle Dynamics: Foundation, Evolution and Applications Dissipative Particle Dynamics: Foundation, Evolution and Applications Lecture 4: DPD in soft matter and polymeric applications George Em Karniadakis Division of Applied Mathematics, Brown University &

More information

Derivation of continuum models for the moving contact line problem based on thermodynamic principles. Abstract

Derivation of continuum models for the moving contact line problem based on thermodynamic principles. Abstract Derivation of continuum models for the moving contact line problem based on thermodynamic principles Weiqing Ren Courant Institute of Mathematical Sciences, New York University, New York, NY 002, USA Weinan

More information

Analytical and Numerical Study of Coupled Atomistic-Continuum Methods for Fluids

Analytical and Numerical Study of Coupled Atomistic-Continuum Methods for Fluids Analytical and Numerical Study of Coupled Atomistic-Continuum Methods for Fluids Weiqing Ren Courant Institute, NYU Joint work with Weinan E Multiscale modeling for two types of problems: Complex fluids

More information

Microfluidics 1 Basics, Laminar flow, shear and flow profiles

Microfluidics 1 Basics, Laminar flow, shear and flow profiles MT-0.6081 Microfluidics and BioMEMS Microfluidics 1 Basics, Laminar flow, shear and flow profiles 11.1.2017 Ville Jokinen Outline of the next 3 weeks: Today: Microfluidics 1: Laminar flow, flow profiles,

More information

1. Introduction The classical model for flow in a circular cylindrical pipe is described by the Hagen-Poiseuille equation

1. Introduction The classical model for flow in a circular cylindrical pipe is described by the Hagen-Poiseuille equation WHY AE SLIP LENGTHS SO LAGE IN CABON NANOTUBES? TIM G. MYES Abstract. The enhanced flow in carbon nanotubes is explained using a mathematical model that includes a depletion layer with reduced viscosity

More information

TRIBOLOGY OF DIAMOND AND SILICON

TRIBOLOGY OF DIAMOND AND SILICON TRIBOLOGY OF DIAMOND AND SILICON ATOMIC-SCALE INSIGHTS FROM COMPUTER SIMULATIONS University of Warwick WCPM Seminars 19.02.2018 Gianpietro Moras Fraunhofer lines gianpietro.moras@iwm.fraunhofer.de Contract

More information

Smoothed Dissipative Particle Dynamics: theory and applications to complex fluids

Smoothed Dissipative Particle Dynamics: theory and applications to complex fluids 2015 DPD Workshop September 21-23, 2015, Shanghai University Smoothed Dissipative Particle Dynamics: Dynamics theory and applications to complex fluids Marco Ellero Zienkiewicz Centre for Computational

More information

Numerical modeling of sliding contact

Numerical modeling of sliding contact Numerical modeling of sliding contact J.F. Molinari 1) Atomistic modeling of sliding contact; P. Spijker, G. Anciaux 2) Continuum modeling; D. Kammer, V. Yastrebov, P. Spijker pj ICTP/FANAS Conference

More information

Particle-Simulation Methods for Fluid Dynamics

Particle-Simulation Methods for Fluid Dynamics Particle-Simulation Methods for Fluid Dynamics X. Y. Hu and Marco Ellero E-mail: Xiangyu.Hu and Marco.Ellero at mw.tum.de, WS 2012/2013: Lectures for Mechanical Engineering Institute of Aerodynamics Technical

More information

contact line dynamics

contact line dynamics contact line dynamics Jacco Snoeijer Physics of Fluids - University of Twente sliding drops flow near contact line static contact line Ingbrigtsen & Toxvaerd (2007) γ γ sv θ e γ sl molecular scales macroscopic

More information

Lecture 2 Fluid dynamics in microfluidic systems

Lecture 2 Fluid dynamics in microfluidic systems Lecture 2 Fluid dynamics in microfluidic systems 1) The range of validity of the fluid mechanics equations The hypothesis of the continuum in fluid mechanics (Batchelor, Introduction to Fluids Dynamics)

More information

Modeling of colloidal gels

Modeling of colloidal gels Modeling of colloidal gels rheology and contact forces 1 Ryohei Seto, TU München Heiko Briesen, TU München Robert Botet, LPS, Paris-Sud Martine Meireles, LGC, Univ. Paul Sabatier Bernard Cabane, ESPCI

More information

Hydrodynamics of wetting phenomena. Jacco Snoeijer PHYSICS OF FLUIDS

Hydrodynamics of wetting phenomena. Jacco Snoeijer PHYSICS OF FLUIDS Hydrodynamics of wetting phenomena Jacco Snoeijer PHYSICS OF FLUIDS Outline 1. Creeping flow: hydrodynamics at low Reynolds numbers (2 hrs) 2. Thin films and lubrication flows (3 hrs + problem session

