Microfluidic crystals: Impossible order

Size: px
Start display at page:

Download "Microfluidic crystals: Impossible order"

Transcription

1 Microfluidic crystals: Impossible order Tsevi Beatus, Roy Bar-Ziv, T. T. Weizmann Institute International Symposium on Non-Equilibrium Soft Matter Kyoto

2 Outline Micro-fluidic droplets: micron sized bio-reactors. Unexpected order in a 1D droplet array. Many-body effects: phonons & instabilities. From hydrodynamics to electrostatics, solid state and back. The 1D crystal under confinement: Screening. Nature Physics, 2006 Phys Rev Lett,

3 µfluidics: lab-on-a-chip soft polymer glass channel 100µm Quake, Weitz, Whitesides, Stone, Ismagilov 3

4 The onset of disorder First observation ( pairing ) Hint: Interactions? Zigzag instability Collective modes? 4

5 What is the physics of 1D droplet arrays? water oil + surf. u oil 100μm h = 10 μm R = 10 μm a = μm u d = μm/s u drop Geometry: 1D array of discs in 2D. Two forces: friction and drag. Driven far from equilibrium. Broken Symmetry (drag direction). Highly dissipative (~ overdamped) ρ u Re ~ 10 η 4 5

6 Vibrations in linear motion Moving with the crystal Propagating phonons with almost no detectable damping. Interactions? Collective modes? 6

7 Normal modes of a 1D harmonic crystal a m K Dispersion Relation ω ( k) = 2 K / m sin( ka/2) 2 K 2 m ω (k) [rad/s] 0 π a 0 k [cm -1 ] π + a Symmetric bidirectional modes Group velocity vanishes at the end of Brillouin zone v g k ω = = 0 7

8 Phonon spectra of the 1D droplet crystal 2 K 2 m ω (k) [rad/s] xn () t X ( k, ω ) 2 0 a π N = 60 T = 20s L = 1cm 0 k [cm -1 ] π + a Predicted and measured spectrum implies symmetry breaking 8

9 Dispersion relations hint symmetry breaking ω = u d k Cs 250 μm/ s C s /2 ω( k) ω( k) ω ( k) = ω ( k) x y a= 27 μm R= 10 μm u = 360 μm/ sec u = 1730 μm/ sec d oil 9

10 Can waves persist in viscous media? Harmonic crystal 2 2 A A m = κ t 2 x 2 Friction A + μ t ω ~ κ q m m 0, no waves ω ~ iκq 2 can get waves for massive beads μ < κm/ a 2 2 No mass; symmetry-breaking field 0 A A = ξ + μ x t Waves! ω ~( ξ / μ)q Symmetry-breaking Waves 10

11 What is the symmetry-breaking force? Effective potential flow in 2D η v 2 = P ( 2 2 z h ) vr () = 1 4 φ Stokes Lubrication φ 2 = 0 Laplace eq Dipole field φ( r) = uniform + φ ( r) 2 ( ˆ () ) r x φd r = R uoil ud 2 r long-range dipole field F = ξ φ drag d d d 11

12 Dipolar flow mediates interactions in the crystal Long range interaction F r r 2 ij = ξd φ ( i j )~ r Crystal potential φ() r φ ( r r ) j d j Collective modes! 12

13 Droplet interaction: Peloton effect 350 Interactions slow down the crystal. Crystal moves faster w.r.t. oil or slower w.r.t. channel. Similar to sedimenting particles and cyclists the Peloton effect U d [μm/s] Experiment Theory a [μm] 13

14 Peloton leads to longitudinal waves Long longitudinal waves travel against flow 14

15 Dipolar interaction leads to transversal waves Long transversal waves travel with the flow 15

16 Derive wave equations and ω(k) Superposition of dipole fields on a lattice + small vibrations Fdrag = ξ uoil ud Ffriction = μud Equate drag and friction: ( ) Equate forces, get eq. of motion: r = 1 +μ/ ξ u ( r ) ( ) 1 n oil n x, y << a 6C sin s ( jka) ω ( k) = ω x y ( k) π a = ω ( k) 2 3 j= 1 x j Sound velocity 2 2 2π R u d s = 2 oil d 3 a uoil ( ) C u u 16

17 Crystal melting Instabilities Surface melting Zig-zag 17

18 Confined crystal from 2D to 1D Confinement parameter γ 2R W γ = µm γ = 0.40 γ = 0.63 γ = 0.80 What is the effect on phonons? 18

19 Confinement induces screening +q -q +q -q +q -q +q -q F ~ φ ~ x 2 x / W e π unconfined droplet +q -q +q -q potential is screened expect lower ω(k) and Cs confined droplets carries an array of mirror droplets +q -q a dipole array as a plate capacitor 19

20 Anomaly: Phonons move faster unconfined confined 20

21 Screening against incompressibility 1D limit small gaps high resistance Crystal becomes incompressible Expect Cs F ( ) ( x W) ~ φ ~ γ tan πγ /2 exp 2 π / x incompressibility screening 21

22 Phonons change under confinement Breaking of x-y anti-symmetry in x : C s,x decreases in y : C s,y increases Phonon amplitude decays The reason an interplay between Screening of interactions Incompressibility 22

23 Summary Crystalline order in 1D droplet array. Long range forces - Many-body collective modes. Forces induced by symmetry breaking flow. Non-equilibrium driven dissipative system. Which can be described by simple theory. Crystal instabilities Screening under confinement Outlook: Disordered 2D motion Nature Physics, 2006 Physical Review Letters,

