PRIME NUMBER GENERATION BASED ON POCKLINGTON S THEOREM

Size: px
Start display at page:

Download "PRIME NUMBER GENERATION BASED ON POCKLINGTON S THEOREM"

Transcription

1 PRIME NUMBER GENERATION BASED ON POCKLINGTON S THEOREM Alexandros Papankolaou and Song Y. Yan Department of Computer Scence, Aston Unversty, Brmngham B4 7ET, UK 24 October 2000, Receved 26 June 2001 Abstract Publc-key cryptosystems base ther securty on well-known number-theoretc problems, such as factorsaton of a gven number n. Hence, prme number generaton s an absolute requrement. Many prme number generaton technques have been proposed up-to-date, whch dffer manly n terms of complexty, certanty and speed. Pocklngton s theorem, f mplemented, can guarantee the generaton of a true prme. The proposed mplementaton exhbts low complexty at the expense of long executon tme. Keywords: Prmalty, Prme Number Generaton, Computatonal Number Theory. 1 BACKGROUND Testng the prmalty of a number s not the same as fndng ts prme factors. However, for applcatons such as publc-key encrypton, knowledge of prmalty s suffcent. Many prmalty tests have been devsed untl now, some better than others. They can be classfed nto two man categores: determnstc and probablstc. Determnstc They provde the defnte answer to the queston whether a number n s prme or not. The older ones requred, at some pont, a factorsaton of a number related to n. Ths factorsaton can prove to be as hard as factorng n tself. Such paradgms are the ellptc curve test 1, the APR test and the Lucas-Lehmer test for Mersenne prmes. Probablstc Generally speakng, they are much easer to mplement and ther executon tme s sgnfcantly less than determnstc ones. Once a number n has passed such a test, ts probablty of beng prme s very hgh, nevertheless, ts prmalty cannot be guaranteed. These methods make t feasble for large numbers to be tested for prmalty, although t s not possble to provde a certan answer. Tests that belong to ths category are the APRCL test 2, the Solovay-Strassen test 3, the Lehmann test, the Lucas pseudoprmalty test and the Rabn-Mller test 4. Correspondng author. E-mal: {papana1, s.yan@aston.ac.uk 1 Although a determnstc test, ts runnng tme s probablstc. For more nformaton, readers are referred to [6]. 2 There also exsts a determnstc, but less practcal verson. 3 Also known as Euler s pseudoprmalty test. 4 Also known as Strong pseudoprmalty test

2 2 PRIME NUMBER GENERATION 2.1 Prme-Generatng Sequences Probably the most famous one has been proposed by Euler: a n = n 2 + n Ths polynomal wll produce an unnterrupted sequence of 80 prmes for n = 40, 39,..., 39 [3]. However, the sequence s symmetrc and snce each prme occurs twce, 40 prmes are actually produced. Another sequence s c = (c 0 ) c 1 1 [3]. Startng wth c 0 = 2, t does produce a sequence of prmes, but t s not known whether t produces just prmes, because the numbers grow extremely rapdly: c 0 = 2 c 1 = 3 c 2 = 7 c 3 = 127 c 4 = 170, 141, 183, 460, 469, 231, 731, 687, 303, 715, 884, 105, 727 c 5 > 10 51,217,599,719,369,681,879,879,723,386,331,576,246. The number c 4 = s actually the 12 th Mersenne prme, that was proved to be prme by Lucas n It s very unlkely that the prmalty of the number c 6, or the ones that follow t, could ever be determned [3]. 2.2 Modern Prme Number Generaton Methods It seems that most people are n favour of the followng way of generatng prme numbers: 1. Generate a random, odd number. 2. Test for prmalty wth a method that s guaranteed to have a hgh ht rate. Farly quck methods for testng the prmalty of a gven number n are the Solovay-Strassen method [5], the Lehmann test [4] and the Rabn-Mller test [5], although the latter seems to be the most wdely used one. However, ths method s stll not guaranteed to produce a true prme number, although the probablty of producng a pseudoprme s very small. Perhaps a better approach would be the followng [6]: 1. Generate an odd nteger n. 2. Prmalty testng Probablstc method. Use a combnaton of the Rabn-Mller test and the Lucas pseudoprmalty test. 3. Prmalty provng Ellptc curve method [2]. Suppose that the method followed for generatng a prme number has actually produced a pseudoprme n. Although the probablty of such a case to occur s very low, t s stll worth lookng at the consequences that t could possbly have. For most publc-key cryptosystems ths means jeopardsng securty. The rsk of an encrypted message to be successfully cryptanalysed s nversely proportonal to the ease of factorng n. Some numbers are easer to factor than others. For example, by usng the Number Feld Seve (NFS), Fermat numbers are easer to factor than hard numbers 5 [5]. 5 A hard number s one that does not have any small factors and s not of a specal form that allows t to be factored more easly

3 3 POCKLINGTON S THEOREM 3.1 Introducton When the generaton of a true prme s an absolute requrement, a way of achevng ths s by usng Pocklngton s theorem [6]. Ths states that: Let p be an odd prme, k a natural number such that p does not dvde k and 1 < k < 2(p + 1), and let n = 2kp + 1. Then, the followng condtons are equvalent: 1. n s prme. 2. There exsts a natural number a, 2 a < n such that a kp 1 (mod n) (1) gcd(a k + 1, n) = 1 (2) An algorthm derved from the above theorem s the followng [6]: 1. Choose, for example, a prme p 1 wth d 1 = 5 dgts. Fnd k 1 < 2(p 1 + 1) such that p 2 = 2k 1 p has d 2 = 10 dgts, or d 2 = d 1 1 = 9 dgts and there exsts a 1 < p 2 satsfyng the condtons a k 1p (mod p 2 ) and gcd(a k , p 2) = 1. By Pocklngton s theorem, p 2 s prme. 2. Repeat the same procedure startng from p 2 to obtan the prmes p 3, p 4,..., p n. In order to produce a prme wth 100 dgts, the process must be terated fve tmes, as shown n table 1. Iteraton Number Of Dgts 1 d 2 = 2 d 1 = 10 dgts 2 d 3 = 2 d 2 = 20 dgts 3 d 4 = 2 d 3 = 40 dgts 4 d 5 = 2 d 4 = 80 dgts 5 d 6 = 100 dgts Table 1: Iteratons. In the last teraton, k 5 should be chosen so that p 6 = 2k 5 p has 100 dgts. 3.2 Implementaton In what follows, the exstence of a multple-precson nteger lbrary s assumed, whch wll enable the handlng of large ntegers. Fast exponentaton and fast modular exponentaton technques wll be used, snce the powers are expected to be qute large (nterested readers are referred to [6])

