Lattice QCD results on heavy quark potentials and bound states in the quark gluon plasma

Size: px
Start display at page:

Download "Lattice QCD results on heavy quark potentials and bound states in the quark gluon plasma"

Transcription

1 Lattice QCD results on heavy quark potentials and bound states in the quark gluon plasma Olaf Kaczmarek Felix Zantow Universität Bielefeld April 5, 26 Exploration of Hadron Structure and Spectroscopy, Seattle, April, 26 p./27

2 Machines for QCD - Experiments RHIC@BNL LHC@CERN STAR detector = only indirect signals from collision region theoretical input needed Exploration of Hadron Structure and Spectroscopy, Seattle, April, 26 p.2/27

3 Machines for QCD - lattice theory QCDOC apenext Installation in Bielefeld 999/2 44 Gflops APEmille 25/26 5 Tflops apenext Exploration of Hadron Structure and Spectroscopy, Seattle, April, 26 p.3/27

4 Charmonium suppression Measured / Expected J/ψ / DY Pb-Pb S-U p-a observed charmonium yields at SPS nuclear absorption length L using Bjorken formula (τ = f m) + lattice EOS: ε = de T/dη τ A T ψ, / DY Pb-Pb S-U p-a L (fm) L [ f m] ε [GeV/ f m 3 ] T/T c suppression patterns in a narrow temperature regime detailed (lattice) equation of state needed detailed knowledge on heavy quark bound states needed What are the processes of charmonium formation/suppression? Exploration of Hadron Structure and Spectroscopy, Seattle, April, 26 p.4/27

5 Charmonium suppression ψ S(J/ ) observed charmonium yields at SPS nuclear absorption length L using Bjorken formula (τ = f m) + lattice EOS: ε = de T/dη τ A T.25 In In, SPS Pb Pb, SPS Au Au, RHIC, y <.35 Au Au, RHIC, y =[.2,2.2] ε (GeV/fm 3) L [ f m] ε [GeV/ f m 3 ] T/T c [F. Karsch,D. Kharzeev,H. Satz,hep-ph/52239] suppression patterns in a narrow temperature regime detailed (lattice) equation of state needed detailed knowledge on heavy quark bound states needed What are the processes of charmonium formation/suppression? Exploration of Hadron Structure and Spectroscopy, Seattle, April, 26 p.4/27

6 Motivation - Heavy quark bound states above deconfinement Quarkonium suppression as a probe for thermal properties of hot and dense matter [Matsui and Satz] - heavy quark potential gets screened - screening radius related to parton density r D g n/t - at high T screening radius smaller than size of a quarkonium state Typical length scales of heavy quark bound states: /Λ QCD fm - screening has to be strong enough to modify short distance behaviour - detailed analysis of heavy quark potentials - temperature and r dependence - screening properties above deconfinement - What is the correct effective potential at finite temperature? F (r,t) = U (r,t) T S (r,t) Exploration of Hadron Structure and Spectroscopy, Seattle, April, 26 p.5/27

7 Heavy quark bound states above deconfinement Strong interactions in the deconfined phase T> T c Possibility of heavy quark bound states? Charmonium (χ c,j/ψ) as thermometer above T c Suppression patterns of charmonium/bottomonium = Potential models heavy quark potential (T =) V (r) = 4 3 α(r) r + σ r heavy quark free energies (T > T c ) F (r,t) 4 3 α(r,t) r e m(t)r heavy quark internal energies (T ) F (r,t) = U (r,t) T S (r,t) = Charmonium correlation functions/spectral functions Exploration of Hadron Structure and Spectroscopy, Seattle, April, 26 p.6/27

8 The lattice set-up Polyakov loop correlation function and free energy: L. McLerran, B. Svetitsky (98) Z Q Q Z (T) Z (T) Z D A... L(x) L (y) exp ( Z /T Z dt ) d 3 xl [A,...] F Q Q (r,t) T Q Q =, 8, av Lattice data used in our analysis: N f = : ,8,6-lattices ( Symanzik ) O. Kaczmarek, F. Karsch, P. Petreczky, F.Z. (22, 24) N f = 2: lattices ( Symanzik, p4-stagg. ) m π /m ρ.7 (m/t =.4) O. Kaczmarek, F.Z. (25), O. Kaczmarek et al. (23) N f = 3: lattices m π /m ρ.4 P. Petreczky, K. Petrov (24) Exploration of Hadron Structure and Spectroscopy, Seattle, April, 26 p.7/27

9 The lattice set-up Polyakov loop correlation function and free energy: L. McLerran, B. Svetitsky (98) Z Q Q Z (T) Z (T) Z D A... L(x) L (y) exp ( Z /T Z dt ) d 3 xl [A,...] F Q Q (r,t) T Q Q =, 8, av a /3 V =N σ a ln /T =N τ a O. Philipsen (22) O. Jahn, O. Philipsen (24) ( ln TrL(x) TrL ) (y) ( ln TrL(x)L ) (y) ( 9 8 TrL(x) TrL (y) 8 TrL(x)L (y) GF GF ) = F qq(r,t) T = F (r,t) T = F 8(r,T) T Exploration of Hadron Structure and Spectroscopy, Seattle, April, 26 p.7/27

