HRW 7e Chapter 13 Page 1 of 5

Size: px
Start display at page:

Download "HRW 7e Chapter 13 Page 1 of 5"

Transcription

1 HW 7e Chapte Pae o 5 Halliday/enick/Walke 7e Chapte Gaitation The manitude o the oce o one paticle on the othe i ien by F = Gm m /, whee m and m ae the mae, i thei epaation, and G i the unieal aitational contant We ole o : Gm m F ( N m / k )( 5k)( 4k) = = = 0 N We ue ubcipt, e, and m o the Sun, ath and oon, epectiely 9 m Gmmm Fm m m em = = F Gm m m em e m e m em Pluin in the numeical alue (ay, om Appendix C) we ind The aitational oce between the two pat i ( ) = 6 Gm m G F = = m m ( ) which we dieentiate with epect to m and et equal to zeo: which lead to the eult m/= / df = 0 = G ( m ) = m dm 4 Uin F = Gm/, we ind that the topmot ma pull upwad on the one at the oiin with N, and the ihtmot ma pull ihtwad on the one at the oiin with N Thu, the (x, y) component o the net oce, which can be coneted to pola component (hee we ue manitude-anle notation), ae F net = 04 0, (a) The manitude o the oce i 0 8 N ( ) ( )

2 HW 7e Chapte Pae o 5 (b) The diection o the oce elatie to the +x axi i At the point whee the oce balance G em / = G m /, whee e i the ma o ath, i the ma o the Sun, m i the ma o the pace pobe, i the ditance om the cente o ath to the pobe, and i the ditance om the cente o the Sun to the pobe We ubtitute = d, whee d i the ditance om the cente o ath to the cente o the Sun, to ind = d e ( ) Takin the poitie quae oot o both ide, we ole o A little aleba yield ( ) 9 4 d k e 8 = = = e 99 0 k k Value o e,, and d can be ound in Appendix C 7 We equie the manitude o oce (ien by q -) exeted by paticle C on A be equal to that exeted by B on A Thu, Gm A m C = Gm A m B d We ubtitute in m B = m A and m B = m A, and (ate cancelin m A ) ole o We ind = 5d Thu, paticle C i placed on the x axi, to let o paticle A (o it i at a neatie alue o x), at x = 500d 4 We ollow the method hown in Sample Poblem - Thu, which implie that the chane in weiht i G G a = da = d ( ) W W m da top bottom But ince W bottom = Gm / (whee i ath mean adiu), we hae Gm d 6 mda = d = W bottom = ( 600 N) = 00 N 6 67

3 HW 7e Chapte Pae o 5 o the weiht chane (the minu in indicatin that it i a deceae in W) We ae not includin any eect due to the ath otation (a teated in q -) 5 The acceleation due to aity i ien by a = G/, whee i the ma o ath and i the ditance om ath cente We ubtitute = + h, whee i the adiu o ath and h i the altitude, to obtain a = G /( + h) We ole o h and obtain h= G / a Accodin to Appendix C, = m and = k, o 4 ( 667 / k)( k) ( 49m / ) h= = (a) The denity o a uniom phee i ien by ρ = /4π, whee i it ma and i it adiu The atio o the denity o a to the denity o ath i ρ ρ km = = 0 = km 4 (b) The alue o a at the uace o a planet i ien by a = G/, o the alue o a i a km = a = 0 ( 98 m/ ) = 8 m/ 45 0 km (c) I i the ecape peed, then, o a paticle o ma m m G m = G = Fo a ( )( ) 4 (667 / k) k = = 50 / (a) Fom q -8, we ee that o = we hae G in thi poblem Uin eney coneation, m o Gm/ = Gm/ which yield = 4 / So the multiple o i 4/ o

4 HW 7e Chapte Pae 4 o 5 (b) Uin the equation in the textbook immediately pecedin q -8, we ee that in thi poblem we hae K i = Gm/, and the aboe manipulation (uin eney coneation) in thi cae lead to = So the multiple o i 00 (c) Aain eein to the equation in the textbook immediately pecedin q -8, we ee that the mechanical eney = 0 o the ecape condition (a) We ue the pinciple o coneation o eney Initially the paticle i at the uace o the ateoid and ha potential eney U i = Gm/, whee i the ma o the ateoid, i it adiu, and m i the ma o the paticle bein ied upwad The initial kinetic eney i m The paticle jut ecape i it kinetic eney i zeo when it i ininitely a om the ateoid The inal potential and kinetic eneie ae both zeo Coneation o eney yield Gm/ + ½m = 0 We eplace G/ with a, whee a i the acceleation due to aity at the uace Then, the eney equation become a + ½ = 0 We ole o : = = = a (0 m/ )(500 ) 7 / (b) Initially the paticle i at the uace; the potential eney i U i = Gm/ and the kinetic eney i K i = ½m Suppoe the paticle i a ditance h aboe the uace when it momentaily come to et The inal potential eney i U = Gm/( + h) and the inal kinetic eney i K = 0 Coneation o eney yield Gm Gm + h + m = We eplace G with a and cancel m in the eney equation to obtain a ( + h) a + = The olution o h i a (0 m/ ) (500 ) h= = a (0 m/ )(500 ) (000 m/) = 5 5 (500 ) (c) Initially the paticle i a ditance h aboe the uace and i at et It potential eney i U i = Gm/( + h) and it initial kinetic eney i K i = 0 Jut beoe it hit the ateoid it potential eney i U = Gm/ Wite m o the inal kinetic eney Coneation o eney yield Gm Gm = + + h m

