0 o C. H vap. H evap

Size: px
Start display at page:

Download "0 o C. H vap. H evap"

Transcription

1 Solution. Energy P (00 ) Pν x 0 5 ρ 850,4 J kg - J kg Power kg s 000, W Solution. 00 o C H evap H vap 0 o C H liq 00 t H liq (4. x0 t ) dt 4.t x kj kg - H evap 40,68 J mol - (From Appendix D) kj kg - 8 From Appendix O, the specific heat of the vapour is given by: C p x x x 0-9 Where C p is in J mol - K - and is in K. Now 00 o C 7.5K and 00 o C 7.5K H vap ( x x0.596 x0 ) d 7.5

2 ( x x0.596 x0 ) 4 7.5, kj kmol kj kg - herefore, specific enthalpy: H liq 40 H evap 60 H vap kj kg - From Steam ables: 876 kj kg -. Error 98 kj kg - (.5 %). Solution. Calculation of the enthalpy of reactions:. CO + ½O CO H F (kj mol - ) H R (-0.6) -8.5 kj mol - CO. H + ½O H O H R kj mol - H. CH 4 + O CO + H O H R [ (-4.00)] (-74.86) kj mol - CH 4 4. C H 6 + ½O CO + H O H R [(-9.77) + (-4.00)] (-84.74) kj mol - C H 6

3 5. C H 4 + 6O CO + H O H R [(-9.77) + (-4.00)] kj mol - C H 4 6. C 6 H 6 + 7½O 6CO + H O H R [6(-9.77) + (-4.00)] kj mol - C 6 H 6 Composition (mol %): CO : 4, CO: 5, H : 50, CH 4 :, C H 6 :, C H 4 : 4, C 6 H 6 :, N :. Basis: 00 mol Component Quantity -( H R ) H (kj) CO 4 -- CO H CH C H C H C 6 H N (kj/00 mol) herefore, H ( )(0) kj kmol - Gross CV (kj m - ) 404, ,07 kj m - ( 485 BU ft - ).4 o calculate the Net CV, subtract the heat of vapourisation of the H O burned.

4 Solution.4 Heat ransfer Fluid 0bar NB, 0 o C 500 kg h - H, 0 o C 66 kg h - Molecular weight of nitrobenzene and H 500 Molar flow of nitrobenzene ()(600) Molar flow of H 66 ()(600) 50.8 x 0 - kmol s x 0 kmol s x0 Partial pressure of nitrobenzene 0 [ ].0 bar + Using the Antoine Equation: B ln P A + C he Antoine constants are obtained from Appendix D. ( bar 500 mm Hg) 40.6 ln (500) K 55 o C he boiling point of nitrobenzene at atm 0.6 o C (Appendix D) evap 55 o C 0.6 o C H 0 o C NB 0 o C

5 he specific heat capacity of the nitrobenzene liquid can be estimated using Chueh and Swanson s method. CH C N O (8.4 x 5) (5.7 x ) otal 9 kj kmol - C - he specific heat capacity of the nitrobenzene gas: a b x 0 c x 0 4 d x 0 6 HC (x 5) C NO Nitrobenzene: H liq (5.646 x 0 - )(9)(0.6 0) 08 kw H gas kw ( ) d H evap H : 44,0 kj kmol kmol 48.5 kw s H gas ( kw herefore: otal H kw Note: It is not worth correcting the heat capacities for pressure ) d

6 Solution kg h - NB H Inerts mol % NB 0.45 AN 0.7 H O.68 Cycl. 0. Inerts.66 H 6.67 Nitrogen Balance: Molar flow of nitrobenzene 500 ()(600) herefore, katoms N x 0 - s - Let the total mass out be x, then: x x 00 x kmol s x 0 - kmol s - H reacted 0.7 Aniline produced (0.05) Cyclo-hexylamine produced (0.05) Unreacted H (0.05) kmol s So, total H In kmol s - Now, H reaction 55,000 kj kmol - (Appendix G8) From H f (Appendix D) NB kj mol - AN 86.9 H O -4.00

7 H reaction Σ products Σ reactants [ (-4.00)] (-67.49) kj mol - 9,590 kj kmol - Reactions: C 6 H 5 NO + H C 6 H 5 NH + H O C 6 H 5 NH + H C 6 H NH he second reaction can be ignored since it represents a small fraction of the total. he problem can be solved using the ENRGYBAL program. Heat capacities can be found in Appendix D and calculated values for nitrobenzene obtained from Solution.4. Solution.6 A straight-forward energy balance problem. Best to use the energy balance programs: ENERGY, page 9 or ENRGYBAL, Appendix I, to avoid tedious calculations. Data on specific heats and heats of reaction can be found in Appendix D. What follows is an outline solution to this problem. 00 o C 95 % H 5 % N Cl sat CW 5 o C.5bar 50 o C 0,000 yr - HCl H + Cl HCl Mass balance ( % excess) gives feed. Solution:. sat for Cl from Antoine Equation (Appendix D),. H reaction from the HCl heat of formation,. C p s from Appendix D,

8 4. Reactor balance to 00 o C (4 % free Cl ), 5. Datum temperature 5 o C, 6. Ignore pressure effects on C p s. Reactor: IN -. H + N zero (at datum temperature),. Cl at sat (note as gas, H reaction for gases),. H reaction at 5 o C (96 % Cl reacted). OU -. HCl + Cl + H (excess) + N at 00 o C,. Cooling in jacket. Cooler: IN -. Reactor outlet H,. 4 % Cl reacted ( H reaction ). OU -. Sensible heat of HCl, H (excess) and N,. Heat to cooling water. Check on sat : ln(.5 750) sat K 8.95 sat sat sat -4.6 o C (Within the temperature limits) he Cl may need preheating. Solution.7 As P < P critical, the simplified equation can be used. 5 bar N 00m h - o

9 γ.4 for air. n P w P v n P where: n and m n n γ m. γ Compression ratio 0 from Figure.7, E p 86 %. P P m E p.4 m 0., n. 49. (.4)(0.86) 0. 0 ( 0 + 7) K 5 o C In practice the compressor cylinder would be fitted with a cooling jacket. v 00 m h m s - w.49 )(0.078) ( kw (Say 0 kw) ( 0) Solution.8 H or HCl 0,000 kg h - HCl H + Cl HCl Burner operating pressure, 600 kn m - required. ake burner as operating at atm. 0 kn m - g or 600 kn m - g. H is compressed from 0 kn m - to 600 kn m -.