4 3.2.1 Problems Faced When the algorthm was ntally used, a few dgts would suffce for generatng a secure key. Nowadays, more computatonal power s avalable at relatvely low cost and more effcent factorng algorthms have been dscovered, thus creatng a demand for larger numbers that wll be harder to factor under the current crcumstances. The only dffcult part n the mplementaton stage s the evaluaton of gcd(a k + 1, p +1 ), and more specfcally, the calculaton of a k. Even f a s a 1-dgt prme, the sze of k s expected to be of approxmately the same number of dgts as p 1, snce p = 2k p 1. To gve an approxmaton of the order of magntude, the 37 th Mersenne prme s M 37 = and has dgts [6]. Supposng that k was a 20-dgt number, the calculaton of a k would ether be mpossble, or would take far too long, even by usng a fast exponentaton technque. However, the above calculaton would be feasble by usng a fast modular exponentaton technque, provded that the condton can be re-wrtten n an approprate form. For example, provng that f then also gcd((a k mod p +1 ) + 1, p +1 ) = 1 (3) gcd(a k + 1, p +1 ) = 1, (4) would solve the problem, snce a k mod p +1 can be calculated very effcently. Another ssue worth mentonng s the procedure followed for choosng a and k. For effcency reasons, t s not worth calculatng any power of a for large values of a. For that reason, n the calculaton of a k p and a k, a wll take the values 3, 5 and 7, cyclcally. Hence, once a k has been generated, the theorem s condtons wll be tested for each one of the values of a. If they are not satsfed, a new k wll be generated and the process repeated. Choosng k by algebrac methods s mpossble because of the amount of numbers that are to be tested. The use of random numbers s preferred, as t wll speed the executon up Auxlary Functons The algorthm presented n secton s an mplementaton of Pocklngton s theorem for generatng a 100-dgt prme. It s wrtten n pseudo-c++ notaton. Moreover, for smplcty reasons, the exstence of the followng functons s assumed: SetNewNumOfDgts(d_old, d_new): Checks the number of dgts of p (d_old) and sets the correct number of dgts for p +1 (d_new). DgtsOf(num, dg): Checks f num has dg number of dgts. FastModExp(base, exp, m): Performs base exp mod m, usng a fast modular exponentaton technque. Gcd(num1, num2): Fnds the greatest common dvsor of num1 and num2, usng Eucldes algorthm [6]. NextBase(base): Examnes the current value of base and returns the next one, cyclcally. GenerateRandomK(old, new): Gven an old-dgt long p, t randomly generates a k, such that p +1 = 2kp + 1 wll approxmately have new dgts

5 3.2.3 Algorthm //5 teratons are needed for a 100-dgt prme for(j=0; j<5, ++j){ p1 = p2; k = 1; //Intalse prmefound = false; whle(!prmefound){ twop1 = 2 * (p1 + 1); SetNewNumOfDgts(d, d1); whle(!prmefound){ p2 = (2 * k * p1) + 1; kp1 = k * p1; f(dgtsof(p2, d1)){ a = 3; for(=0; <2; ++){ // Snce there are only 3 bases a_kp1 = FastModExp(a, kp1, p2); p2mn1 = p2-1; //Check f a_kp1 == -1 mod p2 f(a_kp1 == p2-1){ prmefound = true; cout<<"prme found: "<<endl<<p2<<endl<<endl; break; a = NextBase(a); k = GenerateRandomK(d, d1); 3.3 Performance Ths algorthm trades certanty for speed. Usng the methods mentoned n secton 3.2.1, one should be able to generate 100-dgt prme numbers wthn a few seconds, or even less than that. The algorthm was mplemented n C++, usng the BgNum lbrary for multple precson nteger representaton [1]. When run on a Sun Sparc Ultra 10, the generaton of a 100-dgt prme ranged from 1 to 31 mnutes, wth an average of mnutes n 100 runs. Ths result was obtaned by checkng only the frst condton, snce the second one could not be mplemented. Moreover, the program was expermentally modfed so as to generate a 160-dgt prme and t took about 1 day of contnuous executon, before t managed to come up wth one. Up to date, there s no formal proof that the frst condton mples the second, or vce versa. However, gven the fact that f p s not prme then p +1 wll not be prme ether, together wth the results obtaned, deduces that condton (1) (page 3) s a strong condton for prmalty testng. Therefore, snce condton (2) (page 3) exhbts some mplementaton dffculty, t may be possble to replace t wth a prmalty-provng method (the Ellptc Curve Method [2], for nstance). The reason for dong so, s because once a number n has passed condton (1), t s almost defnte that t s a prme, snce each number s generated so as to be of a certan form that has a hgh probablty of beng a prme. Furthermore, ths s renforced by the expermental results. However, the algorthm s performance n the second case rases an nterestng pont: Does the mplementaton of Pocklngton s theorem have an expraton date? If, for nstance, two 160-dgt prmes - 5 -

6 are needed for generatng a secure key n the near future, usng ths method s totally mpractcal, snce t s a very tme-consumng process. 3.4 Examples The followng two examples exhbt the generaton of a prme, by showng the ntermedate results as well Frst Example Startng from p 1 = 97711, the followng have been produced: a 1 = 5 k 1 = p 2 = a 2 = 5 k 2 = p 3 = a 3 = 3 k 3 = p 4 = a 4 = 5 k 4 = p 5 = a 5 = 3 k 5 = p 6 = Second Example Startng from p 1 = 97711, the followng have been produced: a 1 = 5 k 1 = p 2 = a 2 = 3 k 2 = p 3 = a 3 = 3 k 3 = p 4 = a 4 = 5 k 4 = p 5 = a 5 = 5 k 5 =

7 p 6 = CONCLUSION Most publc-key cryptosystems base ther securty on the propertes of prme numbers. Knowng two large prmes p and q (of 100 dgts each, for example), means that ther product, n, can easly be calculated. Nevertheless, the reverse s very dffcult to do, gven the current factorsaton technques and exstng computatonal power. Nowadays, the most popular method for generatng prme numbers s by generatng a random, odd number, n and then testng ts prmalty. Qute a few algorthms for testng the prmalty of a number are avalable, most of whch are very fast, snce they do not requre any knd of factorsaton. However, they trade certanty for speed (hgher certanty usually ncreases mplementaton complexty), whch means that there stll exsts the probablty although a very low one of a pseudoprme to be produced. Producng a pseudoprme nstead of a true prme reduces the degree of securty on most cryptosystems. One of the avalable ways of producng a prme wth 100 percent certanty s to mplement Pocklngton s theorem. On the one hand, the mplementaton s farly smple. On the other, t has the drawback of qute a long executon tme. Ths lmts the scope of applcaton to securty-crtcal cases where tme s of not much mportance