24 Extra movies (more peculiarities) Inner flow Kangaroo 1 2D Chain Jaws Kangaroo 2 The return of Kangaroo 24

25 Waves in viscous media induced by symmetry-breaking field Dusty plasma crystals Active membranes Sedimentation of particles Flux lines in type II superconductors under external field Semi-dilute polymer solutions 25

26 Breaking of x-y anti symmetry The reason: breaking of translational invariance in y. With no confinement: x x x n j a 2 n = xφd( rn rj) ( n j) xφd(( ) ) j n j n y y y n j a 2 n = yφd( rn rj) ( n j) yφd(( ) ) j n j n 2 2 Laplace eq: φ = φ ω ( k) = ω ( k) In confinement: ω ( k) ω ( k) x y x d y d φ d x depends on distance from walls y 27

27 Second force: Friction Flow inside droplets Æ Energy dissipation Æ Friction F friction = μ u d (argument) 32

One-Dimensional Microfluidic Crystals Far from Equilibrium Acoustic Phonons, Instabilities and Confinement

One-Dimensional Microfluidic Crystals Far from Equilibrium Acoustic Phonons, Instabilities and Confinement Progress of Theoretical Physics Supplement No. 175, 2008 123 One-Dimensional Microfluidic Crystals Far from Equilibrium Acoustic Phonons, Instabilities and Confinement Tsevi Beatus, 1 Roy Bar-Ziv 1 and

More information

Chem Soc Rev REVIEW ARTICLE. Two-dimensional flow of driven particles: a microfluidic pathway to the non-equilibrium frontier

Chem Soc Rev REVIEW ARTICLE. Two-dimensional flow of driven particles: a microfluidic pathway to the non-equilibrium frontier REVIEW ARTICLE Cite this: Chem. Soc. Rev., 2017, 46, 5620 Two-dimensional flow of driven particles: a microfluidic pathway to the non-equilibrium frontier Tsevi Beatus, a Itamar Shani, b Roy H. Bar-Ziv*

More information

Extremely slow edge waves in mechanical graphene with rotating grains

Extremely slow edge waves in mechanical graphene with rotating grains Phononic Crystals and Acoustic Metamaterials: Paper ICA2016-104 Extremely slow edge waves in mechanical graphene with rotating grains Li-Yang Zheng (a), Vincent Tournat (b), Georgios Theocharis (c),vitalyi

More information

Chapter 11 Vibrations and Waves

Chapter 11 Vibrations and Waves Chapter 11 Vibrations and Waves 11-1 Simple Harmonic Motion If an object vibrates or oscillates back and forth over the same path, each cycle taking the same amount of time, the motion is called periodic.

More information

Sound Propagation through Media. Nachiketa Tiwari Indian Institute of Technology Kanpur

Sound Propagation through Media. Nachiketa Tiwari Indian Institute of Technology Kanpur Sound Propagation through Media Nachiketa Tiwari Indian Institute of Technology Kanpur LECTURE-13 WAVE PROPAGATION IN SOLIDS Longitudinal Vibrations In Thin Plates Unlike 3-D solids, thin plates have surfaces

More information

Classical Theory of Harmonic Crystals

Classical Theory of Harmonic Crystals Classical Theory of Harmonic Crystals HARMONIC APPROXIMATION The Hamiltonian of the crystal is expressed in terms of the kinetic energies of atoms and the potential energy. In calculating the potential

More information

Linear and Nonlinear Dust Acoustic Waves, Shocks and Stationary Structures in DC-Glow-Discharge Dusty Plasma Experiments.

Linear and Nonlinear Dust Acoustic Waves, Shocks and Stationary Structures in DC-Glow-Discharge Dusty Plasma Experiments. 53rd Annual Meeting of the APS Division of Plasma Physics BI2.00005 Monday November 14, 2011 Linear and Nonlinear Dust Acoustic Waves, Shocks and Stationary Structures in DC-Glow-Discharge Dusty Plasma

More information

Diffuse Interface Field Approach (DIFA) to Modeling and Simulation of Particle-based Materials Processes

Diffuse Interface Field Approach (DIFA) to Modeling and Simulation of Particle-based Materials Processes Diffuse Interface Field Approach (DIFA) to Modeling and Simulation of Particle-based Materials Processes Yu U. Wang Department Michigan Technological University Motivation Extend phase field method to

More information

Lecture 10: Surface Plasmon Excitation. 5 nm

Lecture 10: Surface Plasmon Excitation. 5 nm Excitation Lecture 10: Surface Plasmon Excitation 5 nm Summary The dispersion relation for surface plasmons Useful for describing plasmon excitation & propagation This lecture: p sp Coupling light to surface

More information

Polymer Dynamics and Rheology

Polymer Dynamics and Rheology Polymer Dynamics and Rheology 1 Polymer Dynamics and Rheology Brownian motion Harmonic Oscillator Damped harmonic oscillator Elastic dumbbell model Boltzmann superposition principle Rubber elasticity and

More information

J10M.1 - Rod on a Rail (M93M.2)

J10M.1 - Rod on a Rail (M93M.2) Part I - Mechanics J10M.1 - Rod on a Rail (M93M.2) J10M.1 - Rod on a Rail (M93M.2) s α l θ g z x A uniform rod of length l and mass m moves in the x-z plane. One end of the rod is suspended from a straight

More information

Self-Assembly. Lecture 7 Lecture 7 Dynamical Self-Assembly

Self-Assembly. Lecture 7 Lecture 7 Dynamical Self-Assembly Self-Assembly Lecture 7 Lecture 7 Dynamical Self-Assembly Dynamic Self-Assembly The biological example of writing information on a small scale has inspired me to think of something that should be possible.

