model.lst Thu Jul 05 21:13:

Size: px
Start display at page:

Download "model.lst Thu Jul 05 21:13:"

Transcription

1 model.lst Thu Jul 05 21:13:

2 model.lst Thu Jul 05 21:13: /05/18 21:13:34 Page 1 C o m p i l a t i o n INCLUDE /var/www/html/interfaces/cgi-bin/steam/ex1.dat 2 Scalars 3 4 AmbT Ambient temperature /298.15/ 5 AmbP Ambient Pressure / / 6 R Universal gas const (J per mol K) /8.314/ 7 gamma Ratio of Cp to Cv /1.33/ 8 Tref Reference temperature for Enthalpy calculations /298.15/ 9 EMAT Exchanger minimum approach temperature /10/ 10 EpsP2 Epsilon for 2 phase utility cycle /1.0E-4/ 11 BigMforT Big M for Temperature /500/ 12 BigMforTurbFlow Big M for Turbine Flow /1.0E8 / 13 DumPrice Dummy price for binary variables /1.0E-3/ 14 ElecDmd Electricity Demand (MW) /500/ 15 UBMD Upper boound for mechanical demand /100/ 16 UBED Upper bound for electrical demand /800/ 17 CWCost Cooling Water cost ($ per Ton) /0.0269/ 18 DWCost Demineralized Water cost ($ per Ton) /0.32/ 19 FCost Fuel Cost ($ per MBtu) /12/ 20 DeaerP Operating pressure Deaerator(MPa) /0.02/ Sets Comp1 chemical components in IGCC / 27 C Carbon (solid) 28 H2 Hydrogen 29 O2 Oxygen 30 N2 Nitrogen 31 S Sulfur 32 CH4 Methane 33 CO Carbon monoxide 34 CO2 Carbon dioxide 35 H2O Water 36 H2S Hydrogen sulfide 37 COS Carbonyl sulfide 38 NH3 Ammonia 39 ASH Ash (inert solid) / Str process streams /1*65/ 45 Phase2Str(Str) possibility of 2 phase /1*7,12,25,26,31*36,47*51,55*65/ 46 SatVapStr(Str) Saturated vapour stream /16/ 47 VapStr(Str) Vapour streams /21,22,23,24,27,28,29,30,39*46/ 48 SatLiqStr(Str) SAturated Liquid streams /8,10,11,13,14,15,37,38,52*54/ 49 LiqStr(Str) Subcooled liquid stream /9,17,18,19,20/ 50 AirStr(Str) Air streams /27,29,39/ 51 SyngasStr(Str) Syngas Stream /28,30,41,44/ 52 WatStr(Str) Water Stream /1*20,25,26,31*38,47,48*65/ 53

3 model.lst Thu Jul 05 21:13: /05/18 21:13:34 Page 2 C o m p i l a t i o n * for convenience in giving fixes and bounds 56 HPStr(Str) HP streams /1,26,31,34,37,47,48,53,54,58,62/ 57 MPStr(Str) MP streams /2,5,10,25,32,35,50,52,55,59,63/ 58 LPStr(Str) LP streams /3,6,12,33,36,38,56,60,64/ 59 CDPStr(Str) codensate deaerator stream /11,13,14,15,16/ 60 VPStr(Str) VP streams /4,7,8,57,61,65/ 61 TfDeAertr(Str) Temperature of aerator /11,13,14,15,16,18,19,20/ 62 GasStr(Str) Gas streams for boiler /27,28,29,30,21,22,23,24/ 63 Gas2Str(Str) Gas streams for turbine /39*46/ 64 P2P1Str(Str) 2 phase streams sure of no wet /1,31,34,25,26,47,48,58,62/ 65 P2P2Str(Str) 2 phase streams sure of wet /4,7,57,61,65/ STR_DYN(Str) Dynamic set - streams HPStmTurb HP Steam turbine /1*3/ 76 MPStmTurb MP Steam turbine /1*2/ VacCondTurb Vacuum condensor for turbine /1/ Pump Liquid Pumps /VP,MP,HP,HRSG/ DeAertr Deaerator /1/ CondHdr Condensate header /1/ Blr Boilers (Steam generators) /HP,MP,HRSG/ 87 BlrCmbtr BlrCombuster /HP,MP,GT,GTSF/ StmDmd Steam Demand /HP,MP,LP/ 90 MechDmd Mechanical Power Demand /1*2/ **GAS turbine part 94 GTCmpr Compressor of gas turbine /1/ 95 GTExpdr Expander of Turbine /1/ Vlv Throttle Valve /HPMP, MPLP/ Comp(Comp1) Components in utility / 105 H2 Hydrogen 106 O2 Oxygen

4 model.lst Thu Jul 05 21:13: /05/18 21:13:34 Page 3 C o m p i l a t i o n 107 N2 Nitrogen 108 CH4 Methane 109 CO Carbon monoxide 110 CO2 Carbon dioxide 111 H2O Water/ WatComp(Comp) /H2O/ NonWatComp(Comp) /H2,O2,N2,CH4,CO,CO2/ AirComp(Comp) /O2,N2/ NonAirComp(Comp) /H2,CH4,CO,CO2,H2O/ SyngasComp(Comp) /H2,CO,CH4,CO2/ NonSyngasComp(Comp) /O2,N2,H2O/ CombRxns Combustion Reactions / 127 H2Comb H2 burns forms H2O 128 COComb CO forms CO2 129 CH4Comb CH4 forms CO2 and H2O 130 / BurnComp(CombRxns,Comp) Component that burns in a reaction / 134 H2Comb.H2, COComb.CO, CH4Comb.CH4 / ModeHPStmTurb Mode of operation of HP steam turbine/ 138 MPBkPr MP Backpressure 139 MPExt MP Extraction 140 LPBkPr LP Backpressure 141 LPExt LP Extraction 142 VPCond Condensing to Vacuum pressure / ModeMPStmTurb Mode of operation of HP steam turbine/ 146 LPBkPr LP Backpressure 147 LPExt LP Extraction 148 VPCond Condensing to Vacuum pressure / PLev1 Universal set of Pressure levels /HP,MP,LP,CDP,VP/ PLev(PLev1) Steam Pressure Levels /HP,MP,LP/ ************************************* 156 ** Flowsheet topology 157 ************************************ ** HP steam turbine

5 model.lst Thu Jul 05 21:13: /05/18 21:13:34 Page 4 C o m p i l a t i o n 160 InHPStmTurb(HPStmTurb,Str) Input stream to HP Steam turbine / , 2.58, 3.62 / OutMPHPStmTurb(HPStmTurb,Str) Output MP stream of HP Steam turbine / , 2.59, 3.63/ OutLPHPStmTurb(HPStmTurb,Str) Output LP stream of HP Steam turbine / , 2.60, 3.64/ OutVPHPStmTurb(HPStmTurb,Str) Output VP stream of HP Steam turbine / , 2.61, 3.65/ ** MP steam turbine 173 InMPStmTurb(MPStmTurb,Str) Input stream to MP Steam turbine / , 2.55 / OutLPMPStmTurb(MPStmTurb,Str) Output LP stream of MP Steam turbine / , 2.56 / OutVPMPStmTurb(MPStmTurb,Str) Output VP stream of MP Steam turbine / , 2.57 / ** Vacuum condensor 184 InVacCondTurb(VacCondTurb,Str) Input streams to vacuum condensor /1.(4,7,57,61, 65)/ 185 OutVacCondTurb Output streams of vacuum condensor /1.8/ ** Liquid Pumps 188 InPump(Pump,Str) Inlet stream of pump / 189 VP.8, MP.13, HP.14, HRSG.15 / OutPump(Pump,Str) Outlet stream of pump / 192 VP.9, MP.18, HP.19, HRSG.20 / ** Deaerator 195 InDeAertr(DeAertr,Str) inlet stream of deaerator /1.(9,11,12,17)/ 196 OutLDeAertr(DeAertr,Str) outlet liquid streams of deaerator /1.(13,14,1 5)/ 197 OutVDeAertr(DeAertr,Str) outlet vapour stream of deaerator /1.(16)/ ** Condensate header 200 InCondHdr(CondHdr,Str) inlet stream to condensate header /1.(10,37,38)/ 201 OutCondHdr(CondHdr,Str) outlet stream of condensate header /1.11/ *** Boiler with combuster 205 InGasBlr (Blr,Str) Inlet gas stream for Boiler / 206 HP.21, MP.23, HRSG.45 / OutGasBlr(Blr,Str) Outlet gas stream for Boiler / 209 HP.22, MP.24, HRSG.46 / InWtrBlr(Blr,Str) Inlet water stream for Boiler / 212 HP.19, MP.18, HRSG.20 /

6 model.lst Thu Jul 05 21:13: /05/18 21:13:34 Page 5 C o m p i l a t i o n OutStmBlr(Blr,Str) Outlet steam stream for Boiler / 215 HP.26, MP.25, HRSG.47 / OutWtrBlr(Blr,Str) Outlet blowdwon stream for Boiler / 218 HP.53, MP.52, HRSG.54 / InBlrCmbtr(BlrCmbtr,Str) Input stream to Combuster / 222 HP.(27,28), MP.(29,30), GT.(40,41), GTSF.(43,44) / OutBlrCmbtr(BlrCmbtr,Str) Output stream of Combuster / 225 HP.21, MP.23, GT.42, GTSF.45/ *** Pressure headers 228 InPLev(PLev,Str) Input stream to header / 229 HP.(31,26,47), MP.(2,32,25,49,59,63), LP.(3,6,33,51,56,60,64) / OutPLev(PLev,Str) Outlet stream of header / 232 HP.(1,34,48,58,62), MP.(5,35,50,55), LP.(12,36) / InStmDmd(StmDmd,Str) Input stream to steam demand / 237 HP.34, MP.35, LP.36 / OutStmDmd(StmDmd,Str) Output stream to steam demand / 240 HP.37, MP.10, LP.38 / InGTCmpr(GTCmpr,Str) Input stream to compressor /1.39/ 244 OutGTCmpr(GTCmpr,Str) Output stream of compressor /1.40/ InGTExpdr(GTExpdr,Str) Input stream to expander /1.42/ 247 OutGTExpdr(GTExpdr,Str) Output stream of expander /1.43/ InVlv(Vlv,Str) Input stream to throttle valve / 250 HPMP.48, MPLP.50 / 251 OutVlv(Vlv,Str) Output stream of throttle valve / 252 HPMP.49, MPLP.51 / ; Alias (Comp, Comp2), (Str, Str2) ; Parameters UBPL(PLev1) Upper bounds for pressure level / 264 HP = 80, MP = 40, LP = 10, CDP = 1.41, VP = 0.21 / 265

7 model.lst Thu Jul 05 21:13: /05/18 21:13:34 Page 6 C o m p i l a t i o n 266 LBPL(PLev1) Lower bounds for pressure level / 267 HP = 45, MP = 15, LP = 4, CDP = 1.39, VP = 0.19 / MaxSupHt(PLev1) Maximum superheat / 270 HP = 225, MP = 175, LP = 125/ UBTSat(PLev1) Upper bounds for Tsat of pressure level / 273 HP = 570.0, MP = 526, LP = 456.0, CDP = 383.0, VP = / LBTSat(PLev1) Upper bounds for Tsat of pressure level / 276 HP = 528.0, MP = 469.0, LP = 414.0, CDP = 382.0, VP = / UBT(PLev1) Upper bounds for Tsat of pressure level / 280 HP = 795.0, MP = 701, LP = 581.0, CDP = 383.0, VP = / LBT(PLev1) Upper bounds for Tsat of pressure level / 283 HP = 528.0, MP = 469.0, LP = 414.0, CDP = 382.0, VP = / FxPL(PLev1) Fixed values for pressure level / 286 HP = 45, MP = 20, LP = 7, CDP = 1.4, VP = 0.2/ HtReq(StmDmd) Heating demand of individual steam levels/ 289 HP = 5, MP =20, LP = 50 / HHV(Comp) Heating value (MBtu per kmol) / 292 H2 = , O2 = 0.0, N2 = 0.0, CH4 = , CO = , CO2 = 0.0, H2O = 0.0/ MDReq(MechDmd) Mechanical demand required / = 5.0, 2 = 15.0/ INCLUDE /var/www/html/interfaces/cgi-bin/steam/model.inc StdHtFormGas(Comp1) Heat of formation as gas at Tref (MJ per kmol) / 301 C = 0.0, H2 = 0.0, O2 = 0.0, N2 = 0.0, S = 0.0, CH4 = , CO = , CO2 = , 302 H2O = , H2S = , COS = , NH3 = , ASH = 0.0/ CpIGConstA(Comp1) Constant A for calculating ideal gas heat capcity / 306 C = E-011, H2 = E-012, O2 = e-011, N2 = e-013, S = 0.0, 307 CH4 = e-011, CO = e-012, C O2 = e-012, 308 H2O = e-012, H2S = e-012, C OS = e-011, 309 NH3 = e-011, ASH = 0.0 / CpIGConstB(Comp1) Constant B for calculating ideal gas heat capcity / 313 C = E-08, H2 = e-008, O2 = e-008, N2 = e-009, S = 0.0, 314 CH4 = e-007, CO = e-008,

8 model.lst Thu Jul 05 21:13: CO2 = e-008, 315 H2O = e-008, H2S = e-008, COS = e-008, 316 NH3 = e-008, ASH = 0.0/