8 References [1] A. Dommsfos. BgNum C Avalable on the Internet at: [2] S. Goldwasser and J. Klan. Prmalty testng usng ellptc curves. Journal of ACM, 46(4): , [3] M. Herkommer. Number Theory: A Programmer s Gude. McGraw Hll, [4] D. J. Lehmann. On prmalty tests. SIAM Journal on Computng, 11(2): , May [5] B. Schneer. Appled Cryptography: Protocols, Algorthms, and Source Code n C. John Wley & Sons, second edton, [6] S. Y. Yan. Number Theory for Computng. Sprnger-Verlag, March

Foundations of Arithmetic

Foundations of Arithmetic Foundatons of Arthmetc Notaton We shall denote the sum and product of numbers n the usual notaton as a 2 + a 2 + a 3 + + a = a, a 1 a 2 a 3 a = a The notaton a b means a dvdes b,.e. ac = b where c s an

More information

Attacks on RSA The Rabin Cryptosystem Semantic Security of RSA Cryptology, Tuesday, February 27th, 2007 Nils Andersen. Complexity Theoretic Reduction

Attacks on RSA The Rabin Cryptosystem Semantic Security of RSA Cryptology, Tuesday, February 27th, 2007 Nils Andersen. Complexity Theoretic Reduction Attacks on RSA The Rabn Cryptosystem Semantc Securty of RSA Cryptology, Tuesday, February 27th, 2007 Nls Andersen Square Roots modulo n Complexty Theoretc Reducton Factorng Algorthms Pollard s p 1 Pollard

More information

Speeding up Computation of Scalar Multiplication in Elliptic Curve Cryptosystem

Speeding up Computation of Scalar Multiplication in Elliptic Curve Cryptosystem H.K. Pathak et. al. / (IJCSE) Internatonal Journal on Computer Scence and Engneerng Speedng up Computaton of Scalar Multplcaton n Ellptc Curve Cryptosystem H. K. Pathak Manju Sangh S.o.S n Computer scence

More information

Finding Primitive Roots Pseudo-Deterministically

Finding Primitive Roots Pseudo-Deterministically Electronc Colloquum on Computatonal Complexty, Report No 207 (205) Fndng Prmtve Roots Pseudo-Determnstcally Ofer Grossman December 22, 205 Abstract Pseudo-determnstc algorthms are randomzed search algorthms

More information

Markov Chain Monte Carlo (MCMC), Gibbs Sampling, Metropolis Algorithms, and Simulated Annealing Bioinformatics Course Supplement

Markov Chain Monte Carlo (MCMC), Gibbs Sampling, Metropolis Algorithms, and Simulated Annealing Bioinformatics Course Supplement Markov Chan Monte Carlo MCMC, Gbbs Samplng, Metropols Algorthms, and Smulated Annealng 2001 Bonformatcs Course Supplement SNU Bontellgence Lab http://bsnuackr/ Outlne! Markov Chan Monte Carlo MCMC! Metropols-Hastngs

More information

1 GSW Iterative Techniques for y = Ax

1 GSW Iterative Techniques for y = Ax 1 for y = A I m gong to cheat here. here are a lot of teratve technques that can be used to solve the general case of a set of smultaneous equatons (wrtten n the matr form as y = A), but ths chapter sn

More information

Algorithms for factoring

Algorithms for factoring CSA E0 235: Crytograhy Arl 9,2015 Instructor: Arta Patra Algorthms for factorng Submtted by: Jay Oza, Nranjan Sngh Introducton Factorsaton of large ntegers has been a wdely studed toc manly because of

More information

3.1 Expectation of Functions of Several Random Variables. )' be a k-dimensional discrete or continuous random vector, with joint PMF p (, E X E X1 E X

3.1 Expectation of Functions of Several Random Variables. )' be a k-dimensional discrete or continuous random vector, with joint PMF p (, E X E X1 E X Statstcs 1: Probablty Theory II 37 3 EPECTATION OF SEVERAL RANDOM VARIABLES As n Probablty Theory I, the nterest n most stuatons les not on the actual dstrbuton of a random vector, but rather on a number

More information

Exhaustive Search for the Binary Sequences of Length 2047 and 4095 with Ideal Autocorrelation

Exhaustive Search for the Binary Sequences of Length 2047 and 4095 with Ideal Autocorrelation Exhaustve Search for the Bnary Sequences of Length 047 and 4095 wth Ideal Autocorrelaton 003. 5. 4. Seok-Yong Jn and Hong-Yeop Song. Yonse Unversty Contents Introducton Background theory Ideal autocorrelaton

More information

The Order Relation and Trace Inequalities for. Hermitian Operators

The Order Relation and Trace Inequalities for. Hermitian Operators Internatonal Mathematcal Forum, Vol 3, 08, no, 507-57 HIKARI Ltd, wwwm-hkarcom https://doorg/0988/mf088055 The Order Relaton and Trace Inequaltes for Hermtan Operators Y Huang School of Informaton Scence

More information

Singular Value Decomposition: Theory and Applications

Singular Value Decomposition: Theory and Applications Sngular Value Decomposton: Theory and Applcatons Danel Khashab Sprng 2015 Last Update: March 2, 2015 1 Introducton A = UDV where columns of U and V are orthonormal and matrx D s dagonal wth postve real

More information

Example: (13320, 22140) =? Solution #1: The divisors of are 1, 2, 3, 4, 5, 6, 9, 10, 12, 15, 18, 20, 27, 30, 36, 41,

Example: (13320, 22140) =? Solution #1: The divisors of are 1, 2, 3, 4, 5, 6, 9, 10, 12, 15, 18, 20, 27, 30, 36, 41, The greatest common dvsor of two ntegers a and b (not both zero) s the largest nteger whch s a common factor of both a and b. We denote ths number by gcd(a, b), or smply (a, b) when there s no confuson

More information

On quasiperfect numbers

On quasiperfect numbers Notes on Number Theory and Dscrete Mathematcs Prnt ISSN 1310 5132, Onlne ISSN 2367 8275 Vol. 23, 2017, No. 3, 73 78 On quasperfect numbers V. Sva Rama Prasad 1 and C. Suntha 2 1 Nalla Malla Reddy Engneerng

More information

Lectures - Week 4 Matrix norms, Conditioning, Vector Spaces, Linear Independence, Spanning sets and Basis, Null space and Range of a Matrix

Lectures - Week 4 Matrix norms, Conditioning, Vector Spaces, Linear Independence, Spanning sets and Basis, Null space and Range of a Matrix Lectures - Week 4 Matrx norms, Condtonng, Vector Spaces, Lnear Independence, Spannng sets and Bass, Null space and Range of a Matrx Matrx Norms Now we turn to assocatng a number to each matrx. We could

More information

Difference Equations

Difference Equations Dfference Equatons c Jan Vrbk 1 Bascs Suppose a sequence of numbers, say a 0,a 1,a,a 3,... s defned by a certan general relatonshp between, say, three consecutve values of the sequence, e.g. a + +3a +1