More information

Motivation. Confined acoustics phonons. Modification of phonon lifetimes Antisymmetric Bulk. Symmetric. 10 nm

Motivation. Confined acoustics phonons. Modification of phonon lifetimes Antisymmetric Bulk. Symmetric. 10 nm Motivation Confined acoustics phonons Modification of phonon lifetimes 0 0 Symmetric Antisymmetric Bulk 0 nm A. Balandin et al, PRB 58(998) 544 Effect of native oxide on dispersion relation Heat transport

More information

Nonlinear interaction of compressional waves in a 2D dusty. plasma crystal. Abstract

Nonlinear interaction of compressional waves in a 2D dusty. plasma crystal. Abstract Nonlinear interaction of compressional waves in a D dusty plasma crystal V. Nosenko,K.Avinash,J.Goree,andB.Liu Department of Physics and Astronomy, The University of Iowa, Iowa City Iowa 54 (May 30, 003)

More information

Solar Physics & Space Plasma Research Center (SP 2 RC) MHD Waves

Solar Physics & Space Plasma Research Center (SP 2 RC) MHD Waves MHD Waves Robertus vfs Robertus@sheffield.ac.uk SP RC, School of Mathematics & Statistics, The (UK) What are MHD waves? How do we communicate in MHD? MHD is kind! MHD waves are propagating perturbations

More information

The effect of mutual angular misalignment in the quantized sliding of solid lubricants

The effect of mutual angular misalignment in the quantized sliding of solid lubricants Facoltà di Scienze e Tecnologie Laurea Triennale in Fisica The effect of mutual angular misalignment in the quantized sliding of solid lubricants Relatore: Prof. Nicola Manini Correlatore: Prof. Rosario

More information

Emergence of collective dynamics in active biological systems -- Swimming micro-organisms --

Emergence of collective dynamics in active biological systems -- Swimming micro-organisms -- 12/08/2015, YITP, Kyoto Emergence of collective dynamics in active biological systems -- Swimming micro-organisms -- Norihiro Oyama John J. Molina Ryoichi Yamamoto* Department of Chemical Engineering,

More information

2.3 Damping, phases and all that

2.3 Damping, phases and all that 2.3. DAMPING, PHASES AND ALL THAT 107 2.3 Damping, phases and all that If we imagine taking our idealized mass on a spring and dunking it in water or, more dramatically, in molasses), then there will be

More information

Lab 1: Damped, Driven Harmonic Oscillator

Lab 1: Damped, Driven Harmonic Oscillator 1 Introduction Lab 1: Damped, Driven Harmonic Oscillator The purpose of this experiment is to study the resonant properties of a driven, damped harmonic oscillator. This type of motion is characteristic

More information

Contents. Microfluidics - Jens Ducrée Physics: Laminar and Turbulent Flow 1

Contents. Microfluidics - Jens Ducrée Physics: Laminar and Turbulent Flow 1 Contents 1. Introduction 2. Fluids 3. Physics of Microfluidic Systems 4. Microfabrication Technologies 5. Flow Control 6. Micropumps 7. Sensors 8. Ink-Jet Technology 9. Liquid Handling 10.Microarrays 11.Microreactors

More information

Lab 1: damped, driven harmonic oscillator

Lab 1: damped, driven harmonic oscillator Lab 1: damped, driven harmonic oscillator 1 Introduction The purpose of this experiment is to study the resonant properties of a driven, damped harmonic oscillator. This type of motion is characteristic

More information

Overview in Images. S. Lin et al, Nature, vol. 394, p , (1998) T.Thio et al., Optics Letters 26, (2001).

Overview in Images. S. Lin et al, Nature, vol. 394, p , (1998) T.Thio et al., Optics Letters 26, (2001). Overview in Images 5 nm K.S. Min et al. PhD Thesis K.V. Vahala et al, Phys. Rev. Lett, 85, p.74 (000) J. D. Joannopoulos, et al, Nature, vol.386, p.143-9 (1997) T.Thio et al., Optics Letters 6, 197-1974

More information

An-Najah National University Civil Engineering Department. Fluid Mechanics. Chapter 1. General Introduction

An-Najah National University Civil Engineering Department. Fluid Mechanics. Chapter 1. General Introduction 1 An-Najah National University Civil Engineering Department Fluid Mechanics Chapter 1 General Introduction 2 What is Fluid Mechanics? Mechanics deals with the behavior of both stationary and moving bodies

More information

2/8/16 Dispersive Media, Lecture 5 - Thomas Johnson 1. Waves in plasmas. T. Johnson

2/8/16 Dispersive Media, Lecture 5 - Thomas Johnson 1. Waves in plasmas. T. Johnson 2/8/16 Dispersive Media, Lecture 5 - Thomas Johnson 1 Waves in plasmas T. Johnson Introduction to plasma physics Magneto-Hydro Dynamics, MHD Plasmas without magnetic fields Cold plasmas Transverse waves

More information

Single and collective fiber dynamics in micro-flows. Anke Lindner, PMMH-ESPCI, Paris, France

Single and collective fiber dynamics in micro-flows. Anke Lindner, PMMH-ESPCI, Paris, France Single and collective fiber dynamics in micro-flows Anke Lindner, PMMH-ESPCI, Paris, France COST conference, Porto, 2016 Fibers in interaction with viscous flows Industrial applications Paper industry