10 600 Pressure ratio 5 0 Intermediate pressure P P (0)(600) 68 kn m - Note: For H the inlet temperature will not be the same as the intercooler outlet so the cool stage should be calculated separately. A material balance gives the H flow. he % excess H is ignored in the HCl compressor calculation. Material balance: HCl produced 0,000 (6.5)(600) H required Cl required kmol s kmol s kmol s - Excess H kmol s - he simplified equations (.6a and.8a) can be used since conditions are far removed from critical. ake γ. 4 since both H and HCl are diatomic gases. (.4 ) m (.6a) (.4)(0.7) n.689 (.8a) n n P n w P v (.) n P H : st Stage: v 0.08 m kg

11 w (0 0 )(0.08) 9,9 J kg nd Stage: v m kg w (68 0 )(0.099) 0,04 J kg Power (9,9 + 0,04)(0.084)() 505 W.505 kw HCl: ake both stages as performing equal work with the same inlet temperature. P i P P (0.)(600) 46.5 kn m - (.9) v.97 m kg w (.0 0 )(.97) 50,7 J kg Power (50,7)(0.076)(6.5),47,08 W 47 kw It is necessary to divide by the efficiency to get the actual power but it is clear that the best choice is to compress the H and operate the burner under pressure. Check: emperature of saturated Cl at 600 kn m ln K 6 o C

12 Solutions.9 and.0. Refer to example.7 and the worked solution to problem. Solution. s t C p Streams: ( o C) ( o C) (kw o C - ) 900 kw Preheater C o C 0 o C 50 kw Condenser H o C 60 o C 00 kw Condenser H o C 55 o C 400 kw Reboiler C o C 85 o C 900 kw Reboiler C o C 75 o C 0 kw Cooler H o C 5 o C For min 0 o C + 5 (cold) int out 5 (hot) int out Stream ype act int C H H C C

13 6 H Ranked Streams ( o C) kw Cascade Add C C H 60 H H C H ( ( C p ) ( C p ) ) Hot Utilities 00 kw Cold Utilities 445 kw C H Pinch 60 8 o C

1. (25 points) C 6 H O 2 6CO 2 + 7H 2 O C 6 H O 2 6CO + 7H 2 O

1. (25 points) C 6 H O 2 6CO 2 + 7H 2 O C 6 H O 2 6CO + 7H 2 O MEEBAL Exam 2 November 2013 Show all work in your blue book. Points will be deducted if steps leading to answers are not shown. No work outside blue books (such as writing on the flow sheets) will be considered.

More information

Review of Mathematics

Review of Mathematics Review for Exam #1 Review of Mathematics 2 Weighted Mean A certain property of material 1 is P 1 and that of material 2 is P 2 If x 1 amount (weight or volume) of material 1 is mixed with x 2 amount of

More information

Energy Balances. F&R Chapter 8

Energy Balances. F&R Chapter 8 Energy Balances. F&R Chapter 8 How do we calculate enthalpy (and internal energy) changes when we don t have tabulated data (e.g., steam tables) for the process species? Basic procedures to calculate enthalpy

More information

Fundamentals of Combustion

Fundamentals of Combustion Fundamentals of Combustion Lec 3: Chemical Thermodynamics Dr. Zayed Al-Hamamre Content Process Heat Transfer 1-3 Process Heat Transfer 1-4 Process Heat Transfer 1-5 Theoretical and Excess Air Combustion

More information

ENGR Thermodynamics

ENGR Thermodynamics ENGR 224 - hermodynamics #1 - Diagram for a Cascade VCR Cycle (21 ts) Baratuci Final 13-Jun-11 On a full sheet of paper, construct a complete Diagram for the cascade cascade vapor-compression refrigeration

More information

Fuel, Air, and Combustion Thermodynamics

Fuel, Air, and Combustion Thermodynamics Chapter 3 Fuel, Air, and Combustion Thermodynamics 3.1) What is the molecular weight, enthalpy (kj/kg), and entropy (kj/kg K) of a gas mixture at P = 1000 kpa and T = 500 K, if the mixture contains the

More information

CHEM Thermodynamics. Entropy, S

CHEM Thermodynamics. Entropy, S hermodynamics Change in Change in Entropy, S Entropy, S Entropy is the measure of dispersal. he natural spontaneous direction of any process is toward greater dispersal of matter and of energy. Dispersal

More information

MEEBAL Exam 1 October 2012 Show all work in your blue book. Points will be deducted if steps leading to answers are not shown. No work outside blue books (such as writing on the flow sheets) will be considered.

More information

Stoichiometry, Energy Balances, Heat Transfer, Chemical Equilibrium, and Adiabatic Flame Temperatures. Geof Silcox

Stoichiometry, Energy Balances, Heat Transfer, Chemical Equilibrium, and Adiabatic Flame Temperatures. Geof Silcox Stoichiometry, Energy Balances, Heat ransfer, Chemical Equilibrium, and Adiabatic Flame emperatures Geof Silcox geoff@che.utah.edu (80)58-880 University of Utah Chemical Engineering Salt Lake City, Utah

More information

KNOWN: Pressure, temperature, and velocity of steam entering a 1.6-cm-diameter pipe.