More information

The internal structure of natural numbers and one method for the definition of large prime numbers

The internal structure of natural numbers and one method for the definition of large prime numbers The nternal structure of natural numbers and one method for the defnton of large prme numbers Emmanul Manousos APM Insttute for the Advancement of Physcs and Mathematcs 3 Poulou str. 53 Athens Greece Abstract

More information

arxiv: v1 [math.ho] 18 May 2008

arxiv: v1 [math.ho] 18 May 2008 Recurrence Formulas for Fbonacc Sums Adlson J. V. Brandão, João L. Martns 2 arxv:0805.2707v [math.ho] 8 May 2008 Abstract. In ths artcle we present a new recurrence formula for a fnte sum nvolvng the Fbonacc

More information

THE CHINESE REMAINDER THEOREM. We should thank the Chinese for their wonderful remainder theorem. Glenn Stevens

THE CHINESE REMAINDER THEOREM. We should thank the Chinese for their wonderful remainder theorem. Glenn Stevens THE CHINESE REMAINDER THEOREM KEITH CONRAD We should thank the Chnese for ther wonderful remander theorem. Glenn Stevens 1. Introducton The Chnese remander theorem says we can unquely solve any par of

More information

Chapter 5. Solution of System of Linear Equations. Module No. 6. Solution of Inconsistent and Ill Conditioned Systems

Chapter 5. Solution of System of Linear Equations. Module No. 6. Solution of Inconsistent and Ill Conditioned Systems Numercal Analyss by Dr. Anta Pal Assstant Professor Department of Mathematcs Natonal Insttute of Technology Durgapur Durgapur-713209 emal: anta.bue@gmal.com 1 . Chapter 5 Soluton of System of Lnear Equatons

More information

Math 261 Exercise sheet 2

Math 261 Exercise sheet 2 Math 261 Exercse sheet 2 http://staff.aub.edu.lb/~nm116/teachng/2017/math261/ndex.html Verson: September 25, 2017 Answers are due for Monday 25 September, 11AM. The use of calculators s allowed. Exercse

More information

Lecture 2: Gram-Schmidt Vectors and the LLL Algorithm

Lecture 2: Gram-Schmidt Vectors and the LLL Algorithm NYU, Fall 2016 Lattces Mn Course Lecture 2: Gram-Schmdt Vectors and the LLL Algorthm Lecturer: Noah Stephens-Davdowtz 2.1 The Shortest Vector Problem In our last lecture, we consdered short solutons to

More information

Module 3 LOSSY IMAGE COMPRESSION SYSTEMS. Version 2 ECE IIT, Kharagpur

Module 3 LOSSY IMAGE COMPRESSION SYSTEMS. Version 2 ECE IIT, Kharagpur Module 3 LOSSY IMAGE COMPRESSION SYSTEMS Verson ECE IIT, Kharagpur Lesson 6 Theory of Quantzaton Verson ECE IIT, Kharagpur Instructonal Objectves At the end of ths lesson, the students should be able to:

More information

LOW BIAS INTEGRATED PATH ESTIMATORS. James M. Calvin

LOW BIAS INTEGRATED PATH ESTIMATORS. James M. Calvin Proceedngs of the 007 Wnter Smulaton Conference S G Henderson, B Bller, M-H Hseh, J Shortle, J D Tew, and R R Barton, eds LOW BIAS INTEGRATED PATH ESTIMATORS James M Calvn Department of Computer Scence

More information

a b a In case b 0, a being divisible by b is the same as to say that

a b a In case b 0, a being divisible by b is the same as to say that Secton 6.2 Dvsblty among the ntegers An nteger a ε s dvsble by b ε f there s an nteger c ε such that a = bc. Note that s dvsble by any nteger b, snce = b. On the other hand, a s dvsble by only f a = :

More information

Errors for Linear Systems

Errors for Linear Systems Errors for Lnear Systems When we solve a lnear system Ax b we often do not know A and b exactly, but have only approxmatons  and ˆb avalable. Then the best thng we can do s to solve ˆx ˆb exactly whch

More information

EEL 6266 Power System Operation and Control. Chapter 3 Economic Dispatch Using Dynamic Programming

EEL 6266 Power System Operation and Control. Chapter 3 Economic Dispatch Using Dynamic Programming EEL 6266 Power System Operaton and Control Chapter 3 Economc Dspatch Usng Dynamc Programmng Pecewse Lnear Cost Functons Common practce many utltes prefer to represent ther generator cost functons as sngle-

More information

Some Consequences. Example of Extended Euclidean Algorithm. The Fundamental Theorem of Arithmetic, II. Characterizing the GCD and LCM

Some Consequences. Example of Extended Euclidean Algorithm. The Fundamental Theorem of Arithmetic, II. Characterizing the GCD and LCM Example of Extended Eucldean Algorthm Recall that gcd(84, 33) = gcd(33, 18) = gcd(18, 15) = gcd(15, 3) = gcd(3, 0) = 3 We work backwards to wrte 3 as a lnear combnaton of 84 and 33: 3 = 18 15 [Now 3 s

More information

= z 20 z n. (k 20) + 4 z k = 4

= z 20 z n. (k 20) + 4 z k = 4 Problem Set #7 solutons 7.2.. (a Fnd the coeffcent of z k n (z + z 5 + z 6 + z 7 + 5, k 20. We use the known seres expanson ( n+l ( z l l z n below: (z + z 5 + z 6 + z 7 + 5 (z 5 ( + z + z 2 + z + 5 5

More information

Generalized Linear Methods

Generalized Linear Methods Generalzed Lnear Methods 1 Introducton In the Ensemble Methods the general dea s that usng a combnaton of several weak learner one could make a better learner. More formally, assume that we have a set

More information

A PROBABILITY-DRIVEN SEARCH ALGORITHM FOR SOLVING MULTI-OBJECTIVE OPTIMIZATION PROBLEMS

A PROBABILITY-DRIVEN SEARCH ALGORITHM FOR SOLVING MULTI-OBJECTIVE OPTIMIZATION PROBLEMS HCMC Unversty of Pedagogy Thong Nguyen Huu et al. A PROBABILITY-DRIVEN SEARCH ALGORITHM FOR SOLVING MULTI-OBJECTIVE OPTIMIZATION PROBLEMS Thong Nguyen Huu and Hao Tran Van Department of mathematcs-nformaton,

More information

Case A. P k = Ni ( 2L i k 1 ) + (# big cells) 10d 2 P k.