10 Heavy quark free energy F [MeV] 5-5 r [fm].76t c.8t c.9t c.96t c.t c.2t c.7t c.23t c.5t c.98t c 4.T c Renormalization of F(r, T) by matching with T = potential e F (r,t)/t = ( Z r (g 2 ) ) 2N τ Tr (L x L y) Exploration of Hadron Structure and Spectroscopy, Seattle, April, 26 p.8/27

11 Heavy quark free energy F [MeV] 5-5 r [fm].76t c.8t c.9t c.96t c.t c.2t c.7t c.23t c.5t c.98t c 4.T c F(r,T)/σ /2 T/T c Renormalization of F(r, T) by matching with T = potential e F (r,t)/t = ( Z r (g 2 ) ) 2N τ Tr (L x L y) T -independent r / σ F(r,T) g 2 (r)/r r σ / Exploration of Hadron Structure and Spectroscopy, Seattle, April, 26 p.8/27

12 Heavy quark free energy F [MeV] String breaking T < T c F(r σ,t) < 5-5 r [fm].76t c.8t c.9t c.96t c.t c.2t c.7t c.23t c.5t c.98t c 4.T c F [MeV] N f = N f =2 N f =3 T -independent r / σ F(r,T) g 2 (r)/r T/T c 4 Exploration of Hadron Structure and Spectroscopy, Seattle, April, 26 p.8/27

13 Heavy quark free energy F [MeV] String breaking T < T c F(r σ,t) < 5-5 r [fm].76t c.8t c.9t c.96t c.t c.2t c.7t c.23t c.5t c.98t c 4.T c high-t physics rt ; screening µ(t) g(t)t F(,T) T F [MeV] N f = N f =2 N f =3 T -independent r / σ F(r,T) g 2 (r)/r T/T c 4 Exploration of Hadron Structure and Spectroscopy, Seattle, April, 26 p.8/27

14 Heavy quark free energy F [MeV] String breaking T < T c F(r σ,t) < 5-5 r [fm].76t c.8t c.9t c.96t c.t c.2t c.7t c.23t c.5t c.98t c 4.T c high-t physics rt ; screening µ(t) g(t)t F(,T) T T -independent r / σ F(r,T) g 2 (r)/r Complex r and T dependence Small vs. large distance behavior Running coupling vs. screening Where do temperature effects set in? Exploration of Hadron Structure and Spectroscopy, Seattle, April, 26 p.8/27

15 Temperature depending running coupling 2.5 α qq (r,t) Free energy in perturbation theory: T/T c r [fm] F (r,t) V(r) 4 α(r) 3 r F (r,t) 4 α(t) e m D(T)r 3 r for rλ QCD for rt QCD running coupling in the qq-scheme α qq (r,t) = 3 4 r2 df (r,t) dr Exploration of Hadron Structure and Spectroscopy, Seattle, April, 26 p.9/27

16 Temperature depending running coupling 2.5 α qq (r,t) Free energy in perturbation theory: T/T c r [fm] F (r,t) V(r) 4 α(r) 3 r F (r,t) 4 α(t) e m D(T)r 3 r for rλ QCD for rt QCD running coupling in the qq-scheme α qq (r,t) = 3 4 r2 df (r,t) dr non-perturbative confining part for r>.4 fm α qq (r) 3/4r 2 σ present below and just above T c temperature effects set in at smaller r with increasing T maximum due to screening Exploration of Hadron Structure and Spectroscopy, Seattle, April, 26 p.9/27

17 Temperature depending running coupling 2.5 α qq (r,t) Free energy in perturbation theory: T/T c r [fm] F (r,t) V(r) 4 α(r) 3 r F (r,t) 4 α(t) e m D(T)r 3 r for rλ QCD for rt QCD running coupling in the qq-scheme α qq (r,t) = 3 4 r2 df (r,t) dr non-perturbative confining part for r>.4 fm α qq (r) 3/4r 2 σ present below and just above T c temperature effects set in at smaller r with increasing T maximum due to screening = At which distance do T -effects set in? = definition of the screening radius/mass = definition of the T -dependent coupling Exploration of Hadron Structure and Spectroscopy, Seattle, April, 26 p.9/27

18 Heavy quark bound states above T c?.5 r [fm] r med r D bound states above deconfinement? first estimate: ψ mean charge radii of charmonium states compared to screening radius: V(r med ) F (T) χ c.5 J/ψ thermal modifications on ψ and χ c already at T c J/ψ may survive above deconfinement 2 3 T/T c 4 r n N Z d 3 r r n F (r,t) r D [fm] <r> r med r entropy 2/m D (a) r (b) 2r cloud (c). High T: Using a screened Coulomb form r 2/m D T = : Using parameterization of V(r) at T = : r T= fm T/T c Exploration of Hadron Structure and Spectroscopy, Seattle, April, 26 p./27