More information

arxiv: v1 [physics.plasm-ph] 7 Apr 2010

arxiv: v1 [physics.plasm-ph] 7 Apr 2010 Dusty plasma (Yukawa) rings T. E. Sheridan and J. C. Gallagher Department of Physics and Astronomy, Ohio Northern University, Ada, Ohio 45810 U.S.A. arxiv:1004.1148v1 [physics.plasm-ph] 7 Apr 010 Abstract

More information

I. Collective Behavior, From Particles to Fields

I. Collective Behavior, From Particles to Fields I. Collective Behavior, From Particles to Fields I.A Introduction The object of the first part of this course was to introduce the principles of statistical mechanics which provide a bridge between the

More information

Lecture 2: Hydrodynamics at milli micrometer scale

Lecture 2: Hydrodynamics at milli micrometer scale 1 at milli micrometer scale Introduction Flows at milli and micro meter scales are found in various fields, used for several processes and open up possibilities for new applications: Injection Engineering

More information

Quantum Condensed Matter Physics Lecture 5

Quantum Condensed Matter Physics Lecture 5 Quantum Condensed Matter Physics Lecture 5 detector sample X-ray source monochromator David Ritchie http://www.sp.phy.cam.ac.uk/drp2/home QCMP Lent/Easter 2019 5.1 Quantum Condensed Matter Physics 1. Classical

More information

37. 3rd order nonlinearities

37. 3rd order nonlinearities 37. 3rd order nonlinearities Characterizing 3rd order effects The nonlinear refractive index Self-lensing Self-phase modulation Solitons When the whole idea of χ (n) fails Attosecond pulses! χ () : New

More information

VISCOELASTIC PROPERTIES OF POLYMERS

VISCOELASTIC PROPERTIES OF POLYMERS VISCOELASTIC PROPERTIES OF POLYMERS John D. Ferry Professor of Chemistry University of Wisconsin THIRD EDITION JOHN WILEY & SONS New York Chichester Brisbane Toronto Singapore Contents 1. The Nature of

More information

Nonlinear Electrodynamics and Optics of Graphene

Nonlinear Electrodynamics and Optics of Graphene Nonlinear Electrodynamics and Optics of Graphene S. A. Mikhailov and N. A. Savostianova University of Augsburg, Institute of Physics, Universitätsstr. 1, 86159 Augsburg, Germany E-mail: sergey.mikhailov@physik.uni-augsburg.de

More information

M01M.1 Massive Spring

M01M.1 Massive Spring Part I Mechanics M01M.1 Massive Spring M01M.1 Massive Spring A spring has spring constant K, unstretched length L, and mass per unit length ρ. The spring is suspended vertically from one end in a constant

More information

Phonons and lattice dynamics

Phonons and lattice dynamics Chapter Phonons and lattice dynamics. Vibration modes of a cluster Consider a cluster or a molecule formed of an assembly of atoms bound due to a specific potential. First, the structure must be relaxed

More information

(Total 1 mark) IB Questionbank Physics 1

(Total 1 mark) IB Questionbank Physics 1 1. A transverse wave travels from left to right. The diagram below shows how, at a particular instant of time, the displacement of particles in the medium varies with position. Which arrow represents the

More information

MPIP-Mainz. FORTH Heraklion. T.Still,W.Cheng,N.Gomopoulos G.F G.F. Sculpture by E.Sempere (Madrid)

MPIP-Mainz. FORTH Heraklion. T.Still,W.Cheng,N.Gomopoulos G.F G.F. Sculpture by E.Sempere (Madrid) MPIP-Mainz T.Still,W.Cheng,N.Gomopoulos G.F FORTH Heraklion G.F Sculpture by E.Sempere (Madrid) Cubic arrays of hollow stainless-steel cylinders [diameter: 2.9 cm and lattice constant:a=0 cm] Minimum sound

More information

A Fluctuating Immersed Boundary Method for Brownian Suspensions of Rigid Particles

A Fluctuating Immersed Boundary Method for Brownian Suspensions of Rigid Particles A Fluctuating Immersed Boundary Method for Brownian Suspensions of Rigid Particles Aleksandar Donev Courant Institute, New York University APS DFD Meeting San Francisco, CA Nov 23rd 2014 A. Donev (CIMS)

More information

Chapter 14 Oscillations

Chapter 14 Oscillations Chapter 14 Oscillations Chapter Goal: To understand systems that oscillate with simple harmonic motion. Slide 14-2 Chapter 14 Preview Slide 14-3 Chapter 14 Preview Slide 14-4 Chapter 14 Preview Slide 14-5

More information

Theoretical Foundation of 3D Alfvén Resonances: Time Dependent Solutions

Theoretical Foundation of 3D Alfvén Resonances: Time Dependent Solutions Theoretical Foundation of 3D Alfvén Resonances: Time Dependent Solutions Tom Elsden 1 Andrew Wright 1 1 Dept Maths & Stats, University of St Andrews DAMTP Seminar - 8th May 2017 Outline Introduction Coordinates

More information

Hot Topics in Physical Acoustics

Hot Topics in Physical Acoustics Hot Topics in Physical Acoustics J.R. (Josh) Gladden Dept. of Physics and Astronomy University of ASA Fall Meeting November 12, 2008 Outline Sound waves in the early universe Nature of sound in a hot plasma

More information

Lecture 11: Periodic systems and Phonons

Lecture 11: Periodic systems and Phonons Lecture 11: Periodic systems and Phonons Aims: Mainly: Vibrations in a periodic solid Complete the discussion of the electron-gas Astrophysical electrons Degeneracy pressure White dwarf stars Compressibility/bulk

More information

2. What are the 4 steps of the Scientific Method as described by Mr. Martin?

2. What are the 4 steps of the Scientific Method as described by Mr. Martin? Ch.1 Study Guide Outline Study the Review that is posted on the website. Make a note card to use for the test. 1. What is science and physics? 2. What are the 4 steps of the Scientific Method as described

More information

PHYSICS. Chapter 15 Lecture FOR SCIENTISTS AND ENGINEERS A STRATEGIC APPROACH 4/E RANDALL D. KNIGHT Pearson Education, Inc.