Case A. P k = Ni ( 2L i k 1 ) + (# big cells) 10d 2 P k. THE CELLULAR METHOD In ths lecture, we ntroduce the cellular method as an approach to ncdence geometry theorems lke the Szemeréd-Trotter theorem. The method was ntroduced n the paper Combnatoral complexty

More information

Parametric fractional imputation for missing data analysis. Jae Kwang Kim Survey Working Group Seminar March 29, 2010

Parametric fractional imputation for missing data analysis. Jae Kwang Kim Survey Working Group Seminar March 29, 2010 Parametrc fractonal mputaton for mssng data analyss Jae Kwang Km Survey Workng Group Semnar March 29, 2010 1 Outlne Introducton Proposed method Fractonal mputaton Approxmaton Varance estmaton Multple mputaton

More information

Short running title: A generating function approach A GENERATING FUNCTION APPROACH TO COUNTING THEOREMS FOR SQUARE-FREE POLYNOMIALS AND MAXIMAL TORI

Short running title: A generating function approach A GENERATING FUNCTION APPROACH TO COUNTING THEOREMS FOR SQUARE-FREE POLYNOMIALS AND MAXIMAL TORI Short runnng ttle: A generatng functon approach A GENERATING FUNCTION APPROACH TO COUNTING THEOREMS FOR SQUARE-FREE POLYNOMIALS AND MAXIMAL TORI JASON FULMAN Abstract. A recent paper of Church, Ellenberg,

More information

Numerical Heat and Mass Transfer

Numerical Heat and Mass Transfer Master degree n Mechancal Engneerng Numercal Heat and Mass Transfer 06-Fnte-Dfference Method (One-dmensonal, steady state heat conducton) Fausto Arpno f.arpno@uncas.t Introducton Why we use models and

More information

Problem Set 9 Solutions

Problem Set 9 Solutions Desgn and Analyss of Algorthms May 4, 2015 Massachusetts Insttute of Technology 6.046J/18.410J Profs. Erk Demane, Srn Devadas, and Nancy Lynch Problem Set 9 Solutons Problem Set 9 Solutons Ths problem

More information

Bernoulli Numbers and Polynomials

Bernoulli Numbers and Polynomials Bernoull Numbers and Polynomals T. Muthukumar tmk@tk.ac.n 17 Jun 2014 The sum of frst n natural numbers 1, 2, 3,..., n s n n(n + 1 S 1 (n := m = = n2 2 2 + n 2. Ths formula can be derved by notng that

More information

College of Computer & Information Science Fall 2009 Northeastern University 20 October 2009

College of Computer & Information Science Fall 2009 Northeastern University 20 October 2009 College of Computer & Informaton Scence Fall 2009 Northeastern Unversty 20 October 2009 CS7880: Algorthmc Power Tools Scrbe: Jan Wen and Laura Poplawsk Lecture Outlne: Prmal-dual schema Network Desgn:

More information

Introduction to Algorithms

Introduction to Algorithms Introducton to Algorthms 6.046J/8.40J Lecture 7 Prof. Potr Indyk Data Structures Role of data structures: Encapsulate data Support certan operatons (e.g., INSERT, DELETE, SEARCH) Our focus: effcency of

More information

Section 8.3 Polar Form of Complex Numbers

Section 8.3 Polar Form of Complex Numbers 80 Chapter 8 Secton 8 Polar Form of Complex Numbers From prevous classes, you may have encountered magnary numbers the square roots of negatve numbers and, more generally, complex numbers whch are the

More information

Lecture 12: Classification

Lecture 12: Classification Lecture : Classfcaton g Dscrmnant functons g The optmal Bayes classfer g Quadratc classfers g Eucldean and Mahalanobs metrcs g K Nearest Neghbor Classfers Intellgent Sensor Systems Rcardo Guterrez-Osuna

More information

VQ widely used in coding speech, image, and video

VQ widely used in coding speech, image, and video at Scalar quantzers are specal cases of vector quantzers (VQ): they are constraned to look at one sample at a tme (memoryless) VQ does not have such constrant better RD perfomance expected Source codng

More information

Remarks on the Properties of a Quasi-Fibonacci-like Polynomial Sequence

Remarks on the Properties of a Quasi-Fibonacci-like Polynomial Sequence Remarks on the Propertes of a Quas-Fbonacc-lke Polynomal Sequence Brce Merwne LIU Brooklyn Ilan Wenschelbaum Wesleyan Unversty Abstract Consder the Quas-Fbonacc-lke Polynomal Sequence gven by F 0 = 1,

More information

THE SUMMATION NOTATION Ʃ

THE SUMMATION NOTATION Ʃ Sngle Subscrpt otaton THE SUMMATIO OTATIO Ʃ Most of the calculatons we perform n statstcs are repettve operatons on lsts of numbers. For example, we compute the sum of a set of numbers, or the sum of the

More information

Min Cut, Fast Cut, Polynomial Identities

Min Cut, Fast Cut, Polynomial Identities Randomzed Algorthms, Summer 016 Mn Cut, Fast Cut, Polynomal Identtes Instructor: Thomas Kesselhem and Kurt Mehlhorn 1 Mn Cuts n Graphs Lecture (5 pages) Throughout ths secton, G = (V, E) s a mult-graph.

More information

Lecture 4: Universal Hash Functions/Streaming Cont d

Lecture 4: Universal Hash Functions/Streaming Cont d CSE 5: Desgn and Analyss of Algorthms I Sprng 06 Lecture 4: Unversal Hash Functons/Streamng Cont d Lecturer: Shayan Oves Gharan Aprl 6th Scrbe: Jacob Schreber Dsclamer: These notes have not been subjected

More information

Computing Correlated Equilibria in Multi-Player Games

Computing Correlated Equilibria in Multi-Player Games Computng Correlated Equlbra n Mult-Player Games Chrstos H. Papadmtrou Presented by Zhanxang Huang December 7th, 2005 1 The Author Dr. Chrstos H. Papadmtrou CS professor at UC Berkley (taught at Harvard,

More information

FREQUENCY DISTRIBUTIONS Page 1 of The idea of a frequency distribution for sets of observations will be introduced,

FREQUENCY DISTRIBUTIONS Page 1 of The idea of a frequency distribution for sets of observations will be introduced, FREQUENCY DISTRIBUTIONS Page 1 of 6 I. Introducton 1. The dea of a frequency dstrbuton for sets of observatons wll be ntroduced, together wth some of the mechancs for constructng dstrbutons of data. Then

More information

A Hybrid Variational Iteration Method for Blasius Equation

A Hybrid Variational Iteration Method for Blasius Equation Avalable at http://pvamu.edu/aam Appl. Appl. Math. ISSN: 1932-9466 Vol. 10, Issue 1 (June 2015), pp. 223-229 Applcatons and Appled Mathematcs: An Internatonal Journal (AAM) A Hybrd Varatonal Iteraton Method