KNOWN: Pressure, temperature, and velocity of steam entering a 1.6-cm-diameter pipe. 4.3 Steam enters a.6-cm-diameter pipe at 80 bar and 600 o C with a velocity of 50 m/s. Determine the mass flow rate, in kg/s. KNOWN: Pressure, temperature, and velocity of steam entering a.6-cm-diameter

More information

I. (20%) Answer the following True (T) or False (F). If false, explain why for full credit.

I. (20%) Answer the following True (T) or False (F). If false, explain why for full credit. I. (20%) Answer the following True (T) or False (F). If false, explain why for full credit. Both the Kelvin and Fahrenheit scales are absolute temperature scales. Specific volume, v, is an intensive property,

More information

MAE 11. Homework 8: Solutions 11/30/2018

MAE 11. Homework 8: Solutions 11/30/2018 MAE 11 Homework 8: Solutions 11/30/2018 MAE 11 Fall 2018 HW #8 Due: Friday, November 30 (beginning of class at 12:00p) Requirements:: Include T s diagram for all cycles. Also include p v diagrams for Ch

More information

COMBUSTION OF FUEL 12:57:42

COMBUSTION OF FUEL 12:57:42 COMBUSTION OF FUEL The burning of fuel in presence of air is known as combustion. It is a chemical reaction taking place between fuel and oxygen at temperature above ignition temperature. Heat is released

More information

ME Thermodynamics I. Lecture Notes and Example Problems

ME Thermodynamics I. Lecture Notes and Example Problems ME 227.3 Thermodynamics I Lecture Notes and Example Problems James D. Bugg September 2018 Department of Mechanical Engineering Introduction Part I: Lecture Notes This part contains handout versions of

More information

THERMODYNAMICS, FLUID AND PLANT PROCESSES. The tutorials are drawn from other subjects so the solutions are identified by the appropriate tutorial.

THERMODYNAMICS, FLUID AND PLANT PROCESSES. The tutorials are drawn from other subjects so the solutions are identified by the appropriate tutorial. THERMODYNAMICS, FLUID AND PLANT PROCESSES The tutorials are drawn from other subjects so the solutions are identified by the appropriate tutorial. THERMODYNAMICS TUTORIAL 1 LIQUIDS VAPOURS - GASES SAE

More information

Thermochemistry: Heat and Chemical Change

Thermochemistry: Heat and Chemical Change Thermochemistry: Heat and Chemical Change 1 Heat or Thermal Energy (q) Heat is a form of energy Is heat the same as temperature? Heat flows between two objects at different temperatures. Hot Cold 2 Chemical

More information

University of Washington Department of Chemistry Chemistry 452/456 Summer Quarter 2011

University of Washington Department of Chemistry Chemistry 452/456 Summer Quarter 2011 Homework Assignment #: Due at 500 pm Wednesday July 6. University of Washington Department of Chemistry Chemistry 45/456 Summer Quarter 0 ) he respiratory system uses oxygen to degrade glucose to carbon

More information

5/6/ :41 PM. Chapter 6. Using Entropy. Dr. Mohammad Abuhaiba, PE

5/6/ :41 PM. Chapter 6. Using Entropy. Dr. Mohammad Abuhaiba, PE Chapter 6 Using Entropy 1 2 Chapter Objective Means are introduced for analyzing systems from the 2 nd law perspective as they undergo processes that are not necessarily cycles. Objective: introduce entropy

More information

Gestão de Sistemas Energéticos 2017/2018

Gestão de Sistemas Energéticos 2017/2018 Gestão de Sistemas Energéticos 2017/2018 Exergy Analysis Prof. Tânia Sousa taniasousa@tecnico.ulisboa.pt Conceptualizing Chemical Exergy C a H b O c enters the control volume at T 0, p 0. O 2 and CO 2,

More information

THERMODYNAMICS, FLUID AND PLANT PROCESSES. The tutorials are drawn from other subjects so the solutions are identified by the appropriate tutorial.

THERMODYNAMICS, FLUID AND PLANT PROCESSES. The tutorials are drawn from other subjects so the solutions are identified by the appropriate tutorial. THERMODYNAMICS, FLUID AND PLANT PROCESSES The tutorials are drawn from other subjects so the solutions are identified by the appropriate tutorial. THERMODYNAMICS TUTORIAL 2 THERMODYNAMIC PRINCIPLES SAE

More information

Quiz I: Thermodynamics

Quiz I: Thermodynamics Quiz I: Thermodynamics SCH4U_2018-2019_V2 NAME: (Total Score: / 30) Multiple Choice (12) 1. What can be deduced from the following reaction profile? A. The reactants are less stable than the products and

More information

UBMCC11 - THERMODYNAMICS. B.E (Marine Engineering) B 16 BASIC CONCEPTS AND FIRST LAW PART- A

UBMCC11 - THERMODYNAMICS. B.E (Marine Engineering) B 16 BASIC CONCEPTS AND FIRST LAW PART- A UBMCC11 - THERMODYNAMICS B.E (Marine Engineering) B 16 UNIT I BASIC CONCEPTS AND FIRST LAW PART- A 1. What do you understand by pure substance? 2. Define thermodynamic system. 3. Name the different types

More information

Review for Exam #1. Review of Mathematics. Weighted Mean

Review for Exam #1. Review of Mathematics. Weighted Mean Review for Exam #1 Review of Mathematics Weighted Mean A certain property of material 1 is P 1 and that of material is P If x 1 amount (weight or volume) of material 1 is mixed with x amount of material,

More information

Chapter 15 Equilibrium

Chapter 15 Equilibrium Chapter 15. Chemical Equilibrium Sample Exercise 15.1 (p. 632) Write the equilibrium expression for K eq for these three reactions: a) 2 O 3(g) 3 O 2(g) b) 2 NO (g) + Cl 2(g) 2 NOCl (g) c) Ag + (aq) +

More information

ME 300 Thermodynamics II Spring 2015 Exam 3. Son Jain Lucht 8:30AM 11:30AM 2:30PM

ME 300 Thermodynamics II Spring 2015 Exam 3. Son Jain Lucht 8:30AM 11:30AM 2:30PM NAME: PUID#: ME 300 Thermodynamics II Spring 05 Exam 3 Circle your section (-5 points for not circling correct section): Son Jain Lucht 8:30AM :30AM :30PM Instructions: This is a closed book/note exam.