PHYSICS. Chapter 15 Lecture FOR SCIENTISTS AND ENGINEERS A STRATEGIC APPROACH 4/E RANDALL D. KNIGHT Pearson Education, Inc. PHYSICS FOR SCIENTISTS AND ENGINEERS A STRATEGIC APPROACH 4/E Chapter 15 Lecture RANDALL D. KNIGHT Chapter 15 Oscillations IN THIS CHAPTER, you will learn about systems that oscillate in simple harmonic

More information

An Introduction to Lattice Vibrations

An Introduction to Lattice Vibrations An Introduction to Lattice Vibrations Andreas Wacker 1 Mathematical Physics, Lund University November 3, 2015 1 Introduction Ideally, the atoms in a crystal are positioned in a regular manner following

More information

What s important: viscosity Poiseuille's law Stokes' law Demo: dissipation in flow through a tube

What s important: viscosity Poiseuille's law Stokes' law Demo: dissipation in flow through a tube PHYS 101 Lecture 29x - Viscosity 29x - 1 Lecture 29x Viscosity (extended version) What s important: viscosity Poiseuille's law Stokes' law Demo: dissipation in flow through a tube Viscosity We introduced

More information

Superinsulator: a new topological state of matter

Superinsulator: a new topological state of matter Superinsulator: a new topological state of matter M. Cristina Diamantini Nips laboratory, INFN and Department of Physics and Geology University of Perugia Coll: Igor Lukyanchuk, University of Picardie

More information

BSc/MSci EXAMINATION. Vibrations and Waves. Date: 4 th May, Time: 14:30-17:00

BSc/MSci EXAMINATION. Vibrations and Waves. Date: 4 th May, Time: 14:30-17:00 BSc/MSci EXAMINATION PHY-217 Vibrations and Waves Time Allowed: 2 hours 30 minutes Date: 4 th May, 2011 Time: 14:30-17:00 Instructions: Answer ALL questions in section A. Answer ONLY TWO questions from

More information

The critical point in QCD

The critical point in QCD The critical point in QCD Thomas Scha fer North Carolina State University The phase diagram of QCD L = q f (id/ m f )q f 1 4g 2 Ga µνg a µν 2000: Dawn of the collider era at RHIC Au + Au @200 AGeV What

More information

Luigi Paolasini

Luigi Paolasini Luigi Paolasini paolasini@esrf.fr LECTURE 7: Magnetic excitations - Phase transitions and the Landau mean-field theory. - Heisenberg and Ising models. - Magnetic excitations. External parameter, as for

More information

Massachusetts Institute of Technology Physics 8.03 Fall 2004 Final Exam Thursday, December 16, 2004

Massachusetts Institute of Technology Physics 8.03 Fall 2004 Final Exam Thursday, December 16, 2004 You have 3 hours Do all eight problems You may use calculators Massachusetts Institute of Technology Physics 8.03 Fall 004 Final Exam Thursday, December 16, 004 This is a closed-book exam; no notes are

More information

Fourier transforms, Generalised functions and Greens functions

Fourier transforms, Generalised functions and Greens functions Fourier transforms, Generalised functions and Greens functions T. Johnson 2015-01-23 Electromagnetic Processes In Dispersive Media, Lecture 2 - T. Johnson 1 Motivation A big part of this course concerns

More information

Along with C1 the magnetic field is also observed at location C 2 though no current is threading through this loop.

Along with C1 the magnetic field is also observed at location C 2 though no current is threading through this loop. Displacement current British physicist James C. Maxwell gave final shape to all phenomenon connecting electricity and magnetism. He noticed an inconsistency in Ampere s Law connecting Electric current

More information

37. 3rd order nonlinearities

37. 3rd order nonlinearities 37. 3rd order nonlinearities Characterizing 3rd order effects The nonlinear refractive index Self-lensing Self-phase modulation Solitons When the whole idea of χ (n) fails Attosecond pulses! χ () : New

More information

Phonons in a one-dimensional Yukawa chain: Dusty plasma experiment and model

Phonons in a one-dimensional Yukawa chain: Dusty plasma experiment and model PHYSICAL REVIEW E 71, 046410 2005 Phonons in a one-dimensional Yukawa chain: Dusty plasma experiment and model Bin Liu* and J. Goree Department of Physics and Astronomy, The University of Iowa, Iowa City,

More information

Magnetohydrodynamic waves in a plasma

Magnetohydrodynamic waves in a plasma Department of Physics Seminar 1b Magnetohydrodynamic waves in a plasma Author: Janez Kokalj Advisor: prof. dr. Tomaž Gyergyek Petelinje, April 2016 Abstract Plasma can sustain different wave phenomena.