9 model.lst Thu Jul 05 21:13: /05/18 21:13:34 Page 7 C o m p i l a t i o n 319 CpIGConstC(Comp1) Constant C for calculating ideal gas heat capcity / 320 C = , H2 = e-005, O2 = e-005, N2 = e-005, S = 0.0, 321 CH4 = , CO = e-005, CO 2 = e-006, 322 H2O = e-005, H2S = e-005, C OS = , 323 NH3 = e-005, ASH = 0.0/ CpIGConstD(Comp1) Constant D for calculating ideal gas heat capcity / 327 C = , H2 = , O2 = , N2 = , S = 0.0, 328 CH4 = , CO = , CO2 = , 329 H2O = , H2S = , COS = , 330 NH3 = , ASH = 0.0/ CpIGConstE(Comp1) Constant E for calculating ideal gas heat capcity / 333 C = , H2 = , O2 = , N2 = , S = 35.0, 334 CH4 = , CO = , CO2 = , 335 H2O = , H2S = , COS = , 336 NH3 = , ASH = 0.0/ FracConv(Comp) Fractional conversion of a component in its association combusti on reaction / 339 H2 = 1.0, CO = 1.0, CH4 = 1.0/ ExtAnt1(Comp) Extended Antoine constants 1 (T in K and P in bar)/ 343 H2O = / ExtAnt2(Comp) Extended Antoine constants 2 (T in K and P in bar)/ 346 H2O = / ExtAnt3(Comp) Extended Antoine constants 3 (T in K and P in bar)/ 349 H2O = 0.0 / ExtAnt4(Comp) Extended Antoine constants 4 (T in K and P in bar)/ 352 H2O = 0.0 / ExtAnt5(Comp) Extended Antoine constants 5 (T in K and P in bar)/ 355 H2O = / ExtAnt6(Comp) Extended Antoine constants 6 (T in K and P in bar)/ 358 H2O = 4.046E-06 / ExtAnt7(Comp) Extended Antoine constants 7 (T in K and P in bar)/ 361 H2O = 2 /

10 model.lst Thu Jul 05 21:13: LatHt1(Comp) Constant 1 for Latent heat of vaporization / 366 H2O = / LatHt2(Comp) Constant 2 for Latent heat of vaporization / 369 H2O = / LatHt3(Comp) Constant 3 for Latent heat of vaporization /

11 model.lst Thu Jul 05 21:13: /05/18 21:13:34 Page 8 C o m p i l a t i o n 372 H2O = / LatHt4(Comp) Constant 4 for Latent heat of vaporization / 375 H2O = / LatHt5(Comp) Constant 5 for Latent heat of vaporization / 378 H2O = 0.0 / Tc(Comp) Critical temperature / 383 H2O = / ; Table 391 CombRxnsStoicMtrx(CombRxns,Comp) gasifier stoichiometric matrix (only reacting compo nents) 392 H2 O2 N2 CH4 CO CO2 H2O 393 H2Comb COComb CH4Comb ; *************************************** 401 * Now declaration of Variables start 402 *************************************** ****************************** 406 ** Variables for STREAMS 407 ****************************** 408 Positive Variables 409 F(Str) Flowrate of Stream (kmol per hr) 410 Fc(Str,Comp) Component flowrate of stream 411 T(Str) Temperature of stream 412 P(Str) Pressure of stream ** Variables for 2 phase streams in utility system 415 TrP2(Str) 416 LatHtVapP2(Str,Comp) 417 Wetns(Str) 418 TSat(Str) ** Variables for subcooled liquid in utility system 421 TrLiq(Str) 422 LatHtVapLiq(Str,Comp) ;

12 model.lst Thu Jul 05 21:13: /05/18 21:13:34 Page 9 C o m p i l a t i o n Binary variables 427 Y(Str) Binary variable 428 * yp(str) Binary variable for stream pressure 429 YP2(Str) binary variable for 2 phase water streams 430 ; Variables 434 H(Str) Enthalpy of stream ** Variables for 2 phase streams in utility system 437 HVap(Str) 438 HSatLiq(Str) 439 HSatVap(Str) 440 Hc(Str,Comp) ; ********************************** 452 * Variables for HP Steam Turbine 453 ********************************** 454 Positive Variables 455 InHPPHPStmTurb(HPStmTurb) Inlet HP Pressure for expander of HP Steam turbine 456 InHPTHPStmTurb(HPStmTurb) Inlet HP Temperature for expander of HP Steam turbine OutMPPHPStmTurb(HPStmTurb) Outlet MP Pressure for expander of HP Steam turbine 459 OutLPPHPStmTurb(HPStmTurb) Outlet LP Pressure for expander of HP Steam turbine OutMPTHPStmTurb(HPStmTurb) Outlet MP Temperature for expander of HP Steam turbine 462 OutLPTHPStmTurb(HPStmTurb) Outlet LP Temperature for expander of HP Steam turbine MPWorkHPStmTurb(HPStmTurb) MP expnasion work of HP Steam turbine 465 LPWorkHPStmTurb(HPStmTurb) LP expnasion work of HP Steam turbine 466 VPWorkHPStmTurb(HPStmTurb) VP expnasion work of HP Steam turbine 467 TotWorkHPStmTurb(HPStmTurb) Total work of HP Steam turbine Dum1HPStmTurb(HPStmTurb) 470 Dum2HPStmTurb(HPStmTurb) 471 Dum3HPStmTurb(HPStmTurb) 472 Dum4HPStmTurb(HPStmTurb) 473 Dum5HPStmTurb(HPStmTurb) 474 Dum6HPStmTurb(HPStmTurb) Dum11HPStmTurb(HPStmTurb) 477 Dum22HPStmTurb(HPStmTurb)

13 model.lst Thu Jul 05 21:13: /05/18 21:13:34 Page 10 C o m p i l a t i o n 478 Dum33HPStmTurb(HPStmTurb) 479 Dum44HPStmTurb(HPStmTurb) 480 Dum55HPStmTurb(HPStmTurb) 481 Dum66HPStmTurb(HPStmTurb) ; Binary Variables 486 YModeHPStmTurb(HPStmTurb,ModeHPStmTurb) 487 YLP(HPStmTurb) ; ********************************** 494 * Variables for MP Steam Turbine 495 ********************************** 496 Positive Variables 497 InMPPMPStmTurb(MPStmTurb) Inlet MP Pressure for expander of MP Steam turbine 498 InMPTMPStmTurb(MPStmTurb) Inlet MP Temperature for expander of MP Steam turbine OutLPPMPStmTurb(MPStmTurb) Outlet LP Pressure for expander of MP Steam turbine 503 OutVPPMPStmTurb(MPStmTurb) Outlet vacuum Pressure for expander of HP Steam turbine OutMPTMPStmTurb(MPStmTurb) Outlet MP Temperature for expander of HP Steam turbine 506 OutLPTMPStmTurb(MPStmTurb) Outlet LP Temperature for expander of HP Steam turbine LPWorkMPStmTurb(MPStmTurb) LP expnasion work of MP Steam turbine 510 VPWorkMPStmTurb(MPStmTurb) VP expnasion work of HP Steam turbine 511 TotWorkMPStmTurb(MPStmTurb) Total work of HP Steam turbine Dum11MPStmTurb(MPStmTurb) 514 Dum22MPStmTurb(MPStmTurb) 515 Dum33MPStmTurb(MPStmTurb) 516 Dum44MPStmTurb(MPStmTurb) 517 Dum55MPStmTurb(MPStmTurb) 518 Dum66MPStmTurb(MPStmTurb) ; Binary Variables 523 YModeMPStmTurb(MPStmTurb,ModeMPStmTurb) ; ********************************** 528 * Variables for Vacuum condensor 529 ********************************** 530 Positive Variables

14 model.lst Thu Jul 05 21:13: /05/18 21:13:34 Page 11 C o m p i l a t i o n 531 HtLdVacCondTurb(VacCondTurb) 532 MassFCW 533 WorkPumpVCT ; ********************************** 537 * Variables for Pump 538 ********************************** 539 Positive Variables 540 WorkPump(Pump) ; ********************************** 545 *** Variables for Combuster 546 ********************************** Positive Variables 549 Dum1BlrCmbtr(BlrCmbtr,Comp); ********************************** 554 * Variables for Boilers 555 ********************************** 556 Positive Variables 557 QBlr(Blr) Heat exchanged ; ********************************** 562 * Variables for Header 563 ********************************** 564 Positive Variables 565 POpr(PLev) operating pressure of header 566 TOpr(PLev) operating temperature of header 567 TSatOpr(PLev) Heat exchanged 568 ; ***************************************************** 572 * Variables for Steam Demand 573 ***************************************************** 574 Positive Variables 575 WasteH(StmDmd) 576 MassFCW1(StmDmd) ; ***************************************** 582 ** Variables for Air and syngas streams 583 *****************************************

15 model.lst Thu Jul 05 21:13: /05/18 21:13:34 Page 12 C o m p i l a t i o n 584 Positive Variables 585 WorkFan ; ********************************************* 591 *** Variables for Compressor of gas turbine 592 ********************************************* 593 Positive Variables 594 InPGTCmpr(GTCmpr) Inlet Pressure for compressor 595 OutPGTCmpr(GTCmpr) Outlet Pressure for compressor 596 InTGTCmpr(GTCmpr) Inlet Temperature for compressor 597 OutTGTCmpr(GTCmpr) Outlet Temperature for compressor 598 WorkGTCmpr(GTCmpr) Ideal compressor work ; ********************************** 603 * Variables for Exapnder of gas turbine 604 ********************************** 605 Positive Variables 606 InPGTExpdr(GTExpdr) Inlet Pressure for expander 607 OutPGTExpdr(GTExpdr) Outlet Pressure for expander 608 InTGTExpdr(GTExpdr) Inlet Temperature for expander 609 OutTGTExpdr(GTExpdr) Outlet Temperature for expander 610 WorkGTExpdr(GTExpdr) Ideal expander work 611 WorkGT ; ***************************************** 616 ** Variables to be changed later 617 ***************************************** 618 Positive variables 619 MDE(MechDmd) 620 WHPTE(HPStmTurb) 621 MDC(MechDmd) 622 WHPTM(HPStmTurb,MechDmd) 623 WMPTM(MPStmTurb,MechDmd) 624 ; Binary variables 627 YMD(MechDmd) 628 YWHPTE(HPStmTurb) 629 YWHPTM(HPStmTurb,MechDmd) 630 YWMPTM(MPStmTurb,MechDmd) 631 ; ********************************* 636 * Dummy variables

16 model.lst Thu Jul 05 21:13: /05/18 21:13:34 Page 13 C o m p i l a t i o n 637 ********************************* 638 Variables 639 Z ; *************************************** 648 * Now declaration of Equations start 649 *************************************** ***************************************************** 653 * Equations for streams 654 ***************************************************** 655 Equations 656 * solo para este problema. ec de abajo 657 EqTotMolStr(Str) Total mass balance for stream (Total Mole flow = sum of component Mole flow) 658 EqEnthpyGasStr1(Str,Comp) 659 EqEnthVapStr2(Str) 660 EqEnthSatLiq(Str) 661 EqTSat(Str) 662 EqEnthP2Str(Str) Enthalpy of 2 phase stream 663 EqTP2(Str) 664 EqLogP21(Str) 665 EqLogP22(Str) 666 EqLogP23(Str) 667 EqTrP2(Str) 668 EqLatHtVapP2(Str,Comp) EqEnthSatLiq1(Str) 671 EqnTfSatLiqVap(Str) EqEnthLiqStr(Str) 674 EqTrLiq(Str) 675 EqLatHtVapLiq(Str,Comp) EqEnthSatVap(Str) 678 EqEnthSatVap1(Str) ; EqTotMolStr(Str) F(Str) =E= Sum(Comp, Fc(Str,Comp)) ; 684 **solo para este ejemplo 685 EqEnthpyGasStr1(Str,Comp)$VapStr(Str) Hc(Str,Comp) =E= (StdHtFormGas(Comp) + 1.0E-3*(CpIGConstA(Comp)/5*(T(Str)**5 - Tref **5) CpIGConstB(Comp)/4*(T(Str)**4 - Tref**4) + CpIGConstC(Comp)/3*(T(Str)* *3 - Tref**3) CpIGConstD(Comp)/2*(T(Str)**2 - Tref**2) + CpIGConstE(Comp)*(T(Str) - Tref)))/3600 ;

17 model.lst Thu Jul 05 21:13:

18 model.lst Thu Jul 05 21:13: /05/18 21:13:34 Page 14 C o m p i l a t i o n EqEnthVapStr2(Str)$Phase2Str(Str) HVap(Str) =E= (StdHtFormGas( H2O ) + 1.0E-3*(CpIGConstA( H2O )/5*(T(Str)**5 - Tref **5) CpIGConstB( H2O )/4*(T(Str)**4 - Tref**4) + CpIGConstC( H2O )/3*(T(Str )**3 - Tref**3) CpIGConstD( H2O )/2*(T(Str)**2 - Tref**2) + CpIGConstE( H2O )*(T(Str) - Tref)))/3600 ; EqEnthSatLiq(Str)$(Phase2Str(Str) OR SatLiqStr(Str)) HSatLiq(Str) =E= (StdHtFormGas( H2O ) + 1.0E-3*(CpIGConstA( H2O )/5*(TSat(Str)**5 - Tref**5) CpIGConstB( H2O )/4*(TSat(Str)**4 - Tref**4) + CpIGConstC( H2O )/3*(TSat(Str)**3 - Tref**3) CpIGConstD( H2O )/2*(TSat(Str)**2 - Tref**2) + CpIGConstE( H2O )*(TSat(Str) - Tref )) - LatHtVapP2(Str, H2O ))/3600 ; EqEnthSatVap(Str)$SatVapStr(Str) HSatVap(Str) =E= (StdHtFormGas( H2O ) + 1.0E-3*(CpIGConstA( H2O )/5*(TSat(Str)**5 - Tref**5) CpIGConstB( H2O )/4*(TSat(Str)**4 - Tref**4) + CpIGConstC( H2O )/3*(TSat(Str)**3 - Tref**3) CpIGConstD( H2O )/2*(TSat(Str)**2 - Tref**2) + CpIGConstE( H2O )*(TSat(Str) - Tref )))/3600 ; EqTSat(Str)$(Phase2Str(Str) OR SatLiqStr(Str) OR SatVapStr(Str)) P(Str) =E= exp(extant1( H2O ) + ExtAnt2( H2O )/(TSat(Str) + ExtAnt3( H2O )) + ExtAnt 4( H2O )*TSat(Str) ExtAnt5( H2O )*log(tsat(str)) + ExtAnt6( H2O )*TSat(Str)**ExtAnt7( H2O )) ; EqEnthP2Str(Str)$Phase2Str(Str) H(Str) =E= (1-Wetns(Str))*HVap(Str) + Wetns(Str)*HSatLiq(Str) ; EqTP2(Str)$Phase2Str(Str) T(Str) =G= TSat(Str) ; EqLogP21(Str)$Phase2Str(Str) Wetns(Str) =L= YP2(Str) ; EqLogP22(Str)$Phase2Str(Str) Wetns(Str) =G= EpsP2*YP2(Str) ; EqLogP23(Str)$Phase2Str(Str) T(Str) =L= TSat(Str) + BigMforT*(1-YP2(Str)) ; EqTrP2(Str)$(Phase2Str(Str) OR SatLiqStr(Str)) TrP2(Str) =E= TSat(Str)/Tc( H2O ) ; EqLatHtVapP2(Str, H2O )$(Phase2Str(Str) OR SatLiqStr(Str)) LatHtVapP2(Str, H2O ) =E= LatHt1( H2O )*(1 - TrP2(Str))**(LatHt2( H2O ) + LatHt3( H2O )*TrP2(Str) LatHt4( H2O )*TrP2(Str)**2 + LatHt5( H2O )*TrP2(Str)**3) ;