More information

Department of Engineering Mechanics, SVL, Xi an Jiaotong University, Xi an

Department of Engineering Mechanics, SVL, Xi an Jiaotong University, Xi an The statistical characteristics of static friction J. Wang, G. F. Wang*, and W. K. Yuan Department of Engineering Mechanics, SVL, Xi an Jiaotong University, Xi an 710049, China * E-mail: wanggf@mail.xjtu.edu.cn

More information

Basic concepts in viscous flow

Basic concepts in viscous flow Élisabeth Guazzelli and Jeffrey F. Morris with illustrations by Sylvie Pic Adapted from Chapter 1 of Cambridge Texts in Applied Mathematics 1 The fluid dynamic equations Navier-Stokes equations Dimensionless

More information

Structural and Mechanical Properties of Nanostructures

Structural and Mechanical Properties of Nanostructures Master s in nanoscience Nanostructural properties Mechanical properties Structural and Mechanical Properties of Nanostructures Prof. Angel Rubio Dr. Letizia Chiodo Dpto. Fisica de Materiales, Facultad

More information

Continuum Model of Avalanches in Granular Media

Continuum Model of Avalanches in Granular Media Continuum Model of Avalanches in Granular Media David Chen May 13, 2010 Abstract A continuum description of avalanches in granular systems is presented. The model is based on hydrodynamic equations coupled

More information

Mesoscale fluid simulation of colloidal systems

Mesoscale fluid simulation of colloidal systems Mesoscale fluid simulation of colloidal systems Mingcheng Yang Institute of Physics, CAS Outline (I) Background (II) Simulation method (III) Applications and examples (IV) Summary Background Soft matter

More information

In situ studies on dynamic properties of carbon nanotubes with metal clusters

In situ studies on dynamic properties of carbon nanotubes with metal clusters In situ studies on dynamic properties of carbon nanotubes with metal clusters Jason Chang, Yuan-Chih Chang, Der-Hsien Lien, Shaw-Chieh Wang*, Tung Hsu*, and Tien T. Tsong Institute of Physics, Academia

More information

Molecular views on thermo-osmotic flows

Molecular views on thermo-osmotic flows Molecular views on thermo-osmotic flows Li Fu, Samy Merabia, Laurent Joly Univ Lyon, Université Claude Bernard Lyon 1, CNRS, Institut Lumière Matière, F-69622, Villeurbanne, France http://ilm-perso.univ-lyon1.fr/~ljoly/

More information

the moving contact line

the moving contact line Molecular hydrodynamics of the moving contact line Tiezheng Qian Mathematics Department Hong Kong University of Science and Technology in collaboration with Ping Sheng (Physics Dept, HKUST) Xiao-Ping Wang

More information

Hydrodynamics, Thermodynamics, and Mathematics

Hydrodynamics, Thermodynamics, and Mathematics Hydrodynamics, Thermodynamics, and Mathematics Hans Christian Öttinger Department of Mat..., ETH Zürich, Switzerland Thermodynamic admissibility and mathematical well-posedness 1. structure of equations

More information

Multiscale simulations of complex fluid rheology

Multiscale simulations of complex fluid rheology Multiscale simulations of complex fluid rheology Michael P. Howard, Athanassios Z. Panagiotopoulos Department of Chemical and Biological Engineering, Princeton University Arash Nikoubashman Institute of

More information

Interface Location of Capillary Driven Flow in Circular Micro Channel Using by COMSOL

Interface Location of Capillary Driven Flow in Circular Micro Channel Using by COMSOL Interface Location of Capillary Driven Flow in Circular Micro Channel Using by COMSOL ARSHYA BAMSHAD 1, MOHAMMAD H. SABOUR 2, ALIREZA NIKFARJAM 3 Faculty of New Sciences & Technologies University of Tehran

More information

Hydrodynamics of wetting phenomena. Jacco Snoeijer PHYSICS OF FLUIDS

Hydrodynamics of wetting phenomena. Jacco Snoeijer PHYSICS OF FLUIDS Hydrodynamics of wetting phenomena Jacco Snoeijer PHYSICS OF FLUIDS Outline 1. Creeping flow: hydrodynamics at low Reynolds numbers (2 hrs) 2. Thin films and lubrication flows (3 hrs + problem session

More information

Recap (so far) Low-Dimensional & Boundary Effects

Recap (so far) Low-Dimensional & Boundary Effects Recap (so far) Ohm s & Fourier s Laws Mobility & Thermal Conductivity Heat Capacity Wiedemann-Franz Relationship Size Effects and Breakdown of Classical Laws 1 Low-Dimensional & Boundary Effects Energy

