arxiv: v1 [math.ho] 18 May 2008

Size: px
Start display at page:

Download "arxiv: v1 [math.ho] 18 May 2008"

Transcription

1 Recurrence Formulas for Fbonacc Sums Adlson J. V. Brandão, João L. Martns 2 arxv: v [math.ho] 8 May 2008 Abstract. In ths artcle we present a new recurrence formula for a fnte sum nvolvng the Fbonacc sequence. Furthermore, we state an algorthm to compute the sum of a power seres related to Fbonacc seres, wthout the use of term-by-term dfferentaton theorem Keywords. Fbonacc sequence, Fbonacc seres. Introducon The Fbonacc sequence s one of the most famous numercal sequences n mathematcs. It s defned n a recursve way: the frst two terms are gven and the followng ones are defned as the sum of the two precedng ones. Mathematcally speakng: F 0 = 0, F =, F r = F r F r 2, r 2. The frst terms are:,, 2, 3, 5, 8, 3, 2,... Ths sequence comes from the sngle par of rabbts progeny problem, whch was early proposed by Leonardo de Psa (Fbonacc) at the Lber Abacc of 202. An ntrgung pont s that ths sequence appears n many problems from Mathematcs as well as n Botanc, Crystallography, Computer Scence, etc []. Consder the followng fnte sum nvolvng the Fbonacc sequence, where x s a real number, m and n are non-negatve ntegers: r m F r x r. (.) Many authors have been seekng to establsh a sum formula for (.) (see [2], [3], [4],[5]). In ths artcle we state a sum formula for (.) that we beleve may be consdered as a new result. Centro de Matemátca, Computação e Cognção, Unversdade Federal do ABC, Brazl. adlson.brandao@ufabc.edu.br 2 Departamento de Matemátca, Unversdade Federal de Ouro Preto, Brazl. jmartns@ceb.ufop.br

2 Consder now the power seres assocated to (.): r m F r x r. (.2) It s not dffcult to demonstrate that the (.2) converges for all m and all x ( /φ, /φ), n whch φ = ( 5)/2 s the golden rato, a well-known constant assocated wth Fbonacc s sequence []. The queston hereby nterposed s the followng: wthn ts convergence nterval, s there a formula for the sum of the (.2) seres? An answer to ths queston s obtaned by nvokng the term-by-term dfferentaton theorem for power seres. Actually, such an equaton s obtaned by usng D = xd/dx operator m tmes nto the known dentty F r x r = x. If we defne S(x, j) = r j F r x r, a recurrence formula can be obtaned by the followng way: x S(x, 0) =, S(x, j) = D[S(x, j )], j =,...,m. (.3) Example. Usng the (.3) algorthm, we can calculate the numerc seres sum rf r S = 3 r. (.4) In fact, f S(x, 0) = x/( ), then S(x, ) = xs (x, 0) = (x x 3 )/( ) 2. Hence, takng x = /3 n S(x, ), we get the sum S = 6/5 for the (.4) seres. Example.2 Try now to compute the numerc seres sum below by usng the same algorthm: r 50 F r 3 r. The (.3) algorthm s problem s, for each sngle step, hgher computaton cost n order to dfferentate a functon. The example.2 ponts out ths 2

3 dffculty. In ths paper we obtan another recurrence formula to calculate the sum of (.2). The artcle s henceforth organzed as follows: In the second secton we present our man result, a recurrence formula for the (.) fnte sum and we show that t recovers some results on fnte summaton formulas nvolvng the Fbonacc sequence. The thrd secton was ntended to rgorously proof our formula. In the fourth secton we state an algorthm to compute the sum of (.2) wthout the use of dervatves. Fnally, n the ffth secton, we gve some comments about the results and future possbltes. 2 Fnte Sums Our man result n ths secton s the theorem below: Theorem 2.. Let x R, 0 be gven. Then the followng fnte recorrence formula holds r m F r x r = x 2 = ) n )( ) n r m F r x r = r m F r x r nm (F n x n F n x n2 ). (2.) As consequence of theorem 2. we obtan many closed formulas for fnte sums nvolvng Fbonacc summaton. In fact, takng x = n (2.) we obtan the followng fnte summaton: ( ) m r m F r = ( ) n ( ) m n r m F r r m F r n m F n2. = = (2.2) We beleve that (2.2) s a new formula for (.). From (2.2) we can derve closed for some specal cases of m. For nstance, takng m = n (2.2) we obtan ( ) rf r = ( ) n r F r = = ( ) n r F r nf n2. (2.3) 3

4 It s well known (see [4]) that n Thus, from (2.3) and (2.4) we conclude that F r = F n. (2.4) rf r n = F r F r nf n2 = F n2 F n nf n2. Therefore rf r = nf n2 F n3 2, (2.5) whch s the formula () that appears n [2]. Now, takng m = 2 n (2.2) we can see that that s, 2 ( ) 2 r 2 F r = ( ) n r 2 F r = 2 = ( 2 ) n n r 2 F r = 2 rf r 2 rf r n 2 F n2 r 2 F r n 2 F n2, n F r F r. (2.6) Thus, usng (2.4) and (2.5) n (2.6), after some algebrc manpulaton, we obtan r 2 F r = (n 2 2)F n2 (2n 3)F n3 8, whch s the formula (7) n [2]. In an analogous way we can recover other known denttes takng dfferent values for m n (2.2). Actually, the recorrence formula (2.) can produce a lot of denttes, smply choosng specal values to x and m. For nstance, the formula (2.) for x = s ( ) r r m F r = ( ) m ( ) n ( ) r r m F r = = ) n ( ) r r m F r n m [ ( ) n F m ( ) n2 F n ]. 4 (2.7)

5 Takng m = n (2.7) we obtan n ( ) r r F r = ( ) r F r ( ) r F r n [ ] ( ) n F n ( ) n2 F n. (2.8) Snce that (see [2]) n and usng (2.9) n (2.8), we conclude that ( ) r F r = ( ) n F n 2, (2.9) ( ) r rf r = ( ) n F n ( ) n F n 2 n [ ] ( ) n F n ( ) n2 F n. (2.0) After some smplfcatons, (2.0) becomes ( ) r rf r = ( ) n (n )F n ( ) n F n 2 2. (2.) Note that (2.) s the formula (2) n [2]. 3 Proof of Our Man Result Before provng Theorem 2. we need to state some auxlar results: Lemma 3.. Let non-negatve ntegers n k be gven. Suppose that 0. Then F k x k F k x k... F n x n = F kx k F k x k F n x n F n x n2. Proof. Consder the sum (3.) S = F k x k F k x k F k2 x k2 F k3 x k3...f n x n F n x n. (3.2) Multplyng (3.2) by x and x 2 we obtan xs = F k x k F k x k2 F k2 x k3... F n 2 x n F n x n F n x n. (3.3) 5