19 model.lst Thu Jul 05 21:13: *** equation for H of saturated liquid stream EqEnthSatLiq1(Str)$SatLiqStr(Str) H(Str) =E= HSatLiq(Str) ; 742

20 model.lst Thu Jul 05 21:13: /05/18 21:13:34 Page 15 C o m p i l a t i o n 743 EqnTfSatLiqVap(Str)$(SatLiqStr(Str) OR SatVapStr(Str)) T(Str) =E= TSat(Str) ; *** equations for H of (subcooled) liquid streams EqEnthLiqStr(Str)$LiqStr(Str) H(Str) =E= (StdHtFormGas( H2O ) + 1.0E-3*(CpIGConstA( H2O )/5*(T(Str)**5 - Tref**5) CpIGConstB( H2O )/4*(T(Str)**4 - Tref**4) + CpIGConstC( H2O )/3*(T(Str )**3 - Tref**3) CpIGConstD( H2O )/2*(T(Str)**2 - Tref**2) + CpIGConstE( H2O )*(T(Str) - Tref)) - LatHtVapLiq(Str, H2O ))/3600 ; EqTrLiq(Str)$LiqStr(Str) TrLiq(Str) =E= T(Str)/Tc( H2O ) ; EqLatHtVapLiq(Str, H2O )$LiqStr(Str) LatHtVapLiq(Str, H2O ) =E= LatHt1( H2O )*(1 - TrLiq(Str))**(LatHt2( H2O ) + LatHt3( H 2O )*TrLiq(Str) LatHt4( H2O )*TrLiq(Str)**2 + LatHt5( H2O )*TrLiq(Str)**3) ; *** equations for H of saturated vapour streams 764 EqEnthSatVap1(Str)$SatVapStr(Str) H(Str) =E= HSatVap(Str) ; ***************************************************** 771 * Equations for HP Steam Turbine 772 ***************************************************** 773 Equations 774 EqCompMolBalHPStmTurb(HPStmTurb,Comp) Component mol balance EqInHPPHPStmTurb(HPStmTurb) Equating inlet HP Pressure to that of corresponding HP str eam 777 EqInHPTHPStmTurb(HPStmTurb) Equating inlet HP temperature to that of corresponding HP stream EqOutMPPHPStmTurb(HPStmTurb) Equatiing outlet MP Pressure to that of corresponding MP stream 780 EqOutLPPHPStmTurb(HPStmTurb) Equatiing outlet LP Pressure to that of corresponding LP stream EqPTRel1HPStmTurb(HPStmTurb) P T relationship for compression from high to medium pres sure EqPTRel1aHPStmTurb(HPStmTurb) 785 EqPTRel1bHPStmTurb(HPStmTurb) 786 EqPTRel1cHPStmTurb(HPStmTurb) 787 EqPTRel1dHPStmTurb(HPStmTurb) 788 EqPTRel1eHPStmTurb(HPStmTurb) 789 EqPTRel1fHPStmTurb(HPStmTurb)

21 model.lst Thu Jul 05 21:13: EqPTRel1gHPStmTurb(HPStmTurb) 791 EqPTRel1hHPStmTurb(HPStmTurb) 792 EqPTRel1iHPStmTurb(HPStmTurb) 793 EqPTRel1jHPStmTurb(HPStmTurb) 794 EqPTRel1kHPStmTurb(HPStmTurb) 795

22 model.lst Thu Jul 05 21:13: /05/18 21:13:34 Page 16 C o m p i l a t i o n EqPTRel2HPStmTurb(HPStmTurb) EqPTRel2aHPStmTurb(HPStmTurb) 800 EqPTRel2bHPStmTurb(HPStmTurb) 801 EqPTRel2cHPStmTurb(HPStmTurb) 802 EqPTRel2dHPStmTurb(HPStmTurb) 803 EqPTRel2eHPStmTurb(HPStmTurb) 804 EqPTRel2fHPStmTurb(HPStmTurb) 805 EqPTRel2gHPStmTurb(HPStmTurb) 806 EqPTRel2hHPStmTurb(HPStmTurb) 807 EqPTRel2iHPStmTurb(HPStmTurb) 808 EqPTRel2jHPStmTurb(HPStmTurb) 809 EqPTRel2kHPStmTurb(HPStmTurb) 810 EqPTRel2lHPStmTurb(HPStmTurb) 811 EqPTRel2mHPStmTurb(HPStmTurb) 812 EqPTRel2nHPStmTurb(HPStmTurb) EqPTRel3HPStmTurb(HPStmTurb) 818 EqMPWorkHPStmTurb(HPStmTurb) 819 EqLPWorkHPStmTurb(HPStmTurb) 820 EqVPWorkHPStmTurb(HPStmTurb) 821 EqTotWorkHPStmTurb(HPStmTurb) 822 EqWetCnst1HPStmTurb(HPStmTurb) 823 EqWetCnst2HPStmTurb(HPStmTurb) 824 EqLogMode1HPStmTurb(HPStmTurb) 825 EqLogMode2HPStmTurb(HPStmTurb) 826 EqLogMode3HPStmTurb(HPStmTurb) 827 EqLogMode4HPStmTurb(HPStmTurb) 828 EqLogMode5HPStmTurb(HPStmTurb) 829 EqLogMode6HPStmTurb(HPStmTurb) 830 EqLogMode7HPStmTurb(HPStmTurb) 831 EqLogMode8HPStmTurb(HPStmTurb,ModeHPStmTurb) EqLogBnd1HPStmTurb(HPStmTurb) 834 EqLogBnd2HPStmTurb(HPStmTurb) 835 EqLogBnd3HPStmTurb(HPStmTurb) 836 EqLogBnd4HPStmTurb(HPStmTurb,Str) ; EqCompMolBalHPStmTurb(HPStmTurb,Comp) Sum(Str $InHPStmTurb(HPStmTurb,Str), Fc(Str,Comp) ) =E= 840 Sum(Str $OutMPHPStmTurb(HPStmTurb,Str), Fc(Str,Comp) ) Sum(Str $OutLPHPStmTurb(HPStmTurb,Str), Fc(Str,Comp) ) Sum(Str $OutVPHPStmTurb(HPStmTurb,Str), Fc(Str,Comp) ) ; ***** 845 EqInHPPHPStmTurb(HPStmTurb) Sum(Str $InHPStmTurb(HPStmTurb,Str), P(str)) =E= InHPPHPStmTurb(HPStmTurb) ; EqInHPTHPStmTurb(HPStmTurb)..

23 model.lst Thu Jul 05 21:13: /05/18 21:13:34 Page 17 C o m p i l a t i o n 849 Sum(Str $InHPStmTurb(HPStmTurb,Str), T(str)) =E= InHPTHPStmTurb(HPStmTurb) ; ***** 852 EqOutMPPHPStmTurb(HPStmTurb) Sum(Str $OutMPHPStmTurb(HPStmTurb,Str), P(str)) =E= OutMPPHPStmTurb(HPStmTurb) ; EqOutLPPHPStmTurb(HPStmTurb) Sum(Str $OutLPHPStmTurb(HPStmTurb,Str), P(str)) =E= OutLPPHPStmTurb(HPStmTurb) ; EqPTRel1HPStmTurb(HPStmTurb) OutMPTHPStmTurb(HPStmTurb) =E= InHPTHPStmTurb(HPStmTurb)*((OutMPPHPStmTurb(HPStmTur b)/inhpphpstmturb(hpstmturb))**((gamma - 1.0)/gamma)) ; EqPTRel1aHPStmTurb(HPStmTurb) OutMPTHPStmTurb(HPStmTurb) =E= Dum11HPStmTurb(HPStmTurb) + Dum22HPStmTurb(HPStmTur b) ; EqPTRel1bHPStmTurb(HPStmTurb) =E= Dum33HPStmTurb(HPStmTurb) + Dum44HPStmTurb(HPStmTurb) ; EqPTRel1cHPStmTurb(HPStmTurb) Sum(Str $OutMPHPStmTurb(HPStmTurb,Str), T(str)) =E= Dum55HPStmTurb(HPStmTurb) + Du m66hpstmturb(hpstmturb) ; EqPTRel1dHPStmTurb(HPStmTurb) Dum55HPStmTurb(HPStmTurb) =E= Dum11HPStmTurb(HPStmTurb) ; EqPTRel1eHPStmTurb(HPStmTurb) Dum66HPStmTurb(HPStmTurb) =E= Dum44HPStmTurb(HPStmTurb) ; EqPTRel1fHPStmTurb(HPStmTurb) Dum55HPStmTurb(HPStmTurb) =L= UBT( MP )*SUM(Str $InHPStmTurb(HPStmTurb,Str), Y(Str)) ; EqPTRel1gHPStmTurb(HPStmTurb) Dum66HPStmTurb(HPStmTurb) =L= UBT( MP )*(1 - SUM(Str $InHPStmTurb(HPStmTurb,Str), Y(S tr))) ; EqPTRel1hHPStmTurb(HPStmTurb) Dum11HPStmTurb(HPStmTurb) =L= UBT( MP )*SUM(Str $InHPStmTurb(HPStmTurb,Str), Y(Str)) ; EqPTRel1iHPStmTurb(HPStmTurb) Dum44HPStmTurb(HPStmTurb) =L= UBT( MP )*(1 - SUM(Str $InHPStmTurb(HPStmTurb,Str), Y(S tr))) ; EqPTRel1jHPStmTurb(HPStmTurb) Dum22HPStmTurb(HPStmTurb) =L= UBT( MP )*(1 - SUM(Str $InHPStmTurb(HPStmTurb,Str), Y(S tr))) ; EqPTRel1kHPStmTurb(HPStmTurb)..

24 model.lst Thu Jul 05 21:13: Dum33HPStmTurb(HPStmTurb) =L= UBT( MP )*SUM(Str $InHPStmTurb(HPStmTurb,Str), Y(Str)) ; EqPTRel2HPStmTurb(HPStmTurb) OutLPTHPStmTurb(HPStmTurb) =E= OutMPTHPStmTurb(HPStmTurb)*((OutLPPHPStmTurb(HPStmTu rb)/outmpphpstmturb(hpstmturb))**((gamma - 1.0)/gamma)) ; 901

25 model.lst Thu Jul 05 21:13: /05/18 21:13:34 Page 18 C o m p i l a t i o n 902 EqPTRel2aHPStmTurb(HPStmTurb) OutLPTHPStmTurb(HPStmTurb) =E= Dum1HPStmTurb(HPStmTurb) + Dum2HPStmTurb(HPStmTurb) ; EqPTRel2bHPStmTurb(HPStmTurb) =E= Dum3HPStmTurb(HPStmTurb) + Dum4HPStmTurb(HPStmTurb) ; EqPTRel2cHPStmTurb(HPStmTurb) Sum(Str $OutLPHPStmTurb(HPStmTurb,Str), T(str)) =E= Dum5HPStmTurb(HPStmTurb) + Dum 6HPStmTurb(HPStmTurb) ; EqPTRel2dHPStmTurb(HPStmTurb) Dum5HPStmTurb(HPStmTurb) =E= Dum1HPStmTurb(HPStmTurb) ; EqPTRel2eHPStmTurb(HPStmTurb) Dum6HPStmTurb(HPStmTurb) =E= Dum4HPStmTurb(HPStmTurb) ; EqPTRel2fHPStmTurb(HPStmTurb) Dum5HPStmTurb(HPStmTurb) =L= UBT( LP )*YLP(HPStmTurb) ; EqPTRel2gHPStmTurb(HPStmTurb) Dum6HPStmTurb(HPStmTurb) =L= UBT( LP )*(1 - YLP(HPStmTurb)) ; EqPTRel2hHPStmTurb(HPStmTurb) Dum1HPStmTurb(HPStmTurb) =L= UBT( LP )*YLP(HPStmTurb) ; EqPTRel2iHPStmTurb(HPStmTurb) Dum4HPStmTurb(HPStmTurb) =L= UBT( LP )*(1 - YLP(HPStmTurb)) ; EqPTRel2jHPStmTurb(HPStmTurb) Dum2HPStmTurb(HPStmTurb) =L= UBT( LP )*(1 - YLP(HPStmTurb)) ; EqPTRel2kHPStmTurb(HPStmTurb) Dum3HPStmTurb(HPStmTurb) =L= UBT( LP )*YLP(HPStmTurb) ; EqPTRel2lHPStmTurb(HPStmTurb) (1 - YModeHPStmTurb(HPStmTurb, LPExt )) + YLP(HPStmTurb) =G= 1 ; EqPTRel2mHPStmTurb(HPStmTurb) (1 - YModeHPStmTurb(HPStmTurb, LPBkPr )) + YLP(HPStmTurb) =G= 1 ; EqPTRel2nHPStmTurb(HPStmTurb) (1 - YModeHPStmTurb(HPStmTurb, VPCond )) + YLP(HPStmTurb) =G= 1 ; EqPTRel3HPStmTurb(HPStmTurb) Sum(Str $OutVPHPStmTurb(HPStmTurb,Str), Wetns(str)) =E= 0.15 ; ***** EqMPWorkHPStmTurb(HPStmTurb) MPWorkHPStmTurb(HPStmTurb) =E= Sum( Str $InHPStmTurb(HPStmTurb,Str), Fc(Str, H2O ) )*( 951 Sum( Str $InHPStmTurb(HPStmTurb,Str), H(Str)) - Sum( Str $OutMPHPStmTurb(HPStmTurb, Str), H(Str))) ; EqLPWorkHPStmTurb(HPStmTurb)..