More information

Bridging to the Continuum Scale for Ferroelectric Applications

Bridging to the Continuum Scale for Ferroelectric Applications Bridging to the Continuum Scale for Ferroelectric Applications Shanfu Zheng and Alberto Cuitiño Mechanical and Aerospace Engineering, Rutgers University Alejandro Strachan Materials Engineering, Purdue

More information

Numerical simulations of drop impacts

Numerical simulations of drop impacts Numerical simulations of drop impacts Christophe Josserand Institut D Alembert, CNRS-UPMC L. Duchemin, Z. Jian, P. Ray and S. Zaleski Numerical simulations of drop impacts Christophe Josserand Institut

More information

Lecture 2: Hydrodynamics at milli micrometer scale

Lecture 2: Hydrodynamics at milli micrometer scale 1 at milli micrometer scale Introduction Flows at milli and micro meter scales are found in various fields, used for several processes and open up possibilities for new applications: Injection Engineering

More information

What is the role of simulation in nanoscience research?

What is the role of simulation in nanoscience research? ChE/MSE 557 Intro part 2 What is the role of simulation in nanoscience research? 1 Opportunities for Simulation Simulation Simulation complements both experiment and theory. Extends window of observation

More information

Separation criteria of nanoscale water droplets from a nozzle plate surface

Separation criteria of nanoscale water droplets from a nozzle plate surface Separation criteria of nanoscale water droplets from a nozzle plate surface Van Quang Nguyen 1, Xuan Son Phung 1 and Jau-Wen Lin 2,a 1 Faculty of Mechanical Engineering, Ha Noi University of Industry,

More information

Basic 8 Micro-Nano Materials Science. and engineering

Basic 8 Micro-Nano Materials Science. and engineering Basic 8 Micro-Nano Materials Science and Analysis Atomistic simulations in materials science and engineering Assistant Prof. Y. Kinoshita and Prof. N. Ohno Dept. of Comp. Sci. Eng. and Dept. of Mech. Sci.

More information

PHYSICS OF FLUID SPREADING ON ROUGH SURFACES

PHYSICS OF FLUID SPREADING ON ROUGH SURFACES INTERNATIONAL JOURNAL OF NUMERICAL ANALYSIS AND MODELING Volume 5, Supp, Pages 85 92 c 2008 Institute for Scientific Computing and Information PHYSICS OF FLUID SPREADING ON ROUGH SURFACES K. M. HAY AND

More information

PERSISTENCE AND SURVIVAL IN EQUILIBRIUM STEP FLUCTUATIONS. Chandan Dasgupta

PERSISTENCE AND SURVIVAL IN EQUILIBRIUM STEP FLUCTUATIONS. Chandan Dasgupta PERSISTENCE AND SURVIVAL IN EQUILIBRIUM STEP FLUCTUATIONS Chandan Dasgupta Centre for Condensed Matter Theory Department of Physics Indian Institute of Science, Bangalore http://www.physics.iisc.ernet.in/~cdgupta

More information

Molecular dynamics simulation of nanofluidics and nanomachining

Molecular dynamics simulation of nanofluidics and nanomachining Molecular dynamics simulation of nanofluidics and nanomachining M. T. Horsch,1, 4 S. Stephan,1 S. Becker,1 M. Heier,1 M. P. Lautenschläger,1 F. Diewald,2 R. Müller,2 H. M. Urbassek,3 and H. Hasse1 1 Engineering

More information

PREDICTION OF INTRINSIC PERMEABILITIES WITH LATTICE BOLTZMANN METHOD

PREDICTION OF INTRINSIC PERMEABILITIES WITH LATTICE BOLTZMANN METHOD PREDICTION OF INTRINSIC PERMEABILITIES WITH LATTICE BOLTZMANN METHOD Luís Orlando Emerich dos Santos emerich@lmpt.ufsc.br Carlos Enrique Pico Ortiz capico@lmpt.ufsc.br Henrique Cesar de Gaspari henrique@lmpt.ufsc.br

More information

MD simulation of methane in nanochannels

MD simulation of methane in nanochannels MD simulation of methane in nanochannels COCIM, Arica, Chile M. Horsch, M. Heitzig, and J. Vrabec University of Stuttgart November 6, 2008 Scope and structure Molecular model for graphite and the fluid-wall

More information

Diffusion in Reduced Dimensions. Clemens Bechinger 2. Physikalisches Institut, Universität Stuttgart

Diffusion in Reduced Dimensions. Clemens Bechinger 2. Physikalisches Institut, Universität Stuttgart Diffusion in Reduced Dimensions Clemens Bechinger 2. Physikalisches Institut, Universität Stuttgart Diffusion in narrow Channels t = 0 t = t 1 3D, 2D: mixing 1D: sequence unchanged 1D diffusion entirely