6 x 2 S = F k x k2 F k x k3... F n 3 x n F n 2 x n F n x n F n x n2. (3.4) Addng (3.2), (3.3) and (3.4), rememberng the defnton of Fbonacc sequence and cancellng terms we have S xs x 2 S = F k x k F k x k F k x k F n x n F n x n F n x n2 (3.5) Usng agan the defnton of Fbonacc sequence we conclude that S xs x 2 S = F k x k F k x k F n x n F n x n2, that s, (3.) holds. Lemma 3.2. Let x R, 0 be gven. Then the followng dentty holds r m F r x r = Proof. Consder the sum (r m (r ) m )(F r x r F r x r ) nm (F n x n F n x n2 ). r m F r x r = F x 2 m F 2 x 2 3 m F 3 x 3... n m F n x n. (3.6) It s easy to see that the sum above can be rearranged n the followng way r m F r x r = (F x F 2 x 2 F 3 x 3... F n x n ) (2 m )(F 2 x 2 F 3 x 3... F n x n ) (3 m 2 m )(F 3 x 3... F n x n )... ((n ) m (n 2) m )(F n x n F n x n ) (n m (n ) m )(F n x n ). By usng the Lemma 3. we can wrte the last sum as r m F r x r = F x F 0 x 2 F n x n F n x n2 6

7 (2 m )( F 2x 2 F x 3 F n x n F n x n2 )... (n m (n ) m )( F nx n F n x n F n x n F n x n2 ). Therefore, the sum can be expressed by r m F r x r = (r m (r ) m )(F r x r F r x r ) [ F nx n F n x n2 ][(2 m )(3 m 2 m )...((n ) m (n 2) m )(n m (n ) m )] After cancellng some terms we fnally obtan r m F r x r = (r m (r ) m )(F r x r F r x r ) nm (F n x n F n x n2 ), whch s the desred result. Proof of Theorem 2.. By usng a sutable change of varables we have = = = = (r m (r ) m )(F r x r F r x r ) (r m (r ) m )F r x r (θ m (θ ) m )F θ x θ ) θ= (r m (r ) m )F r x r x 2 n ((r ) m r m )F r x r ( ) m ( ) r m F r x r x 2 n ( ) m = r m F r x r = )( ) n r m F r x r x 2 ( ) m n = r m F r x r = The theorem follows by the result above and the Lemma

8 4 Power Seres In ths secton we state a result whch provdes an algorthm to compute the sum of (.2) wthout the use of term-by-term dfferentaton theorem. Ths algorthm s a consequence of the theorem below: Theorem 4.. Let x ( /φ, /φ) be gven. Then the followng recorrence formula holds r m F r x r = x 2 )( ) r m F r x r = ( ) m r m F r x r. = (4.) Proof. Consderng the Theorem 2., t s suffcent to take n n (2.) and to remember that lm n nm F n x n = 0, snce the seres (.2) converges for all nteger m and x ( /φ, /φ). By theorem 4., we can obtan the followng algorthm n order to provde the sum of (.2): S(x, 0) = x x x 2, j ( ) j S(x, j) = ( ) x 2 j S(x, j ) = = j =,..., m. (4.2) Ths algorthm can be mplemented n an effcent way, nstead of the expensve process usng the standard dervatve operator. It answers, for nstance, the queston proposed n the example.2: n= 5 Fnal Remarks n 50 F n 3 n = ( j ) S(x, j ), In ths artcle we state a new recurrence formula for a fnte sum related to Fbonacc sequence. Ths formula recovers a lot of denttes for Fbonacc 8

9 sums. Besdes ths, t mples an algorthm to compute the sum of Fbonacc power seres wthout the use of dervatves. The scheme used to obtan ths results can be extended to others seres. The deas presented here are part of a larger nvestgaton whch has been developed concernng the seres r m x r a r, (5.) n whch {a r } s an arbtrary sequence. In ths artcle {a r } s the Fbonacc sequence. Nevertheless, we can extend our results for other sequence types (see [6], [7]). For example, f we take a r =, (5.) turns nto the generalzed geometrc seres r m x r, (5.2) whch converges for all x (, ). Usng the same deas developed n the last secton, we can fnd out a recurrence formula for such a seres: r m x r = x = ) ( ) r m x r There are other subjects stll under nvestgaton by whch we search to extend the results hereby presented for other sequences such as, Lucas, Generalzed Fbonacc s, Generalzed Lucas, Pell s, Trbonacc s sequences, etc. It should be observed that n [8], the author studed a seres related to (.2), coverng Lucas and Fbonacc s generalzed sequences. However, ther results are only vald for a postve ratonal x. Besdes, the employed technque s qute dfferent from ours. Addtonal references concernng Fbonacc numbers and the golden rato can be found n []. References [] R. A. Dunlap (997). The Golden Raton and Fbonacc Numbers, World Scentfc. [2] V. C. Harrs (965). On Identtes Involvng Fbonacc Numbers. The Fbonacc Quarterly 3.3,

10 [3] A. Brousseau (967). Summaton of n k= k m F kr : Fnte Dfference Approach. The Fbonacc Quarterly 5., [4] G. Ledn (967). On a Certan Knd of Fbonacc Sums. The Fbonacc Quarterly 5., [5] N. Gauther (998). Identtes for Class of Sums Involvng Horadam s Generalzed Numbers {W n }. The Fbonacc Quarterly 36.4, [6] J. L. Martns and A. J. V. Brandão (2004). Uma classe de séres nfntas envolvendo termos de sequêncas generalzadas. Boletín de la Asocacón Matemátca Venezolana, [7] J. L. Martns and A. J. V. Brandão (2004). Fórmula de recorrênca para a soma de séres nfntas. Lecturas Matemátcas 25, [8] Pero Flppon (2000). Evaluaton of Certan Infnte Seres Involvng Terms of Generalzed Sequences. The Fbonacc Quarterly 38.4,

arxiv: v1 [math.co] 12 Sep 2014

arxiv: v1 [math.co] 12 Sep 2014 arxv:1409.3707v1 [math.co] 12 Sep 2014 On the bnomal sums of Horadam sequence Nazmye Ylmaz and Necat Taskara Department of Mathematcs, Scence Faculty, Selcuk Unversty, 42075, Campus, Konya, Turkey March