26 model.lst Thu Jul 05 21:13: LPWorkHPStmTurb(HPStmTurb) =E= (Sum(Str $InHPStmTurb(HPStmTurb,Str), Fc(Str, H2O ) )

27 model.lst Thu Jul 05 21:13: /05/18 21:13:34 Page 19 C o m p i l a t i o n Sum(Str $OutMPHPStmTurb(HPStmTurb,Str), Fc(Str, H2O ))) 956 *(Sum( Str $OutMPHPStmTurb(HPStmTurb,Str), H(Str)) Sum( Str $OutLPHPStmTurb(HPStmTurb,Str), H(Str))) ; EqVPWorkHPStmTurb(HPStmTurb) VPWorkHPStmTurb(HPStmTurb) =E= (Sum(Str $InHPStmTurb(HPStmTurb,Str), Fc(Str, H2O ) ) Sum(Str $OutMPHPStmTurb(HPStmTurb,Str), Fc(Str, H2O )) Sum(Str $OutLPHPStmTurb(HPStmTurb,Str), Fc(Str, H2O ))) 963 *(Sum( Str $OutLPHPStmTurb(HPStmTurb,Str), H(Str)) Sum( Str $OutVPHPStmTurb(HPStmTurb,Str), H(Str))) ; EqTotWorkHPStmTurb(HPStmTurb) TotWorkHPStmTurb(HPStmTurb) =E= MPWorkHPStmTurb(HPStmTurb) + LPWorkHPStmTurb(HPStm Turb) + VPWorkHPStmTurb(HPStmTurb) ; EqWetCnst1HPStmTurb(HPStmTurb) Sum( Str $OutMPHPStmTurb(HPStmTurb,Str), Wetns(Str)) =L= 0.15 ; EqWetCnst2HPStmTurb(HPStmTurb) Sum( Str $OutLPHPStmTurb(HPStmTurb,Str), Wetns(Str)) =L= 0.15 ; EqLogMode1HPStmTurb(HPStmTurb) (1 - YModeHPStmTurb(HPStmTurb, MPExt )) + YModeHPStmTurb(HPStmTurb, LPBkPr ) + YMo dehpstmturb(hpstmturb, VPCond ) =G= 1 ; EqLogMode2HPStmTurb(HPStmTurb) (1 - YModeHPStmTurb(HPStmTurb, LPExt )) + YModeHPStmTurb(HPStmTurb, VPCond ) =G= 1 ; EqLogMode3HPStmTurb(HPStmTurb) YModeHPStmTurb(HPStmTurb, LPExt ) + YModeHPStmTurb(HPStmTurb, LPBkPr ) =L= 1 ; EqLogMode4HPStmTurb(HPStmTurb) YModeHPStmTurb(HPStmTurb, MPExt ) + YModeHPStmTurb(HPStmTurb, MPBkPr ) =L= 1 ; EqLogMode5HPStmTurb(HPStmTurb) YModeHPStmTurb(HPStmTurb, LPBkPr ) + YModeHPStmTurb(HPStmTurb, MPBkPr ) + YModeHPS tmturb(hpstmturb, VPCond ) =L= 1 ; * extraction wet 992 EqLogMode6HPStmTurb(HPStmTurb) Sum( Str $OutMPHPStmTurb(HPStmTurb,Str), Wetns(Str)) =L= 1 - YModeHPStmTurb(HPStmTu rb, MPExt ) ; EqLogMode7HPStmTurb(HPStmTurb) Sum( Str $OutLPHPStmTurb(HPStmTurb,Str), Wetns(Str)) =L= 1 - YModeHPStmTurb(HPStmTu rb, LPExt ) ; 997 ***** EqLogMode8HPStmTurb(HPStmTurb,ModeHPStmTurb) (1 - YModeHPStmTurb(HPStmTurb,ModeHPStmTurb)) + Sum(Str $InHPStmTurb(HPStmTurb,Str), Y(Str)) =G= 1 ; EqLogBnd1HPStmTurb(HPStmTurb)..

28 model.lst Thu Jul 05 21:13: Sum(Str $OutMPHPStmTurb(HPStmTurb,Str), F(Str)) =L= BigMforTurbFlow* 1004 (YModeHPStmTurb(HPStmTurb, MPExt ) + YModeHPStmTurb(HPStmTurb, MPBkPr )) ; EqLogBnd2HPStmTurb(HPStmTurb) Sum(Str $OutLPHPStmTurb(HPStmTurb,Str), F(Str)) =L= BigMforTurbFlow*

29 model.lst Thu Jul 05 21:13: /05/18 21:13:34 Page 20 C o m p i l a t i o n 1008 (YModeHPStmTurb(HPStmTurb, LPExt ) + YModeHPStmTurb(HPStmTurb, LPBkPr )) ; EqLogBnd3HPStmTurb(HPStmTurb) Sum(Str $OutVPHPStmTurb(HPStmTurb,Str), F(Str)) =L= BigMforTurbFlow*YModeHPStmTurb( HPStmTurb, VPCond ) ; EqLogBnd4HPStmTurb(HPStmTurb,Str)$InHPStmTurb(HPStmTurb,Str) F(str) =L= BigMforTurbFlow*Y(Str) ; ***************************************************** 1020 * Equations for MP Steam Turbine 1021 ***************************************************** 1022 Equations 1023 EqCompMolBalMPStmTurb(MPStmTurb,Comp) Component mol balance EqInMPPMPStmTurb(MPStmTurb) Equating inlet HP Pressure to that of corresponding HP str eam 1026 EqInMPTMPStmTurb(MPStmTurb) Equating inlet HP temperature to that of corresponding HP stream EqOutLPPMPStmTurb(MPStmTurb) Equatiing outlet LP Pressure to that of corresponding LP stream EqPTRel1MPStmTurb(MPStmTurb) EqPTRel1aMPStmTurb(MPStmTurb) 1037 EqPTRel1bMPStmTurb(MPStmTurb) 1038 EqPTRel1cMPStmTurb(MPStmTurb) 1039 EqPTRel1dMPStmTurb(MPStmTurb) 1040 EqPTRel1eMPStmTurb(MPStmTurb) 1041 EqPTRel1fMPStmTurb(MPStmTurb) 1042 EqPTRel1gMPStmTurb(MPStmTurb) 1043 EqPTRel1hMPStmTurb(MPStmTurb) 1044 EqPTRel1iMPStmTurb(MPStmTurb) 1045 EqPTRel1jMPStmTurb(MPStmTurb) 1046 EqPTRel1kMPStmTurb(MPStmTurb) EqPTRel2MPStmTurb(MPStmTurb) EqLPWorkMPStmTurb(MPStmTurb) 1051 EqVPWorkMPStmTurb(MPStmTurb) 1052 EqTotWorkMPStmTurb(MPStmTurb) EqWetCnst1MPStmTurb(MPStmTurb) EqLogMode1MPStmTurb(MPStmTurb) 1057 EqLogMode2MPStmTurb(MPStmTurb) 1058 EqLogMode3MPStmTurb(MPStmTurb) 1059 EqLogMode4MPStmTurb(MPStmTurb)

30 model.lst Thu Jul 05 21:13: EqLogMode5MPStmTurb(MPStmTurb,ModeMPStmTurb)

31 model.lst Thu Jul 05 21:13: /05/18 21:13:34 Page 21 C o m p i l a t i o n EqLogBnd1MPStmTurb(MPStmTurb) 1063 EqLogBnd2MPStmTurb(MPStmTurb) 1064 EqLogBnd3MPStmTurb(MPStmTurb,Str) ; EqCompMolBalMPStmTurb(MPStmTurb,Comp) Sum(Str $InMPStmTurb(MPStmTurb,Str), Fc(Str,Comp) ) =E= 1068 Sum(Str $OutLPMPStmTurb(MPStmTurb,Str), Fc(Str,Comp) ) Sum(Str $OutVPMPStmTurb(MPStmTurb,Str), Fc(Str,Comp) ) ; ***** 1072 EqInMPPMPStmTurb(MPStmTurb) Sum(Str $InMPStmTurb(MPStmTurb,Str), P(str)) =E= InMPPMPStmTurb(MPStmTurb) ; EqInMPTMPStmTurb(MPStmTurb) Sum(Str $InMPStmTurb(MPStmTurb,Str), T(str)) =E= InMPTMPStmTurb(MPStmTurb) ; ***** EqOutLPPMPStmTurb(MPStmTurb) Sum(Str $OutLPMPStmTurb(MPStmTurb,Str), P(str)) =E= OutLPPMPStmTurb(MPStmTurb) ; ***** EqPTRel1MPStmTurb(MPStmTurb) OutLPTMPStmTurb(MPStmTurb) =E= InMPTMPStmTurb(MPStmTurb)*((OutLPPMPStmTurb(MPStmTur b)/inmppmpstmturb(mpstmturb))**((gamma - 1.0)/gamma)) ; EqPTRel1aMPStmTurb(MPStmTurb) OutLPTMPStmTurb(MPStmTurb) =E= Dum11MPStmTurb(MPStmTurb) + Dum22MPStmTurb(MPStmTur b) ; EqPTRel1bMPStmTurb(MPStmTurb) =E= Dum33MPStmTurb(MPStmTurb) + Dum44MPStmTurb(MPStmTurb) ; EqPTRel1cMPStmTurb(MPStmTurb) Sum(Str $OutLPMPStmTurb(MPStmTurb,Str), T(str)) =E= Dum55MPStmTurb(MPStmTurb) + Du m66mpstmturb(mpstmturb) ; EqPTRel1dMPStmTurb(MPStmTurb) Dum55MPStmTurb(MPStmTurb) =E= Dum11MPStmTurb(MPStmTurb) ; EqPTRel1eMPStmTurb(MPStmTurb) Dum66MPStmTurb(MPStmTurb) =E= Dum44MPStmTurb(MPStmTurb) ; EqPTRel1fMPStmTurb(MPStmTurb) Dum55MPStmTurb(MPStmTurb) =L= UBT( LP )*SUM(Str $InMPStmTurb(MPStmTurb,Str), Y(Str)) ; EqPTRel1gMPStmTurb(MPStmTurb) Dum66MPStmTurb(MPStmTurb) =L= UBT( LP )*(1 - SUM(Str $InMPStmTurb(MPStmTurb,Str), Y(S tr))) ;

32 model.lst Thu Jul 05 21:13:

33 model.lst Thu Jul 05 21:13: /05/18 21:13:34 Page 22 C o m p i l a t i o n 1114 EqPTRel1hMPStmTurb(MPStmTurb) Dum11MPStmTurb(MPStmTurb) =L= UBT( LP )*SUM(Str $InMPStmTurb(MPStmTurb,Str), Y(Str)) ; EqPTRel1iMPStmTurb(MPStmTurb) Dum44MPStmTurb(MPStmTurb) =L= UBT( LP )*(1 - SUM(Str $InMPStmTurb(MPStmTurb,Str), Y(S tr))) ; EqPTRel1jMPStmTurb(MPStmTurb) Dum22MPStmTurb(MPStmTurb) =L= UBT( LP )*(1 - SUM(Str $InMPStmTurb(MPStmTurb,Str), Y(S tr))) ; EqPTRel1kMPStmTurb(MPStmTurb) Dum33MPStmTurb(MPStmTurb) =L= UBT( LP )*SUM(Str $InMPStmTurb(MPStmTurb,Str), Y(Str)) ; ***** EqPTRel2MPStmTurb(MPStmTurb) Sum(Str $OutVPMPStmTurb(MPStmTurb,Str), Wetns(Str)) =E= 0.15 ; ***** EqLPWorkMPStmTurb(MPStmTurb) LPWorkMPStmTurb(MPStmTurb) =E= Sum(Str $InMPStmTurb(MPStmTurb,Str), Fc(Str, H2O )) 1136 *(Sum( Str $InMPStmTurb(MPStmTurb,Str), H(Str)) Sum( Str $OutLPMPStmTurb(MPStmTurb,Str), H(Str))) ; EqVPWorkMPStmTurb(MPStmTurb) VPWorkMPStmTurb(MPStmTurb) =E= (Sum(Str $InMPStmTurb(MPStmTurb,Str), Fc(Str, H2O ) ) Sum(Str $OutLPMPStmTurb(MPStmTurb,Str), Fc(Str, H2O ))) 1142 *(Sum( Str $OutLPMPStmTurb(MPStmTurb,Str), H(Str)) Sum( Str $OutVPMPStmTurb(MPStmTurb,Str), H(Str))) ; EqTotWorkMPStmTurb(MPStmTurb) TotWorkMPStmTurb(MPStmTurb) =E= LPWorkMPStmTurb(MPStmTurb) + VPWorkMPStmTurb(MPSt mturb) ; EqWetCnst1MPStmTurb(MPStmTurb) Sum( Str $OutLPMPStmTurb(MPStmTurb,Str), Wetns(Str)) =L= 0.15 ; EqLogMode1MPStmTurb(MPStmTurb) (1 - YModeMPStmTurb(MPStmTurb, LPExt )) + YModeMPStmTurb(MPStmTurb, VPCond ) =G= 1 ; EqLogMode2MPStmTurb(MPStmTurb) YModeMPStmTurb(MPStmTurb, LPExt ) + YModeMPStmTurb(MPStmTurb, LPBkPr ) =L= 1 ; EqLogMode3MPStmTurb(MPStmTurb) YModeMPStmTurb(MPStmTurb, LPBkPr ) + YModeMPStmTurb(MPStmTurb, VPCond ) =L= 1 ; EqLogMode4MPStmTurb(MPStmTurb)..