More information

Contents. Preface XI Symbols and Abbreviations XIII. 1 Introduction 1

Contents. Preface XI Symbols and Abbreviations XIII. 1 Introduction 1 V Contents Preface XI Symbols and Abbreviations XIII 1 Introduction 1 2 Van der Waals Forces 5 2.1 Van der Waals Forces Between Molecules 5 2.1.1 Coulomb Interaction 5 2.1.2 Monopole Dipole Interaction

More information

(Crystal) Nucleation: The language

(Crystal) Nucleation: The language Why crystallization requires supercooling (Crystal) Nucleation: The language 2r 1. Transferring N particles from liquid to crystal yields energy. Crystal nucleus Δµ: thermodynamic driving force N is proportional

More information

Modeling the combined effect of surface roughness and shear rate on slip flow of simple fluids

Modeling the combined effect of surface roughness and shear rate on slip flow of simple fluids Modeling the combined effect of surface roughness and shear rate on slip flow of simple fluids Anoosheh Niavarani and Nikolai Priezjev www.egr.msu.edu/~niavaran November 2009 A. Niavarani and N.V. Priezjev,

More information

Spectroscopy at nanometer scale

Spectroscopy at nanometer scale Spectroscopy at nanometer scale 1. Physics of the spectroscopies 2. Spectroscopies for the bulk materials 3. Experimental setups for the spectroscopies 4. Physics and Chemistry of nanomaterials Various

More information

Shear Thinning Near the Rough Boundary in a Viscoelastic Flow

Shear Thinning Near the Rough Boundary in a Viscoelastic Flow Advanced Studies in Theoretical Physics Vol. 10, 2016, no. 8, 351-359 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/10.12988/astp.2016.6624 Shear Thinning Near the Rough Boundary in a Viscoelastic Flow

More information

Coupled continuum hydrodynamics and molecular dynamics method for multiscale simulation

Coupled continuum hydrodynamics and molecular dynamics method for multiscale simulation Coupled continuum hydrodynamics and molecular dynamics method for multiscale simulation Matthew K. BORG 1,, Duncan A. LOCKERBY 2, Jason M. REESE 1 * Corresponding author: Tel.: +44() 141 548 4386; Email:

More information

Superhydrophobic surfaces: stability of the Cassie-Baxter state and its effect on liquid water slippage

Superhydrophobic surfaces: stability of the Cassie-Baxter state and its effect on liquid water slippage Superhydrophobic surfaces: stability of the Cassie-Baxter state and its effect on liquid water slippage Mauro Chinappi Center for Life Nano Science IIT@Sapienza Talk outlines Talk 1: Solid Molecular Dynamics

More information

The effective slip length and vortex formation in laminar flow over a rough surface

The effective slip length and vortex formation in laminar flow over a rough surface The effective slip length and vortex formation in laminar flow over a rough surface Anoosheh Niavarani and Nikolai V. Priezjev Movies and preprints @ http://www.egr.msu.edu/~niavaran A. Niavarani and N.V.

More information

Energy Spectroscopy. Ex.: Fe/MgO

Energy Spectroscopy. Ex.: Fe/MgO Energy Spectroscopy Spectroscopy gives access to the electronic properties (and thus chemistry, magnetism,..) of the investigated system with thickness dependence Ex.: Fe/MgO Fe O Mg Control of the oxidation

More information

Kinetic Monte Carlo: from transition probabilities to transition rates

Kinetic Monte Carlo: from transition probabilities to transition rates Kinetic Monte Carlo: from transition probabilities to transition rates With MD we can only reproduce the dynamics of the system for 100 ns. Slow thermallyactivated processes, such as diffusion, cannot

More information

Micro Chemical Vapor Deposition System: Design and Verification

Micro Chemical Vapor Deposition System: Design and Verification Micro Chemical Vapor Deposition System: Design and Verification Q. Zhou and L. Lin Berkeley Sensor and Actuator Center, Department of Mechanical Engineering, University of California, Berkeley 2009 IEEE

More information

Phase Transitions in Nonequilibrium Steady States and Power Laws and Scaling Functions of Surface Growth Processes

Phase Transitions in Nonequilibrium Steady States and Power Laws and Scaling Functions of Surface Growth Processes Phase Transitions in Nonequilibrium Steady States and Power Laws and Scaling Functions of Surface Growth Processes Term-paper for PHY563 Xianfeng Rui, UIUC Physics Abstract: Three models of surface growth

More information

Slow viscous flow in a microchannel with similar and different superhydrophobic walls

Slow viscous flow in a microchannel with similar and different superhydrophobic walls Journal of Physics: Conference Series PAPER OPEN ACCESS Slow viscous flow in a microchannel with similar and different superhydrophobic walls To cite this article: A I Ageev and A N Osiptsov 2018 J. Phys.:

More information

Modeling of Micro-Fluidics by a Dissipative Particle Dynamics Method. Justyna Czerwinska