More information

The Order Relation and Trace Inequalities for. Hermitian Operators

The Order Relation and Trace Inequalities for. Hermitian Operators Internatonal Mathematcal Forum, Vol 3, 08, no, 507-57 HIKARI Ltd, wwwm-hkarcom https://doorg/0988/mf088055 The Order Relaton and Trace Inequaltes for Hermtan Operators Y Huang School of Informaton Scence

More information

The Jacobsthal and Jacobsthal-Lucas Numbers via Square Roots of Matrices

The Jacobsthal and Jacobsthal-Lucas Numbers via Square Roots of Matrices Internatonal Mathematcal Forum, Vol 11, 2016, no 11, 513-520 HIKARI Ltd, wwwm-hkarcom http://dxdoorg/1012988/mf20166442 The Jacobsthal and Jacobsthal-Lucas Numbers va Square Roots of Matrces Saadet Arslan

More information

Difference Equations

Difference Equations Dfference Equatons c Jan Vrbk 1 Bascs Suppose a sequence of numbers, say a 0,a 1,a,a 3,... s defned by a certan general relatonshp between, say, three consecutve values of the sequence, e.g. a + +3a +1

More information

Combinatorial Identities for Incomplete Tribonacci Polynomials

Combinatorial Identities for Incomplete Tribonacci Polynomials Avalable at http://pvamu.edu/aam Appl. Appl. Math. ISSN: 1932-9466 Vol. 10, Issue 1 (June 2015, pp. 40 49 Applcatons and Appled Mathematcs: An Internatonal Journal (AAM Combnatoral Identtes for Incomplete

More information

Lectures - Week 4 Matrix norms, Conditioning, Vector Spaces, Linear Independence, Spanning sets and Basis, Null space and Range of a Matrix

Lectures - Week 4 Matrix norms, Conditioning, Vector Spaces, Linear Independence, Spanning sets and Basis, Null space and Range of a Matrix Lectures - Week 4 Matrx norms, Condtonng, Vector Spaces, Lnear Independence, Spannng sets and Bass, Null space and Range of a Matrx Matrx Norms Now we turn to assocatng a number to each matrx. We could

More information

h-analogue of Fibonacci Numbers

h-analogue of Fibonacci Numbers h-analogue of Fbonacc Numbers arxv:090.0038v [math-ph 30 Sep 009 H.B. Benaoum Prnce Mohammad Unversty, Al-Khobar 395, Saud Araba Abstract In ths paper, we ntroduce the h-analogue of Fbonacc numbers for

More information

The binomial transforms of the generalized (s, t )-Jacobsthal matrix sequence

The binomial transforms of the generalized (s, t )-Jacobsthal matrix sequence Int. J. Adv. Appl. Math. and Mech. 6(3 (2019 14 20 (ISSN: 2347-2529 Journal homepage: www.jaamm.com IJAAMM Internatonal Journal of Advances n Appled Mathematcs and Mechancs The bnomal transforms of the

More information

Remarks on the Properties of a Quasi-Fibonacci-like Polynomial Sequence

Remarks on the Properties of a Quasi-Fibonacci-like Polynomial Sequence Remarks on the Propertes of a Quas-Fbonacc-lke Polynomal Sequence Brce Merwne LIU Brooklyn Ilan Wenschelbaum Wesleyan Unversty Abstract Consder the Quas-Fbonacc-lke Polynomal Sequence gven by F 0 = 1,

More information

Foundations of Arithmetic

Foundations of Arithmetic Foundatons of Arthmetc Notaton We shall denote the sum and product of numbers n the usual notaton as a 2 + a 2 + a 3 + + a = a, a 1 a 2 a 3 a = a The notaton a b means a dvdes b,.e. ac = b where c s an

More information

Determinants Containing Powers of Generalized Fibonacci Numbers

Determinants Containing Powers of Generalized Fibonacci Numbers 1 2 3 47 6 23 11 Journal of Integer Sequences, Vol 19 (2016), Artcle 1671 Determnants Contanng Powers of Generalzed Fbonacc Numbers Aram Tangboonduangjt and Thotsaporn Thanatpanonda Mahdol Unversty Internatonal

More information

A combinatorial proof of multiple angle formulas involving Fibonacci and Lucas numbers

A combinatorial proof of multiple angle formulas involving Fibonacci and Lucas numbers Notes on Number Theory and Dscrete Mathematcs ISSN 1310 5132 Vol. 20, 2014, No. 5, 35 39 A combnatoral proof of multple angle formulas nvolvng Fbonacc and Lucas numbers Fernando Córes 1 and Dego Marques

More information

One-sided finite-difference approximations suitable for use with Richardson extrapolation

One-sided finite-difference approximations suitable for use with Richardson extrapolation Journal of Computatonal Physcs 219 (2006) 13 20 Short note One-sded fnte-dfference approxmatons sutable for use wth Rchardson extrapolaton Kumar Rahul, S.N. Bhattacharyya * Department of Mechancal Engneerng,

More information

3.1 Expectation of Functions of Several Random Variables. )' be a k-dimensional discrete or continuous random vector, with joint PMF p (, E X E X1 E X

3.1 Expectation of Functions of Several Random Variables. )' be a k-dimensional discrete or continuous random vector, with joint PMF p (, E X E X1 E X Statstcs 1: Probablty Theory II 37 3 EPECTATION OF SEVERAL RANDOM VARIABLES As n Probablty Theory I, the nterest n most stuatons les not on the actual dstrbuton of a random vector, but rather on a number