More information

Review of Mathematics

Review of Mathematics Review for Exam #1 Review of Mathematics 2 Weighted Mean A certain property of material 1 is P 1 and that of material 2 is P 2 If x 1 amount (weight or volume) of material 1 is mixed with x 2 amount of

More information

Chemistry Heat Review. Heat: Temperature: Enthalpy: Calorimetry: Activation energy:

Chemistry Heat Review. Heat: Temperature: Enthalpy: Calorimetry: Activation energy: Chemistry Heat Review Name Date Vocabulary Heat: Temperature: Enthalpy: Calorimetry: Activation energy: Formulas Heat of phase change Heat for temperature increase Heat of reaction Endothermic/Exothermic

More information

Thermodynamics I Chapter 2 Properties of Pure Substances

Thermodynamics I Chapter 2 Properties of Pure Substances Thermodynamics I Chapter 2 Properties of Pure Substances Mohsin Mohd Sies Fakulti Kejuruteraan Mekanikal, Universiti Teknologi Malaysia Properties of Pure Substances (Motivation) To quantify the changes

More information

AE 205 Materials and Energy Balances Asst. Prof. Dr. Tippabust Eksangsri. Chapter 6 Energy Balances on Chemical Processes

AE 205 Materials and Energy Balances Asst. Prof. Dr. Tippabust Eksangsri. Chapter 6 Energy Balances on Chemical Processes AE 205 Materials and Energy Balances Asst. Prof. Dr. Tippabust Eksangsri Chapter 6 Energy Balances on Chemical Processes Thermodynamics system surroundings system boundary Forms of Energy 1. Energy Possessed

More information

Ch 9 Practice Problems

Ch 9 Practice Problems Ch 9 Practice Problems 1. One mole of an ideal gas is expanded from a volume of 1.50 L to a volume of 10.18 L against a constant external pressure of 1.03 atm. Calculate the work. (1 L atm = 101.3 J) A)

More information

Energy Heat Work Heat Capacity Enthalpy

Energy Heat Work Heat Capacity Enthalpy Energy Heat Work Heat Capacity Enthalpy 1 Prof. Zvi C. Koren 20.07.2010 Thermodynamics vs. Kinetics Thermodynamics Thermo = Thermo + Dynamics E (Note: Absolute E can never be determined by humans!) Can

More information

MAE 320 HW 7B. 1e. For an isolated system, please circle the parameter which will change with time. (a) Total energy;

MAE 320 HW 7B. 1e. For an isolated system, please circle the parameter which will change with time. (a) Total energy; MAE 320 HW 7B his comprehensive homework is due Monday, December 5 th, 206. Each problem is worth the points indicated. Copying of the solution from another is not acceptable. Multi-choice, multi-answer

More information

First Law of Thermodynamics

First Law of Thermodynamics CH2303 Chemical Engineering Thermodynamics I Unit II First Law of Thermodynamics Dr. M. Subramanian 07-July-2011 Associate Professor Department of Chemical Engineering Sri Sivasubramaniya Nadar College

More information

ME 354 Tutorial, Week#13 Reacting Mixtures

ME 354 Tutorial, Week#13 Reacting Mixtures ME 354 Tutorial, Week#13 Reacting Mixtures Question 1: Determine the mole fractions of the products of combustion when octane, C 8 H 18, is burned with 200% theoretical air. Also, determine the air-fuel

More information

ME Thermodynamics I

ME Thermodynamics I Homework - Week 01 HW-01 (25 points) Given: 5 Schematic of the solar cell/solar panel Find: 5 Identify the system and the heat/work interactions associated with it. Show the direction of the interactions.

More information

ENERGY (THERMOCHEMISTRY) Ch 1.5, 6, 9.10, , 13.3

ENERGY (THERMOCHEMISTRY) Ch 1.5, 6, 9.10, , 13.3 ENERGY (THERMOCHEMISTRY) Ch 1.5, 6, 9.10, 11.5-11.7, 13.3 Thermochemistry Prediction and measurement of energy transfer, in the form of heat, that accompanies chemical and physical processes. Chemical

More information

June Which is a closed system? (A) burning candle (B) halogen lightbulb (C) hot water in a sink (D) ripening banana

June Which is a closed system? (A) burning candle (B) halogen lightbulb (C) hot water in a sink (D) ripening banana June 2005 28. Which is a closed system? burning candle halogen lightbulb hot water in a sink ripening banana 29. Which involves the greatest energy change? chemical reaction nuclear reaction phase change

More information

THE FIRST LAW APPLIED TO STEADY FLOW PROCESSES

THE FIRST LAW APPLIED TO STEADY FLOW PROCESSES Chapter 10 THE FIRST LAW APPLIED TO STEADY FLOW PROCESSES It is not the sun to overtake the moon, nor doth the night outstrip theday.theyfloateachinanorbit. The Holy Qur-ān In many engineering applications,

More information

II/IV B.Tech (Regular) DEGREE EXAMINATION. (1X12 = 12 Marks) Answer ONE question from each unit.