Modeling of Micro-Fluidics by a Dissipative Particle Dynamics Method. Justyna Czerwinska Modeling of Micro-Fluidics by a Dissipative Particle Dynamics Method Justyna Czerwinska Scales and Physical Models years Time hours Engineering Design Limit Process Design minutes Continious Mechanics

More information

FEEDBACK CONTROL OF GROWTH RATE AND SURFACE ROUGHNESS IN THIN FILM GROWTH. Yiming Lou and Panagiotis D. Christofides

FEEDBACK CONTROL OF GROWTH RATE AND SURFACE ROUGHNESS IN THIN FILM GROWTH. Yiming Lou and Panagiotis D. Christofides FEEDBACK CONTROL OF GROWTH RATE AND SURFACE ROUGHNESS IN THIN FILM GROWTH Yiming Lou and Panagiotis D. Christofides Department of Chemical Engineering University of California, Los Angeles IEEE 2003 Conference

More information

Thermal Transport in Graphene and other Two-Dimensional Systems. Li Shi. Department of Mechanical Engineering & Texas Materials Institute

Thermal Transport in Graphene and other Two-Dimensional Systems. Li Shi. Department of Mechanical Engineering & Texas Materials Institute Thermal Transport in Graphene and other Two-Dimensional Systems Li Shi Department of Mechanical Engineering & Texas Materials Institute Outline Thermal Transport Theories and Simulations of Graphene Raman

More information

Non equilibrium thermodynamics: foundations, scope, and extension to the meso scale. Miguel Rubi

Non equilibrium thermodynamics: foundations, scope, and extension to the meso scale. Miguel Rubi Non equilibrium thermodynamics: foundations, scope, and extension to the meso scale Miguel Rubi References S.R. de Groot and P. Mazur, Non equilibrium Thermodynamics, Dover, New York, 1984 J.M. Vilar and

More information

Molecular Dynamics Simulations of Fusion Materials: Challenges and Opportunities (Recent Developments)

Molecular Dynamics Simulations of Fusion Materials: Challenges and Opportunities (Recent Developments) Molecular Dynamics Simulations of Fusion Materials: Challenges and Opportunities (Recent Developments) Fei Gao gaofeium@umich.edu Limitations of MD Time scales Length scales (PBC help a lot) Accuracy of

More information

Scanning Tunneling Microscopy

Scanning Tunneling Microscopy Scanning Tunneling Microscopy Scanning Direction References: Classical Tunneling Quantum Mechanics Tunneling current Tunneling current I t I t (V/d)exp(-Aφ 1/2 d) A = 1.025 (ev) -1/2 Å -1 I t = 10 pa~10na

More information

Fluid Dynamics. Massimo Ricotti. University of Maryland. Fluid Dynamics p.1/14

Fluid Dynamics. Massimo Ricotti. University of Maryland. Fluid Dynamics p.1/14 Fluid Dynamics p.1/14 Fluid Dynamics Massimo Ricotti ricotti@astro.umd.edu University of Maryland Fluid Dynamics p.2/14 The equations of fluid dynamics are coupled PDEs that form an IVP (hyperbolic). Use

More information

Coupling Atomistic and Continuum Hydrodynamics

Coupling Atomistic and Continuum Hydrodynamics Coupling Atomistic and Continuum Hydrodynamics Matej Praprotnik praprot@cmm.ki.si Laboratory for Molecular Modeling National Institute of Chemistry Ljubljana, Slovenia & Department of Physics Faculty of

More information

Direct Modeling for Computational Fluid Dynamics

Direct Modeling for Computational Fluid Dynamics Direct Modeling for Computational Fluid Dynamics Kun Xu February 20, 2013 Computational fluid dynamics (CFD) is new emerging scientific discipline, and targets to simulate fluid motion in different scales.

More information

Resonant photo-ionization of point defects in HfO 2 thin films observed by second-harmonic generation.

Resonant photo-ionization of point defects in HfO 2 thin films observed by second-harmonic generation. Optics of Surfaces & Interfaces - VIII September 10 th, 2009 Resonant photo-ionization of point defects in HfO 2 thin films observed by second-harmonic generation. Jimmy Price and Michael C. Downer Physics

More information

Surface Physics Surface Diffusion. Assistant: Dr. Enrico Gnecco NCCR Nanoscale Science

Surface Physics Surface Diffusion. Assistant: Dr. Enrico Gnecco NCCR Nanoscale Science Surface Physics 008 8. Surface Diffusion Assistant: Dr. Enrico Gnecco NCCR Nanoscale Science Random-Walk Motion Thermal motion of an adatom on an ideal crystal surface: - Thermal excitation the adatom

More information

Mesoscale Simulation Methods. Ronojoy Adhikari The Institute of Mathematical Sciences Chennai