More information

Dynamic Self Assembly of Magnetic Colloids

Dynamic Self Assembly of Magnetic Colloids Institute of Physics, University of Bayreuth Advanced Practical Course in Physics Dynamic Self Assembly of Magnetic Colloids A. Ray and Th. M. Fischer 3 2012 Contents 1. Abstract 3 2. Introduction 3 3.

More information

Sound Waves Sound Waves:

Sound Waves Sound Waves: 3//18 Sound Waves Sound Waves: 1 3//18 Sound Waves Linear Waves compression rarefaction Inference of Sound Wave equation: Sound Waves We look at small disturbances in a compressible medium (note: compressible

More information

AST 553. Plasma Waves and Instabilities. Course Outline. (Dated: December 4, 2018)

AST 553. Plasma Waves and Instabilities. Course Outline. (Dated: December 4, 2018) AST 553. Plasma Waves and Instabilities Course Outline (Dated: December 4, 2018) I. INTRODUCTION Basic concepts Waves in plasmas as EM field oscillations Maxwell s equations, Gauss s laws as initial conditions

More information

Coriolis Force Induced Quantum Hall Effect for Phonons

Coriolis Force Induced Quantum Hall Effect for Phonons Coriolis Force Induced Quantum Hall Effect for Phonons Yao-Ting Wang 1, Pi-Gang Luan 2, and Shuang Zhang 1* 1 School of Physics and Astronomy, University of Birmingham, Birmingham B15 2TT, United Kingdom

More information

Lecture 11 - Phonons II - Thermal Prop. Continued

Lecture 11 - Phonons II - Thermal Prop. Continued Phonons II - hermal Properties - Continued (Kittel Ch. 5) Low High Outline Anharmonicity Crucial for hermal expansion other changes with pressure temperature Gruneisen Constant hermal Heat ransport Phonon

More information

Origins of Mechanical and Rheological Properties of Polymer Nanocomposites. Venkat Ganesan

Origins of Mechanical and Rheological Properties of Polymer Nanocomposites. Venkat Ganesan Department of Chemical Engineering University of Texas@Austin Origins of Mechanical and Rheological Properties of Polymer Nanocomposites Venkat Ganesan $$$: NSF DMR, Welch Foundation Megha Surve, Victor

More information

Viscoelasticity. Basic Notions & Examples. Formalism for Linear Viscoelasticity. Simple Models & Mechanical Analogies. Non-linear behavior

Viscoelasticity. Basic Notions & Examples. Formalism for Linear Viscoelasticity. Simple Models & Mechanical Analogies. Non-linear behavior Viscoelasticity Basic Notions & Examples Formalism for Linear Viscoelasticity Simple Models & Mechanical Analogies Non-linear behavior Viscoelastic Behavior Generic Viscoelasticity: exhibition of both

More information

6.730 Physics for Solid State Applications

6.730 Physics for Solid State Applications 6.730 Physics for Solid State Applications Lecture 5: Specific Heat of Lattice Waves Outline Review Lecture 4 3-D Elastic Continuum 3-D Lattice Waves Lattice Density of Modes Specific Heat of Lattice Specific

More information

Final Exam Physics 7b Section 2 Fall 2004 R Packard. Section Number:

Final Exam Physics 7b Section 2 Fall 2004 R Packard. Section Number: Final Exam Physics 7b Section 2 Fall 2004 R Packard Name: SID: Section Number: The relative weight of each problem is stated next to the problem. Work the easier ones first. Define physical quantities

More information

Physics of disordered materials. Gunnar A. Niklasson Solid State Physics Department of Engineering Sciences Uppsala University

Physics of disordered materials. Gunnar A. Niklasson Solid State Physics Department of Engineering Sciences Uppsala University Physics of disordered materials Gunnar A. Niklasson Solid State Physics Department of Engineering Sciences Uppsala University Course plan Familiarity with the basic description of disordered structures

More information

Dispersive Media, Lecture 7 - Thomas Johnson 1. Waves in plasmas. T. Johnson

Dispersive Media, Lecture 7 - Thomas Johnson 1. Waves in plasmas. T. Johnson 2017-02-14 Dispersive Media, Lecture 7 - Thomas Johnson 1 Waves in plasmas T. Johnson Introduction to plasmas as a coupled system Magneto-Hydro Dynamics, MHD Plasmas without magnetic fields Cold plasmas

More information

Phonons I - Crystal Vibrations (Kittel Ch. 4)

Phonons I - Crystal Vibrations (Kittel Ch. 4) Phonons I - Crystal Vibrations (Kittel Ch. 4) Displacements of Atoms Positions of atoms in their perfect lattice positions are given by: R 0 (n 1, n 2, n 3 ) = n 10 x + n 20 y + n 30 z For simplicity here

More information

2D Spinodal Decomposition in Forced Turbulence: Structure Formation in a Challenging Analogue of 2D MHD Turbulence

2D Spinodal Decomposition in Forced Turbulence: Structure Formation in a Challenging Analogue of 2D MHD Turbulence 2D Spinodal Decomposition in Forced Turbulence: Structure Formation in a Challenging Analogue of 2D MHD Turbulence 1 Xiang Fan 1, P H Diamond 1, Luis Chacon 2, Hui Li 2 1 University of California,San Diego

More information

arxiv:cond-mat/ v1 8 Nov 2005

arxiv:cond-mat/ v1 8 Nov 2005 Test of the Stokes-Einstein relation in a two-dimensional Yukawa liquid Bin Liu and J. Goree Department of Physics and Astronomy, The University of Iowa, Iowa City, Iowa 52242 arxiv:cond-mat/0511209 v1