More information

Provable Security Signatures

Provable Security Signatures Provable Securty Sgnatures UCL - Louvan-la-Neuve Wednesday, July 10th, 2002 LIENS-CNRS Ecole normale supéreure Summary Introducton Sgnature FD PSS Forkng Lemma Generc Model Concluson Provable Securty -

More information

Lecture Notes on Linear Regression

Lecture Notes on Linear Regression Lecture Notes on Lnear Regresson Feng L fl@sdueducn Shandong Unversty, Chna Lnear Regresson Problem In regresson problem, we am at predct a contnuous target value gven an nput feature vector We assume

More information

Finding Dense Subgraphs in G(n, 1/2)

Finding Dense Subgraphs in G(n, 1/2) Fndng Dense Subgraphs n Gn, 1/ Atsh Das Sarma 1, Amt Deshpande, and Rav Kannan 1 Georga Insttute of Technology,atsh@cc.gatech.edu Mcrosoft Research-Bangalore,amtdesh,annan@mcrosoft.com Abstract. Fndng

More information

Smarandache-Zero Divisors in Group Rings

Smarandache-Zero Divisors in Group Rings Smarandache-Zero Dvsors n Group Rngs W.B. Vasantha and Moon K. Chetry Department of Mathematcs I.I.T Madras, Chenna The study of zero-dvsors n group rngs had become nterestng problem snce 1940 wth the

More information

Uncertainty in measurements of power and energy on power networks

Uncertainty in measurements of power and energy on power networks Uncertanty n measurements of power and energy on power networks E. Manov, N. Kolev Department of Measurement and Instrumentaton, Techncal Unversty Sofa, bul. Klment Ohrdsk No8, bl., 000 Sofa, Bulgara Tel./fax:

More information

x = , so that calculated

x = , so that calculated Stat 4, secton Sngle Factor ANOVA notes by Tm Plachowsk n chapter 8 we conducted hypothess tests n whch we compared a sngle sample s mean or proporton to some hypotheszed value Chapter 9 expanded ths to

More information

Lecture 5 Decoding Binary BCH Codes

Lecture 5 Decoding Binary BCH Codes Lecture 5 Decodng Bnary BCH Codes In ths class, we wll ntroduce dfferent methods for decodng BCH codes 51 Decodng the [15, 7, 5] 2 -BCH Code Consder the [15, 7, 5] 2 -code C we ntroduced n the last lecture

More information

Section 3.6 Complex Zeros

Section 3.6 Complex Zeros 04 Chapter Secton 6 Comple Zeros When fndng the zeros of polynomals, at some pont you're faced wth the problem Whle there are clearly no real numbers that are solutons to ths equaton, leavng thngs there

More information

Société de Calcul Mathématique SA

Société de Calcul Mathématique SA Socété de Calcul Mathématque SA Outls d'ade à la décson Tools for decson help Probablstc Studes: Normalzng the Hstograms Bernard Beauzamy December, 202 I. General constructon of the hstogram Any probablstc

More information

The Minimum Universal Cost Flow in an Infeasible Flow Network

The Minimum Universal Cost Flow in an Infeasible Flow Network Journal of Scences, Islamc Republc of Iran 17(2): 175-180 (2006) Unversty of Tehran, ISSN 1016-1104 http://jscencesutacr The Mnmum Unversal Cost Flow n an Infeasble Flow Network H Saleh Fathabad * M Bagheran

More information

Real-Time Systems. Multiprocessor scheduling. Multiprocessor scheduling. Multiprocessor scheduling

Real-Time Systems. Multiprocessor scheduling. Multiprocessor scheduling. Multiprocessor scheduling Real-Tme Systems Multprocessor schedulng Specfcaton Implementaton Verfcaton Multprocessor schedulng -- -- Global schedulng How are tasks assgned to processors? Statc assgnment The processor(s) used for

More information

Problem Solving in Math (Math 43900) Fall 2013

Problem Solving in Math (Math 43900) Fall 2013 Problem Solvng n Math (Math 43900) Fall 2013 Week four (September 17) solutons Instructor: Davd Galvn 1. Let a and b be two nteger for whch a b s dvsble by 3. Prove that a 3 b 3 s dvsble by 9. Soluton:

More information

Cryptanalysis of pairing-free certificateless authenticated key agreement protocol

Cryptanalysis of pairing-free certificateless authenticated key agreement protocol Cryptanalyss of parng-free certfcateless authentcated key agreement protocol Zhan Zhu Chna Shp Development Desgn Center CSDDC Wuhan Chna Emal: zhuzhan0@gmal.com bstract: Recently He et al. [D. He J. Chen

More information

On the Multicriteria Integer Network Flow Problem

On the Multicriteria Integer Network Flow Problem BULGARIAN ACADEMY OF SCIENCES CYBERNETICS AND INFORMATION TECHNOLOGIES Volume 5, No 2 Sofa 2005 On the Multcrtera Integer Network Flow Problem Vassl Vasslev, Marana Nkolova, Maryana Vassleva Insttute of

More information

Appendix B. The Finite Difference Scheme

Appendix B. The Finite Difference Scheme 140 APPENDIXES Appendx B. The Fnte Dfference Scheme In ths appendx we present numercal technques whch are used to approxmate solutons of system 3.1 3.3. A comprehensve treatment of theoretcal and mplementaton

More information

One-sided finite-difference approximations suitable for use with Richardson extrapolation

One-sided finite-difference approximations suitable for use with Richardson extrapolation Journal of Computatonal Physcs 219 (2006) 13 20 Short note One-sded fnte-dfference approxmatons sutable for use wth Rchardson extrapolaton Kumar Rahul, S.N. Bhattacharyya * Department of Mechancal Engneerng,

More information

Appendix B: Resampling Algorithms

Appendix B: Resampling Algorithms 407 Appendx B: Resamplng Algorthms A common problem of all partcle flters s the degeneracy of weghts, whch conssts of the unbounded ncrease of the varance of the mportance weghts ω [ ] of the partcles

More information

MMA and GCMMA two methods for nonlinear optimization

MMA and GCMMA two methods for nonlinear optimization MMA and GCMMA two methods for nonlnear optmzaton Krster Svanberg Optmzaton and Systems Theory, KTH, Stockholm, Sweden. krlle@math.kth.se Ths note descrbes the algorthms used n the author s 2007 mplementatons

More information

Review of Taylor Series. Read Section 1.2

Review of Taylor Series. Read Section 1.2 Revew of Taylor Seres Read Secton 1.2 1 Power Seres A power seres about c s an nfnte seres of the form k = 0 k a ( x c) = a + a ( x c) + a ( x c) + a ( x c) k 2 3 0 1 2 3 + In many cases, c = 0, and the

More information

Additional Codes using Finite Difference Method. 1 HJB Equation for Consumption-Saving Problem Without Uncertainty