34 model.lst Thu Jul 05 21:13: Sum( Str $OutLPMPStmTurb(MPStmTurb,Str), Wetns(Str)) =L= 1 - YModeMPStmTurb(MPStmTu rb, LPExt ) ; EqLogMode5MPStmTurb(MPStmTurb,ModeMPStmTurb) (1 - YModeMPStmTurb(MPStmTurb,ModeMPStmTurb)) + Sum(Str $InMPStmTurb(MPStmTurb,Str), Y(Str)) =G= 1 ;

35 model.lst Thu Jul 05 21:13: /05/18 21:13:34 Page 23 C o m p i l a t i o n EqLogBnd1MPStmTurb(MPStmTurb) Sum(Str $OutLPMPStmTurb(MPStmTurb,Str), F(Str)) =L= BigMforTurbFlow* 1171 (YModeMPStmTurb(MPStmTurb, LPExt ) + YModeMPStmTurb(MPStmTurb, LPBkPr )) ; EqLogBnd2MPStmTurb(MPStmTurb) Sum(Str $OutVPMPStmTurb(MPStmTurb,Str), F(Str)) =L= BigMforTurbFlow*YModeMPStmTurb( MPStmTurb, VPCond ) ; EqLogBnd3MPStmTurb(MPStmTurb,Str)$InMPStmTurb(MPStmTurb,Str) F(str) =L= BigMforTurbFlow*Y(Str) ; ***************************************** 1182 ** Equation for vacuum condensor 1183 ***************************************** 1184 Equations EqCompMolBalVacCondTurb(VacCondTurb,Comp) Component mass bal 1187 EqEnthBalVacCondTurb(VacCondTurb) Energy balance 1188 EqMassFCW(VacCondTurb) calculate mass flowrate of cooling water ( kg per s) 1189 EqPr1VacCondTurb(VacCondTurb,Str) equates Vacuum pressure to pressure of inl et stream 1190 EqPr2VacCondTurb(VacCondTurb,Str) equates Vacuum pressure to pressure of out let stream 1191 EqWorkPumpVCT(VacCondTurb) Work for vacuum pump in MW (mass is kg pe r s) ; EqCompMolBalVacCondTurb(VacCondTurb,Comp) Sum(Str $InVacCondTurb(VacCondTurb,Str), Fc(Str,Comp)) =E= Sum(Str $OutVacCondTurb(Va ccondturb,str), Fc(Str,Comp)) ; EqEnthBalVacCondTurb(VacCondTurb) HtLdVacCondTurb(VacCondTurb) =E= Sum(Str $InVacCondTurb(VacCondTurb,Str), F(Str)*H(St r)) Sum(Str $OutVacCondTurb(VacCondTurb,Str), F(Str)*H(S tr)) ; EqMassFCW(VacCondTurb) HtLdVacCondTurb(VacCondTurb) =E= MassFCW*4.184E-03*20 ; EqPr1VacCondTurb(VacCondTurb,Str)$InVacCondTurb(VacCondTurb,Str) P(Str) =E= FxPL( VP ) ; EqPr2VacCondTurb(VacCondTurb,Str)$OutVacCondTurb(VacCondTurb,Str) P(Str) =E= FxPL( VP ) ; EqWorkPumpVCT(VacCondTurb) WorkPumpVCT =E= MassFCW*0.69/1000 ;

36 model.lst Thu Jul 05 21:13: *****************************************

37 model.lst Thu Jul 05 21:13: /05/18 21:13:34 Page 24 C o m p i l a t i o n 1220 ** Equation for pumps 1221 ***************************************** Equations EqCompMolBalPump(Pump,Comp) Component mass bal 1226 EqTEqPump(Pump) Tin = Tout 1227 EqPgePump(Pump) Pout >= Pin 1228 EqWorkPump(Pump) Work done by pump ; EqCompMolBalPump(Pump,Comp) Sum(Str $InPump(Pump,Str), Fc(Str,Comp)) =E= Sum(Str $OutPump(Pump,Str), Fc(Str,Co mp)) ; EqTEqPump(Pump) Sum(Str $InPump(Pump,Str), T(Str)) =E= Sum(Str $OutPump(Pump,Str), T(Str)) ; EqPgePump(Pump) Sum(Str $OutPump(Pump,Str), P(Str)) =G= Sum(Str $InPump(Pump,Str), P(Str)) ; EqWorkPump(Pump) WorkPump(Pump) =E= Sum(Str $InPump(Pump,Str), F(Str) )*( 1244 Sum(Str $OutPump(Pump,Str), P(Str)) Sum(Str $InPump(Pump,Str), P(Str)))*0.1*18/(3600*1000) ; ***************************************** 1250 ** Equation for condensate header 1251 ***************************************** 1252 Equations EqCompMolBalCondHdr(CondHdr,Comp) Component mass bal 1255 EqPRel1CondHdr(CondHdr) Pressure of outlet stream equals the pressure of header ; EqCompMolBalCondHdr(CondHdr,Comp) Sum(Str $InCondHdr(CondHdr,Str), Fc(Str,Comp)) =E= Sum(Str $OutCondHdr(CondHdr,Str), Fc(Str,Comp)) ; EqPRel1CondHdr(CondHdr) Sum(Str $OutCondHdr(CondHdr,Str), P(Str)) =E= FxPL( CDP ) ; ***************************************** 1272 ** Equation for Deaerator

38 model.lst Thu Jul 05 21:13: /05/18 21:13:34 Page 25 C o m p i l a t i o n 1273 ***************************************** 1274 Equations 1275 EqCompMolBalDeAertr(DeAertr,Comp) 1276 EqEnthBalDeAertr(DeAertr) 1277 EqVentVapDeAertr(DeAertr) 1278 EqPRel1DeAertr(DeAertr,Str) 1279 EqPRel2DeAertr(DeAertr,Str) 1280 ; EqCompMolBalDeAertr(DeAertr,Comp) Sum(Str $InDeAertr(DeAertr,Str), Fc(Str,Comp)) =E= 1285 Sum(Str $OutLDeAertr(DeAertr,Str), Fc(Str,Comp)) Sum(Str $OutVDeAertr(DeAertr,Str), Fc(Str,Comp)) ; EqEnthBalDeAertr(DeAertr) Sum(Str $InDeAertr(DeAertr,Str), F(Str)*H(Str)) =E= 1290 Sum(Str $OutLDeAertr(DeAertr,Str), F(Str)*H(Str)) Sum(Str $OutVDeAertr(DeAertr,Str), F(Str)*H(Str)) ; EqVentVapDeAertr(DeAertr) Sum(Str $OutVDeAertr(DeAertr,Str), Fc(Str, H2O )) =E= 0.005*Sum(Str $InDeAertr(DeAert r,str), Fc(Str, H2O )) ; EqPRel1DeAertr(DeAertr,Str)$OutVDeAertr(DeAertr,Str) P(Str) =E= FxPL( CDP ) ; EqPRel2DeAertr(DeAertr,Str)$OutLDeAertr(DeAertr,Str) P(Str) =E= FxPL( CDP ) ; ***************************************************** 1305 * Equations for Combuster 1306 ***************************************************** 1307 Equations 1308 EqCompMolBalBlrCmbtr(BlrCmbtr,Comp) Component mol balance 1309 EqDum1BlrCmbtr(BlrCmbtr,Comp) Dummy (calculates inlet flow for particular component ) 1310 EqEgyBalBlrCmbtr(BlrCmbtr) Energy balance for combustor 1311 EqOutPBlrCmbtr1(BlrCmbtr,Str) Equality of pressure EqExcessO2BlrCmbtr(BlrCmbtr) constraint for excess O EqTCnstrtBlrCmbtr(BlrCmbtr) Constraint for maximum allowable temperature ; EqDum1BlrCmbtr(BlrCmbtr,Comp) Dum1BlrCmbtr(BlrCmbtr,Comp) =E= Sum(Str $InBlrCmbtr(BlrCmbtr,Str),Fc(Str,Comp)) ; EqCompMolBalBlrCmbtr(BlrCmbtr,Comp) Dum1BlrCmbtr(BlrCmbtr,Comp) Sum(CombRxns,Sum(Comp2$BurnComp(CombRxns,Comp2),FracConv(Comp2)*Dum1BlrCmbtr(BlrCmb

39 model.lst Thu Jul 05 21:13: tr,comp2)*combrxnsstoicmtrx(combrxns,comp)))

40 model.lst Thu Jul 05 21:13: /05/18 21:13:34 Page 26 C o m p i l a t i o n 1326 =E= Sum(Str $OutBlrCmbtr(BlrCmbtr,Str),Fc(Str,Comp)) ; EqEgyBalBlrCmbtr(BlrCmbtr) Sum(Str $InBlrCmbtr(BlrCmbtr,Str), SUM(Comp, Fc(Str,Comp)*Hc(Str,Comp))) 1331 =E= Sum(Str $OutBlrCmbtr(BlrCmbtr,Str), SUM(Comp, Fc(Str,Comp)*Hc(Str,Comp))) ; EqOutPBlrCmbtr1(BlrCmbtr,Str)$InBlrCmbtr(BlrCmbtr,Str) Sum(Str2 $OutBlrCmbtr(BlrCmbtr,Str2), P(Str2)) =E= P(Str) ; EqExcessO2BlrCmbtr(BlrCmbtr) Dum1BlrCmbtr(BlrCmbtr, O2 ) =G= 1.15* 1338 Sum(CombRxns,Sum(Comp2$BurnComp(CombRxns,Comp2),Dum1BlrCmbtr(BlrCmbtr,Comp2)*CombRx nsstoicmtrx(combrxns, O2 ))) ; EqTCnstrtBlrCmbtr(BlrCmbtr) Sum(Str $OutBlrCmbtr(BlrCmbtr,Str),T(Str)) =L= 1500 ; ***************************************** 1347 ** Equation for Air and syngas streams 1348 ***************************************** 1349 Equations 1350 Eq1AirStr(Str) 1351 Eq2AirStr(Str) 1352 Eq3AirStr(Str) 1353 Eq1SyngasStr(Str) 1354 Eq1aSyngasStr(Str) 1355 Eq1bSyngasStr(Str) Eq2SyngasStr(Str) 1358 EqWorkFan 1359 ; 1360 Eq1AirStr(Str)$AirStr(Str) Fc(Str, N2 ) =E= 79/21 * Fc(Str, O2 ) ; Eq2AirStr(Str)$AirStr(Str) P(Str) =E= AmbP ; Eq3AirStr(Str)$AirStr(Str) T(Str) =E= AmbT ; Eq1SyngasStr(Str)$SyngasStr(Str) Fc(Str, H2 ) =E= 11.0 * Fc(Str, CO2 ) ; Eq1aSyngasStr(Str)$SyngasStr(Str) Fc(Str, CO ) =E= 6.0 * Fc(Str, CO2 ) ; Eq1bSyngasStr(Str)$SyngasStr(Str) Fc(Str, CH4 ) =E= 2.0 * Fc(Str, CO2 ) ; Eq2SyngasStr(Str)$SyngasStr(Str)..