5 HW 7e Chapte Pae 5 o 5 We ubtitute a o G and cancel m, obtainin a = a + + h The olution o i a (0 m/ )(500 ) = a = (0 m/ ) (500 ) + h (500 ) + (000 ) 4 / = 8 (a) We note that heiht = ath whee ath = m With = k, 0 = m and = m, we hae + = + Gm Gm (70 0 ) =, Ki Ui K U m K 0 which yield K = J (b) Aain, we ue eney coneation Gm Ki + Ui = K + U m (70 0 ) = 0 0 Gm Theeoe, we ind = m Thi coepond to a ditance o 049 km 0 0 km aboe the ath uace 84 ney coneation o thi ituation may be expeed a ollow: K + U = K + U Gm Gm m = m whee = k, = = m and = (which mean that U = 0) We ae told to aume the meteo tat at et, o = 0 Thu, K + U = 0 and the aboe equation i ewitten a Gm G m 4 = = 4

Chapter 19 Webassign Help Problems

Chapter 19 Webassign Help Problems Chapte 9 Webaign Help Poblem 4 5 6 7 8 9 0 Poblem 4: The pictue fo thi poblem i a bit mileading. They eally jut give you the pictue fo Pat b. So let fix that. Hee i the pictue fo Pat (a): Pat (a) imply

More information

PHYSICS 151 Notes for Online Lecture 2.6

PHYSICS 151 Notes for Online Lecture 2.6 PHYSICS 151 Note fo Online Lectue.6 Toque: The whole eaon that we want to woy about cente of ma i that we ae limited to lookin at point mae unle we know how to deal with otation. Let eviit the metetick.

More information

TP A.4 Post-impact cue ball trajectory for any cut angle, speed, and spin

TP A.4 Post-impact cue ball trajectory for any cut angle, speed, and spin technical poof TP A.4 Pot-impact cue ball tajectoy fo any cut anle, peed, and pin uppotin: The Illutated Pinciple of Pool and Billiad http://billiad.colotate.edu by Daid G. Alciatoe, PhD, PE ("D. Dae")

More information

( ) Physics 1401 Homework Solutions - Walker, Chapter 9

( ) Physics 1401 Homework Solutions - Walker, Chapter 9 Phyic 40 Conceptual Quetion CQ No Fo exaple, ey likely thee will be oe peanent deoation o the ca In thi cae, oe o the kinetic enegy that the two ca had beoe the colliion goe into wok that each ca doe on

More information

Universal Gravitation

Universal Gravitation Add Ipotant Univeal Gavitation Pae: 7 Note/Cue Hee Unit: Dynaic (oce & Gavitation Univeal Gavitation Unit: Dynaic (oce & Gavitation NGSS Standad: HS-PS-4 MA Cuiculu aewok (00:.7 AP Phyic Leanin Objective:.B..,.B..,

More information

Solutions Practice Test PHYS 211 Exam 2

Solutions Practice Test PHYS 211 Exam 2 Solution Pactice Tet PHYS 11 Exam 1A We can plit thi poblem up into two pat, each one dealing with a epaate axi. Fo both the x- and y- axe, we have two foce (one given, one unknown) and we get the following

More information

Announcements. Description Linear Angular position x θ displacement x θ rate of change of position v x ω x = = θ average rate of change of position

Announcements. Description Linear Angular position x θ displacement x θ rate of change of position v x ω x = = θ average rate of change of position Announcement In the lectue link Look o tet 1 beakdown liting the topic o the quetion. Look o m umma o topic o the eam. We ll ue it on the eiew net Tueda. Look o a lit o baic phic act eleant o thi eam.

More information

LECTURE 14. m 1 m 2 b) Based on the second law of Newton Figure 1 similarly F21 m2 c) Based on the third law of Newton F 12

LECTURE 14. m 1 m 2 b) Based on the second law of Newton Figure 1 similarly F21 m2 c) Based on the third law of Newton F 12 CTU 4 ] NWTON W O GVITY -The gavity law i foulated fo two point paticle with ae and at a ditance between the. Hee ae the fou tep that bing to univeal law of gavitation dicoveed by NWTON. a Baed on expeiental

More information

ASTR 3740 Relativity & Cosmology Spring Answers to Problem Set 4.

ASTR 3740 Relativity & Cosmology Spring Answers to Problem Set 4. ASTR 3740 Relativity & Comology Sping 019. Anwe to Poblem Set 4. 1. Tajectoie of paticle in the Schwazchild geomety The equation of motion fo a maive paticle feely falling in the Schwazchild geomety ae

More information

SPH3UW/SPH4U Unit 3.2 Forces in Cetripetal Motion Page 1 of 6. Notes Physics Tool Box

SPH3UW/SPH4U Unit 3.2 Forces in Cetripetal Motion Page 1 of 6. Notes Physics Tool Box SPH3UW/SPH4U Unit 3. Foce in Cetipetal Motion Page 1 o 6 Note Phyic Tool Box Net Foce: acting on an object in uniom cicula motion act towad the cente o the cicle. Magnitude o Net Foce: combine Newton Second

More information

Gm M m G. 2. The gravitational force between you and the moon at its initial position (directly opposite of Earth from you) is.