Mesoscale Simulation Methods. Ronojoy Adhikari The Institute of Mathematical Sciences Chennai Mesoscale Simulation Methods Ronojoy Adhikari The Institute of Mathematical Sciences Chennai Outline What is mesoscale? Mesoscale statics and dynamics through coarse-graining. Coarse-grained equations

More information

Fluid Dynamics for Ocean and Environmental Engineering Homework #2 Viscous Flow

Fluid Dynamics for Ocean and Environmental Engineering Homework #2 Viscous Flow OCEN 678-600 Fluid Dynamics for Ocean and Environmental Engineering Homework #2 Viscous Flow Date distributed : 9.18.2005 Date due : 9.29.2005 at 5:00 pm Return your solution either in class or in my mail

More information

Background and Overarching Goals of the PRISM Center Jayathi Murthy Purdue University. Annual Review October 25 and 26, 2010

Background and Overarching Goals of the PRISM Center Jayathi Murthy Purdue University. Annual Review October 25 and 26, 2010 Background and Overarching Goals of the PRISM Center Jayathi Murthy Purdue University Annual Review October 25 and 26, 2010 Outline Overview of overarching application Predictive simulation roadmap V&V

More information

Roughness evolution during growth of hydrogenated tetrahedral amorphous carbon

Roughness evolution during growth of hydrogenated tetrahedral amorphous carbon Diamond & Related Materials 15 (2006) 898 903 www.elsevier.com/locate/diamond Roughness evolution during growth of hydrogenated tetrahedral amorphous carbon S. Pisana T, C. Casiraghi, A.C. Ferrari, J.

More information

DIMENSIONAL ANALYSIS IN MOMENTUM TRANSFER

DIMENSIONAL ANALYSIS IN MOMENTUM TRANSFER DIMENSIONAL ANALYSIS IN MOMENTUM TRANSFER FT I Alda Simões Techniques for Dimensional Analysis Fluid Dynamics: Microscopic analysis, theory Physical modelling Differential balances Limited to simple geometries

More information

Comparative Study of the Water Response to External Force at Nanoscale and Mesoscale

Comparative Study of the Water Response to External Force at Nanoscale and Mesoscale Copyright 2013 Tech Science Press CMES, vol.95, no.4, pp.303-315, 2013 Comparative Study of the Water Response to External Force at Nanoscale and Mesoscale H.T. Liu 1,2, Z. Chen 2, S. Jiang 2, Y. Gan 3,

More information

APMA 2811T. By Zhen Li. Today s topic: Lecture 3: New Methods beyond traditional DPD. Sep. 22, Division of Applied Mathematics, Brown University

APMA 2811T. By Zhen Li. Today s topic: Lecture 3: New Methods beyond traditional DPD. Sep. 22, Division of Applied Mathematics, Brown University Today s topic: APMA 2811T Dissipative Particle Dynamics Instructor: Professor George Karniadakis Location: 170 Hope Street, Room 118 Time: Thursday 12:00pm 2:00pm Dissipative Particle Dynamics: Foundation,

More information

There's Plenty of Room at the Bottom

There's Plenty of Room at the Bottom There's Plenty of Room at the Bottom 12/29/1959 Feynman asked why not put the entire Encyclopedia Britannica (24 volumes) on a pin head (requires atomic scale recording). He proposed to use electron microscope

More information

Nanotribology. Judith A. Harrison & Ginger M. Chateauneuf. Chemistry Department United States Naval Academy Annapolis, MD

Nanotribology. Judith A. Harrison & Ginger M. Chateauneuf. Chemistry Department United States Naval Academy Annapolis, MD Nanotribology Judith A. Harrison & Ginger M. Chateauneuf Chemistry Department United States Naval Academy Annapolis, MD 140 jah@usna.edu Some Reviews 1. J. A. Harrison et al, Atomic-Scale Simulation of

More information

Why Should We Be Interested in Hydrodynamics?

Why Should We Be Interested in Hydrodynamics? Why Should We Be Interested in Hydrodynamics? Li-Shi Luo Department of Mathematics and Statistics Center for Computational Sciences Old Dominion University, Norfolk, Virginia 23529, USA Email: lluo@odu.edu

More information

Length Scales in Step-Bunch Self- Organization during Annealing of Patterned Vicinal Si(111) Surfaces

Length Scales in Step-Bunch Self- Organization during Annealing of Patterned Vicinal Si(111) Surfaces Length Scales in Step-Bunch Self- Organization during Annealing of Patterned Vicinal Si() Surfaces T. Kwon, H.-C. Kan, and R. J. Phaneuf Nonequilibrium Interface and Surface Dynamics: Theory, Experiment