More information

Beyond Zudilin s Conjectured q-analog of Schmidt s problem

Beyond Zudilin s Conjectured q-analog of Schmidt s problem Beyond Zudln s Conectured q-analog of Schmdt s problem Thotsaporn Ae Thanatpanonda thotsaporn@gmalcom Mathematcs Subect Classfcaton: 11B65 33B99 Abstract Usng the methodology of (rgorous expermental mathematcs

More information

Problem Set 9 Solutions

Problem Set 9 Solutions Desgn and Analyss of Algorthms May 4, 2015 Massachusetts Insttute of Technology 6.046J/18.410J Profs. Erk Demane, Srn Devadas, and Nancy Lynch Problem Set 9 Solutons Problem Set 9 Solutons Ths problem

More information

Numerical Heat and Mass Transfer

Numerical Heat and Mass Transfer Master degree n Mechancal Engneerng Numercal Heat and Mass Transfer 06-Fnte-Dfference Method (One-dmensonal, steady state heat conducton) Fausto Arpno f.arpno@uncas.t Introducton Why we use models and

More information

Binomial transforms of the modified k-fibonacci-like sequence

Binomial transforms of the modified k-fibonacci-like sequence Internatonal Journal of Mathematcs and Computer Scence, 14(2019, no. 1, 47 59 M CS Bnomal transforms of the modfed k-fbonacc-lke sequence Youngwoo Kwon Department of mathematcs Korea Unversty Seoul, Republc

More information

NUMERICAL DIFFERENTIATION

NUMERICAL DIFFERENTIATION NUMERICAL DIFFERENTIATION 1 Introducton Dfferentaton s a method to compute the rate at whch a dependent output y changes wth respect to the change n the ndependent nput x. Ths rate of change s called the

More information

Bernoulli Numbers and Polynomials

Bernoulli Numbers and Polynomials Bernoull Numbers and Polynomals T. Muthukumar tmk@tk.ac.n 17 Jun 2014 The sum of frst n natural numbers 1, 2, 3,..., n s n n(n + 1 S 1 (n := m = = n2 2 2 + n 2. Ths formula can be derved by notng that

More information

arxiv: v1 [math.co] 1 Mar 2014

arxiv: v1 [math.co] 1 Mar 2014 Unon-ntersectng set systems Gyula O.H. Katona and Dánel T. Nagy March 4, 014 arxv:1403.0088v1 [math.co] 1 Mar 014 Abstract Three ntersecton theorems are proved. Frst, we determne the sze of the largest

More information

Differential Polynomials

Differential Polynomials JASS 07 - Polynomals: Ther Power and How to Use Them Dfferental Polynomals Stephan Rtscher March 18, 2007 Abstract Ths artcle gves an bref ntroducton nto dfferental polynomals, deals and manfolds and ther

More information

1 Matrix representations of canonical matrices

1 Matrix representations of canonical matrices 1 Matrx representatons of canoncal matrces 2-d rotaton around the orgn: ( ) cos θ sn θ R 0 = sn θ cos θ 3-d rotaton around the x-axs: R x = 1 0 0 0 cos θ sn θ 0 sn θ cos θ 3-d rotaton around the y-axs:

More information

CALCULUS CLASSROOM CAPSULES

CALCULUS CLASSROOM CAPSULES CALCULUS CLASSROOM CAPSULES SESSION S86 Dr. Sham Alfred Rartan Valley Communty College salfred@rartanval.edu 38th AMATYC Annual Conference Jacksonvlle, Florda November 8-, 202 2 Calculus Classroom Capsules

More information

Affine transformations and convexity

Affine transformations and convexity Affne transformatons and convexty The purpose of ths document s to prove some basc propertes of affne transformatons nvolvng convex sets. Here are a few onlne references for background nformaton: http://math.ucr.edu/

More information

Structure and Drive Paul A. Jensen Copyright July 20, 2003

Structure and Drive Paul A. Jensen Copyright July 20, 2003 Structure and Drve Paul A. Jensen Copyrght July 20, 2003 A system s made up of several operatons wth flow passng between them. The structure of the system descrbes the flow paths from nputs to outputs.

More information

Section 8.3 Polar Form of Complex Numbers

Section 8.3 Polar Form of Complex Numbers 80 Chapter 8 Secton 8 Polar Form of Complex Numbers From prevous classes, you may have encountered magnary numbers the square roots of negatve numbers and, more generally, complex numbers whch are the

More information

ELASTIC WAVE PROPAGATION IN A CONTINUOUS MEDIUM

ELASTIC WAVE PROPAGATION IN A CONTINUOUS MEDIUM ELASTIC WAVE PROPAGATION IN A CONTINUOUS MEDIUM An elastc wave s a deformaton of the body that travels throughout the body n all drectons. We can examne the deformaton over a perod of tme by fxng our look

More information

Convexity preserving interpolation by splines of arbitrary degree

Convexity preserving interpolation by splines of arbitrary degree Computer Scence Journal of Moldova, vol.18, no.1(52), 2010 Convexty preservng nterpolaton by splnes of arbtrary degree Igor Verlan Abstract In the present paper an algorthm of C 2 nterpolaton of dscrete

More information

Maximizing the number of nonnegative subsets

Maximizing the number of nonnegative subsets Maxmzng the number of nonnegatve subsets Noga Alon Hao Huang December 1, 213 Abstract Gven a set of n real numbers, f the sum of elements of every subset of sze larger than k s negatve, what s the maxmum

More information

Graph Reconstruction by Permutations

Graph Reconstruction by Permutations Graph Reconstructon by Permutatons Perre Ille and Wllam Kocay* Insttut de Mathémathques de Lumny CNRS UMR 6206 163 avenue de Lumny, Case 907 13288 Marselle Cedex 9, France e-mal: lle@ml.unv-mrs.fr Computer

More information

THE GENERALIZED (s, t)-fibonacci AND FIBONACCI MATRIX SEQUENCES

THE GENERALIZED (s, t)-fibonacci AND FIBONACCI MATRIX SEQUENCES TJMM 7 205), No 2, 37-48 THE GENERALIZED s, t)-fibonacci AND FIBONACCI MATRIX SEQUENCES AHMET İPEK, KAMIL ARI, AND RAMAZAN TÜRKMEN Abstract In ths paper, we study the generalzatons of the s, t)-fbonacc