19 Heavy quark bound states above T c?.5 r [fm] r med r D bound states above deconfinement? first estimate:.5 ψ χ c J/ψ mean charge radii of charmonium states compared to screening radius: V(r med ) F (T) thermal modifications on ψ and χ c already at T c J/ψ may survive above deconfinement 2 3 T/T c 4 Better estimates: Better estimates: effective potentials in Schrödinger Equation Potential models, effective potential V e f f (r,t) But: Free energies vs. internal energies F(r,T) = U(r,T) TS(r,T) direct calculation using correlation functions Maximum entropy method spectral function Exploration of Hadron Structure and Spectroscopy, Seattle, April, 26 p./27

20 Free energy vs. Entropy at large separations 5 F [MeV] N f = N f =2 N f =3 Free energies not only determined by potential energy F = U T S 5 Entropy contributions play a role at finite T S = F T 2 3 T/T c 4 Exploration of Hadron Structure and Spectroscopy, Seattle, April, 26 p./27

21 Free energy vs. Entropy at large separations 4 U [MeV] High temperatures: 3 2 U = T 2 F /T T F (T) 4 3 m D(T)α(T) O (g 3 T) TS (T) 4 3 m D(T)α(T) U (T) 4m D (T)α(T) β(g) g O (g 5 T) 2 3 T/T c 4 (a) (b) (c) r 2r cloud 4 3 TS [MeV] N f = N f =2 N f =3 The large distance behavior of the finite temperature energies is related to screening rather than to the temperature dependence of masses of corresponding heavy-light mesons! 2 S = F T 2 3 T/T c Exploration of Hadron Structure and Spectroscopy, Seattle, April, 26 p./27

22 r-dependence of internal energies TS [MeV] (b) 5 F (r,t) = U (r,t) TS (r,t) S (r,t) = F (r,t) T U (r,t) = T 2 F (r,t)/t T Entropy contributions vanish in the limit r F (r,t) = U (r,t) V (r).5.5 r [fm] important at intermediate/large distances (a) r (b) 2r cloud (c) The large distance behavior of the finite temperature energies is related to screening rather than to the temperature dependence of masses of corresponding heavy-light mesons! Exploration of Hadron Structure and Spectroscopy, Seattle, April, 26 p.2/27

23 r-dependence of internal energies U [MeV] r [fm].88t c.93t c.98t c U [MeV] 5 F (r,t) = U (r,t) TS (r,t) S (r,t) = F (r,t) T U (r,t) = T 2 F (r,t)/t T Entropy contributions vanish in the limit r F (r,t) = U (r,t) V (r) important at intermediate/large distances = Implications on heavy quark bound states? 5 r [fm].9t c.3t c.9t c.29t c.43t c.57t c.89t c = What is the correct V e f f (r,t)? Exploration of Hadron Structure and Spectroscopy, Seattle, April, 26 p.2/27

24 Heavy quark bound states V eff (r,t) [MeV] V( ) E J/ψ (T=) r [fm] steeper slope of V e f f (r,t) = U (r,t) = J/ψ stronger bound using V e f f = U (r,t) = dissociation at higher temperatures compared to V e f f (r,t) = F (r,t) Exploration of Hadron Structure and Spectroscopy, Seattle, April, 26 p.3/27

25 Estimates on bound states from Schrödinger equation Schrödinger equation for heavy quarks: [ 2m f + ] 2 +V e f f (r,t) Φ f i = E f i m (T)Φ f i f, f = charm, bottom T -dependent color singlet heavy quark potential mimics in-medium modifications of q q interaction reduction to 2-particle interaction clearly too simple, in particular close to T c recent analysis: using V e f f = F : S.Digal, P.Petreczky, H.Satz, Phys. Lett. B54 (2)57 using V e f f = V : C.-Y. Wong, hep-ph/482 using V e f f = V : W.M. Alberico, A. Beraudo, A. De Pace, A. Molinari, hep-ph/5784 state J/ψ χ c ψ ϒ χ b ϒ χ b ϒ E i s[gev] r [ f m] T d /T c T d /T c T d /T c Exploration of Hadron Structure and Spectroscopy, Seattle, April, 26 p.4/27

26 Correlation functions of hadronic states Direct lattice calculations on bound states Thermal correlation functions: G H (τ,r,t) = J H (τ,r)j H (,) with J H = q(τ,r)γ H q(τ,r) Example using light quarks, scalar (δ) and pseudo-scalar (π): G(τ,T)/T 3 pseudo-scalar scalar G(τ,T)/T 3 pseudo-scalar scalar.6 T c.5 T c τ T τ T splitting below T c due to chiral and axial U() symmetry breaking symmetry restauration at high temperatures Exploration of Hadron Structure and Spectroscopy, Seattle, April, 26 p.5/27

27 Spectral functions of charmonium states Where do thermal effects on charmonium states set in? G(τ)/G recon (τ) χ c, χ c,.75t c AX+. SC.2T c.5t c τ[fm] G(τ)/G recon (τ) η c J/ψ.9T c PS+.2 VC.5T c 2.25T c 3T c τ[fm] strong effects already near T c no effect in η c up to.5t c modifications on J/ψ only of order % at.5t c bound states above T c possible? = reconstruction of spectral functions Exploration of Hadron Structure and Spectroscopy, Seattle, April, 26 p.6/27