II/IV B.Tech (Regular) DEGREE EXAMINATION. (1X12 = 12 Marks) Answer ONE question from each unit. Page 1 of 8 Hall Ticket Number: 14CH 404 II/IV B.Tech (Regular) DEGREE EXAMINATION June, 2016 Chemical Engineering Fourth Semester Engineering Thermodynamics Time: Three Hours Maximum : 60 Marks Answer

More information

Pre GATE Pre-GATE 2018

Pre GATE Pre-GATE 2018 Pre GATE-018 Chemical Engineering CH 1 Pre-GATE 018 Duration : 180 minutes Total Marks : 100 CODE: GATE18-1B Classroom Postal Course Test Series (Add : 61C, Kalusarai Near HauzKhas Metro, Delhi 9990657855)

More information

An introduction to thermodynamics applied to Organic Rankine Cycles

An introduction to thermodynamics applied to Organic Rankine Cycles An introduction to thermodynamics applied to Organic Rankine Cycles By : Sylvain Quoilin PhD Student at the University of Liège November 2008 1 Definition of a few thermodynamic variables 1.1 Main thermodynamics

More information

c) Explain the observations in terms of the DYNAMIC NATURE of the equilibrium system.

c) Explain the observations in terms of the DYNAMIC NATURE of the equilibrium system. Chemical Equilibrium - Part A: 1. At 25 o C and 101.3 kpa one mole of hydrogen gas and one mol of chlorine gas are reacted in a stoppered reaction vessel. After a certain time, three gases are detected

More information

first law of ThermodyNamics

first law of ThermodyNamics first law of ThermodyNamics First law of thermodynamics - Principle of conservation of energy - Energy can be neither created nor destroyed Basic statement When any closed system is taken through a cycle,

More information

Dr Ali Jawarneh. Hashemite University

Dr Ali Jawarneh. Hashemite University Dr Ali Jawarneh Department of Mechanical Engineering Hashemite University Examine the moving boundary work or P d work commonly encountered in reciprocating devices such as automotive engines and compressors.

More information

WINTER-15 EXAMINATION Model Answer

WINTER-15 EXAMINATION Model Answer Subject code :(735) Page of 9 Important Instructions to examiners: ) The answers should be examined by key words and not as word-to-word as given in the model answer scheme. ) The model answer and the

More information

ME 200 Exam 2 October 16, :30 p.m. to 7:30 p.m.

ME 200 Exam 2 October 16, :30 p.m. to 7:30 p.m. CIRCLE YOUR LECTURE BELOW: First Name Solution Last Name 7:30 am 8:30 am 10:30 am 11:30 am Joglekar Bae Gore Abraham 1:30 pm 3:30 pm 4:30 pm Naik Naik Cheung ME 200 Exam 2 October 16, 2013 6:30 p.m. to

More information

Reacting Gas Mixtures

Reacting Gas Mixtures Reacting Gas Mixtures Reading Problems 15-1 15-7 15-21, 15-32, 15-51, 15-61, 15-74 15-83, 15-91, 15-93, 15-98 Introduction thermodynamic analysis of reactive mixtures is primarily an extension of the principles

More information

Basic Models of Simultaneous Heat and Mass Transfer

Basic Models of Simultaneous Heat and Mass Transfer 20 Basic Models of Simultaneous Heat and Mass Transfer Keywords: Unit Models, Evaporator, Vaporizer A chemical process invariably involves energy transfer simultaneously with mass transfer. So in this

More information

"Thermodynamic Analysis of Processes for Hydrogen Generation by Decomposition of Water"

Thermodynamic Analysis of Processes for Hydrogen Generation by Decomposition of Water "Thermodynamic Analysis of Processes for Hydrogen Generation by Decomposition of Water" by John P. O'Connell Department of Chemical Engineering University of Virginia Charlottesville, VA 22904-4741 A Set

More information

Chapter 5: The First Law of Thermodynamics: Closed Systems

Chapter 5: The First Law of Thermodynamics: Closed Systems Chapter 5: The First Law of Thermodynamics: Closed Systems The first law of thermodynamics can be simply stated as follows: during an interaction between a system and its surroundings, the amount of energy

More information

Thermochemistry. Energy. 1st Law of Thermodynamics. Enthalpy / Calorimetry. Enthalpy of Formation

Thermochemistry. Energy. 1st Law of Thermodynamics. Enthalpy / Calorimetry. Enthalpy of Formation THERMOCHEMISTRY Thermochemistry Energy 1st Law of Thermodynamics Enthalpy / Calorimetry Hess' Law Enthalpy of Formation The Nature of Energy Kinetic Energy and Potential Energy Kinetic energy is the energy

More information

Process Analysis The Importance of Mass and Energy Balances ERIC S. FRAGA

Process Analysis The Importance of Mass and Energy Balances ERIC S. FRAGA CHAPTER 1 Process Analysis The Importance of Mass and Energy Balances ERIC S. FRAGA 1.1 INTRODUCTION Process engineering includes the generation, study and analysis of process designs. All processes must

More information

S = k log W CHEM Thermodynamics. Change in Entropy, S. Entropy, S. Entropy, S S = S 2 -S 1. Entropy is the measure of dispersal.

S = k log W CHEM Thermodynamics. Change in Entropy, S. Entropy, S. Entropy, S S = S 2 -S 1. Entropy is the measure of dispersal. , S is the measure of dispersal. The natural spontaneous direction of any process is toward greater dispersal of matter and of energy. Dispersal of matter: Thermodynamics We analyze the constraints on

More information

CH352 Assignment 3: Due Thursday, 27 April 2017

CH352 Assignment 3: Due Thursday, 27 April 2017 CH352 Assignment 3: Due Thursday, 27 April 2017 Prof. David Coker Thursday, 20 April 2017 Q1 Adiabatic quasi-static volume and temperature changes in ideal gases In the last assignment you showed that

More information

Homework Problem Set 8 Solutions

Homework Problem Set 8 Solutions Chemistry 360 Dr. Jean M. Standard Homework roblem Set 8 Solutions. Starting from G = H S, derive the fundamental equation for G. o begin, we take the differential of G, dg = dh d( S) = dh ds Sd. Next,