More information

Introduction to Acoustics. Phil Joseph

Introduction to Acoustics. Phil Joseph Introduction to Acoustics Phil Joseph INTRODUCTION TO ACOUSTICS Sound and Noise Sound waves Frequency, wavelength and wavespeed Point sources Sound power and intensity Wave reflection Standing waves Measures

More information

Neighbor Tables Long-Range Potentials

Neighbor Tables Long-Range Potentials Neighbor Tables Long-Range Potentials Today we learn how we can handle long range potentials. Neighbor tables Long-range potential Ewald sums MSE485/PHY466/CSE485 1 Periodic distances Minimum Image Convention:

More information

Electro-osmotic Flow Through a Rotating Microchannel

Electro-osmotic Flow Through a Rotating Microchannel Proceedings of the World Congress on Mechanical, Chemical, and Material Engineering (MCM 2015) Barcelona, Spain July 20-21, 2015 Paper No. 306 Electro-osmotic Flow Through a Rotating Microchannel Cheng

More information

Rapid formation of size-controllable multicellular spheroids. via 3D acoustic tweezers

Rapid formation of size-controllable multicellular spheroids. via 3D acoustic tweezers Electronic Supplementary Material (ESI) for Lab on a Chip. This journal is The Royal Society of Chemistry 2016 Supplementary Information Rapid formation of size-controllable multicellular spheroids via

More information

Lecture 21 Reminder/Introduction to Wave Optics

Lecture 21 Reminder/Introduction to Wave Optics Lecture 1 Reminder/Introduction to Wave Optics Program: 1. Maxwell s Equations.. Magnetic induction and electric displacement. 3. Origins of the electric permittivity and magnetic permeability. 4. Wave

More information

Dynamic Phenomena in Complex Plasmas

Dynamic Phenomena in Complex Plasmas The University of Sydney Dynamic Phenomena in Complex Plasmas N.F. Cramer, S.V. Vladimirov, A.A. Samarian and B.W. James School of Physics, University of Sydney, Australia Dusty Plasmas at the University

More information

221B Lecture Notes Spontaneous Symmetry Breaking

221B Lecture Notes Spontaneous Symmetry Breaking B Lecture Notes Spontaneous Symmetry Breaking Spontaneous Symmetry Breaking Spontaneous Symmetry Breaking is an ubiquitous concept in modern physics, especially in condensed matter and particle physics.

More information

PEAT SEISMOLOGY Lecture 9: Anisotropy, attenuation and anelasticity

PEAT SEISMOLOGY Lecture 9: Anisotropy, attenuation and anelasticity PEAT8002 - SEISMOLOGY Lecture 9: Anisotropy, attenuation and anelasticity Nick Rawlinson Research School of Earth Sciences Australian National University Anisotropy Introduction Most of the theoretical

More information

Transport theory and low energy properties of colour superconductors

Transport theory and low energy properties of colour superconductors 1 Transport theory and low energy properties of colour superconductors Daniel F. Litim Theory Group, CERN, CH 1211 Geneva 23, Switzerland. CERN-TH-2001-315 The one-loop polarisation tensor and the propagation

More information

Simulation of T-junction using LBM and VOF ENERGY 224 Final Project Yifan Wang,

Simulation of T-junction using LBM and VOF ENERGY 224 Final Project Yifan Wang, Simulation of T-junction using LBM and VOF ENERGY 224 Final Project Yifan Wang, yfwang09@stanford.edu 1. Problem setting In this project, we present a benchmark simulation for segmented flows, which contain

More information

REFLECTION AND REFRACTION OF PLANE EM WAVES

REFLECTION AND REFRACTION OF PLANE EM WAVES REFLECTION AND REFRACTION OF PLANE EM WAVES When an electromagnetic wave hits a boundary between different materials, some of the wave s energy is reflected back while the rest continues on through the

More information

Plasma heating in stellarators at the fundamental ion cyclotron frequency

Plasma heating in stellarators at the fundamental ion cyclotron frequency PHYSICS OF PLASMAS VOLUME 7, NUMBER FEBRUARY 000 Plasma heating in stellarators at the fundamental ion cyclotron frequency V. A. Svidzinski and D. G. Swanson Department of Physics, Auburn University, Auburn,

More information

Lecture 7: Rheology and milli microfluidic

Lecture 7: Rheology and milli microfluidic 1 and milli microfluidic Introduction In this chapter, we come back to the notion of viscosity, introduced in its simplest form in the chapter 2. We saw that the deformation of a Newtonian fluid under

More information

Indiana University, January T. Witten, University of Chicago

Indiana University, January T. Witten, University of Chicago Indiana University, January 2007 T. Witten, University of Chicago Force propagation in a simple solid: two pictures Add circular beads to a container one by one How does an added force reach the ground?

More information

Neutron scattering from quantum materials

Neutron scattering from quantum materials Neutron scattering from quantum materials Bernhard Keimer Max Planck Institute for Solid State Research Max Planck UBC UTokyo Center for Quantum Materials Detection of bosonic elementary excitations in

More information

Oscillations and Waves

Oscillations and Waves Oscillations and Waves Oscillation: Wave: Examples of oscillations: 1. mass on spring (eg. bungee jumping) 2. pendulum (eg. swing) 3. object bobbing in water (eg. buoy, boat) 4. vibrating cantilever (eg.