41 model.lst Thu Jul 05 21:13: /05/18 21:13:34 Page 27 C o m p i l a t i o n 1379 T(Str) =E= AmbT ; EqWorkFan WorkFan =E= (F( 27 )+F( 29 ))*29*0.012/(3600*1.186) ; ********************************** 1397 * Euqation for Header 1398 ********************************** 1399 Equations EqTSat2(PLev) 1402 EqUBTOpr(PLev) 1403 EqLBTOpr(PLev) 1404 EqCompMolBalPLev(PLev,Comp) 1405 EqEgyBalPLev(PLev) 1406 EqPRel1PLev(PLev,Str) 1407 EqPRel2PLev(PLev,Str) 1408 EqTRel1PLev(PLev,Str) ; EqCompMolBalPLev(PLev,Comp) Sum( Str $InPLev(PLev,Str), Fc(Str,Comp)) =E= 1415 Sum( Str $OutPLev(PLev,Str), Fc(Str,Comp)) ; EqEgyBalPLev(PLev) Sum( Str $InPLev(PLev,Str), F(Str)* H(Str)) =E= 1419 Sum( Str $OutPLev(PLev,Str), F(Str)* H(Str)) ; EqPRel1PLev(PLev,Str)$InPLev(PLev,Str) P(Str) =E= POpr(PLev) ; EqPRel2PLev(PLev,Str)$OutPLev(PLev,Str) P(Str) =E= POpr(PLev) ; EqTRel1PLev(PLev,Str)$OutPLev(PLev,Str) T(Str) =E= TOpr(PLev) ; EqTSat2(PLev) POpr(PLev) =E= exp(extant1( H2O ) + ExtAnt2( H2O )/(TSatOpr(PLev) + ExtAnt3( H2O )) + ExtAnt4( H2O )*TSatOpr(PLev)

42 model.lst Thu Jul 05 21:13: /05/18 21:13:34 Page 28 C o m p i l a t i o n ExtAnt5( H2O )*log(tsatopr(plev)) + ExtAnt6( H2O )*TSatOpr(PLev)**ExtAnt7( H2O )) ; EqUBTOpr(PLev) TOpr(PLev) =L= TSatOpr(PLev) + MaxSupHt(PLev) ; EqLBTOpr(PLev) TOpr(PLev) =G= TSatOpr(PLev) ; ***************************************************** 1443 * Equations for Boilers 1444 ***************************************************** 1445 Equations 1446 EqGasMolBalBlr(Blr,Comp) 1447 EqWtrMolBalBlr(Blr,Comp) 1448 EqGasEgyBalBlr(Blr) 1449 EqWtrEgyBalBlr(Blr) 1450 EqBlowdown(Blr) EqRel2Blr(Blr) 1453 EqRel3Blr(Blr) 1454 EqRel4Blr(Blr) 1455 EqRel5Blr(Blr) 1456 EqRel6Blr(Blr) *EqP *EqP *EqP EqT EqT EqT ; EqGasMolBalBlr(Blr,Comp) Sum(Str $InGasBlr(Blr,Str), Fc(Str,Comp)) =E= 1468 Sum(Str $OutGasBlr(Blr,Str), Fc(Str,Comp)) ; EqWtrMolBalBlr(Blr,Comp) Sum(Str $InWtrBlr(Blr,Str), Fc(Str,Comp)) =E= 1472 Sum(Str $OutStmBlr(Blr,Str), Fc(Str,Comp)) + Sum(Str $OutWtrBlr(Blr,Str), Fc(Str,Com p)) ; EqGasEgyBalBlr(Blr) Sum(Str $InGasBlr(Blr,Str), SUM(Comp, Fc(Str,Comp)*Hc(Str,Comp))) - QBlr(Blr) =E= 1476 Sum(Str $OutGasBlr(Blr,Str), SUM(Comp, Fc(Str,Comp)*Hc(Str,Comp))) ; EqWtrEgyBalBlr(Blr) Sum(Str $InWtrBlr(Blr,Str), F(Str)*H(Str)) + QBlr(Blr) =E= 1480 Sum(Str $OutStmBlr(Blr,Str), F(Str)*H(Str)) + Sum(Str $OutWtrBlr(Blr,Str), F(Str)*H( Str)) ; EqBlowdown(Blr) Sum(Str $OutWtrBlr(Blr,Str), F(Str)) =E= 0.03*Sum(Str $InWtrBlr(Blr,Str), F(Str)) ; 1484

SECOND ENGINEER REG. III/2 APPLIED HEAT

SECOND ENGINEER REG. III/2 APPLIED HEAT SECOND ENGINEER REG. III/2 APPLIED HEAT LIST OF TOPICS A B C D E F G H I J K Pressure, Temperature, Energy Heat Transfer Internal Energy, Thermodynamic systems. First Law of Thermodynamics Gas Laws, Displacement

More information

Quantity Relationships in Chemical Reactions

Quantity Relationships in Chemical Reactions Chapter 10 Relationships in Chemical Reactions Section 10.1 Conversion Factors from a Chemical Equation Goal 1 The coefficients in a chemical equation give us the conversion factors to get from the number

More information

0 o C. H vap. H evap

0 o C. H vap. H evap Solution. Energy P (00 ) Pν x 0 5 ρ 850,4 J kg - J kg Power kg s 000,4 600 70 W Solution. 00 o C H evap H vap 0 o C H liq 00 t H liq (4. x0 t ) dt 4.t x0 0 40 0 40 kj kg - H evap 40,68 J mol - (From Appendix

More information

05/04/2011 Tarik Al-Shemmeri 2

05/04/2011 Tarik Al-Shemmeri 2 05/04/2011 Tarik Al-Shemmeri 1 05/04/2011 Tarik Al-Shemmeri 2 05/04/2011 Tarik Al-Shemmeri 3 05/04/2011 Tarik Al-Shemmeri 4 05/04/2011 Tarik Al-Shemmeri 5 05/04/2011 Tarik Al-Shemmeri 6 05/04/2011 Tarik

More information

Sustainable Power Generation Applied Heat and Power Technology. Equations, diagrams and tables

Sustainable Power Generation Applied Heat and Power Technology. Equations, diagrams and tables Sustainable Power Generation Applied Heat and Power Technology Equations, diagrams and tables 1 STEAM CYCLE Enthalpy of liquid water h = c p,liquid (T T ref ) T ref = 273 K (normal conditions). The specific

More information

Fuel, Air, and Combustion Thermodynamics

Fuel, Air, and Combustion Thermodynamics Chapter 3 Fuel, Air, and Combustion Thermodynamics 3.1) What is the molecular weight, enthalpy (kj/kg), and entropy (kj/kg K) of a gas mixture at P = 1000 kpa and T = 500 K, if the mixture contains the

More information

Fundamentals of Combustion

Fundamentals of Combustion Fundamentals of Combustion Lec 3: Chemical Thermodynamics Dr. Zayed Al-Hamamre Content Process Heat Transfer 1-3 Process Heat Transfer 1-4 Process Heat Transfer 1-5 Theoretical and Excess Air Combustion

More information

LECTURE 4 Variation of enthalpy with temperature

LECTURE 4 Variation of enthalpy with temperature LECTURE 4 Variation of enthalpy with temperature So far, we can only work at 25 C. Like c v we define a constant pressure heat capacity, c p, as the amount of heat energy needed to raise the temperature

More information

FUNDAMENTALS of Thermodynamics

FUNDAMENTALS of Thermodynamics SOLUTION MANUAL SI UNIT PROBLEMS CHAPTER 15 SONNTAG BORGNAKKE VAN WYLEN FUNDAMENTALS of Thermodynamics Sixth Edition CONTENT SUBSECTION PROB NO. Correspondence table Concept-Study Guide Problems 1-20 Equilibrium

More information

Reacting Gas Mixtures

Reacting Gas Mixtures Reacting Gas Mixtures Reading Problems 15-1 15-7 15-21, 15-32, 15-51, 15-61, 15-74 15-83, 15-91, 15-93, 15-98 Introduction thermodynamic analysis of reactive mixtures is primarily an extension of the principles

More information

Gestão de Sistemas Energéticos 2017/2018

Gestão de Sistemas Energéticos 2017/2018 Gestão de Sistemas Energéticos 2017/2018 Exergy Analysis Prof. Tânia Sousa taniasousa@tecnico.ulisboa.pt Conceptualizing Chemical Exergy C a H b O c enters the control volume at T 0, p 0. O 2 and CO 2,

More information

AAE COMBUSTION AND THERMOCHEMISTRY

AAE COMBUSTION AND THERMOCHEMISTRY 5. COMBUSTIO AD THERMOCHEMISTRY Ch5 1 Overview Definition & mathematical determination of chemical equilibrium, Definition/determination of adiabatic flame temperature, Prediction of composition and temperature

More information

: 2017,, : 2017, < Part I > Zero exergy line < Part II > : h-s

: 2017,, : 2017, < Part I > Zero exergy line < Part II > : h-s : : 217,, : 217, < Part I > 1. 2. 3. 4. 5. Zero exergy line 6. 7. < Part II > : h-s : 217, 5, : 217, - 1 / 24 - - 2 / 24 - : : 11-1 = 1 Q = m C ΔT 91-9 = 1 = + T P A = + = + Q rev = T ΔS δq ds T rev (=

More information

OVERVIEW. Air-Standard Power Cycles (open cycle)

OVERVIEW. Air-Standard Power Cycles (open cycle) OVERVIEW OWER CYCLE The Rankine Cycle thermal efficiency effects of pressure and temperature Reheat cycle Regenerative cycle Losses and Cogeneration Air-Standard ower Cycles (open cycle) The Brayton cycle

More information

Quantitative Relationships in Chemical Reactions Chapter 7

Quantitative Relationships in Chemical Reactions Chapter 7 Quantitative Relationships in Chemical Reactions Chapter 7 The burning of charcoal releases heat (thermal energy) that grills our food. But the combustion of charcoal and fossil fuels also releases CO

More information

MAHALAKSHMI ENGINEERING COLLEGE

MAHALAKSHMI ENGINEERING COLLEGE MAHALAKSHMI ENGINEERING COLLEGE TIRUCHIRAPALLI 621 213. Department: Mechanical Subject Code: ME2202 Semester: III Subject Name: ENGG. THERMODYNAMICS UNIT-I Basic Concept and First Law 1. What do you understand

More information

Thermal Energy Final Exam Fall 2002

Thermal Energy Final Exam Fall 2002 16.050 Thermal Energy Final Exam Fall 2002 Do all eight problems. All problems count the same. 1. A system undergoes a reversible cycle while exchanging heat with three thermal reservoirs, as shown below.

More information

CHAPTER 5 MASS AND ENERGY ANALYSIS OF CONTROL VOLUMES

CHAPTER 5 MASS AND ENERGY ANALYSIS OF CONTROL VOLUMES Thermodynamics: An Engineering Approach 8th Edition in SI Units Yunus A. Çengel, Michael A. Boles McGraw-Hill, 2015 CHAPTER 5 MASS AND ENERGY ANALYSIS OF CONTROL VOLUMES Lecture slides by Dr. Fawzi Elfghi

More information

ME Thermodynamics I. Lecture Notes and Example Problems

ME Thermodynamics I. Lecture Notes and Example Problems ME 227.3 Thermodynamics I Lecture Notes and Example Problems James D. Bugg September 2018 Department of Mechanical Engineering Introduction Part I: Lecture Notes This part contains handout versions of

More information

ME 354 THERMODYNAMICS 2 MIDTERM EXAMINATION. Instructor: R. Culham. Name: Student ID Number: Instructions

ME 354 THERMODYNAMICS 2 MIDTERM EXAMINATION. Instructor: R. Culham. Name: Student ID Number: Instructions ME 354 THERMODYNAMICS 2 MIDTERM EXAMINATION February 14, 2011 5:30 pm - 7:30 pm Instructor: R. Culham Name: Student ID Number: Instructions 1. This is a 2 hour, closed-book examination. 2. Answer all questions

More information

Chapter 5. Mass and Energy Analysis of Control Volumes

Chapter 5. Mass and Energy Analysis of Control Volumes Chapter 5 Mass and Energy Analysis of Control Volumes Conservation Principles for Control volumes The conservation of mass and the conservation of energy principles for open systems (or control volumes)

More information

Chapter 1 Introduction and Basic Concepts

Chapter 1 Introduction and Basic Concepts Chapter 1 Introduction and Basic Concepts 1-1 Thermodynamics and Energy Application Areas of Thermodynamics 1-2 Importance of Dimensions and Units Some SI and English Units Dimensional Homogeneity Unity

More information

Unit 14 Calculations for Chemical Equations

Unit 14 Calculations for Chemical Equations Unit 14 Calculations for Chemical Equations INTRODUCTION The most often encountered problem in chemistry is one that involves a balanced chemical reaction. Almost all areas of chemistry deal with reactions

More information

Course: MECH-341 Thermodynamics II Semester: Fall 2006

Course: MECH-341 Thermodynamics II Semester: Fall 2006 FINAL EXAM Date: Thursday, December 21, 2006, 9 am 12 am Examiner: Prof. E. Timofeev Associate Examiner: Prof. D. Frost READ CAREFULLY BEFORE YOU PROCEED: Course: MECH-341 Thermodynamics II Semester: Fall

More information

Fundamentals Of Combustion (Part 1) Dr. D.P. Mishra Department of Aerospace Engineering Indian Institute of Technology, Kanpur

Fundamentals Of Combustion (Part 1) Dr. D.P. Mishra Department of Aerospace Engineering Indian Institute of Technology, Kanpur Fundamentals Of Combustion (Part 1) Dr. D.P. Mishra Department of Aerospace Engineering Indian Institute of Technology, Kanpur Lecture 10 Mixture fraction calculation for diffusion flames Let us start

More information

I. (20%) Answer the following True (T) or False (F). If false, explain why for full credit.

I. (20%) Answer the following True (T) or False (F). If false, explain why for full credit. I. (20%) Answer the following True (T) or False (F). If false, explain why for full credit. Both the Kelvin and Fahrenheit scales are absolute temperature scales. Specific volume, v, is an intensive property,

More information

Business. Final Exam Review. Competencies. Schedule Today. Most missed on Exam 3. Review Exam #3

Business. Final Exam Review. Competencies. Schedule Today. Most missed on Exam 3. Review Exam #3 Business Final Exam Review Online course evaluation (19/32 = 59%) Counts as a homework assignment (by Thurs) Professional program application Past due! Case study due today by 5 pm Leadership evaluation

More information

ME 354 Tutorial, Week#13 Reacting Mixtures

ME 354 Tutorial, Week#13 Reacting Mixtures ME 354 Tutorial, Week#13 Reacting Mixtures Question 1: Determine the mole fractions of the products of combustion when octane, C 8 H 18, is burned with 200% theoretical air. Also, determine the air-fuel

More information

R13. II B. Tech I Semester Regular Examinations, Jan THERMODYNAMICS (Com. to ME, AE, AME) PART- A

R13. II B. Tech I Semester Regular Examinations, Jan THERMODYNAMICS (Com. to ME, AE, AME) PART- A SET - 1 II B. Tech I Semester Regular Examinations, Jan - 2015 THERMODYNAMICS (Com. to ME, AE, AME) Time: 3 hours Max. Marks: 70 Note 1. Question Paper consists of two parts (Part-A and Part-B) 2. Answer

More information

20 m neon m propane. g 20. Problems with solutions:

20 m neon m propane. g 20. Problems with solutions: Problems with solutions:. A -m tank is filled with a gas at room temperature 0 C and pressure 00 Kpa. How much mass is there if the gas is a) Air b) Neon, or c) Propane? Given: T7K; P00KPa; M air 9; M

More information

Energy Balances. F&R Chapter 8

Energy Balances. F&R Chapter 8 Energy Balances. F&R Chapter 8 How do we calculate enthalpy (and internal energy) changes when we don t have tabulated data (e.g., steam tables) for the process species? Basic procedures to calculate enthalpy

More information

Chapter 5. Mass and Energy Analysis of Control Volumes. by Asst. Prof. Dr.Woranee Paengjuntuek and Asst. Prof. Dr.Worarattana Pattaraprakorn

Chapter 5. Mass and Energy Analysis of Control Volumes. by Asst. Prof. Dr.Woranee Paengjuntuek and Asst. Prof. Dr.Worarattana Pattaraprakorn Chapter 5 Mass and Energy Analysis of Control Volumes by Asst. Prof. Dr.Woranee Paengjuntuek and Asst. Prof. Dr.Worarattana Pattaraprakorn Reference: Cengel, Yunus A. and Michael A. Boles, Thermodynamics:

More information

Stoichiometry, Energy Balances, Heat Transfer, Chemical Equilibrium, and Adiabatic Flame Temperatures. Geof Silcox

Stoichiometry, Energy Balances, Heat Transfer, Chemical Equilibrium, and Adiabatic Flame Temperatures. Geof Silcox Stoichiometry, Energy Balances, Heat ransfer, Chemical Equilibrium, and Adiabatic Flame emperatures Geof Silcox geoff@che.utah.edu (80)58-880 University of Utah Chemical Engineering Salt Lake City, Utah

More information

1. (25 points) C 6 H O 2 6CO 2 + 7H 2 O C 6 H O 2 6CO + 7H 2 O

1. (25 points) C 6 H O 2 6CO 2 + 7H 2 O C 6 H O 2 6CO + 7H 2 O MEEBAL Exam 2 November 2013 Show all work in your blue book. Points will be deducted if steps leading to answers are not shown. No work outside blue books (such as writing on the flow sheets) will be considered.