More information

Section 3.6 Complex Zeros

Section 3.6 Complex Zeros 04 Chapter Secton 6 Comple Zeros When fndng the zeros of polynomals, at some pont you're faced wth the problem Whle there are clearly no real numbers that are solutons to ths equaton, leavng thngs there

More information

Modelli Clamfim Equazione del Calore Lezione ottobre 2014

Modelli Clamfim Equazione del Calore Lezione ottobre 2014 CLAMFIM Bologna Modell 1 @ Clamfm Equazone del Calore Lezone 17 15 ottobre 2014 professor Danele Rtell danele.rtell@unbo.t 1/24? Convoluton The convoluton of two functons g(t) and f(t) s the functon (g

More information

Review of Taylor Series. Read Section 1.2

Review of Taylor Series. Read Section 1.2 Revew of Taylor Seres Read Secton 1.2 1 Power Seres A power seres about c s an nfnte seres of the form k = 0 k a ( x c) = a + a ( x c) + a ( x c) + a ( x c) k 2 3 0 1 2 3 + In many cases, c = 0, and the

More information

ANSWERS. Problem 1. and the moment generating function (mgf) by. defined for any real t. Use this to show that E( U) var( U)

ANSWERS. Problem 1. and the moment generating function (mgf) by. defined for any real t. Use this to show that E( U) var( U) Econ 413 Exam 13 H ANSWERS Settet er nndelt 9 deloppgaver, A,B,C, som alle anbefales å telle lkt for å gøre det ltt lettere å stå. Svar er gtt . Unfortunately, there s a prntng error n the hnt of

More information

COMPLEX NUMBERS AND QUADRATIC EQUATIONS

COMPLEX NUMBERS AND QUADRATIC EQUATIONS COMPLEX NUMBERS AND QUADRATIC EQUATIONS INTRODUCTION We know that x 0 for all x R e the square of a real number (whether postve, negatve or ero) s non-negatve Hence the equatons x, x, x + 7 0 etc are not

More information

For now, let us focus on a specific model of neurons. These are simplified from reality but can achieve remarkable results.

For now, let us focus on a specific model of neurons. These are simplified from reality but can achieve remarkable results. Neural Networks : Dervaton compled by Alvn Wan from Professor Jtendra Malk s lecture Ths type of computaton s called deep learnng and s the most popular method for many problems, such as computer vson

More information

On the size of quotient of two subsets of positive integers.

On the size of quotient of two subsets of positive integers. arxv:1706.04101v1 [math.nt] 13 Jun 2017 On the sze of quotent of two subsets of postve ntegers. Yur Shtenkov Abstract We obtan non-trval lower bound for the set A/A, where A s a subset of the nterval [1,

More information

Lecture 12: Discrete Laplacian

Lecture 12: Discrete Laplacian Lecture 12: Dscrete Laplacan Scrbe: Tanye Lu Our goal s to come up wth a dscrete verson of Laplacan operator for trangulated surfaces, so that we can use t n practce to solve related problems We are mostly

More information

APPENDIX A Some Linear Algebra

APPENDIX A Some Linear Algebra APPENDIX A Some Lnear Algebra The collecton of m, n matrces A.1 Matrces a 1,1,..., a 1,n A = a m,1,..., a m,n wth real elements a,j s denoted by R m,n. If n = 1 then A s called a column vector. Smlarly,

More information

Ballot Paths Avoiding Depth Zero Patterns

Ballot Paths Avoiding Depth Zero Patterns Ballot Paths Avodng Depth Zero Patterns Henrch Nederhausen and Shaun Sullvan Florda Atlantc Unversty, Boca Raton, Florda nederha@fauedu, ssull21@fauedu 1 Introducton In a paper by Sapounaks, Tasoulas,

More information

Chapter Newton s Method

Chapter Newton s Method Chapter 9. Newton s Method After readng ths chapter, you should be able to:. Understand how Newton s method s dfferent from the Golden Secton Search method. Understand how Newton s method works 3. Solve

More information

princeton univ. F 17 cos 521: Advanced Algorithm Design Lecture 7: LP Duality Lecturer: Matt Weinberg

princeton univ. F 17 cos 521: Advanced Algorithm Design Lecture 7: LP Duality Lecturer: Matt Weinberg prnceton unv. F 17 cos 521: Advanced Algorthm Desgn Lecture 7: LP Dualty Lecturer: Matt Wenberg Scrbe: LP Dualty s an extremely useful tool for analyzng structural propertes of lnear programs. Whle there

More information

C/CS/Phy191 Problem Set 3 Solutions Out: Oct 1, 2008., where ( 00. ), so the overall state of the system is ) ( ( ( ( 00 ± 11 ), Φ ± = 1

C/CS/Phy191 Problem Set 3 Solutions Out: Oct 1, 2008., where ( 00. ), so the overall state of the system is ) ( ( ( ( 00 ± 11 ), Φ ± = 1 C/CS/Phy9 Problem Set 3 Solutons Out: Oct, 8 Suppose you have two qubts n some arbtrary entangled state ψ You apply the teleportaton protocol to each of the qubts separately What s the resultng state obtaned

More information

The internal structure of natural numbers and one method for the definition of large prime numbers

The internal structure of natural numbers and one method for the definition of large prime numbers The nternal structure of natural numbers and one method for the defnton of large prme numbers Emmanul Manousos APM Insttute for the Advancement of Physcs and Mathematcs 3 Poulou str. 53 Athens Greece Abstract

More information

THE SUMMATION NOTATION Ʃ

THE SUMMATION NOTATION Ʃ Sngle Subscrpt otaton THE SUMMATIO OTATIO Ʃ Most of the calculatons we perform n statstcs are repettve operatons on lsts of numbers. For example, we compute the sum of a set of numbers, or the sum of the

More information

Appendix B. The Finite Difference Scheme

Appendix B. The Finite Difference Scheme 140 APPENDIXES Appendx B. The Fnte Dfference Scheme In ths appendx we present numercal technques whch are used to approxmate solutons of system 3.1 3.3. A comprehensve treatment of theoretcal and mplementaton

More information

Expected Value and Variance

Expected Value and Variance MATH 38 Expected Value and Varance Dr. Neal, WKU We now shall dscuss how to fnd the average and standard devaton of a random varable X. Expected Value Defnton. The expected value (or average value, or