Additional Codes using Finite Difference Method. 1 HJB Equation for Consumption-Saving Problem Without Uncertainty Addtonal Codes usng Fnte Dfference Method Benamn Moll 1 HJB Equaton for Consumpton-Savng Problem Wthout Uncertanty Before consderng the case wth stochastc ncome n http://www.prnceton.edu/~moll/ HACTproect/HACT_Numercal_Appendx.pdf,

More information

On the Interval Zoro Symmetric Single-step Procedure for Simultaneous Finding of Polynomial Zeros

On the Interval Zoro Symmetric Single-step Procedure for Simultaneous Finding of Polynomial Zeros Appled Mathematcal Scences, Vol. 5, 2011, no. 75, 3693-3706 On the Interval Zoro Symmetrc Sngle-step Procedure for Smultaneous Fndng of Polynomal Zeros S. F. M. Rusl, M. Mons, M. A. Hassan and W. J. Leong

More information

Some modelling aspects for the Matlab implementation of MMA

Some modelling aspects for the Matlab implementation of MMA Some modellng aspects for the Matlab mplementaton of MMA Krster Svanberg krlle@math.kth.se Optmzaton and Systems Theory Department of Mathematcs KTH, SE 10044 Stockholm September 2004 1. Consdered optmzaton

More information

REGULAR POSITIVE TERNARY QUADRATIC FORMS. 1. Introduction

REGULAR POSITIVE TERNARY QUADRATIC FORMS. 1. Introduction REGULAR POSITIVE TERNARY QUADRATIC FORMS BYEONG-KWEON OH Abstract. A postve defnte quadratc form f s sad to be regular f t globally represents all ntegers that are represented by the genus of f. In 997

More information

A new Approach for Solving Linear Ordinary Differential Equations

A new Approach for Solving Linear Ordinary Differential Equations , ISSN 974-57X (Onlne), ISSN 974-5718 (Prnt), Vol. ; Issue No. 1; Year 14, Copyrght 13-14 by CESER PUBLICATIONS A new Approach for Solvng Lnear Ordnary Dfferental Equatons Fawz Abdelwahd Department of

More information

ISSN: ISO 9001:2008 Certified International Journal of Engineering and Innovative Technology (IJEIT) Volume 3, Issue 1, July 2013

ISSN: ISO 9001:2008 Certified International Journal of Engineering and Innovative Technology (IJEIT) Volume 3, Issue 1, July 2013 ISSN: 2277-375 Constructon of Trend Free Run Orders for Orthogonal rrays Usng Codes bstract: Sometmes when the expermental runs are carred out n a tme order sequence, the response can depend on the run

More information

Simulated Power of the Discrete Cramér-von Mises Goodness-of-Fit Tests

Simulated Power of the Discrete Cramér-von Mises Goodness-of-Fit Tests Smulated of the Cramér-von Mses Goodness-of-Ft Tests Steele, M., Chaselng, J. and 3 Hurst, C. School of Mathematcal and Physcal Scences, James Cook Unversty, Australan School of Envronmental Studes, Grffth

More information

An efficient algorithm for multivariate Maclaurin Newton transformation

An efficient algorithm for multivariate Maclaurin Newton transformation Annales UMCS Informatca AI VIII, 2 2008) 5 14 DOI: 10.2478/v10065-008-0020-6 An effcent algorthm for multvarate Maclaurn Newton transformaton Joanna Kapusta Insttute of Mathematcs and Computer Scence,

More information

Exercises. 18 Algorithms

Exercises. 18 Algorithms 18 Algorthms Exercses 0.1. In each of the followng stuatons, ndcate whether f = O(g), or f = Ω(g), or both (n whch case f = Θ(g)). f(n) g(n) (a) n 100 n 200 (b) n 1/2 n 2/3 (c) 100n + log n n + (log n)

More information

Introduction to Vapor/Liquid Equilibrium, part 2. Raoult s Law:

Introduction to Vapor/Liquid Equilibrium, part 2. Raoult s Law: CE304, Sprng 2004 Lecture 4 Introducton to Vapor/Lqud Equlbrum, part 2 Raoult s Law: The smplest model that allows us do VLE calculatons s obtaned when we assume that the vapor phase s an deal gas, and

More information

Fundamental loop-current method using virtual voltage sources technique for special cases

Fundamental loop-current method using virtual voltage sources technique for special cases Fundamental loop-current method usng vrtual voltage sources technque for specal cases George E. Chatzaraks, 1 Marna D. Tortorel 1 and Anastasos D. Tzolas 1 Electrcal and Electroncs Engneerng Departments,

More information

Cryptanalysis of a Public-key Cryptosystem Using Lattice Basis Reduction Algorithm

Cryptanalysis of a Public-key Cryptosystem Using Lattice Basis Reduction Algorithm www.ijcsi.org 110 Cryptanalyss of a Publc-key Cryptosystem Usng Lattce Bass Reducton Algorthm Roohallah Rastagh 1, Hamd R. Dall Oskoue 2 1,2 Department of Electrcal Engneerng, Aeronautcal Unversty of Snce

More information

SL n (F ) Equals its Own Derived Group

SL n (F ) Equals its Own Derived Group Internatonal Journal of Algebra, Vol. 2, 2008, no. 12, 585-594 SL n (F ) Equals ts Own Derved Group Jorge Macel BMCC-The Cty Unversty of New York, CUNY 199 Chambers street, New York, NY 10007, USA macel@cms.nyu.edu

More information

Modeling and Simulation NETW 707

Modeling and Simulation NETW 707 Modelng and Smulaton NETW 707 Lecture 5 Tests for Random Numbers Course Instructor: Dr.-Ing. Magge Mashaly magge.ezzat@guc.edu.eg C3.220 1 Propertes of Random Numbers Random Number Generators (RNGs) must

More information

Curve Fitting with the Least Square Method

Curve Fitting with the Least Square Method WIKI Document Number 5 Interpolaton wth Least Squares Curve Fttng wth the Least Square Method Mattheu Bultelle Department of Bo-Engneerng Imperal College, London Context We wsh to model the postve feedback

More information

Post-quantum Key Exchange Protocol Using High Dimensional Matrix

Post-quantum Key Exchange Protocol Using High Dimensional Matrix Post-quantum Key Exchange Protocol Usng Hgh Dmensonal Matrx Rchard Megrelshvl I. J. Tbls State Unversty rchard.megrelshvl@tsu.ge Melksadeg Jnkhadze Akak Tseretel State Unversty Kutas, Georga mn@yahoo.com

More information

Advanced Circuits Topics - Part 1 by Dr. Colton (Fall 2017)