More information

MAE 11. Homework 8: Solutions 11/30/2018

MAE 11. Homework 8: Solutions 11/30/2018 MAE 11 Homework 8: Solutions 11/30/2018 MAE 11 Fall 2018 HW #8 Due: Friday, November 30 (beginning of class at 12:00p) Requirements:: Include T s diagram for all cycles. Also include p v diagrams for Ch

More information

THERMODYNAMICS, FLUID AND PLANT PROCESSES. The tutorials are drawn from other subjects so the solutions are identified by the appropriate tutorial.

THERMODYNAMICS, FLUID AND PLANT PROCESSES. The tutorials are drawn from other subjects so the solutions are identified by the appropriate tutorial. THERMODYNAMICS, FLUID AND PLANT PROCESSES The tutorials are drawn from other subjects so the solutions are identified by the appropriate tutorial. THERMODYNAMICS TUTORIAL 2 THERMODYNAMIC PRINCIPLES SAE

More information

Unit Workbook 2 - Level 5 ENG U64 Thermofluids 2018 UniCourse Ltd. All Rights Reserved. Sample

Unit Workbook 2 - Level 5 ENG U64 Thermofluids 2018 UniCourse Ltd. All Rights Reserved. Sample Pearson BTEC Level 5 Higher Nationals in Engineering (RQF) Unit 64: Thermofluids Unit Workbook 2 in a series of 4 for this unit Learning Outcome 2 Vapour Power Cycles Page 1 of 26 2.1 Power Cycles Unit

More information

COMBUSTION OF FUEL 12:57:42

COMBUSTION OF FUEL 12:57:42 COMBUSTION OF FUEL The burning of fuel in presence of air is known as combustion. It is a chemical reaction taking place between fuel and oxygen at temperature above ignition temperature. Heat is released

More information

ME Thermodynamics I

ME Thermodynamics I HW-6 (5 points) Given: Carbon dioxide goes through an adiabatic process in a piston-cylinder assembly. provided. Find: Calculate the entropy change for each case: State data is a) Constant specific heats

More information

5.2. The Rankine Cycle

5.2. The Rankine Cycle Figure 5.1. Illustration of a Carnot cycle based on steam in T-S coordinates. The Carnot cycle has a major advantage over other cycles. It operates at the highest temperature available for as long as possible,

More information

Conservation of mass: 44 kg on LHS and RHS one kmol of CO₂ produced by burning 1 kmol of C with one kmol of O₂

Conservation of mass: 44 kg on LHS and RHS one kmol of CO₂ produced by burning 1 kmol of C with one kmol of O₂ L20 Stoichiometry of Reactions Gore Combustion provides the heat source for many power cycles (cars, airplanes, power plants), for home heating, cooking applications, and for manufacturing from melting

More information

Combustion: Flame Theory and Heat Produced. Arthur Anconetani Oscar Castillo Everett Henderson

Combustion: Flame Theory and Heat Produced. Arthur Anconetani Oscar Castillo Everett Henderson Combustion: Flame Theory and Heat Produced Arthur Anconetani Oscar Castillo Everett Henderson What is a Flame?! Reaction Zone! Thermo/Chemical characteristics Types of Flame! Premixed! Diffusion! Both

More information

Basic Thermodynamics Module 1

Basic Thermodynamics Module 1 Basic Thermodynamics Module 1 Lecture 9: Thermodynamic Properties of Fluids Thermodynamic Properties of fluids Most useful properties: Properties like pressure, volume and temperature which can be measured

More information

Methodology for Analysis of Metallurgical Processes

Methodology for Analysis of Metallurgical Processes Methodology for Analysis of Metallurgical Processes Metallurgical and chemical processes are classified as batch, continuous and semibatch 1. Batch processes The feed is charged into a vessel at the beginning

More information

THE FIRST LAW APPLIED TO STEADY FLOW PROCESSES

THE FIRST LAW APPLIED TO STEADY FLOW PROCESSES Chapter 10 THE FIRST LAW APPLIED TO STEADY FLOW PROCESSES It is not the sun to overtake the moon, nor doth the night outstrip theday.theyfloateachinanorbit. The Holy Qur-ān In many engineering applications,

More information

Pre GATE Pre-GATE 2018

Pre GATE Pre-GATE 2018 Pre GATE-018 Chemical Engineering CH 1 Pre-GATE 018 Duration : 180 minutes Total Marks : 100 CODE: GATE18-1B Classroom Postal Course Test Series (Add : 61C, Kalusarai Near HauzKhas Metro, Delhi 9990657855)

More information

MODULE TITLE : MASS AND ENERGY BALANCE TOPIC TITLE : ENERGY BALANCE TUTOR MARKED ASSIGNMENT 3

MODULE TITLE : MASS AND ENERGY BALANCE TOPIC TITLE : ENERGY BALANCE TUTOR MARKED ASSIGNMENT 3 THIS BOX MUST BE COMPLETED Student Code No.... Student's Signature... Date Submitted... Contact e-mail... MODULE TITLE : MASS AND ENERGY BALANCE TOPIC TITLE : ENERGY BALANCE TUTOR MARKED ASSIGNMENT 3 NAME...

More information

Preface Acknowledgments Nomenclature

Preface Acknowledgments Nomenclature CONTENTS Preface Acknowledgments Nomenclature page xv xvii xix 1 BASIC CONCEPTS 1 1.1 Overview 1 1.2 Thermodynamic Systems 3 1.3 States and Properties 4 1.3.1 State of a System 4 1.3.2 Measurable and Derived

More information

FDE 211-MATERIAL AND ENERGY BALANCES: MATERIAL BALANCES ON REACTIVE SYSTEMS. Dr. Ilgın PakerYıkıcı Fall 2015

FDE 211-MATERIAL AND ENERGY BALANCES: MATERIAL BALANCES ON REACTIVE SYSTEMS. Dr. Ilgın PakerYıkıcı Fall 2015 FDE 211-MATERIAL AND ENERGY BALANCES: MATERIAL BALANCES ON REACTIVE SYSTEMS 1 Dr. Ilgın PakerYıkıcı Fall 2015 Learning Objectives Write a balanced chemical reaction and use stoichiometry to determine the

More information

c Dr. Md. Zahurul Haq (BUET) Thermodynamic Processes & Efficiency ME 6101 (2017) 2 / 25 T145 = Q + W cv + i h 2 = h (V2 1 V 2 2)

c Dr. Md. Zahurul Haq (BUET) Thermodynamic Processes & Efficiency ME 6101 (2017) 2 / 25 T145 = Q + W cv + i h 2 = h (V2 1 V 2 2) Thermodynamic Processes & Isentropic Efficiency Dr. Md. Zahurul Haq Professor Department of Mechanical Engineering Bangladesh University of Engineering & Technology (BUET Dhaka-1000, Bangladesh zahurul@me.buet.ac.bd

More information

Comments Transient Energy Balances

Comments Transient Energy Balances Comments Transient Energy Balances General form of the stuff balance equation Rate of Rate Rate Rate of Rate of Accumulation In Out Generation Consumption F1 Q1 F6 F2 Q3 F3 Q2 F4 F5 2 Word form of the

More information

Thermochemistry: Heat and Chemical Change

Thermochemistry: Heat and Chemical Change Thermochemistry: Heat and Chemical Change 1 Heat or Thermal Energy (q) Heat is a form of energy Is heat the same as temperature? Heat flows between two objects at different temperatures. Hot Cold 2 Chemical

More information

ME 2322 Thermodynamics I PRE-LECTURE Lesson 23 Complete the items below Name:

ME 2322 Thermodynamics I PRE-LECTURE Lesson 23 Complete the items below Name: Lesson 23 1. (10 pt) Write the equation for the thermal efficiency of a Carnot heat engine below: 1 L H 2. (10 pt) Can the thermal efficiency of an actual engine ever exceed that of an equivalent Carnot

More information

Refrigeration. 05/04/2011 T.Al-Shemmeri 1

Refrigeration. 05/04/2011 T.Al-Shemmeri 1 Refrigeration is a process of controlled removal of heat from a substance to keep it at a temperature below the ambient condition, often below the freezing point of water (0 O C) 05/04/0 T.Al-Shemmeri

More information

Lecture 44: Review Thermodynamics I

Lecture 44: Review Thermodynamics I ME 00 Thermodynamics I Lecture 44: Review Thermodynamics I Yong Li Shanghai Jiao Tong University Institute of Refrigeration and Cryogenics 800 Dong Chuan Road Shanghai, 0040, P. R. China Email : liyo@sjtu.edu.cn

More information

II/IV B.Tech (Regular) DEGREE EXAMINATION. (1X12 = 12 Marks) Answer ONE question from each unit.

II/IV B.Tech (Regular) DEGREE EXAMINATION. (1X12 = 12 Marks) Answer ONE question from each unit. Page 1 of 8 Hall Ticket Number: 14CH 404 II/IV B.Tech (Regular) DEGREE EXAMINATION June, 2016 Chemical Engineering Fourth Semester Engineering Thermodynamics Time: Three Hours Maximum : 60 Marks Answer

More information

A) 2.0 atm B) 2.2 atm C) 2.4 atm D) 2.9 atm E) 3.3 atm

A) 2.0 atm B) 2.2 atm C) 2.4 atm D) 2.9 atm E) 3.3 atm Name: Date: 1. On a cold day ( 3 C), the gauge pressure on a tire reads 2.0 atm. If the tire is heated to 27 C, what will be the absolute pressure of the air inside the tire? A) 2.0 atm B) 2.2 atm C) 2.4

More information

THERMODYNAMICS, FLUID AND PLANT PROCESSES. The tutorials are drawn from other subjects so the solutions are identified by the appropriate tutorial.

THERMODYNAMICS, FLUID AND PLANT PROCESSES. The tutorials are drawn from other subjects so the solutions are identified by the appropriate tutorial. THERMODYNAMICS, FLUID AND PLANT PROCESSES The tutorials are drawn from other subjects so the solutions are identified by the appropriate tutorial. THERMODYNAMICS TUTORIAL 1 LIQUIDS VAPOURS - GASES SAE

More information

FTIR measurement of NH 3, HCN, SO 2, H 2 S and COS in pulverized lignite oxy-fuel flames Daniel Fleig, Stefan Hjärtstam and Daniel Kühnemuth

FTIR measurement of NH 3, HCN, SO 2, H 2 S and COS in pulverized lignite oxy-fuel flames Daniel Fleig, Stefan Hjärtstam and Daniel Kühnemuth FTIR measurement of NH 3, HCN, SO 2, H 2 S and COS in pulverized lignite oxy-fuel flames Daniel Fleig, Stefan Hjärtstam and Daniel Kühnemuth Abstract Nitrogen and sulphur compounds are investigated in

More information

AE 205 Materials and Energy Balances Asst. Prof. Dr. Tippabust Eksangsri. Chapter 4 Stoichiometry and MB with Reactions

AE 205 Materials and Energy Balances Asst. Prof. Dr. Tippabust Eksangsri. Chapter 4 Stoichiometry and MB with Reactions AE 205 Materials and Energy Balances Asst. Prof. Dr. Tippabust Eksangsri Chapter 4 Stoichiometry and MB with Reactions Stoichiometry Stoichiometry provides a quantitative means of relating the amount of

More information

The First Law of Thermodynamics. By: Yidnekachew Messele

The First Law of Thermodynamics. By: Yidnekachew Messele The First Law of Thermodynamics By: Yidnekachew Messele It is the law that relates the various forms of energies for system of different types. It is simply the expression of the conservation of energy

More information

2. Review on Material Balances

2. Review on Material Balances 2. Review on Material Balances Objectives After completing this chapter, students should be able to recall the principle of the conservation of mass recall the principle of the stoichiometry of chemical

More information

Introduction to Chemical Engineering Thermodynamics. Chapter 4. KFUPM Housam Binous CHE 303

Introduction to Chemical Engineering Thermodynamics. Chapter 4. KFUPM Housam Binous CHE 303 Introduction to Chemical Engineering Thermodynamics Chapter 4 1 Sensible heat effects are characterized by temperature changes Experimental measurements provide heat effects of chemical reactions, phase

More information

Basic Thermodynamics Prof. S K Som Department of Mechanical Engineering Indian Institute of Technology, Kharagpur. Lecture - 21 Vapors Power Cycle-II

Basic Thermodynamics Prof. S K Som Department of Mechanical Engineering Indian Institute of Technology, Kharagpur. Lecture - 21 Vapors Power Cycle-II Basic Thermodynamics Prof. S K Som Department of Mechanical Engineering Indian Institute of Technology, Kharagpur Lecture - 21 Vapors Power Cycle-II Good morning to all of you. Today, we will be continuing

More information

Use the data in the table to calculate the standard enthalpy of formation of liquid methylbenzene, C 7 H 8. Substance C(s) H 2 (g) C 7 H 8 (l)

Use the data in the table to calculate the standard enthalpy of formation of liquid methylbenzene, C 7 H 8. Substance C(s) H 2 (g) C 7 H 8 (l) Q1.(a) Define the term standard enthalpy of formation, H f ο (3) (b) Use the data in the table to calculate the standard enthalpy of formation of liquid methylbenzene, C 7 H 8 Substance C(s) H 2 (g) C

More information

ME 200 Final Exam December 14, :00 a.m. to 10:00 a.m.