28 Spectral functions of charmonium states spectral representation of correlators = in-medium properties of hadrons spectral representation of Euclidean correlation functions: G β H (τ, r) = Z Z dω d 3 p (2π) 3 σ i p r cosh(ω(τ /2T)) H(ω, p,t) e sinh(ω/2t) calculate the most probable spectral function Bayesian data analysis, e.g. Maximum Entropy Method (MEM) Exploration of Hadron Structure and Spectroscopy, Seattle, April, 26 p.6/27

29 Spectral functions of charmonium states J/ψ spectral function T =.78Tc T =.38Tc.8 σ(ω)/ω 2 T =.62Tc.6.9T c.5t c T =.87Tc T = 2.33Tc.4.2 ω[gev] T c T c.8 σ(ω)/ω ω [GeV] M. Asakawa, T. Hatsuda, Phys.Rev.Lett.92 (24) 2.2 ω[gev] S. Datta et al., Phys.Rev.D69 (24) 9457 Exploration of Hadron Structure and Spectroscopy, Seattle, April, 26 p.6/27

30 Spectral functions of charmonium states J/ψ spectral function T =.78Tc T =.38Tc.8 σ(ω)/ω 2 T =.62Tc.6.9T c.5t c T =.87Tc T = 2.33Tc.4 J/ψ dissociates for.6t c < T<.9T c rather abrupt disappearance of J/ψ.2 ω[gev] T c T c.8 σ(ω)/ω J/ψ gradually disappears for T>.5T c strength reduced by 25% at T = 2.25T c.5 ω [GeV] M. Asakawa, T. Hatsuda, Phys.Rev.Lett.92 (24) 2.2 ω[gev] S. Datta et al., Phys.Rev.D69 (24) 9457 Exploration of Hadron Structure and Spectroscopy, Seattle, April, 26 p.6/27

31 Heavy quark bound states above deconfinement - Diquarks [OK, K. Hübner, O. Vogt] Coloured bound states speculated just above T c (SQGP) [E.V. Shuryak,I. Zahed (24/5)] - Is the interaction strong enough to support diquarks? - Potential models for coloured bound states - Diquark free and internal energies Colour antitriplet (anti-symmetric) or color sextet (symmetric) state: 3 3 = 3 6. Cqq(R,T) 3 = 3 2 Tr L()Tr L(R) Tr L()L(R) 2 Cqq(R,T) 6 = 3 4 Tr L()Tr L(R) + Tr L()L(R) 4 F 3,6 qq (R,T) = T lnc 3,6 qq (R,T) Exploration of Hadron Structure and Spectroscopy, Seattle, April, 26 p.7/27

32 Z(3) symmetry and volume scaling < Tr L >. N τ =4. T/T c Polyakov loop and diquark correlation functions not Z(3) symmetric - In the confined phase all non Z(3) symmetric observables vanish - Z(3) rotation such that Re L > - At β = the Polyakov loop scales like N σ L = V x Tr L x V. - We assume this scaling behaviour for L and C 3,6 qq (r,t) for T < T c ( Cqq(r,T) 3 N σ ) 3ν(r,T) = V ν(r,t). Exploration of Hadron Structure and Spectroscopy, Seattle, April, 26 p.8/27

33 Z(3) symmetry and volume scaling ln C 3 qq ν RT < TrL > ln(/n 3 σ ) Polyakov loop and diquark correlation functions not Z(3) symmetric - In the confined phase all non Z(3) symmetric observables vanish - Z(3) rotation such that Re L > - At β = the Polyakov loop scales like RT ln < TrL >.45 T/T c L = V x Tr L x V. - We assume this scaling behaviour for L and C 3,6 qq (r,t) for T < T c ( Cqq(r,T) 3 N σ ) 3ν(r,T) = V ν(r,t). Exploration of Hadron Structure and Spectroscopy, Seattle, April, 26 p.8/27

34 Z(3) symmetry and volume scaling C 3 qq - Below T c the diquark free energies diverge RT /V c< TrL >.55.e+ 5.e-5.e-4.5e-4 2.e-4 2.5e-4 3.e-4 3.5e-4 - Polyakov loop and diquark correlation functions not Z(3) symmetric - In the confined phase all non Z(3) symmetric observables vanish - Z(3) rotation such that Re L > - At β = the Polyakov loop scales like - Above T c the Z(3) symmetry is spontanously broken - In full QCD the Z(3) symmetry is explicitly broken at all T - All observables are finite in the thermodynamic limit L = V x Tr L x V. - We assume this scaling behaviour for L and C 3,6 qq (r,t) for T < T c ( Cqq(r,T) 3 N σ ) 3ν(r,T) = V ν(r,t). Exploration of Hadron Structure and Spectroscopy, Seattle, April, 26 p.8/27