More information

Analytical Chemistry Calibration Curve Handout

Analytical Chemistry Calibration Curve Handout I. Quck-and Drty Excel Tutoral Analytcal Chemstry Calbraton Curve Handout For those of you wth lttle experence wth Excel, I ve provded some key technques that should help you use the program both for problem

More information

More metrics on cartesian products

More metrics on cartesian products More metrcs on cartesan products If (X, d ) are metrc spaces for 1 n, then n Secton II4 of the lecture notes we defned three metrcs on X whose underlyng topologes are the product topology The purpose of

More information

THE CHINESE REMAINDER THEOREM. We should thank the Chinese for their wonderful remainder theorem. Glenn Stevens

THE CHINESE REMAINDER THEOREM. We should thank the Chinese for their wonderful remainder theorem. Glenn Stevens THE CHINESE REMAINDER THEOREM KEITH CONRAD We should thank the Chnese for ther wonderful remander theorem. Glenn Stevens 1. Introducton The Chnese remander theorem says we can unquely solve any par of

More information

General viscosity iterative method for a sequence of quasi-nonexpansive mappings

General viscosity iterative method for a sequence of quasi-nonexpansive mappings Avalable onlne at www.tjnsa.com J. Nonlnear Sc. Appl. 9 (2016), 5672 5682 Research Artcle General vscosty teratve method for a sequence of quas-nonexpansve mappngs Cuje Zhang, Ynan Wang College of Scence,

More information

EEE 241: Linear Systems

EEE 241: Linear Systems EEE : Lnear Systems Summary #: Backpropagaton BACKPROPAGATION The perceptron rule as well as the Wdrow Hoff learnng were desgned to tran sngle layer networks. They suffer from the same dsadvantage: they

More information

Math 702 Midterm Exam Solutions

Math 702 Midterm Exam Solutions Math 702 Mdterm xam Solutons The terms measurable, measure, ntegrable, and almost everywhere (a.e.) n a ucldean space always refer to Lebesgue measure m. Problem. [6 pts] In each case, prove the statement

More information

2.3 Nilpotent endomorphisms

2.3 Nilpotent endomorphisms s a block dagonal matrx, wth A Mat dm U (C) In fact, we can assume that B = B 1 B k, wth B an ordered bass of U, and that A = [f U ] B, where f U : U U s the restrcton of f to U 40 23 Nlpotent endomorphsms

More information

A new Approach for Solving Linear Ordinary Differential Equations

A new Approach for Solving Linear Ordinary Differential Equations , ISSN 974-57X (Onlne), ISSN 974-5718 (Prnt), Vol. ; Issue No. 1; Year 14, Copyrght 13-14 by CESER PUBLICATIONS A new Approach for Solvng Lnear Ordnary Dfferental Equatons Fawz Abdelwahd Department of

More information

ACTM State Calculus Competition Saturday April 30, 2011

ACTM State Calculus Competition Saturday April 30, 2011 ACTM State Calculus Competton Saturday Aprl 30, 2011 ACTM State Calculus Competton Sprng 2011 Page 1 Instructons: For questons 1 through 25, mark the best answer choce on the answer sheet provde Afterward

More information

CHAPTER 4. Vector Spaces

CHAPTER 4. Vector Spaces man 2007/2/16 page 234 CHAPTER 4 Vector Spaces To crtcze mathematcs for ts abstracton s to mss the pont entrel. Abstracton s what makes mathematcs work. Ian Stewart The man am of ths tet s to stud lnear

More information

THERE ARE INFINITELY MANY FIBONACCI COMPOSITES WITH PRIME SUBSCRIPTS

THERE ARE INFINITELY MANY FIBONACCI COMPOSITES WITH PRIME SUBSCRIPTS Research and Communcatons n Mathematcs and Mathematcal Scences Vol 10, Issue 2, 2018, Pages 123-140 ISSN 2319-6939 Publshed Onlne on November 19, 2018 2018 Jyot Academc Press http://jyotacademcpressorg

More information

Physics 5153 Classical Mechanics. Principle of Virtual Work-1

Physics 5153 Classical Mechanics. Principle of Virtual Work-1 P. Guterrez 1 Introducton Physcs 5153 Classcal Mechancs Prncple of Vrtual Work The frst varatonal prncple we encounter n mechancs s the prncple of vrtual work. It establshes the equlbrum condton of a mechancal

More information

Stanford University CS359G: Graph Partitioning and Expanders Handout 4 Luca Trevisan January 13, 2011

Stanford University CS359G: Graph Partitioning and Expanders Handout 4 Luca Trevisan January 13, 2011 Stanford Unversty CS359G: Graph Parttonng and Expanders Handout 4 Luca Trevsan January 3, 0 Lecture 4 In whch we prove the dffcult drecton of Cheeger s nequalty. As n the past lectures, consder an undrected

More information

Supporting Information

Supporting Information Supportng Informaton The neural network f n Eq. 1 s gven by: f x l = ReLU W atom x l + b atom, 2 where ReLU s the element-wse rectfed lnear unt, 21.e., ReLUx = max0, x, W atom R d d s the weght matrx to

More information

Some congruences related to harmonic numbers and the terms of the second order sequences

Some congruences related to harmonic numbers and the terms of the second order sequences Mathematca Moravca Vol. 0: 06, 3 37 Some congruences related to harmonc numbers the terms of the second order sequences Neşe Ömür Sbel Koaral Abstract. In ths aer, wth hels of some combnatoral denttes,

More information

Lecture 13 APPROXIMATION OF SECOMD ORDER DERIVATIVES

Lecture 13 APPROXIMATION OF SECOMD ORDER DERIVATIVES COMPUTATIONAL FLUID DYNAMICS: FDM: Appromaton of Second Order Dervatves Lecture APPROXIMATION OF SECOMD ORDER DERIVATIVES. APPROXIMATION OF SECOND ORDER DERIVATIVES Second order dervatves appear n dffusve

More information

Salmon: Lectures on partial differential equations. Consider the general linear, second-order PDE in the form. ,x 2

Salmon: Lectures on partial differential equations. Consider the general linear, second-order PDE in the form. ,x 2 Salmon: Lectures on partal dfferental equatons 5. Classfcaton of second-order equatons There are general methods for classfyng hgher-order partal dfferental equatons. One s very general (applyng even to