Gm M m G. 2. The gravitational force between you and the moon at its initial position (directly opposite of Earth from you) is. Chapte 1 1 The avitational foce between the two pats is Gm M m G F = = mm m which we diffeentiate with espect to m and set equal to zeo: This leads to the esult m/m = 1/ df G = 0 = M m M = m dm The avitational

More information

Honors Classical Physics I

Honors Classical Physics I Hono Claical Phyic I PHY141 Lectue 9 Newton Law of Gavity Pleae et you Clicke Channel to 1 9/15/014 Lectue 9 1 Newton Law of Gavity Gavitational attaction i the foce that act between object that have a

More information

2013 Checkpoints Chapter 7 GRAVITY

2013 Checkpoints Chapter 7 GRAVITY 0 Checkpoints Chapte 7 GAVIY Question 64 o do this question you must et an equation that has both and, whee is the obital adius and is the peiod. You can use Keple s Law, which is; constant. his is a vey

More information

Final Exam. covering the entire semester. Extra time granted about 1 hour about 5 Problems about 30 Multiple Choice

Final Exam. covering the entire semester. Extra time granted about 1 hour about 5 Problems about 30 Multiple Choice his week Applications o oces and oues hap. 12, sec. 1-5 onseation o anula momentum hap. 10, sec. 1-4 ast weeks Oscillations hap. 14 inal Exam coein the entie semeste Exta time anted about 1 hou about 5

More information

Chapter 6. NEWTON S 2nd LAW AND UNIFORM CIRCULAR MOTION. string

Chapter 6. NEWTON S 2nd LAW AND UNIFORM CIRCULAR MOTION. string Chapte 6 NEWTON S nd LAW AND UNIFORM CIRCULAR MOTION 103 PHYS 1 1 L:\103 Phy LECTURES SLIDES\103Phy_Slide_T1Y3839\CH6Flah 3 4 ting Quetion: A ball attached to the end of a ting i whiled in a hoizontal

More information

Chapter 6. NEWTON S 2nd LAW AND UNIFORM CIRCULAR MOTION

Chapter 6. NEWTON S 2nd LAW AND UNIFORM CIRCULAR MOTION Chapte 6 NEWTON S nd LAW AND UNIFORM CIRCULAR MOTION Phyic 1 1 3 4 ting Quetion: A ball attached to the end of a ting i whiled in a hoizontal plane. At the point indicated, the ting beak. Looking down

More information

Chapter 13 Gravitation

Chapter 13 Gravitation Chapte 13 Gavitation In this chapte we will exploe the following topics: -Newton s law of gavitation, which descibes the attactive foce between two point masses and its application to extended objects

More information

Chapter 5 Applications of Newton s Laws

Chapter 5 Applications of Newton s Laws Chapte 5 Application of Newton Law Conceptual Poblem Detemine the Concept Becaue the object ae peeding up (acceleating), thee mut be a net foce acting on them. The foce acting on an object ae the nomal

More information

Section 26 The Laws of Rotational Motion

Section 26 The Laws of Rotational Motion Physics 24A Class Notes Section 26 The Laws of otational Motion What do objects do and why do they do it? They otate and we have established the quantities needed to descibe this motion. We now need to

More information

DYNAMICS OF UNIFORM CIRCULAR MOTION

DYNAMICS OF UNIFORM CIRCULAR MOTION Chapte 5 Dynamics of Unifom Cicula Motion Chapte 5 DYNAMICS OF UNIFOM CICULA MOTION PEVIEW An object which is moing in a cicula path with a constant speed is said to be in unifom cicula motion. Fo an object

More information

HW 7 Help. 60 s t. (4.0 rev/s)(1 min) 240 rev 1 min Solving for the distance traveled, we ll need to convert to radians:

HW 7 Help. 60 s t. (4.0 rev/s)(1 min) 240 rev 1 min Solving for the distance traveled, we ll need to convert to radians: HW 7 Help 30. ORGANIZE AND PLAN We ae given the angula velocity and the time, and we ae asked to ind the distance that is coveed. We can ist solve o the angula displacement using Equation 8.3: t. The distance

More information

Chapter 4. Newton s Laws of Motion

Chapter 4. Newton s Laws of Motion Chapte 4 Newton s Laws of Motion 4.1 Foces and Inteactions A foce is a push o a pull. It is that which causes an object to acceleate. The unit of foce in the metic system is the Newton. Foce is a vecto

More information

Rotational Kinetic Energy

Rotational Kinetic Energy Add Impotant Rotational Kinetic Enegy Page: 353 NGSS Standad: N/A Rotational Kinetic Enegy MA Cuiculum Famewok (006):.1,.,.3 AP Phyic 1 Leaning Objective: N/A, but olling poblem have appeaed on peviou

More information

Impulse and Momentum

Impulse and Momentum Impule and Momentum 1. A ca poee 20,000 unit of momentum. What would be the ca' new momentum if... A. it elocity wee doubled. B. it elocity wee tipled. C. it ma wee doubled (by adding moe paenge and a

More information

Unit 6 Practice Test. Which vector diagram correctly shows the change in velocity Δv of the mass during this time? (1) (1) A. Energy KE.

Unit 6 Practice Test. Which vector diagram correctly shows the change in velocity Δv of the mass during this time? (1) (1) A. Energy KE. Unit 6 actice Test 1. Which one of the following gaphs best epesents the aiation of the kinetic enegy, KE, and of the gaitational potential enegy, GE, of an obiting satellite with its distance fom the

More information

AE 245 homework #9 solutions

AE 245 homework #9 solutions AE 245 homewok #9 olution Tim Smith 13 Apil 2000 1 Poblem1 In the Apollo miion fom the Eath to the Moon, the Satun thid tage povided the tan-luna inetion bun that tanfeed the Apollo pacecaft fom a low

More information

Chapter 13: Gravitation

Chapter 13: Gravitation v m m F G Chapte 13: Gavitation The foce that makes an apple fall is the same foce that holds moon in obit. Newton s law of gavitation: Evey paticle attacts any othe paticle with a gavitation foce given

More information

Test 2 phy a) How is the velocity of a particle defined? b) What is an inertial reference frame? c) Describe friction.