35 Diquark free energies - qq vs. q q in the deconfined phase. normalized free energy -.5 F i (r,t) := F i (r,t) F i (r,t) F q q (R,T)/T 2 F 3 qq (R,T)/T RT T/T c is a renormalization invariant quantity. perturbative relation between diquark and quar antiquark free energies F 3 qq(r,t) 2 F q q(r,t) good approximation above T c. Exploration of Hadron Structure and Spectroscopy, Seattle, April, 26 p.9/27

36 Diquark free energies - qq vs. q q in the deconfined phase. normalized free energy -.5 F i (r,t) := F i (r,t) F i (r,t) F q q (R,T)/T 2 F 3 qq (R,T)/T RT T/T c is a renormalization invariant quantity. perturbative relation between diquark and quar antiquark free energies F 3 qq(r,t) 2 F q q(r,t) good approximation above T c. temperature dependence for all separations = entropy contributions play a role for all r F q q (R,T)/σ/2 F 3 qq (R,T)/σ/2 Rσ /2 T/T c same asymptotic value for qq and q q = quarks in both systems are screened independently by the medium Exploration of Hadron Structure and Spectroscopy, Seattle, April, 26 p.9/27

37 3-quark free energies [ K. Hubner, OK, O. Vogt., hep-lat/483 ] Different color channels: = F(R,T)/σ (/2) exp ( F qqq/t ) = 6 27Tr L Tr L 2 Tr L 3 9Tr L Tr (L 2 L 3 ) 9Tr L 2 Tr (L L 3 ) 9Tr L 3 Tr (L L 2 ) + 3Tr (L L 2 L 3 )+3Tr (L L 3 L 2 ) T c exp ( F 8 qqq/t ) = 27Tr L Tr L 2 Tr L 3 + 9Tr L Tr (L 2 L 3 ) Tr L 3 Tr (L L 2 ) 3Tr (L L 3 L 2 ) -6 Rσ (/2) Tqqq= average singlet octet decuplet ( ) exp Fqqq/T 8 = 27Tr L Tr L 2 Tr L 3 + 9Tr L 3 Tr (L L 2 ) 24 9Tr L Tr (L 2 L 3 ) 3Tr (L L 2 L 3 ) exp ( F qqq/t ) = 27Tr L Tr L 2 Tr L 3 + 9Tr L Tr (L 2 L 3 ) 6 + 9Tr L 2 Tr (L L 3 )+9Tr L 3 Tr (L L 2 ) + 3Tr (L L 2 L 3 )+3Tr (L L 3 L 2 ) Exploration of Hadron Structure and Spectroscopy, Seattle, April, 26 p.2/27

38 3-quark free energies [ K. Hubner, OK, O. Vogt., hep-lat/483 ] F qqq (R,T)/σ/2 3(F 3 qq (R,T)-F q (T))/σ/2 2.5 F(R,T)/σ (/2) Rσ /2 T/T c Renormalization of 3-quark Polyakov loop correlation functions T c Tqqq= -6 average singlet Rσ (/2) octet decuplet F qqq (r,t) = ( Z R (g 2 ) ) 3N τ f (L x,l y,l z ) - Renormalization of n-point functions with the same Z R (g 2 ) - Comparison with qq free energies F qqq (r) F qq (r,t) 3F q (T) 3 2 F q q(r,t) with F q (T) = /2F q q (r ) qq - Baryonic interaction dominated by two-particle interactions Exploration of Hadron Structure and Spectroscopy, Seattle, April, 26 p.2/27

39 3-quark free energies [ K. Hubner, OK, O. Vogt., hep-lat/483 ] 2.5 F qqq (R,T)/σ/2 3(F 3 qq (R,T)-F q (T))/σ/ Quenched Rσ /2 T/T c F qqq (R,T)/σ/2 - Renormalization of 3-quark Polyakov loop correlation functions Full QCD 3(F 3 qq (R,T)-F q (T))/σ/2 Rσ /2 T/T c F qqq (r,t) = ( Z R (g 2 ) ) 3N τ f (L x,l y,l z ) - Renormalization of n-point functions with the same Z R (g 2 ) - Comparison with qq free energies F qqq (r) F qq (r,t) 3F q (T) 3 2 F q q(r,t) with F q (T) = /2F q q (r ) qq - Baryonic interaction dominated by two-particle interactions Exploration of Hadron Structure and Spectroscopy, Seattle, April, 26 p.2/27

40 qq and qqq entropy and internal energies The r-dependence of static qq, qq and qqq interactions are related by Casimir factors The relations for entropy and internal energy follow directly (F q (T) = /2F q q (r )): F 3 qq(r,t) 2 F qq(r,t)+f q (T) S 3 qq(r,t) 2 S qq(r,t)+s q (T) U 3 qq(r,t) 2 U qq(r,t)+u q (T) and for the baryonic system: F qqq(r,t) 3 2 F qq(r,t) S qqq(r,t) 3 2 S qq(r,t) U qqq(r,t) 3 2 U qq(r,t) Potential models based on this relations possible Exploration of Hadron Structure and Spectroscopy, Seattle, April, 26 p.2/27