More information

arxiv:cond-mat/ v1 [cond-mat.mtrl-sci] 28 Jun 2001

arxiv:cond-mat/ v1 [cond-mat.mtrl-sci] 28 Jun 2001 arxiv:cond-mat/665v [cond-mat.mtrl-sci] 28 Jun 2 Matching Conditions in -Continuum Modeling of Materials Weinan E and Zhongyi Huang 2 Department of Mathematics and PACM, Princeton University and School

More information

Plasma based modification of thin films and nanoparticles. Johannes Berndt, GREMI,Orléans

Plasma based modification of thin films and nanoparticles. Johannes Berndt, GREMI,Orléans Plasma based modification of thin films and nanoparticles Johannes Berndt, GREMI,Orléans What is a plasma? A plasma is a ionized quasineutral gas! + electron electrons Neon bottle Ne atom Ne ion: Ne +

More information

Carbon Nanotubes in Interconnect Applications

Carbon Nanotubes in Interconnect Applications Carbon Nanotubes in Interconnect Applications Page 1 What are Carbon Nanotubes? What are they good for? Why are we interested in them? - Interconnects of the future? Comparison of electrical properties

More information

NanoEngineering of Hybrid Carbon Nanotube Metal Composite Materials for Hydrogen Storage Anders Nilsson

NanoEngineering of Hybrid Carbon Nanotube Metal Composite Materials for Hydrogen Storage Anders Nilsson NanoEngineering of Hybrid Carbon Nanotube Metal Composite Materials for Hydrogen Storage Anders Nilsson Stanford Synchrotron Radiation Laboratory (SSRL) and Stockholm University Coworkers and Ackowledgement

More information

(Polymer rheology Analyzer with Sliplink. Tatsuya Shoji JCII, Doi Project

(Polymer rheology Analyzer with Sliplink. Tatsuya Shoji JCII, Doi Project Rheology Simulator PASTA (Polymer rheology Analyzer with Sliplink model of entanglement) Tatsuya Shoji JCII, Doi Project 0 sec -3 msec -6 sec -9 nsec -12 psec -15 fsec GOURMET SUSHI PASTA COGNAC MUFFIN

More information

Multiscale Modeling of Epitaxial Growth Processes: Level Sets and Atomistic Models

Multiscale Modeling of Epitaxial Growth Processes: Level Sets and Atomistic Models Multiscale Modeling of Epitaxial Growth Processes: Level Sets and Atomistic Models Russel Caflisch 1, Mark Gyure 2, Bo Li 4, Stan Osher 1, Christian Ratsch 1,2, David Shao 1 and Dimitri Vvedensky 3 1 UCLA,

More information

Boundary Conditions for the Moving Contact Line Problem. Abstract

Boundary Conditions for the Moving Contact Line Problem. Abstract Boundary Conditions for the Moving Contact Line Problem Weiqing Ren Courant Institute of Mathematical Sciences, New York University, New York, NY 10012, USA Weinan E Department of Mathematics and PACM,

More information

Rheological properties of polymer melt between rapidly oscillating plates: - an application of multiscale modeling -

Rheological properties of polymer melt between rapidly oscillating plates: - an application of multiscale modeling - http://multiscale.jp Rheological properties of polymer melt between rapidly oscillating plates: - an application of multiscale modeling - Ryoichi Yamamoto and Shugo Yasuda Dept. Chemical Engineering, Kyoto

More information

Electrokinetic assembly and manipulation II Lecture by Chung, Jae-Hyun

Electrokinetic assembly and manipulation II Lecture by Chung, Jae-Hyun Electrokinetic assembly and manipulation II Lecture by Chung, Jae-Hyun Chung, Jae-Hyun, Mechanical Engineering, University of Washington Liu, Wing Kam, Mechanical Engineering, Northwestern University Liu,

More information

Solvability condition for the moving contact line

Solvability condition for the moving contact line PHYSICAL REVIEW E 78, 564 28 Solvability condition for the moving contact line L. M. Pismen 1 and Jens Eggers 2 1 Department of Chemical Engineering and Minerva Center for Nonlinear Physics of Complex

More information

An adhesive DPD wall model for dynamic wetting

An adhesive DPD wall model for dynamic wetting December 2007 EPL, 80 (2007) 60004 doi: 10.1209/0295-5075/80/60004 www.epljournal.org An adhesive DPD wall model for dynamic wetting B. Henrich 1,2, C. Cupelli 3, M. Moseler 2,1 and M. Santer 2,3 1 FMF-Freiburg

More information

August 27, International ANSYS Conference Nick Reynolds, Ph.D. Director, Materials Pre-Sales, US, Accelrys

August 27, International ANSYS Conference Nick Reynolds, Ph.D. Director, Materials Pre-Sales, US, Accelrys Multiscale modeling and simulation developing solutions which link the atomistic, mesoscale, and engineering scales August 27, 2008 2008 International ANSYS Conference Nick Reynolds, Ph.D. Director, Materials