Test 2 phy a) How is the velocity of a particle defined? b) What is an inertial reference frame? c) Describe friction. Tet phy 40 1. a) How i the velocity of a paticle defined? b) What i an inetial efeence fae? c) Decibe fiction. phyic dealt otly with falling bodie. d) Copae the acceleation of a paticle in efeence fae

More information

Content 5.1 Angular displacement and angular velocity 5.2 Centripetal acceleration 5.3 Centripetal force. 5. Circular motion.

Content 5.1 Angular displacement and angular velocity 5.2 Centripetal acceleration 5.3 Centripetal force. 5. Circular motion. 5. Cicula otion By Liew Sau oh Content 5.1 Angula diplaceent and angula elocity 5. Centipetal acceleation 5.3 Centipetal foce Objectie a) expe angula diplaceent in adian b) define angula elocity and peiod

More information

Perhaps the greatest success of his theory of gravity was to successfully explain the motion of the heavens planets, moons, &tc.

Perhaps the greatest success of his theory of gravity was to successfully explain the motion of the heavens planets, moons, &tc. AP Phyic Gavity Si Iaac Newton i cedited with the dicovey of gavity. Now, of coue we know that he didn t eally dicove the thing let face it, people knew about gavity fo a long a thee have been people.

More information

Gravity. David Barwacz 7778 Thornapple Bayou SE, Grand Rapids, MI David Barwacz 12/03/2003

Gravity. David Barwacz 7778 Thornapple Bayou SE, Grand Rapids, MI David Barwacz 12/03/2003 avity David Bawacz 7778 Thonapple Bayou, and Rapid, MI 495 David Bawacz /3/3 http://membe.titon.net/daveb Uing the concept dicued in the peceding pape ( http://membe.titon.net/daveb ), I will now deive

More information

Unit 6 Practice Test. Which vector diagram correctly shows the change in velocity Δv of the mass during this time? (1) (1) A. Energy KE.

Unit 6 Practice Test. Which vector diagram correctly shows the change in velocity Δv of the mass during this time? (1) (1) A. Energy KE. Unit 6 actice Test 1. Which one of the following gaphs best epesents the aiation of the kinetic enegy, KE, and of the gaitational potential enegy, GE, of an obiting satellite with its distance fom the

More information

Circular Motion Problem Solving

Circular Motion Problem Solving iula Motion Poblem Soling Aeleation o a hange in eloity i aued by a net foe: Newton nd Law An objet aeleate when eithe the magnitude o the dietion of the eloity hange We aw in the lat unit that an objet

More information

Can a watch-sized electromagnet deflect a bullet? (from James Bond movie)

Can a watch-sized electromagnet deflect a bullet? (from James Bond movie) Can a peon be blown away by a bullet? et' ay a bullet of a 0.06 k i ovin at a velocity of 300 /. And let' alo ay that it ebed itelf inide a peon. Could thi peon be thut back at hih peed (i.e. blown away)?

More information

Universal Gravitation

Universal Gravitation Chapte 1 Univesal Gavitation Pactice Poblem Solutions Student Textbook page 580 1. Conceptualize the Poblem - The law of univesal gavitation applies to this poblem. The gavitational foce, F g, between

More information

m1 m2 M 2 = M -1 L 3 T -2

m1 m2 M 2 = M -1 L 3 T -2 GAVITATION Newton s Univesal law of gavitation. Evey paticle of matte in this univese attacts evey othe paticle with a foce which vaies diectly as the poduct of thei masses and invesely as the squae of

More information

r ˆr F = Section 2: Newton s Law of Gravitation m 2 m 1 Consider two masses and, separated by distance Gravitational force on due to is

r ˆr F = Section 2: Newton s Law of Gravitation m 2 m 1 Consider two masses and, separated by distance Gravitational force on due to is Section : Newton s Law of Gavitation In 1686 Isaac Newton published his Univesal Law of Gavitation. This explained avity as a foce of attaction between all atte in the Univese, causin e.. apples to fall

More information

Errors in Nobel Prize for Physics (3) Conservation of Energy Leads to Probability Conservation of Parity, Momentum and so on

Errors in Nobel Prize for Physics (3) Conservation of Energy Leads to Probability Conservation of Parity, Momentum and so on Eos in Nobel ize fo hysics (3) Conseation of Enegy Leads to obability Conseation of aity, Momentum and so on Fu Yuhua (CNOOC Reseach Institute, E-mail:fuyh945@sina.com) Abstact: One of the easons fo 957

More information

AP Physics 1 - Circular Motion and Gravitation Practice Test (Multiple Choice Section) Answer Section

AP Physics 1 - Circular Motion and Gravitation Practice Test (Multiple Choice Section) Answer Section AP Physics 1 - Cicula Motion and Gaitation Pactice est (Multiple Choice Section) Answe Section MULIPLE CHOICE 1. B he centipetal foce must be fiction since, lacking any fiction, the coin would slip off.

More information

UCSD Phys 4A Intro Mechanics Winter 2016 Ch 5 Solutions

UCSD Phys 4A Intro Mechanics Winter 2016 Ch 5 Solutions UCSD Phs 4 Into Mechanics Winte 016 Ch 5 Solutions 0. Since the uppe bloc has a highe coefficient of iction, that bloc will dag behind the lowe bloc. Thus thee will be tension in the cod, and the blocs

More information

Extra notes for circular motion: Circular motion : v keeps changing, maybe both speed and

Extra notes for circular motion: Circular motion : v keeps changing, maybe both speed and Exta notes fo cicula motion: Cicula motion : v keeps changing, maybe both speed and diection ae changing. At least v diection is changing. Hence a 0. Acceleation NEEDED to stay on cicula obit: a cp v /,