41 SQGP - Strongly Coupled QGP??? J. Liao, E.V. Shuryak, hep-ph/5835 Bound states of quasi-particles above T c? (here m = 8 MeV)? T c E b 2 4 Is the interaction in the different channels strong enough to support bound states above T c? 6 meson bound states diquark bound states baryon bound states 3 gluon bound states T T c channel rep. charge factor no. of states gg 9/4 9 s gg 8 9/8 9 s 6 qg+ qg 3 9/8 3 c 6 s 2 N f qg+ qg 6 3/8 6 c 6 s 2 N f qq 8 s N 2 f qq+ q q 3 /2 4 s 3 c 2 N 2 f Exploration of Hadron Structure and Spectroscopy, Seattle, April, 26 p.22/27

42 SQGP - Strongly Coupled QGP??? J. Liao, E.V. Shuryak, hep-ph/5835 Bound states of quasi-particles above T c? (here m = 8 MeV)? T c Is the interaction in the different channels strong enough to support bound states above T c? E b meson bound states diquark bound states baryon bound states 3 gluon bound states Binding energy E b of the order of T already at T c! Coloured bound states and Polymer Chains are speculative T T c channel rep. charge factor no. of states (a) T<Tc (b) T=Tc gg 9/4 9 s gg 8 9/8 9 s 6 qg+ qg 3 9/8 3 c 6 s 2 N f qg+ qg 6 3/8 6 c 6 s 2 N f qq 8 s N 2 f qq+ q q 3 /2 4 s 3 c 2 N 2 f (c) (d) T > 3Tc Tc<T<.5Tc Exploration of Hadron Structure and Spectroscopy, Seattle, April, 26 p.22/27

43 What are the constituents of matter at high temperature? [S.Ejiri,F.Karsch,K.Redlich Recent discussion of quark number and charge fluctuations in the QGP Specific ratios of cummulants of (net) quark number and charge can characterize the particular degrees of freedom which are relevant in the low and high temperature phase 5 5 q R 4,2 HRG SB d x 2 V T 3 d x 4 V T 3 quark number R q 4,2 = dq 4 d q 2 2 lnz (µ x /T) 2 4 lnz (µ x /T) 4 qq T/T µu =µ d = µu =µ d = Q R 4,2 HRG charge R Q 4,2 = dq 4 d Q 2 SB qq T/T Exploration of Hadron Structure and Spectroscopy, Seattle, April, 26 p.23/27

44 What are the constituents of matter at high temperature? [S.Ejiri,F.Karsch,K.Redlich Recent discussion of quark number and charge fluctuations in the QGP Specific ratios of cummulants of (net) quark number and charge can characterize the particular degrees of freedom which are relevant in the low and high temperature phase 5 5 q R 4,2 HRG SB d x 2 V T 3 d x 4 V T 3 quark number R q 4,2 = dq 4 d q 2 2 lnz (µ x /T) 2 4 lnz (µ x /T) 4 qq T/T µu =µ d = µu =µ d = Q R 4,2 HRG charge R Q 4,2 = dq 4 d Q 2 SB qq T/T Already for T >.5T c quark number and charge are predominantly carried by states with quantum numbers of quarks See also V. Koch, A. Majumder, J. Randrup (25) Exploration of Hadron Structure and Spectroscopy, Seattle, April, 26 p.23/27

45 Renormalized Polyakov loop ( L ren = exp ) F(r =,T) 2T Defined by long distance behaviour of F(r,T). Renormalized by renormalization of F(r, T) at small distances. F [MeV].76T c.8t c 5.9T c.96t c.t c.2t c.7t c.23t c.5t c.98t c r [fm] 4.T c L ren = ( Z R (g 2 ) ) N t L lattice 5 F [MeV] N f = N f =2 N f = T/T c 4 Exploration of Hadron Structure and Spectroscopy, Seattle, April, 26 p.24/27

46 Renormalized Polyakov loop L ren ( L ren = exp ) F(r =,T) 2T F [MeV].76T c.8t c 5.9T c.96t c.t c.2t c.7t c.23t c.5t c.98t c r [fm] 4.T c F-QCD: N τ =4 SU(3): N τ =4 N τ =8 5 F [MeV] N f = N f =2 N f =3 5 T/T c T/T c 4 Exploration of Hadron Structure and Spectroscopy, Seattle, April, 26 p.24/27

47 Renormalized Polyakov loop ( L ren = exp ) F(r =,T) 2T L ren Quenched QCD: L ren = for T < T c. Finite gap at T c.5 2F-QCD: N τ =4 SU(3): N τ =4 N τ =8 Full QCD: L ren finite for all T. Strong increase near T c. T/T c Exploration of Hadron Structure and Spectroscopy, Seattle, April, 26 p.24/27