More information

= = 10.1 mol. Molar Enthalpies of Vaporization (at Boiling Point) Molar Enthalpy of Vaporization (kj/mol)

= = 10.1 mol. Molar Enthalpies of Vaporization (at Boiling Point) Molar Enthalpy of Vaporization (kj/mol) Ch 11 (Sections 11.1 11.5) Liquid Phase Volume and Density - Liquid and solid are condensed phases and their volumes are not simple to calculate. - This is different from gases, which have volumes that

More information

ME 354 THERMODYNAMICS 2 MIDTERM EXAMINATION. Instructor: R. Culham. Name: Student ID Number: Instructions

ME 354 THERMODYNAMICS 2 MIDTERM EXAMINATION. Instructor: R. Culham. Name: Student ID Number: Instructions ME 354 THERMODYNAMICS 2 MIDTERM EXAMINATION February 14, 2011 5:30 pm - 7:30 pm Instructor: R. Culham Name: Student ID Number: Instructions 1. This is a 2 hour, closed-book examination. 2. Answer all questions

More information

Lecture 37. Heat of Reaction. 1 st Law Analysis of Combustion Systems

Lecture 37. Heat of Reaction. 1 st Law Analysis of Combustion Systems Department of Mechanical Engineering ME 322 Mechanical Engineering hermodynamics Heat of eaction Lecture 37 1 st Law Analysis of Combustion Systems Combustion System Analysis Consider the complete combustion

More information

UNIVERSITY OF VICTORIA CHEMISTRY 102 Midterm Test 2 March 13, pm (60 minutes) DISPLAY YOUR STUDENT ID CARD (ONECard) ON TOP OF YOUR DESK NOW

UNIVERSITY OF VICTORIA CHEMISTRY 102 Midterm Test 2 March 13, pm (60 minutes) DISPLAY YOUR STUDENT ID CARD (ONECard) ON TOP OF YOUR DESK NOW Version A UNIVERSITY OF VICTORIA CHEMISTRY 102 Midterm Test 2 March 13, 2015 5-6 pm (60 minutes) Version A DISPLAY YOUR STUDENT ID CARD (ONECard) ON TOP OF YOUR DESK NOW Answer all multiple choice questions

More information

Appendix F. Steam Tables

Appendix F. Steam Tables Appendix F Steam Tables F.1 INTERPOLATION When a value is required from a table at conditions which lie between listed values, interpolation is necessary. If M, the quantity sought, is a function of a

More information

The exergy of asystemis the maximum useful work possible during a process that brings the system into equilibrium with aheat reservoir. (4.

The exergy of asystemis the maximum useful work possible during a process that brings the system into equilibrium with aheat reservoir. (4. Energy Equation Entropy equation in Chapter 4: control mass approach The second law of thermodynamics Availability (exergy) The exergy of asystemis the maximum useful work possible during a process that

More information

UNIVERSITY OF VICTORIA CHEMISTRY 102 Midterm Test 2 March 13, pm (60 minutes) DISPLAY YOUR STUDENT ID CARD (ONECard) ON TOP OF YOUR DESK NOW

UNIVERSITY OF VICTORIA CHEMISTRY 102 Midterm Test 2 March 13, pm (60 minutes) DISPLAY YOUR STUDENT ID CARD (ONECard) ON TOP OF YOUR DESK NOW Version B UNIVERSITY OF VICTORIA CHEMISTRY 102 Midterm Test 2 March 13, 2015 5-6 pm (60 minutes) Version B DISPLAY YOUR STUDENT ID CARD (ONECard) ON TOP OF YOUR DESK NOW Answer all multiple choice questions

More information

LECTURE 4 Variation of enthalpy with temperature

LECTURE 4 Variation of enthalpy with temperature LECTURE 4 Variation of enthalpy with temperature So far, we can only work at 25 C. Like c v we define a constant pressure heat capacity, c p, as the amount of heat energy needed to raise the temperature

More information

Course: MECH-341 Thermodynamics II Semester: Fall 2006

Course: MECH-341 Thermodynamics II Semester: Fall 2006 FINAL EXAM Date: Thursday, December 21, 2006, 9 am 12 am Examiner: Prof. E. Timofeev Associate Examiner: Prof. D. Frost READ CAREFULLY BEFORE YOU PROCEED: Course: MECH-341 Thermodynamics II Semester: Fall

More information

Energy and Energy Balances

Energy and Energy Balances Energy and Energy Balances help us account for the total energy required for a process to run Minimizing wasted energy is crucial in Energy, like mass, is. This is the Components of Total Energy energy

More information

S = k log W 11/8/2016 CHEM Thermodynamics. Change in Entropy, S. Entropy, S. Entropy, S S = S 2 -S 1. Entropy is the measure of dispersal.

S = k log W 11/8/2016 CHEM Thermodynamics. Change in Entropy, S. Entropy, S. Entropy, S S = S 2 -S 1. Entropy is the measure of dispersal. Entropy is the measure of dispersal. The natural spontaneous direction of any process is toward greater dispersal of matter and of energy. Dispersal of matter: Thermodynamics We analyze the constraints

More information

Practice Test: Energy and Rates of Reactions

Practice Test: Energy and Rates of Reactions Practice Test: Energy and Rates of Reactions NAME: /65 Multiple Choice Identify the letter of the choice that best completes the statement or answers the question. (20 marks) 1. What is the symbol for

More information

1 A. That the reaction is endothermic when proceeding in the left to right direction as written.

1 A. That the reaction is endothermic when proceeding in the left to right direction as written. 1 Q. If Δ r H is positive, what can you say about the reaction? 1 A. That the reaction is endothermic when proceeding in the left to right direction as written. 2 Q If Δ r H is negative, what can you say

More information

HW Help. How do you want to run the separation? Safety Issues? Ease of Processing