ME 200 Final Exam December 14, :00 a.m. to 10:00 a.m. CIRCLE YOUR LECTURE BELOW: First Name Last Name 7:30 a.m. 8:30 a.m. 10:30 a.m. 11:30 a.m. Boregowda Boregowda Braun Bae 2:30 p.m. 3:30 p.m. 4:30 p.m. Meyer Naik Hess ME 200 Final Exam December 14, 2015

More information

Thermochemistry. Chapter 6. Concept Check 6.1. Concept Check 6.2. Solution

Thermochemistry. Chapter 6. Concept Check 6.1. Concept Check 6.2. Solution Chapter 6 Thermochemistry Concept Check 6.1 A solar-powered water pump has photovoltaic cells on protruding top panels. These cells collect energy from sunlight, storing it momentarily in a battery, which

More information

Chapter 2: The Physical Properties of Pure Compounds

Chapter 2: The Physical Properties of Pure Compounds Chapter 2: The Physical Properties of Pure Compounds 2-10. The boiler is an important unit operation in the Rankine cycle. This problem further explores the phenomenon of boiling. A. When you are heating

More information

first law of ThermodyNamics

first law of ThermodyNamics first law of ThermodyNamics First law of thermodynamics - Principle of conservation of energy - Energy can be neither created nor destroyed Basic statement When any closed system is taken through a cycle,

More information

Non-Newtonian fluids is the fluids in which shear stress is not directly proportional to deformation rate, such as toothpaste,

Non-Newtonian fluids is the fluids in which shear stress is not directly proportional to deformation rate, such as toothpaste, CHAPTER1: Basic Definitions, Zeroth, First, and Second Laws of Thermodynamics 1.1. Definitions What does thermodynamic mean? It is a Greeks word which means a motion of the heat. Water is a liquid substance

More information

ENT 254: Applied Thermodynamics

ENT 254: Applied Thermodynamics ENT 54: Applied Thermodynamics Mr. Azizul bin Mohamad Mechanical Engineering Program School of Mechatronic Engineering Universiti Malaysia Perlis (UniMAP) azizul@unimap.edu.my 019-4747351 04-9798679 Chapter

More information

Chapter 4. Fundamentals of Material Balance

Chapter 4. Fundamentals of Material Balance Chapter 4 Fundamentals of Material Balance Introduction to Chapter 4 1) In chapter 4 we will present methods for organizing known information about process variables, setting up martial balance equations,

More information

Outcomes: Interpret a balanced chemical equation in terms of moles, mass and volume of gases. Solve stoichiometric problems involving: moles, mass,

Outcomes: Interpret a balanced chemical equation in terms of moles, mass and volume of gases. Solve stoichiometric problems involving: moles, mass, Stoichiometry Outcomes: Interpret a balanced chemical equation in terms of moles, mass and volume of gases. Solve stoichiometric problems involving: moles, mass, volume, and heat of reaction. Stoichiometry

More information

Lecture 37. Heat of Reaction. 1 st Law Analysis of Combustion Systems

Lecture 37. Heat of Reaction. 1 st Law Analysis of Combustion Systems Department of Mechanical Engineering ME 322 Mechanical Engineering hermodynamics Heat of eaction Lecture 37 1 st Law Analysis of Combustion Systems Combustion System Analysis Consider the complete combustion

More information

2.9 The Mole and Chemical Equations:

2.9 The Mole and Chemical Equations: 2.9 The Mole and Chemical Equations: Stoichiometry Whether you are making omelettes in a kitchen or soap in a factory, you need to know the quantities of ingredients required to produce a certain quantity

More information

Thermodynamics ENGR360-MEP112 LECTURE 7

Thermodynamics ENGR360-MEP112 LECTURE 7 Thermodynamics ENGR360-MEP11 LECTURE 7 Thermodynamics ENGR360/MEP11 Objectives: 1. Conservation of mass principle.. Conservation of energy principle applied to control volumes (first law of thermodynamics).

More information

First Law of Thermodynamics

First Law of Thermodynamics CH2303 Chemical Engineering Thermodynamics I Unit II First Law of Thermodynamics Dr. M. Subramanian 07-July-2011 Associate Professor Department of Chemical Engineering Sri Sivasubramaniya Nadar College

More information

Part III: Planes, Trains, and Automobiles: Making Heat Work for You

Part III: Planes, Trains, and Automobiles: Making Heat Work for You Contents at a Glance Introduction... 1 Part I: Covering the Basics in Thermodynamics... 7 Chapter 1: Thermodynamics in Everyday Life...9 Chapter 2: Laying the Foundation of Thermodynamics...15 Chapter

More information

WINTER-15 EXAMINATION Model Answer

WINTER-15 EXAMINATION Model Answer Subject code :(735) Page of 9 Important Instructions to examiners: ) The answers should be examined by key words and not as word-to-word as given in the model answer scheme. ) The model answer and the

More information

R13 SET - 1 '' ''' '' ' '''' Code No RT21033

R13 SET - 1 '' ''' '' ' '''' Code No RT21033 SET - 1 II B. Tech I Semester Supplementary Examinations, June - 2015 THERMODYNAMICS (Com. to ME, AE, AME) Time: 3 hours Max. Marks: 70 Note: 1. Question Paper consists of two parts (Part-A and Part-B)

More information

Chapter 15. In the preceding chapters we limited our consideration to CHEMICAL REACTIONS. Objectives

Chapter 15. In the preceding chapters we limited our consideration to CHEMICAL REACTIONS. Objectives Chapter 15 CHEMICAL REACTIONS In the preceding chapters we limited our consideration to nonreacting systems systems whose chemical composition remains unchanged during a process. This was the case even

More information

Lecture 38: Vapor-compression refrigeration systems

Lecture 38: Vapor-compression refrigeration systems ME 200 Termodynamics I Lecture 38: Vapor-compression refrigeration systems Yong Li Sangai Jiao Tong University Institute of Refrigeration and Cryogenics 800 Dong Cuan Road Sangai, 200240, P. R. Cina Email

More information

S.E. (Chemical Engineering) (Second Semester)EXAMINATION, 2012 THERMODYNAMICS-I (2008 PATTERN) Time : Three Hours Maximum Marks : 100

S.E. (Chemical Engineering) (Second Semester)EXAMINATION, 2012 THERMODYNAMICS-I (2008 PATTERN) Time : Three Hours Maximum Marks : 100 Total No. of Questions 12] [Total No. of Printed Pages 7 Seat No. [4162]-189 S.E. (Chemical Engineering) (Second Semester)EXAMINATION, 2012 THERMODYNAMICS-I (2008 PATTERN) Time : Three Hours Maximum Marks

More information

Kaplan Chemical Engineering Problems & Solutions, 4 th Edition Errata

Kaplan Chemical Engineering Problems & Solutions, 4 th Edition Errata Page : Page 6 and 7: Example., Line : Change 50 to 0 Replace present solutions of problems. to.4 on pages 6 and 7 by the following revised solutions:. Carbon/Hydrogen mass ratio: CO in the flue gas is

More information

Energy and Energy Balances

Energy and Energy Balances Energy and Energy Balances help us account for the total energy required for a process to run Minimizing wasted energy is crucial in Energy, like mass, is. This is the Components of Total Energy energy

More information

F325: Equilibria, Energetics and Elements How Far?

F325: Equilibria, Energetics and Elements How Far? F325: Equilibria, Energetics and Elements 5.1.2 How Far? 100 marks 1. Syngas is a mixture of carbon monoxide and hydrogen gases, used as a feedstock for the manufacture of methanol. A dynamic equilibrium

More information

Getting started with BatchReactor Example : Simulation of the Chlorotoluene chlorination

Getting started with BatchReactor Example : Simulation of the Chlorotoluene chlorination Getting started with BatchReactor Example : Simulation of the Chlorotoluene chlorination 2011 ProSim S.A. All rights reserved. Introduction This document presents the different steps to follow in order

More information

Fundamentals of Material Balances

Fundamentals of Material Balances Chapter 4 Fundamentals of Material Balances Material Balance-Part 1 Process Classifications 3 type of chemical processes: - Concept of boundary of the process 1. Batch process Feed is charge to the process

More information

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. AP Chemistry: Practice Test, Ch. 5. - Gases Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) According to kinetic-molecular theory, in which

More information

FUNDAMENTALS OF THERMODYNAMICS

FUNDAMENTALS OF THERMODYNAMICS FUNDAMENTALS OF THERMODYNAMICS SEVENTH EDITION CLAUS BORGNAKKE RICHARD E. SONNTAG University of Michigan John Wiley & Sons, Inc. Chemical Reactions 15 Many thermodynamic problems involve chemical reactions.

More information

Chapter 12 Stoichiometry

Chapter 12 Stoichiometry 12.2 Chemical Calculations > Chapter 12 Stoichiometry 12.1 The Arithmetic of Equations 12.22 Chemical Calculations 12.3 Limiting Reagent and Percent Yield 1 Copyright Pearson Education, Inc., or its affiliates.

More information

Combustion. Indian Institute of Science Bangalore

Combustion. Indian Institute of Science Bangalore Combustion Indian Institute of Science Bangalore Combustion Applies to a large variety of natural and artificial processes Source of energy for most of the applications today Involves exothermic chemical

More information

Lecture 35: Vapor power systems, Rankine cycle

Lecture 35: Vapor power systems, Rankine cycle ME 00 Thermodynamics I Spring 015 Lecture 35: Vapor power systems, Rankine cycle Yong Li Shanghai Jiao Tong University Institute of Refrigeration and Cryogenics 800 Dong Chuan Road Shanghai, 0040, P. R.

More information

Assuming that no heat is lost from the water to the surrounding air, Conservation of energy. The terms add to zero because they have opposite signs.

Assuming that no heat is lost from the water to the surrounding air, Conservation of energy. The terms add to zero because they have opposite signs. CALORIMETRY - the measurement of heat. How do we measure heat flow? 0.20 mol A 100 g water A -> B + C When we add the reactant to water, it decomposes - heating the water. 100 g water A -> B + C... what

More information

N L N G : C O M B U S T I O N

N L N G : C O M B U S T I O N N L N G : C O M B U S T I O N G R A N T I N G R A M 6 T H D E C E M B E R 2 0 1 7 This short lecture provides an introduction into the basic principles of combustion and some of the background to the use

More information

University of Washington Department of Chemistry Chemistry 452/456 Summer Quarter 2011

University of Washington Department of Chemistry Chemistry 452/456 Summer Quarter 2011 Homework Assignment #: Due at 500 pm Wednesday July 6. University of Washington Department of Chemistry Chemistry 45/456 Summer Quarter 0 ) he respiratory system uses oxygen to degrade glucose to carbon

More information

Week 8. Steady Flow Engineering Devices. GENESYS Laboratory

Week 8. Steady Flow Engineering Devices. GENESYS Laboratory Week 8. Steady Flow Engineering Devices Objectives 1. Solve energy balance problems for common steady-flow devices such as nozzles, compressors, turbines, throttling valves, mixers, heaters, and heat exchangers

More information

Department of Mechanical Engineering ME 322 Mechanical Engineering Thermodynamics. Lecture 26. Use of Regeneration in Vapor Power Cycles

Department of Mechanical Engineering ME 322 Mechanical Engineering Thermodynamics. Lecture 26. Use of Regeneration in Vapor Power Cycles Department of Mechanical Engineering ME 322 Mechanical Engineering Thermodynamics Lecture 2 Use of Regeneration in Vapor Power Cycles What is Regeneration? Goal of regeneration Reduce the fuel input requirements

More information

Kinetics & Equilibrium Review Packet. Standard Level. 1. Which quantities in the enthalpy level diagram are altered by the use of a catalyst?

Kinetics & Equilibrium Review Packet. Standard Level. 1. Which quantities in the enthalpy level diagram are altered by the use of a catalyst? Kinetics & Equilibrium Review Packet Standard Level 1. Which quantities in the enthalpy level diagram are altered by the use of a catalyst? Enthalpy I II III Time A. I and II only B. I and III only C.

More information

Engineering Thermodynamics Solutions Manual

Engineering Thermodynamics Solutions Manual Engineering Thermodynamics Solutions Manual Prof. T.T. Al-Shemmeri Download free books at Prof. T.T. Al-Shemmeri Engineering Thermodynamics Solutions Manual 2 2012 Prof. T.T. Al-Shemmeri & bookboon.com

More information