More information

Summary of the new Modelling Vocabulary

Summary of the new Modelling Vocabulary Summary of the new Modelling Vocabulary These two pages attempts to summarise in a concise manner the Modelling Vocabulary. What are Models? What are Simulations? Materials Models consist of Physics or

More information

SUPPLEMENTARY MATERIALS FOR PHONON TRANSMISSION COEFFICIENTS AT SOLID INTERFACES

SUPPLEMENTARY MATERIALS FOR PHONON TRANSMISSION COEFFICIENTS AT SOLID INTERFACES 148 A p p e n d i x D SUPPLEMENTARY MATERIALS FOR PHONON TRANSMISSION COEFFICIENTS AT SOLID INTERFACES D.1 Overview The supplementary information contains additional information on our computational approach

More information

Interaction between Single-walled Carbon Nanotubes and Water Molecules

Interaction between Single-walled Carbon Nanotubes and Water Molecules Workshop on Molecular Thermal Engineering Univ. of Tokyo 2013. 07. 05 Interaction between Single-walled Carbon Nanotubes and Water Molecules Shohei Chiashi Dept. of Mech. Eng., The Univ. of Tokyo, Japan

More information

Olivier Bourgeois Institut Néel

Olivier Bourgeois Institut Néel Olivier Bourgeois Institut Néel Outline Introduction: necessary concepts: phonons in low dimension, characteristic length Part 1: Transport and heat storage via phonons Specific heat and kinetic equation

More information

3.320 Lecture 23 (5/3/05)

3.320 Lecture 23 (5/3/05) 3.320 Lecture 23 (5/3/05) Faster, faster,faster Bigger, Bigger, Bigger Accelerated Molecular Dynamics Kinetic Monte Carlo Inhomogeneous Spatial Coarse Graining 5/3/05 3.320 Atomistic Modeling of Materials

More information

Simulation of Liquid Jet Breakup Process by Three-Dimensional Incompressible SPH Method

Simulation of Liquid Jet Breakup Process by Three-Dimensional Incompressible SPH Method Seventh International Conference on Computational Fluid Dynamics (ICCFD7), Big Island, Hawaii, July 9-13, 212 ICCFD7-291 Simulation of Liquid Jet Breakup Process by Three-Dimensional Incompressible SPH

More information

Frictional rheologies have a wide range of applications in engineering

Frictional rheologies have a wide range of applications in engineering A liquid-crystal model for friction C. H. A. Cheng, L. H. Kellogg, S. Shkoller, and D. L. Turcotte Departments of Mathematics and Geology, University of California, Davis, CA 95616 ; Contributed by D.

More information

Kinetic Monte Carlo: Coarsegraining

Kinetic Monte Carlo: Coarsegraining Kinetic Monte Carlo: Coarsegraining Time and Space Peter Kratzer Faculty of Physics, University Duisburg-Essen, Germany morphology Time and length scales Ga As 2D islands surface reconstruction Methods

More information

29 May 2015 Carbon Nanotube Based Detectors for THz Radiometry

29 May 2015 Carbon Nanotube Based Detectors for THz Radiometry 29 May 2015 Carbon Nanotube Based Detectors for THz Radiometry J.H. Lehman Na#onal Ins#tute of Standards and Technology 325 Broadway, Boulder, Colorado 80305-3228 lehman@boulder.nist.gov Where and Who

More information

Ab Initio Study of Hydrogen Storage on CNT

Ab Initio Study of Hydrogen Storage on CNT Ab Initio Study of Hydrogen Storage on CNT Zhiyong Zhang, Henry Liu, and KJ Cho Stanford University Presented at the ICNT 2005, San Francisco Financial Support: GCEP (Global Climate and Energy Project)

More information

A multiscale framework for lubrication analysis of bearings with textured surface

A multiscale framework for lubrication analysis of bearings with textured surface A multiscale framework for lubrication analysis of bearings with textured surface *Leiming Gao 1), Gregory de Boer 2) and Rob Hewson 3) 1), 3) Aeronautics Department, Imperial College London, London, SW7

More information

Research Highlights Coating Process Fundamentals CPF

Research Highlights Coating Process Fundamentals CPF Research Highlights Coating Process Fundamentals CPF Coating Process Fundamentals CPF Investigator Lorraine F. Francis* Expertise Solidification, stress development, microstructure, printing Satish Kumar*

More information

Research Highlights Coating Process Fundamentals CPF

Research Highlights Coating Process Fundamentals CPF Research Highlights Coating Process Fundamentals CPF Coating Process Fundamentals CPF Investigator Lorraine F. Francis* Expertise Solidification, stress development, microstructure, printing Marcio S.

More information