More information

Atomic Motion via Inelastic X-Ray Scattering

Atomic Motion via Inelastic X-Ray Scattering Atomic Motion via Inelastic X-Ray Scattering Cheiron School Beamline Practical - Monday ONLY at BL35 Alfred Q.R. Baron & Satoshi Tsutsui We will introduce students to the use of inelastic x-ray scattering,

More information

DNS of colloidal dispersions using the smoothed profile method: formulation and applications

DNS of colloidal dispersions using the smoothed profile method: formulation and applications Hokusai, 1831 Workshop III: High Performance and Parallel Computing Methods and Algorithms for Multiphase/Complex Fluids Institute for Mathematical Sciences, NUS, Singapore 2 6 March 2015 DNS of colloidal

More information

The π 0 Lifetime Experiment and Future Plans at JLab

The π 0 Lifetime Experiment and Future Plans at JLab The π 0 Lifetime Experiment and Future Plans at JLab North Carolina A&T State University, Greensboro, NC, USA (for the PrimEx Collaboration at JLab) Outline The PrimEx Experiment at JLab: Physics Motivation

More information

Matter-Wave Soliton Molecules

Matter-Wave Soliton Molecules Matter-Wave Soliton Molecules Usama Al Khawaja UAE University 6 Jan. 01 First International Winter School on Quantum Gases Algiers, January 1-31, 01 Outline Two solitons exact solution: new form Center-of-mass

More information

Mixing in Highly Compressible Turbulence

Mixing in Highly Compressible Turbulence Mixing in Highly Compressible Turbulence Liubin Pan Evan Scannapieco School of Earth and Space Exploration Arizona State University Astrophysical motivation: Heavy elements from supernova and stellar winds

More information

Black-hole & white-hole horizons for capillary-gravity waves in superfluids

Black-hole & white-hole horizons for capillary-gravity waves in superfluids Black-hole & white-hole horizons for capillary-gravity waves in superfluids G. Volovik Helsinki University of Technology & Landau Institute Cosmology COSLAB Particle Particle physics Condensed matter Warwick

More information

iii. We introduce and discuss the most important classical example of wave phenomena, electromagnetic waves and light.

iii. We introduce and discuss the most important classical example of wave phenomena, electromagnetic waves and light. Chapter 8 Traveling Waves In this chapter, we show how the same physics that leads to standing wave oscillations also gives rise to waves that move in space as well as time We then go on to introduce the

More information

ISCST shall not be responsible for statements or opinions contained in papers or printed in its publications.

ISCST shall not be responsible for statements or opinions contained in papers or printed in its publications. Modeling of Drop Motion on Solid Surfaces with Wettability Gradients J. B. McLaughlin, Sp. S. Saravanan, N. Moumen, and R. S. Subramanian Department of Chemical Engineering Clarkson University Potsdam,

More information

Methoden moderner Röntgenphysik I + II: Struktur und Dynamik kondensierter Materie

Methoden moderner Röntgenphysik I + II: Struktur und Dynamik kondensierter Materie I + II: Struktur und Dynamik kondensierter Materie Vorlesung zum Haupt/Masterstudiengang Physik SS 2009 G. Grübel, M. Martins, E. Weckert, W. Wurth 1 Trends in Spectroscopy 23.4. 28.4. 30.4. 5.4. Wolfgang

More information

7 The Navier-Stokes Equations

7 The Navier-Stokes Equations 18.354/12.27 Spring 214 7 The Navier-Stokes Equations In the previous section, we have seen how one can deduce the general structure of hydrodynamic equations from purely macroscopic considerations and

More information

The Phases of QCD. Thomas Schaefer. North Carolina State University

The Phases of QCD. Thomas Schaefer. North Carolina State University The Phases of QCD Thomas Schaefer North Carolina State University 1 Plan of the lectures 1. QCD and States of Matter 2. The High Temperature Phase: Theory 3. Exploring QCD at High Temperature: Experiment

More information

Problem Set Number 01, MIT (Winter-Spring 2018)

Problem Set Number 01, MIT (Winter-Spring 2018) Problem Set Number 01, 18.306 MIT (Winter-Spring 2018) Rodolfo R. Rosales (MIT, Math. Dept., room 2-337, Cambridge, MA 02139) February 28, 2018 Due Monday March 12, 2018. Turn it in (by 3PM) at the Math.

More information

Dynamics of Solitary Waves Induced by Shock Impulses in a Linear Atomic Chain*

Dynamics of Solitary Waves Induced by Shock Impulses in a Linear Atomic Chain* Dynamics of Solitary Waves Induced by Shock Impulses in a Linear Atomic Chain* PHUOC X. TRAN, DONALD W. BRENNER, and C. T. WHITE Naval Research Laboratory, Washington, DC 20375-5000 Abstract The propagation

More information

Using Pipe With Corrugated Walls for a Sub-Terahertz FEL

Using Pipe With Corrugated Walls for a Sub-Terahertz FEL 1 Using Pipe With Corrugated Walls for a Sub-Terahertz FEL Gennady Stupakov SLAC National Accelerator Laboratory, Menlo Park, CA 94025 37th International Free Electron Conference Daejeon, Korea, August

More information

Experiment 12 Damped Harmonic Motion

Experiment 12 Damped Harmonic Motion Physics Department LAB A - 120 Experiment 12 Damped Harmonic Motion References: Daniel Kleppner and Robert Kolenkow, An Introduction to Mechanics, McGraw -Hill 1973 pp. 414-418. Equipment: Air track, glider,

More information