More information

CHAPTER 6: UNIFORM CIRCULAR MOTION AND GRAVITATION

CHAPTER 6: UNIFORM CIRCULAR MOTION AND GRAVITATION College Physics Student s Manual Chapte 6 CHAPTER 6: UIORM CIRCULAR MOTIO AD GRAVITATIO 6. ROTATIO AGLE AD AGULAR VELOCITY. Sei- taile tucks hae an odoete on one hub of a taile wheel. The hub is weighted

More information

r cos, and y r sin with the origin of coordinate system located at

r cos, and y r sin with the origin of coordinate system located at Lectue 3-3 Kinematics of Rotation Duing ou peious lectues we hae consideed diffeent examples of motion in one and seeal dimensions. But in each case the moing object was consideed as a paticle-like object,

More information

Basic oces an Keple s Laws 1. Two ientical sphees of gol ae in contact with each othe. The gavitational foce of attaction between them is Diectly popotional to the squae of thei aius ) Diectly popotional

More information

Radian Measure CHAPTER 5 MODELLING PERIODIC FUNCTIONS

Radian Measure CHAPTER 5 MODELLING PERIODIC FUNCTIONS 5.4 Radian Measue So fa, ou hae measued angles in degees, with 60 being one eolution aound a cicle. Thee is anothe wa to measue angles called adian measue. With adian measue, the ac length of a cicle is

More information

2. Kinematics. 2.1 Motion in One Dimension: Position

2. Kinematics. 2.1 Motion in One Dimension: Position 1 www.tiwaiacademy.com.1 Motion in ne Dimension: osition. Kinematics osition of any point is completely expessed by two factos: Its distance fom the obsee and its diection with espect to obsee. hat is

More information

Answers to test yourself questions

Answers to test yourself questions Answes to test youself questions opic. Cicula motion π π a he angula speed is just ω 5. 7 ad s. he linea speed is ω 5. 7 3. 5 7. 7 m s.. 4 b he fequency is f. 8 s.. 4 3 a f. 45 ( 3. 5). m s. 3 a he aeage

More information

Momentum and the Flow of Mass Challenge Problems Solutions

Momentum and the Flow of Mass Challenge Problems Solutions Poblem 1: Steam Bouncing off Wall Momentum and the Flow of Ma Challenge Poblem Solution A team of paticle of ma m and epaation d hit a pependicula uface with peed v. The team ebound along the oiginal line

More information

PHYSICS NOTES GRAVITATION

PHYSICS NOTES GRAVITATION GRAVITATION Newton s law of gavitation The law states that evey paticle of matte in the univese attacts evey othe paticle with a foce which is diectly popotional to the poduct of thei masses and invesely

More information

( ) rad ( 2.0 s) = 168 rad

( ) rad ( 2.0 s) = 168 rad .) α 0.450 ω o 0 and ω 8.00 ω αt + ω o o t ω ω o α HO 9 Solution 8.00 0 0.450 7.8 b.) ω ω o + αδθ o Δθ ω 8.00 0 ω o α 0.450 7. o Δθ 7. ev.3 ev π.) ω o.50, α 0.300, Δθ 3.50 ev π 7π ev ω ω o + αδθ o ω ω

More information

Solutions to Problems : Chapter 19 Problems appeared on the end of chapter 19 of the Textbook

Solutions to Problems : Chapter 19 Problems appeared on the end of chapter 19 of the Textbook Solutions to Poblems Chapte 9 Poblems appeae on the en of chapte 9 of the Textbook 8. Pictue the Poblem Two point chages exet an electostatic foce on each othe. Stategy Solve Coulomb s law (equation 9-5)

More information

V V The circumflex (^) tells us this is a unit vector

V V The circumflex (^) tells us this is a unit vector Vecto Vecto have Diection and Magnitude Mike ailey mjb@c.oegontate.edu Magnitude: V V V V x y z vecto.pptx Vecto Can lo e Defined a the oitional Diffeence etween Two oint 3 Unit Vecto have a Magnitude

More information

Section 6.2: Orbits. Gm r. v = v 2 = Gm r. m = rv2 G. Solution: m = rv2 G ( )( 7.5!10 5 m/s ) 2. = 5.34!1017 m m kg # # m2. kg 2

Section 6.2: Orbits. Gm r. v = v 2 = Gm r. m = rv2 G. Solution: m = rv2 G ( )( 7.5!10 5 m/s ) 2. = 5.34!1017 m m kg # # m2. kg 2 Section 6.2: Obits Mini Inestigation: Exploing Gaity and Obits, page 298 A. When I incease the size of the Sun, Eath s obit changes: the obit is close to the Sun. B. he Moon is pulled out of Eath s obit

More information

Chap 5. Circular Motion: Gravitation

Chap 5. Circular Motion: Gravitation Chap 5. Cicula Motion: Gavitation Sec. 5.1 - Unifom Cicula Motion A body moves in unifom cicula motion, if the magnitude of the velocity vecto is constant and the diection changes at evey point and is

More information

Chapters 5-8. Dynamics: Applying Newton s Laws

Chapters 5-8. Dynamics: Applying Newton s Laws Chaptes 5-8 Dynamics: Applying Newton s Laws Systems of Inteacting Objects The Fee Body Diagam Technique Examples: Masses Inteacting ia Nomal Foces Masses Inteacting ia Tensions in Ropes. Ideal Pulleys

More information

Chap13. Universal Gravitation

Chap13. Universal Gravitation Chap13. Uniesal Gaitation Leel : AP Physics Instucto : Kim 13.1 Newton s Law of Uniesal Gaitation - Fomula fo Newton s Law of Gaitation F g = G m 1m 2 2 F21 m1 F12 12 m2 - m 1, m 2 is the mass of the object,

More information

Circular Motion. x-y coordinate systems. Other coordinates... PHY circular-motion - J. Hedberg

Circular Motion. x-y coordinate systems. Other coordinates... PHY circular-motion - J. Hedberg Cicula Motion PHY 207 - cicula-motion - J. Hedbeg - 2017 x-y coodinate systems Fo many situations, an x-y coodinate system is a geat idea. Hee is a map on Manhattan. The steets ae laid out in a ectangula

More information

Physics 2A Chapter 10 - Moment of Inertia Fall 2018

Physics 2A Chapter 10 - Moment of Inertia Fall 2018 Physics Chapte 0 - oment of netia Fall 08 The moment of inetia of a otating object is a measue of its otational inetia in the same way that the mass of an object is a measue of its inetia fo linea motion.