Advanced Circuits Topics - Part 1 by Dr. Colton (Fall 2017) Advanced rcuts Topcs - Part by Dr. olton (Fall 07) Part : Some thngs you should already know from Physcs 0 and 45 These are all thngs that you should have learned n Physcs 0 and/or 45. Ths secton s organzed

More information

The stream cipher MICKEY

The stream cipher MICKEY The stream cpher MICKEY-128 2.0 Steve Babbage Vodafone Group R&D, Newbury, UK steve.babbage@vodafone.com Matthew Dodd Independent consultant matthew@mdodd.net www.mdodd.net 30 th June 2006 Abstract: We

More information

Copyright 2017 by Taylor Enterprises, Inc., All Rights Reserved. Adjusted Control Limits for P Charts. Dr. Wayne A. Taylor

Copyright 2017 by Taylor Enterprises, Inc., All Rights Reserved. Adjusted Control Limits for P Charts. Dr. Wayne A. Taylor Taylor Enterprses, Inc. Control Lmts for P Charts Copyrght 2017 by Taylor Enterprses, Inc., All Rghts Reserved. Control Lmts for P Charts Dr. Wayne A. Taylor Abstract: P charts are used for count data

More information

U.C. Berkeley CS294: Spectral Methods and Expanders Handout 8 Luca Trevisan February 17, 2016

U.C. Berkeley CS294: Spectral Methods and Expanders Handout 8 Luca Trevisan February 17, 2016 U.C. Berkeley CS94: Spectral Methods and Expanders Handout 8 Luca Trevsan February 7, 06 Lecture 8: Spectral Algorthms Wrap-up In whch we talk about even more generalzatons of Cheeger s nequaltes, and

More information

APPROXIMATE PRICES OF BASKET AND ASIAN OPTIONS DUPONT OLIVIER. Premia 14

APPROXIMATE PRICES OF BASKET AND ASIAN OPTIONS DUPONT OLIVIER. Premia 14 APPROXIMAE PRICES OF BASKE AND ASIAN OPIONS DUPON OLIVIER Prema 14 Contents Introducton 1 1. Framewor 1 1.1. Baset optons 1.. Asan optons. Computng the prce 3. Lower bound 3.1. Closed formula for the prce

More information

A New Refinement of Jacobi Method for Solution of Linear System Equations AX=b

A New Refinement of Jacobi Method for Solution of Linear System Equations AX=b Int J Contemp Math Scences, Vol 3, 28, no 17, 819-827 A New Refnement of Jacob Method for Soluton of Lnear System Equatons AX=b F Naem Dafchah Department of Mathematcs, Faculty of Scences Unversty of Gulan,

More information

find (x): given element x, return the canonical element of the set containing x;

find (x): given element x, return the canonical element of the set containing x; COS 43 Sprng, 009 Dsjont Set Unon Problem: Mantan a collecton of dsjont sets. Two operatons: fnd the set contanng a gven element; unte two sets nto one (destructvely). Approach: Canoncal element method:

More information

Restricted divisor sums

Restricted divisor sums ACTA ARITHMETICA 02 2002) Restrcted dvsor sums by Kevn A Broughan Hamlton) Introducton There s a body of work n the lterature on varous restrcted sums of the number of dvsors of an nteger functon ncludng

More information

Graph Reconstruction by Permutations

Graph Reconstruction by Permutations Graph Reconstructon by Permutatons Perre Ille and Wllam Kocay* Insttut de Mathémathques de Lumny CNRS UMR 6206 163 avenue de Lumny, Case 907 13288 Marselle Cedex 9, France e-mal: lle@ml.unv-mrs.fr Computer

More information

U.C. Berkeley CS278: Computational Complexity Professor Luca Trevisan 2/21/2008. Notes for Lecture 8

U.C. Berkeley CS278: Computational Complexity Professor Luca Trevisan 2/21/2008. Notes for Lecture 8 U.C. Berkeley CS278: Computatonal Complexty Handout N8 Professor Luca Trevsan 2/21/2008 Notes for Lecture 8 1 Undrected Connectvty In the undrected s t connectvty problem (abbrevated ST-UCONN) we are gven

More information

Math Review. CptS 223 Advanced Data Structures. Larry Holder School of Electrical Engineering and Computer Science Washington State University

Math Review. CptS 223 Advanced Data Structures. Larry Holder School of Electrical Engineering and Computer Science Washington State University Math Revew CptS 223 dvanced Data Structures Larry Holder School of Electrcal Engneerng and Computer Scence Washngton State Unversty 1 Why do we need math n a data structures course? nalyzng data structures

More information

Christian Aebi Collège Calvin, Geneva, Switzerland

Christian Aebi Collège Calvin, Geneva, Switzerland #A7 INTEGERS 12 (2012) A PROPERTY OF TWIN PRIMES Chrstan Aeb Collège Calvn, Geneva, Swtzerland chrstan.aeb@edu.ge.ch Grant Carns Department of Mathematcs, La Trobe Unversty, Melbourne, Australa G.Carns@latrobe.edu.au

More information

Numerical Solution of Ordinary Differential Equations

Numerical Solution of Ordinary Differential Equations Numercal Methods (CENG 00) CHAPTER-VI Numercal Soluton of Ordnar Dfferental Equatons 6 Introducton Dfferental equatons are equatons composed of an unknown functon and ts dervatves The followng are examples

More information

The Synchronous 8th-Order Differential Attack on 12 Rounds of the Block Cipher HyRAL

The Synchronous 8th-Order Differential Attack on 12 Rounds of the Block Cipher HyRAL The Synchronous 8th-Order Dfferental Attack on 12 Rounds of the Block Cpher HyRAL Yasutaka Igarash, Sej Fukushma, and Tomohro Hachno Kagoshma Unversty, Kagoshma, Japan Emal: {garash, fukushma, hachno}@eee.kagoshma-u.ac.jp

More information

NUMERICAL DIFFERENTIATION

NUMERICAL DIFFERENTIATION NUMERICAL DIFFERENTIATION 1 Introducton Dfferentaton s a method to compute the rate at whch a dependent output y changes wth respect to the change n the ndependent nput x. Ths rate of change s called the

More information

Kernel Methods and SVMs Extension

Kernel Methods and SVMs Extension Kernel Methods and SVMs Extenson The purpose of ths document s to revew materal covered n Machne Learnng 1 Supervsed Learnng regardng support vector machnes (SVMs). Ths document also provdes a general

More information

STAT 309: MATHEMATICAL COMPUTATIONS I FALL 2018 LECTURE 16

STAT 309: MATHEMATICAL COMPUTATIONS I FALL 2018 LECTURE 16 STAT 39: MATHEMATICAL COMPUTATIONS I FALL 218 LECTURE 16 1 why teratve methods f we have a lnear system Ax = b where A s very, very large but s ether sparse or structured (eg, banded, Toepltz, banded plus

More information