48 Renormalized Polyakov loop ( L ren = exp ) F(r =,T) 2T L ren Quenched QCD: L ren = for T < T c. Finite gap at T c.5 2F-QCD: N τ =4 SU(3): N τ =4 N τ =8 Full QCD: L ren finite for all T. Strong increase near T c. Renormalized T/T c Polyakov loop well4defined in quenched and full QCD - non-zero for finite quark mass - strong increase near T c Exploration of Hadron Structure and Spectroscopy, Seattle, April, 26 p.24/27

49 Renormalized Polyakov loop ( L ren = exp ) F(r =,T) 2T.5.5 L ren N τ =4 N τ =8 perturbation theory: L ren (T) approaches high temperature limit from above L ren (T) m D (T) α(t) T T/T c Exploration of Hadron Structure and Spectroscopy, Seattle, April, 26 p.24/27

50 Polyakov loops in higher representations [S. Gupta,K. Hübner,OK] use character property of direct product rep: χ p q (g) = χ p (g)χ q (g) Z(3) symmetry: L D e itφ L D triality (Z(3) charge): t p q mod 3 adjoint link variable [ U D=8] i j := 2 Tr [ U D=3 λ i (U D=3 ) λ j ] D (p,q) t C 2 (r) d D = C D /C F L D (x) 3 (,) 4/3 L 3 6 (2,) 2 /3 5/2 L3 2 L 3 8 (,) 3 9/4 L 3 2 (3,) 6 9/2 L 3 L 6 L 8 5 (2,) 6/3 4 L3 L 6 L 3 5 (4,) 28/3 7 L 3 L L 5 24 (3,) 2 25/3 25/4 L3 L L 6 27 (2,2) 8 6 L 6 2 L 8 Exploration of Hadron Structure and Spectroscopy, Seattle, April, 26 p.25/27

51 Polyakov loops in higher representations [S. Gupta,K. Hübner,OK] perturbation theory: F D (r,t) = C D α s (r) r for rλ QCD renormalization of the Polykov loop: L ren D = ( Z D (g 2 ) ) N τ d D L bare D, i.e. the renormalization constants are related by Casimir [G.Bali, Phys.Rev.D62 (2) 453] 3 2 F sing 8 (r,t)/σ / rσ /2 T/T c d 8 V 3 (T=) Exploration of Hadron Structure and Spectroscopy, Seattle, April, 26 p.25/27

52 Polyakov loops in higher representations [S. Gupta,K. Hübner,OK] perturbation theory: F D (r,t) = C D α s (r) r for rλ QCD renormalization of the Polykov loop: L ren D = ( Z D (g 2 ) ) N τ d D L bare D, i.e. the renormalization constants are related by Casimir [G.Bali, Phys.Rev.D62 (2) 453].6 Z D (g 2 ).5.4 r3 r6 r Exploration of Hadron Structure and Spectroscopy, Seattle, April, 26 p.25/27 g 2

53 Polyakov loops in higher representations [S. Gupta,K. Hübner,OK] Does Casimir scaling hold beyond leading order? Singlet free energies of static quarks in representation D=3,8: F sing D (r,t) T ( = ln TrL ) D (x)l D (y) GF with L D made up of U D=3 and [ U D=8] i j := 2 Tr [ U D=3 λ i (U D=3 ) λ j ].2 F sing D (r,t)/c 2 (D)/T D=8 D=3 rt c T/T c Exploration of Hadron Structure and Spectroscopy, Seattle, April, 26 p.25/27

54 Polyakov loops in higher representations [S. Gupta,K. Hübner,OK] Does Casimir scaling hold beyond leading order? Yes! Even the Polyakov loops are related by Casimir L d L r d D, with d D = C 2 (D)/C 2 (3). This relation holds for bare and renormalized Polykov loops:.6.5 L D bare D=3 D=6 D=8 D= D=5. T/T c Exploration of Hadron Structure and Spectroscopy, Seattle, April, 26 p.25/27

55 Polyakov loops in higher representations [S. Gupta,K. Hübner,OK] Does Casimir scaling hold beyond leading order? Yes! Even the Polyakov loops are related by Casimir L d L r d D, with d D = C 2 (D)/C 2 (3). This relation holds for bare and renormalized Polykov loops:.6 L ren L 3 L 6 L 8 L L 5.2 T/T c Exploration of Hadron Structure and Spectroscopy, Seattle, April, 26 p.25/27

56 Conclusions - Heavy quark free and internal energies Complex r and T dependence Running coupling shows remnants of confinenement above T c Entropy contributions play a role at finite T Separation of entropy and internal energy contributions possible Potential energy larger than free energy - Charmonium in the quark gluon plasma First estimates from potential models Higher dissociation temperature using V (directly produced) J/ψ exist well above T c Exploration of Hadron Structure and Spectroscopy, Seattle, April, 26 p.26/27

57 Outlook - Heavy quark free and internal energies Smaller quark masses Smaller lattice spacing to analyze small r dependence Better understanding of the different contributions - Charmonium in the quark gluon plasma What is the correct V e f f in potential models Full QCD calculations of correlation/spectral functions Relevant processes for charmonium production/dissociation? Exploration of Hadron Structure and Spectroscopy, Seattle, April, 26 p.27/27