More information

Physics Spring 2012 Announcements: Mar 07, 2012

Physics Spring 2012 Announcements: Mar 07, 2012 Physics 00 - Sping 01 Announcements: Ma 07, 01 HW#6 due date has been extended to the moning of Wed. Ma 1. Test # (i. Ma ) will cove only chaptes 0 and 1 All of chapte will be coveed in Test #4!!! Test

More information

SPH4U Magnetism Test Name: Solutions

SPH4U Magnetism Test Name: Solutions SPH4U Magneti et Nae: Solution QUESION 1 [4 Mak] hi and the following two quetion petain to the diaga below howing two cuent-caying wie. wo cuent ae flowing in the ae diection (out of the page) a hown.

More information

TRAVELING WAVES. Chapter Simple Wave Motion. Waves in which the disturbance is parallel to the direction of propagation are called the

TRAVELING WAVES. Chapter Simple Wave Motion. Waves in which the disturbance is parallel to the direction of propagation are called the Chapte 15 RAVELING WAVES 15.1 Simple Wave Motion Wave in which the ditubance i pependicula to the diection of popagation ae called the tanvee wave. Wave in which the ditubance i paallel to the diection

More information

PHYS Summer Professor Caillault Homework Solutions. Chapter 5

PHYS Summer Professor Caillault Homework Solutions. Chapter 5 PHYS 1111 - Summe 2007 - Pofesso Caillault Homewok Solutions Chapte 5 7. Pictue the Poblem: The ball is acceleated hoizontally fom est to 98 mi/h ove a distance of 1.7 m. Stategy: Use equation 2-12 to

More information

FI 2201 Electromagnetism

FI 2201 Electromagnetism FI Electomagnetim Aleande A. Ikanda, Ph.D. Phyic of Magnetim and Photonic Reeach Goup ecto Analyi CURILINEAR COORDINAES, DIRAC DELA FUNCION AND HEORY OF ECOR FIELDS Cuvilinea Coodinate Sytem Cateian coodinate:

More information

Gravitation. AP/Honors Physics 1 Mr. Velazquez

Gravitation. AP/Honors Physics 1 Mr. Velazquez Gavitation AP/Honos Physics 1 M. Velazquez Newton s Law of Gavitation Newton was the fist to make the connection between objects falling on Eath and the motion of the planets To illustate this connection

More information

one primary direction in which heat transfers (generally the smallest dimension) simple model good representation for solving engineering problems

one primary direction in which heat transfers (generally the smallest dimension) simple model good representation for solving engineering problems CHAPTER 3: One-Dimenional Steady-State Conduction one pimay diection in which heat tanfe (geneally the mallet dimenion) imple model good epeentation fo olving engineeing poblem 3. Plane Wall 3.. hot fluid

More information

(a) Calculate the apparent weight of the student in the first part of the journey while accelerating downwards at 2.35 m s 2.

(a) Calculate the apparent weight of the student in the first part of the journey while accelerating downwards at 2.35 m s 2. Chapte answes Heineann Physics 1 4e Section.1 Woked exaple: Ty youself.1.1 CALCULATING APPARENT WEIGHT A 79.0 kg student ides a lift down fo the top floo of an office block to the gound. Duing the jouney

More information

Between any two masses, there exists a mutual attractive force.

Between any two masses, there exists a mutual attractive force. YEAR 12 PHYSICS: GRAVITATION PAST EXAM QUESTIONS Name: QUESTION 1 (1995 EXAM) (a) State Newton s Univesal Law of Gavitation in wods Between any two masses, thee exists a mutual attactive foce. This foce

More information

F g. = G mm. m 1. = 7.0 kg m 2. = 5.5 kg r = 0.60 m G = N m 2 kg 2 = = N

F g. = G mm. m 1. = 7.0 kg m 2. = 5.5 kg r = 0.60 m G = N m 2 kg 2 = = N Chapte answes Heinemann Physics 4e Section. Woked example: Ty youself.. GRAVITATIONAL ATTRACTION BETWEEN SMALL OBJECTS Two bowling balls ae sitting next to each othe on a shelf so that the centes of the

More information

PHY 121 Finals Review FSE Tutoring Centers Spring 2016

PHY 121 Finals Review FSE Tutoring Centers Spring 2016 11-Ap-16 11-Apil,016 Vecto Addition PHY 11 Final Reiew FSE Tutoing Cente Sping 016 Vecto Addition: Place the ecto tip to tail. A ecto ma be moed an wa ou pleae poided that ou do not change it length no

More information

Inference for A One Way Factorial Experiment. By Ed Stanek and Elaine Puleo

Inference for A One Way Factorial Experiment. By Ed Stanek and Elaine Puleo Infeence fo A One Way Factoial Expeiment By Ed Stanek and Elaine Puleo. Intoduction We develop etimating equation fo Facto Level mean in a completely andomized one way factoial expeiment. Thi development