More information

U.C. Berkeley CS294: Spectral Methods and Expanders Handout 8 Luca Trevisan February 17, 2016

U.C. Berkeley CS294: Spectral Methods and Expanders Handout 8 Luca Trevisan February 17, 2016 U.C. Berkeley CS94: Spectral Methods and Expanders Handout 8 Luca Trevsan February 7, 06 Lecture 8: Spectral Algorthms Wrap-up In whch we talk about even more generalzatons of Cheeger s nequaltes, and

More information

NP-Completeness : Proofs

NP-Completeness : Proofs NP-Completeness : Proofs Proof Methods A method to show a decson problem Π NP-complete s as follows. (1) Show Π NP. (2) Choose an NP-complete problem Π. (3) Show Π Π. A method to show an optmzaton problem

More information

Generalized Linear Methods

Generalized Linear Methods Generalzed Lnear Methods 1 Introducton In the Ensemble Methods the general dea s that usng a combnaton of several weak learner one could make a better learner. More formally, assume that we have a set

More information

First day August 1, Problems and Solutions

First day August 1, Problems and Solutions FOURTH INTERNATIONAL COMPETITION FOR UNIVERSITY STUDENTS IN MATHEMATICS July 30 August 4, 997, Plovdv, BULGARIA Frst day August, 997 Problems and Solutons Problem. Let {ε n } n= be a sequence of postve

More information

Anti-van der Waerden numbers of 3-term arithmetic progressions.

Anti-van der Waerden numbers of 3-term arithmetic progressions. Ant-van der Waerden numbers of 3-term arthmetc progressons. Zhanar Berkkyzy, Alex Schulte, and Mchael Young Aprl 24, 2016 Abstract The ant-van der Waerden number, denoted by aw([n], k), s the smallest

More information

Errors for Linear Systems

Errors for Linear Systems Errors for Lnear Systems When we solve a lnear system Ax b we often do not know A and b exactly, but have only approxmatons  and ˆb avalable. Then the best thng we can do s to solve ˆx ˆb exactly whch

More information

From Biot-Savart Law to Divergence of B (1)

From Biot-Savart Law to Divergence of B (1) From Bot-Savart Law to Dvergence of B (1) Let s prove that Bot-Savart gves us B (r ) = 0 for an arbtrary current densty. Frst take the dvergence of both sdes of Bot-Savart. The dervatve s wth respect to

More information

Unit 5: Quadratic Equations & Functions

Unit 5: Quadratic Equations & Functions Date Perod Unt 5: Quadratc Equatons & Functons DAY TOPIC 1 Modelng Data wth Quadratc Functons Factorng Quadratc Epressons 3 Solvng Quadratc Equatons 4 Comple Numbers Smplfcaton, Addton/Subtracton & Multplcaton

More information

The Degrees of Nilpotency of Nilpotent Derivations on the Ring of Matrices

The Degrees of Nilpotency of Nilpotent Derivations on the Ring of Matrices Internatonal Mathematcal Forum, Vol. 6, 2011, no. 15, 713-721 The Degrees of Nlpotency of Nlpotent Dervatons on the Rng of Matrces Homera Pajoohesh Department of of Mathematcs Medgar Evers College of CUNY

More information

Quantum Mechanics for Scientists and Engineers. David Miller

Quantum Mechanics for Scientists and Engineers. David Miller Quantum Mechancs for Scentsts and Engneers Davd Mller Types of lnear operators Types of lnear operators Blnear expanson of operators Blnear expanson of lnear operators We know that we can expand functons

More information

a b a In case b 0, a being divisible by b is the same as to say that

a b a In case b 0, a being divisible by b is the same as to say that Secton 6.2 Dvsblty among the ntegers An nteger a ε s dvsble by b ε f there s an nteger c ε such that a = bc. Note that s dvsble by any nteger b, snce = b. On the other hand, a s dvsble by only f a = :

More information

REAL ANALYSIS I HOMEWORK 1

REAL ANALYSIS I HOMEWORK 1 REAL ANALYSIS I HOMEWORK CİHAN BAHRAN The questons are from Tao s text. Exercse 0.0.. If (x α ) α A s a collecton of numbers x α [0, + ] such that x α

More information

1. Estimation, Approximation and Errors Percentages Polynomials and Formulas Identities and Factorization 52

1. Estimation, Approximation and Errors Percentages Polynomials and Formulas Identities and Factorization 52 ontents ommonly Used Formulas. Estmaton, pproxmaton and Errors. Percentages. Polynomals and Formulas 8. Identtes and Factorzaton. Equatons and Inequaltes 66 6. Rate and Rato 8 7. Laws of Integral Indces

More information

Week3, Chapter 4. Position and Displacement. Motion in Two Dimensions. Instantaneous Velocity. Average Velocity

Week3, Chapter 4. Position and Displacement. Motion in Two Dimensions. Instantaneous Velocity. Average Velocity Week3, Chapter 4 Moton n Two Dmensons Lecture Quz A partcle confned to moton along the x axs moves wth constant acceleraton from x =.0 m to x = 8.0 m durng a 1-s tme nterval. The velocty of the partcle

More information

Exercise Solutions to Real Analysis

Exercise Solutions to Real Analysis xercse Solutons to Real Analyss Note: References refer to H. L. Royden, Real Analyss xersze 1. Gven any set A any ɛ > 0, there s an open set O such that A O m O m A + ɛ. Soluton 1. If m A =, then there

More information

REGULAR POSITIVE TERNARY QUADRATIC FORMS. 1. Introduction

REGULAR POSITIVE TERNARY QUADRATIC FORMS. 1. Introduction REGULAR POSITIVE TERNARY QUADRATIC FORMS BYEONG-KWEON OH Abstract. A postve defnte quadratc form f s sad to be regular f t globally represents all ntegers that are represented by the genus of f. In 997

More information

find (x): given element x, return the canonical element of the set containing x;

find (x): given element x, return the canonical element of the set containing x; COS 43 Sprng, 009 Dsjont Set Unon Problem: Mantan a collecton of dsjont sets. Two operatons: fnd the set contanng a gven element; unte two sets nto one (destructvely). Approach: Canoncal element method:

More information

Statistics Chapter 4

Statistics Chapter 4 Statstcs Chapter 4 "There are three knds of les: les, damned les, and statstcs." Benjamn Dsrael, 1895 (Brtsh statesman) Gaussan Dstrbuton, 4-1 If a measurement s repeated many tmes a statstcal treatment

More information

Numerical Solutions of a Generalized Nth Order Boundary Value Problems Using Power Series Approximation Method

Numerical Solutions of a Generalized Nth Order Boundary Value Problems Using Power Series Approximation Method Appled Mathematcs, 6, 7, 5-4 Publshed Onlne Jul 6 n ScRes. http://www.scrp.org/journal/am http://.do.org/.436/am.6.77 umercal Solutons of a Generalzed th Order Boundar Value Problems Usng Power Seres Approxmaton

More information

2.29 Numerical Fluid Mechanics

2.29 Numerical Fluid Mechanics REVIEW Lecture 10: Sprng 2015 Lecture 11 Classfcaton of Partal Dfferental Equatons PDEs) and eamples wth fnte dfference dscretzatons Parabolc PDEs Ellptc PDEs Hyperbolc PDEs Error Types and Dscretzaton

More information

Topic 5: Non-Linear Regression

Topic 5: Non-Linear Regression Topc 5: Non-Lnear Regresson The models we ve worked wth so far have been lnear n the parameters. They ve been of the form: y = Xβ + ε Many models based on economc theory are actually non-lnear n the parameters.

More information

1 GSW Iterative Techniques for y = Ax

1 GSW Iterative Techniques for y = Ax 1 for y = A I m gong to cheat here. here are a lot of teratve technques that can be used to solve the general case of a set of smultaneous equatons (wrtten n the matr form as y = A), but ths chapter sn

More information

Research Article Green s Theorem for Sign Data

Research Article Green s Theorem for Sign Data Internatonal Scholarly Research Network ISRN Appled Mathematcs Volume 2012, Artcle ID 539359, 10 pages do:10.5402/2012/539359 Research Artcle Green s Theorem for Sgn Data Lous M. Houston The Unversty of

More information

Restricted divisor sums

Restricted divisor sums ACTA ARITHMETICA 02 2002) Restrcted dvsor sums by Kevn A Broughan Hamlton) Introducton There s a body of work n the lterature on varous restrcted sums of the number of dvsors of an nteger functon ncludng

More information

Lecture 10 Support Vector Machines II

Lecture 10 Support Vector Machines II Lecture 10 Support Vector Machnes II 22 February 2016 Taylor B. Arnold Yale Statstcs STAT 365/665 1/28 Notes: Problem 3 s posted and due ths upcomng Frday There was an early bug n the fake-test data; fxed

More information

Math 217 Fall 2013 Homework 2 Solutions

Math 217 Fall 2013 Homework 2 Solutions Math 17 Fall 013 Homework Solutons Due Thursday Sept. 6, 013 5pm Ths homework conssts of 6 problems of 5 ponts each. The total s 30. You need to fully justfy your answer prove that your functon ndeed has

More information

College of Computer & Information Science Fall 2009 Northeastern University 20 October 2009

College of Computer & Information Science Fall 2009 Northeastern University 20 October 2009 College of Computer & Informaton Scence Fall 2009 Northeastern Unversty 20 October 2009 CS7880: Algorthmc Power Tools Scrbe: Jan Wen and Laura Poplawsk Lecture Outlne: Prmal-dual schema Network Desgn:

More information

THE FUNDAMENTAL THEOREM OF CALCULUS FOR MULTIDIMENSIONAL BANACH SPACE-VALUED HENSTOCK VECTOR INTEGRALS

THE FUNDAMENTAL THEOREM OF CALCULUS FOR MULTIDIMENSIONAL BANACH SPACE-VALUED HENSTOCK VECTOR INTEGRALS Real Analyss Exchange Vol.,, pp. 469 480 Márca Federson, Insttuto de Matemátca e Estatístca, Unversdade de São Paulo, R. do Matão 1010, SP, Brazl, 05315-970. e-mal: marca@me.usp.br THE FUNDAMENTAL THEOREM

More information

Algorithmic Manipulation of Fibonacci Identities

Algorithmic Manipulation of Fibonacci Identities Algorthmc Manpulaton of Fbonacc Identtes 1 Stanley Rabnowtz 1 Vne Brook Road Westford, MA 01886 USA 1 Introducton Methods for manpulatng trgonometrc expressons, such as changng sums to products, changng

More information

Inner Product. Euclidean Space. Orthonormal Basis. Orthogonal

Inner Product. Euclidean Space. Orthonormal Basis. Orthogonal Inner Product Defnton 1 () A Eucldean space s a fnte-dmensonal vector space over the reals R, wth an nner product,. Defnton 2 (Inner Product) An nner product, on a real vector space X s a symmetrc, blnear,

More information

Bezier curves. Michael S. Floater. August 25, These notes provide an introduction to Bezier curves. i=0

Bezier curves. Michael S. Floater. August 25, These notes provide an introduction to Bezier curves. i=0 Bezer curves Mchael S. Floater August 25, 211 These notes provde an ntroducton to Bezer curves. 1 Bernsten polynomals Recall that a real polynomal of a real varable x R, wth degree n, s a functon of the

More information

Appendix B. Criterion of Riemann-Stieltjes Integrability

Appendix B. Criterion of Riemann-Stieltjes Integrability Appendx B. Crteron of Remann-Steltes Integrablty Ths note s complementary to [R, Ch. 6] and [T, Sec. 3.5]. The man result of ths note s Theorem B.3, whch provdes the necessary and suffcent condtons for

More information

The optimal delay of the second test is therefore approximately 210 hours earlier than =2.

The optimal delay of the second test is therefore approximately 210 hours earlier than =2. THE IEC 61508 FORMULAS 223 The optmal delay of the second test s therefore approxmately 210 hours earler than =2. 8.4 The IEC 61508 Formulas IEC 61508-6 provdes approxmaton formulas for the PF for smple

More information

Exercises. 18 Algorithms

Exercises. 18 Algorithms 18 Algorthms Exercses 0.1. In each of the followng stuatons, ndcate whether f = O(g), or f = Ω(g), or both (n whch case f = Θ(g)). f(n) g(n) (a) n 100 n 200 (b) n 1/2 n 2/3 (c) 100n + log n n + (log n)

More information