HW Help. How do you want to run the separation? Safety Issues? Ease of Processing HW Help Perform Gross Profitability Analysis on NaOH + CH4 --> Na+CO+H NaOH+C-->Na+CO+1/H NaOH+1/ H-->Na+HO NaOH + CO Na+CO+1/H How do you want to run the reaction? NaOH - Solid, Liquid or Gas T for ΔGrxn

More information

Chapter 2 Homework Solutions

Chapter 2 Homework Solutions . Cl - 3 translations + rotations + vibration Chapter Homework Solutions (a) Um(rigid) = (3/)R + (/)R = (5/)R Hm(rigid) = (7/)R Cpm(rigid) = (7/)R = 9. J/mol-K (b) Um(vib) = (3/)R + (/)R + R = (7/)R Hm(vib)

More information

Name Date Class THE FLOW OF ENERGY HEAT AND WORK

Name Date Class THE FLOW OF ENERGY HEAT AND WORK 17.1 THE FLOW OF ENERGY HEAT AND WORK Section Review Objectives Explain the relationship between energy, heat, and work Distinguish between exothermic and endothermic processes Distinguish between heat

More information

Thermodynamics (XI) Assignment(Solution)

Thermodynamics (XI) Assignment(Solution) SYLLABUS CUM COM./XI/03 4 hermodynamics (XI) Assignment(Solution) Comprehension ype Questions aragraph for Question -5 For an ideal gas, an illustration of three different paths A, (B + C) and (D + E)

More information

State Polytechnic of Malang Malang Heat Effect. Thermodynamics Course Chapter 4 Agung Ari Wibowo S.T., M.Sc

State Polytechnic of Malang Malang Heat Effect. Thermodynamics Course Chapter 4 Agung Ari Wibowo S.T., M.Sc State Polytechnic of Malang Malang 217 Heat Effect Thermodynamics Course Agung Ari Wibowo S.T., M.Sc Learning Objective Sensible Heat Heat Capacity & Integral Evaluation of Sensible Heat Laten Heat of

More information

Thermodynamics- 1) Hess's law states that 1) The standard enthalpy of an overall reaction is the sum of the enthalpy changes in individual reaction. ) Enthalpy of formation of compound is same as the enthalpy

More information

Homework 01. Phase Changes and Solutions

Homework 01. Phase Changes and Solutions HW01 - Phase Changes and Solu!ons! This is a preview of the published version of the quiz Started: Jan 16 at 1:pm Quiz Instruc!ons Homework 01 Phase Changes and Solutions Question 1 Given that you have

More information

CM 3230 Thermodynamics, Fall 2016 Lecture 16

CM 3230 Thermodynamics, Fall 2016 Lecture 16 CM 3230 Thermodynamics, Fall 2016 Lecture 16 1. Joule-Thomsom Expansion - For a substance flowing adiabatically through a throttle (valve or pourous plug): in > out and negligible change in kinetic and

More information

ENTHALPY CHANGE CHAPTER 4

ENTHALPY CHANGE CHAPTER 4 ENTHALPY CHANGE CHAPTER 4 ENTHALPY Is the total energy of a system. E k = Kinetic energy. Vibrational Rotational Translational E due to motion H = E k + E p E P = Potential energy Attractive force b/w

More information

17.4 Calculating Heats Essential Understanding Heats of reaction can be calculated when it is difficult or

17.4 Calculating Heats Essential Understanding Heats of reaction can be calculated when it is difficult or 17.4 Calculating Heats of Reaction Essential Understanding Heats of reaction can be calculated when it is difficult or impossible to measure them directly. Lesson Summary Hess s Law Hess s law provides

More information

Comments Transient Energy Balances

Comments Transient Energy Balances Comments Transient Energy Balances General form of the stuff balance equation Rate of Rate Rate Rate of Rate of Accumulation In Out Generation Consumption F1 Q1 F6 F2 Q3 F3 Q2 F4 F5 2 Word form of the

More information

PFR with inter stage cooling: Example 8.6, with some modifications

PFR with inter stage cooling: Example 8.6, with some modifications PFR with inter stage cooling: Example 8.6, with some modifications Consider the following liquid phase elementary reaction: A B. It is an exothermic reaction with H = -2 kcal/mol. The feed is pure A, at

More information

Kinetics & Equilibrium Review Packet. Standard Level. 1. Which quantities in the enthalpy level diagram are altered by the use of a catalyst?

Kinetics & Equilibrium Review Packet. Standard Level. 1. Which quantities in the enthalpy level diagram are altered by the use of a catalyst? Kinetics & Equilibrium Review Packet Standard Level 1. Which quantities in the enthalpy level diagram are altered by the use of a catalyst? Enthalpy I II III Time A. I and II only B. I and III only C.

More information

AP Chapter 6: Thermochemistry Name

AP Chapter 6: Thermochemistry Name AP Chapter 6: Thermochemistry Name Warm-Ups (Show your work for credit) Date 1. Date 2. Date 3. Date 4. Date 5. Date 6. Date 7. Date 8. AP Chapter 6: Thermochemistry 2 Warm-Ups (Show your work for credit)

More information

2. Review on Material Balances

2. Review on Material Balances 2. Review on Material Balances Objectives After completing this chapter, students should be able to recall the principle of the conservation of mass recall the principle of the stoichiometry of chemical

More information

ENTHALPY BALANCES WITH CHEMICAL REACTION

ENTHALPY BALANCES WITH CHEMICAL REACTION ENTHALPY BALANCES WITH CHEMICAL REACTION Calculation of the amount and temperature of combustion products Methane is burnt in 50 % excess of air. Considering that the process is adiabatic and all methane

More information

Process Systems Engineering

Process Systems Engineering Process Systems Engineering Coal Oxycombustion Flowsheet Optimization Alexander W. Dowling Lorenz T. Biegler Carnegie Mellon University David C. Miller, NETL March 10 th, 2013 1 Oxycombustion Flowsheet