More information

Section 25 Describing Rotational Motion

Section 25 Describing Rotational Motion Section 25 Decibing Rotational Motion What do object do and wh do the do it? We have a ve thoough eplanation in tem of kinematic, foce, eneg and momentum. Thi include Newton thee law of motion and two

More information

HW Solutions # MIT - Prof. Please study example 12.5 "from the earth to the moon". 2GmA v esc

HW Solutions # MIT - Prof. Please study example 12.5 from the earth to the moon. 2GmA v esc HW Solutions # 11-8.01 MIT - Pof. Kowalski Univesal Gavity. 1) 12.23 Escaping Fom Asteoid Please study example 12.5 "fom the eath to the moon". a) The escape velocity deived in the example (fom enegy consevation)

More information

to point uphill and to be equal to its maximum value, in which case f s, max = μsfn

to point uphill and to be equal to its maximum value, in which case f s, max = μsfn Chapte 6 16. (a) In this situation, we take f s to point uphill and to be equal to its maximum value, in which case f s, max = μsf applies, whee μ s = 0.5. pplying ewton s second law to the block of mass

More information

HW9.2: SHM-Springs and Pendulums

HW9.2: SHM-Springs and Pendulums HW9.: SHM-Sprin and Pendulum T S m T P Show your wor clearly on a eparate pae. Mae a etch o the problem. Start each olution with a undamental concept equation written in ymbolic ariable. Sole or the unnown

More information

Ch 13 Universal Gravitation

Ch 13 Universal Gravitation Ch 13 Univesal Gavitation Ch 13 Univesal Gavitation Why do celestial objects move the way they do? Keple (1561-1630) Tycho Bahe s assistant, analyzed celestial motion mathematically Galileo (1564-1642)

More information

RE 11.e Mon. Review for Final (1-11) HW11: Pr s 39, 57, 64, 74, 78 Sat. 9 a.m. Final Exam (Ch. 1-11)

RE 11.e Mon. Review for Final (1-11) HW11: Pr s 39, 57, 64, 74, 78 Sat. 9 a.m. Final Exam (Ch. 1-11) Mon. Tue. We. ab i..4-.6, (.) ngula Momentum Pincile & Toque.7 -.9, (.) Motion With & Without Toque Rotation Coue Eval.0 Quantization, Quiz RE.c EP RE. RE.e Mon. Review fo inal (-) HW: P 9, 57, 64, 74,

More information

rt () is constant. We know how to find the length of the radius vector by r( t) r( t) r( t)

rt () is constant. We know how to find the length of the radius vector by r( t) r( t) r( t) Cicula Motion Fom ancient times cicula tajectoies hae occupied a special place in ou model of the Uniese. Although these obits hae been eplaced by the moe geneal elliptical geomety, cicula motion is still

More information

Physics 4A Chapter 8: Dynamics II Motion in a Plane

Physics 4A Chapter 8: Dynamics II Motion in a Plane Physics 4A Chapte 8: Dynamics II Motion in a Plane Conceptual Questions and Example Poblems fom Chapte 8 Conceptual Question 8.5 The figue below shows two balls of equal mass moving in vetical cicles.

More information

Physics 6A. Practice Midterm #2 solutions

Physics 6A. Practice Midterm #2 solutions Phyic 6A Practice Midter # olution 1. A locootive engine of a M i attached to 5 train car, each of a M. The engine produce a contant force that ove the train forward at acceleration a. If 3 of the car

More information

ENGI 4430 Non-Cartesian Coordinates Page xi Fy j Fzk from Cartesian coordinates z to another orthonormal coordinate system u, v, ˆ i ˆ ˆi

ENGI 4430 Non-Cartesian Coordinates Page xi Fy j Fzk from Cartesian coordinates z to another orthonormal coordinate system u, v, ˆ i ˆ ˆi ENGI 44 Non-Catesian Coodinates Page 7-7. Conesions between Coodinate Systems In geneal, the conesion of a ecto F F xi Fy j Fzk fom Catesian coodinates x, y, z to anothe othonomal coodinate system u,,

More information

OSCILLATIONS AND GRAVITATION

OSCILLATIONS AND GRAVITATION 1. SIMPLE HARMONIC MOTION Simple hamonic motion is any motion that is equivalent to a single component of unifom cicula motion. In this situation the velocity is always geatest in the middle of the motion,

More information

Physics 235 Chapter 5. Chapter 5 Gravitation

Physics 235 Chapter 5. Chapter 5 Gravitation Chapte 5 Gavitation In this Chapte we will eview the popeties of the gavitational foce. The gavitational foce has been discussed in geat detail in you intoductoy physics couses, and we will pimaily focus

More information

AY 7A - Fall 2010 Section Worksheet 2 - Solutions Energy and Kepler s Law

AY 7A - Fall 2010 Section Worksheet 2 - Solutions Energy and Kepler s Law AY 7A - Fall 00 Section Woksheet - Solutions Enegy and Keple s Law. Escape Velocity (a) A planet is obiting aound a sta. What is the total obital enegy of the planet? (i.e. Total Enegy = Potential Enegy

More information

Rotational Motion: Statics and Dynamics

Rotational Motion: Statics and Dynamics Physics 07 Lectue 17 Goals: Lectue 17 Chapte 1 Define cente of mass Analyze olling motion Intoduce and analyze toque Undestand the equilibium dynamics of an extended object in esponse to foces Employ consevation

More information

Rotational Motion. Lecture 6. Chapter 4. Physics I. Course website:

Rotational Motion. Lecture 6. Chapter 4. Physics I. Course website: Lectue 6 Chapte 4 Physics I Rotational Motion Couse website: http://faculty.uml.edu/andiy_danylov/teaching/physicsi Today we ae going to discuss: Chapte 4: Unifom Cicula Motion: Section 4.4 Nonunifom Cicula

More information

Mon , (.12) Rotational + Translational RE 11.b Tues.