More information

ENERGY TRANSFER BY WORK: Electrical Work: When N Coulombs of electrical charge move through a potential difference V

ENERGY TRANSFER BY WORK: Electrical Work: When N Coulombs of electrical charge move through a potential difference V Weight, W = mg Where m=mass, g=gravitational acceleration ENERGY TRANSFER BY WOR: Sign convention: Work done on a system = (+) Work done by a system = (-) Density, ρ = m V kg m 3 Where m=mass, V =Volume

More information

Chapter 2: The Physical Properties of Pure Compounds

Chapter 2: The Physical Properties of Pure Compounds Chapter 2: The Physical Properties of Pure Compounds 2-10. The boiler is an important unit operation in the Rankine cycle. This problem further explores the phenomenon of boiling. A. When you are heating

More information

Chemistry 452 July 23, Enter answers in a Blue Book Examination

Chemistry 452 July 23, Enter answers in a Blue Book Examination Chemistry 45 July 3, 014 Enter answers in a Blue Book Examination Midterm Useful Constants: 1 Newton=1 N= 1 kg m s 1 Joule=1J=1 N m=1 kg m /s 1 Pascal=1Pa=1N m 1atm=10135 Pa 1 bar=10 5 Pa 1L=0.001m 3 Universal

More information

Thermochemistry. Section The flow of energy

Thermochemistry. Section The flow of energy Thermochemistry Section 17.1 - The flow of energy What is Energy? Energy is the capacity for doing work or supplying heat Energy does not have mass or volume, and it can only be detected because of its

More information

Business. Final Exam Review. Competencies. Schedule Today. Most missed on Exam 3. Review Exam #3

Business. Final Exam Review. Competencies. Schedule Today. Most missed on Exam 3. Review Exam #3 Business Final Exam Review Online course evaluation (19/32 = 59%) Counts as a homework assignment (by Thurs) Professional program application Past due! Case study due today by 5 pm Leadership evaluation

More information

Two mark questions and answers UNIT I BASIC CONCEPT AND FIRST LAW SVCET

Two mark questions and answers UNIT I BASIC CONCEPT AND FIRST LAW SVCET Two mark questions and answers UNIT I BASIC CONCEPT AND FIRST LAW 1. What do you understand by pure substance? A pure substance is defined as one that is homogeneous and invariable in chemical composition

More information

Chapter 11 Spontaneous Change and Equilibrium

Chapter 11 Spontaneous Change and Equilibrium Chapter 11 Spontaneous Change and Equilibrium 11-1 Enthalpy and Spontaneous Change 11-2 Entropy 11-3 Absolute Entropies and Chemical Reactions 11-4 The Second Law of Thermodynamics 11-5 The Gibbs Function

More information

S.E. (Chemical Engineering) (Second Semester)EXAMINATION, 2012 THERMODYNAMICS-I (2008 PATTERN) Time : Three Hours Maximum Marks : 100

S.E. (Chemical Engineering) (Second Semester)EXAMINATION, 2012 THERMODYNAMICS-I (2008 PATTERN) Time : Three Hours Maximum Marks : 100 Total No. of Questions 12] [Total No. of Printed Pages 7 Seat No. [4162]-189 S.E. (Chemical Engineering) (Second Semester)EXAMINATION, 2012 THERMODYNAMICS-I (2008 PATTERN) Time : Three Hours Maximum Marks

More information

FUNDAMENTALS of Thermodynamics

FUNDAMENTALS of Thermodynamics SOLUTION MANUAL SI UNIT PROBLEMS CHAPTER 15 SONNTAG BORGNAKKE VAN WYLEN FUNDAMENTALS of Thermodynamics Sixth Edition CONTENT SUBSECTION PROB NO. Correspondence table Concept-Study Guide Problems 1-20 Equilibrium

More information

QUIZZES RIEPJCPIγPJEJJJY

QUIZZES RIEPJCPIγPJEJJJY Che 3021 Thermodynamics I QUIZZES RIEPJCPIγPJEJJJY QUIZ 1. Find Molecular Weights: 1 1 CO 2 2 NaCl 3 Aspirin C 9 H 8 O 4 CO2 = NaCl = C9H8O4 = PIgPJC Quiz 1. Temperature conversion 1 Convert 94 o F, to

More information

Adiabatic Expansion/Compression

Adiabatic Expansion/Compression Adiabatic Expansion/Compression Calculate the cooling in a the reversible adiabatic expansion of an ideal gas. P P 1, 1, T 1 A du q w First Law: Since the process is adiabatic, q = 0. Also w = -p ex d

More information

Dual Program Level 1 Physics Course

Dual Program Level 1 Physics Course Dual Program Level 1 Physics Course Assignment 15 Due: 11/Feb/2012 14:00 Assume that water has a constant specific heat capacity of 4190 J/kg K at all temperatures between its melting point and boiling

More information

Quantity Relationships in Chemical Reactions

Quantity Relationships in Chemical Reactions Chapter 10 Relationships in Chemical Reactions Section 10.1 Conversion Factors from a Chemical Equation Goal 1 The coefficients in a chemical equation give us the conversion factors to get from the number

More information

Version 001 HW 15 Thermodynamics C&J sizemore (21301jtsizemore) 1

Version 001 HW 15 Thermodynamics C&J sizemore (21301jtsizemore) 1 Version 001 HW 15 Thermodynamics C&J sizemore 21301jtsizemore 1 This print-out should have 38 questions. Multiple-choice questions may continue on the next column or page find all choices before answering.

More information

Chemistry 1A, Spring 2009 Midterm 3 April 13, 2009

Chemistry 1A, Spring 2009 Midterm 3 April 13, 2009 Chemistry 1A, Spring 2009 Midterm 3 April 13, 2009 (90 min, closed book) Name: SID: TA Name: There are 20 Multiple choice questions worth 3 points each. There are 3, multi-part short answer questions.

More information