Mon , (.12) Rotational + Translational RE 11.b Tues. Mon..-.3, (.) Rotational + Tanlational RE.b Tue. EP0 Mon..4-.6, (.3) Angula Momentum & Toque RE.c Tue. Wed..7 -.9, (.) Toque EP RE.d ab Fi. Rotation Coue Eval.0 Quantization, Quiz RE.e Mon. Review fo Final

More information

Objective Notes Summary

Objective Notes Summary Objective Notes Summay An object moving in unifom cicula motion has constant speed but not constant velocity because the diection is changing. The velocity vecto in tangent to the cicle, the acceleation

More information

Physics 1114: Unit 5 Hand-out Homework (Answers)

Physics 1114: Unit 5 Hand-out Homework (Answers) Physics 1114: Unit 5 Hand-out Homewok (Answes) Poblem set 1 1. The flywheel on an expeimental bus is otating at 420 RPM (evolutions pe minute). To find (a) the angula velocity in ad/s (adians/second),

More information

Uniform Circular Motion

Uniform Circular Motion Unifom Cicula Motion Intoduction Ealie we defined acceleation as being the change in velocity with time: a = v t Until now we have only talked about changes in the magnitude of the acceleation: the speeding

More information

Lecture No. 6 (Waves) The Doppler Effect

Lecture No. 6 (Waves) The Doppler Effect Lectue No. 6 (Wave) The Dopple Eect 1) A ound ouce i moving at 80 m/ towad a tationay litene that i tanding in till ai. (a) Find the wavelength o the ound in the egion between the ouce and the litene.

More information

SPH4U Unit 6.3 Gravitational Potential Energy Page 1 of 9

SPH4U Unit 6.3 Gravitational Potential Energy Page 1 of 9 SPH4 nit 6.3 Gavitational Potential negy Page of Notes Physics ool box he gavitational potential enegy of a syste of two (spheical) asses is diectly popotional to the poduct of thei asses, and invesely

More information

Motion in a Plane Uniform Circular Motion

Motion in a Plane Uniform Circular Motion Lectue 11 Chapte 8 Physics I Motion in a Plane Unifom Cicula Motion Couse website: http://faculty.uml.edu/andiy_danylo/teaching/physicsi PHYS.1410 Lectue 11 Danylo Depatment of Physics and Applied Physics

More information

3-7 FLUIDS IN RIGID-BODY MOTION

3-7 FLUIDS IN RIGID-BODY MOTION 3-7 FLUIDS IN IGID-BODY MOTION S-1 3-7 FLUIDS IN IGID-BODY MOTION We ae almost eady to bein studyin fluids in motion (statin in Chapte 4), but fist thee is one cateoy of fluid motion that can be studied

More information

Fall 2004/05 Solutions to Assignment 5: The Stationary Phase Method Provided by Mustafa Sabri Kilic. I(x) = e ixt e it5 /5 dt (1) Z J(λ) =

Fall 2004/05 Solutions to Assignment 5: The Stationary Phase Method Provided by Mustafa Sabri Kilic. I(x) = e ixt e it5 /5 dt (1) Z J(λ) = 8.35 Fall 24/5 Solution to Aignment 5: The Stationay Phae Method Povided by Mutafa Sabi Kilic. Find the leading tem fo each of the integal below fo λ >>. (a) R eiλt3 dt (b) R e iλt2 dt (c) R eiλ co t dt

More information

AP Physics Momentum AP Wrapup

AP Physics Momentum AP Wrapup AP Phyic Moentu AP Wrapup There are two, and only two, equation that you get to play with: p Thi i the equation or oentu. J Ft p Thi i the equation or ipule. The equation heet ue, or oe reaon, the ybol

More information

Force & Motion: Newton s Laws

Force & Motion: Newton s Laws oce & otion: Newton Law ( t Law) If no net foce act on a body then the body velocity cannot change. Zeo net foce implie zeo acceleation. The ma of an object detemine how difficult it i to change the object

More information

Question 1: The dipole

Question 1: The dipole Septembe, 08 Conell Univesity, Depatment of Physics PHYS 337, Advance E&M, HW #, due: 9/5/08, :5 AM Question : The dipole Conside a system as discussed in class and shown in Fig.. in Heald & Maion.. Wite

More information

Sections and Chapter 10

Sections and Chapter 10 Cicula and Rotational Motion Sections 5.-5.5 and Chapte 10 Basic Definitions Unifom Cicula Motion Unifom cicula motion efes to the motion of a paticle in a cicula path at constant speed. The instantaneous

More information

Easy. P4.2 Since the car is moving with constant speed and in a straight line, the. resultant force on it must be regardless of whether it is moving

Easy. P4.2 Since the car is moving with constant speed and in a straight line, the. resultant force on it must be regardless of whether it is moving Chapte 4 Homewok Solutions Easy P4. Since the ca is moving with constant speed and in a staight line, the zeo esultant foce on it must be egadless of whethe it is moving (a) towad the ight o the left.

More information

Chapter 28: Magnetic Field and Magnetic Force. Chapter 28: Magnetic Field and Magnetic Force. Chapter 28: Magnetic fields. Chapter 28: Magnetic fields

Chapter 28: Magnetic Field and Magnetic Force. Chapter 28: Magnetic Field and Magnetic Force. Chapter 28: Magnetic fields. Chapter 28: Magnetic fields Chapte 8: Magnetic fiels Histoically, people iscoe a stone (e 3 O 4 ) that attact pieces of ion these stone was calle magnets. two ba magnets can attact o epel epening on thei oientation this is ue to

More information