Heavy quark free energies, screening and the renormalized Polyakov loop

Heavy quark free energies, screening and the renormalized Polyakov loop Heavy quark free energies, screening and the renormalized Polyakov loop Olaf Kaczmarek Felix Zantow Universität Bielefeld October 6, 26 VI Workshop III, Rathen, October, 26 p./9 Charmonium suppression..75.5

More information

Heavy quark bindings at high temperature

Heavy quark bindings at high temperature Universität Bielefeld Olaf Kaczmarek Felix Zantow Matthias Döring Kay Hübner Frithjof Karsch RBC-Bielefeld Sourendu Gupta February 9, 27 apenext workshop, Firenze, February 9, 27 p.1/25 Machines for lattice

More information

Heavy quark free energies and screening from lattice QCD

Heavy quark free energies and screening from lattice QCD Heavy quark free energies and screening from lattice QCD Olaf Kaczmarek Universität Bielefeld February 9, 29 RBC-Bielefeld collaboration O. Kaczmarek, PoS CPOD7 (27) 43 RBC-Bielefeld, Phys.Rev.D77 (28)

More information

arxiv:hep-lat/ v1 5 Feb 2007

arxiv:hep-lat/ v1 5 Feb 2007 BI-TP 27/1 BNL-NT-7/5 Color Screening and Quark-Quark Interactions in Finite Temperature QCD Matthias Döring, Kay Hübner, Olaf Kaczmarek, and Frithjof Karsch Fakultät für Physik, Universität Bielefeld,

More information

arxiv:hep-lat/ v2 17 Jun 2005

arxiv:hep-lat/ v2 17 Jun 2005 BI-TP 25/8 and BNL-NT-5/8 Static quark anti-quark interactions in zero and finite temperature QCD. I. Heavy quark free energies, running coupling and quarkonium binding Olaf Kaczmarek Fakultät für Physik,

More information

arxiv:hep-lat/ v2 4 Mar 2005

arxiv:hep-lat/ v2 4 Mar 2005 EPJ manuscript No. (will be inserted by the editor) Deconfinement and Quarkonium Suppression Frithjof Karsch,2 a arxiv:hep-lat/524v2 4 Mar 25 Fakultät für Physik, Universität Bielefeld, D-3365 Bielefeld,

More information

Bulk Thermodynamics: What do we (want to) know?

Bulk Thermodynamics: What do we (want to) know? Bulk Thermodynamics: What do we (want to) know? µ = : properties of transition in, ( + 1)-flavor QCD: crossover or phase transition, deconfinement vs. chiral symmetry restoration, universality,... T c,

More information

Deconfinement and Polyakov loop in 2+1 flavor QCD

Deconfinement and Polyakov loop in 2+1 flavor QCD Deconfinement and Polyakov loop in 2+ flavor QCD J. H. Weber in collaboration with A. Bazavov 2, N. Brambilla, H.T. Ding 3, P. Petreczky 4, A. Vairo and H.P. Schadler 5 Physik Department, Technische Universität

More information

Steffen Hauf

Steffen Hauf Charmonium in the QGP Debye screening a' la Matsui & Satz Steffen Hauf 17.01.2008 22. Januar 2008 Fachbereich nn Institut nn Prof. nn 1 Overview (1)Charmonium: an Introduction (2)Rehersion: Debye Screening

More information

LQCD at non-zero temperature : strongly interacting matter at high temperatures and densities Péter Petreczky

LQCD at non-zero temperature : strongly interacting matter at high temperatures and densities Péter Petreczky LQCD at non-zero temperature : strongly interacting matter at high temperatures and densities Péter Petreczky QCD and hot and dense matter Lattice formulation of QCD Deconfinement transition in QCD : EoS

More information

Baryonic Spectral Functions at Finite Temperature

Baryonic Spectral Functions at Finite Temperature Baryonic Spectral Functions at Finite Temperature Masayuki Asakawa Department of Physics, Osaka University July 2008 @ XQCD 2008 QCD Phase Diagram T LHC 160-190 MeV 100MeV ~ 10 12 K RHIC crossover CEP(critical

More information

Quarkonium Free Energy on the lattice and in effective field theories

Quarkonium Free Energy on the lattice and in effective field theories Quarkonium Free Energy on the lattice and in effective field theories J. H. Weber 1,2 in collaboration with A. Bazavov 2, N. Brambilla 1, P. Petreczky 3 and A. Vairo 1 (TUMQCD collaboration) 1 Technische

More information

High Temperature/Density QCD

High Temperature/Density QCD High Temperature/Density QCD Frithjof Karsch, BNL and Bielefeld University Temperature ~17 MeV Early Universe Future LHC Experiments Crossover Current RHIC Experiments RHIC Energy Scan Critical Point 1

More information

Quark Gluon Plasma. Rajiv V. Gavai T. I. F. R., Mumbai. Workshop on LHC Physics 2006, T. I. F. R., Mumbai, September 7, 2006 R. V.

Quark Gluon Plasma. Rajiv V. Gavai T. I. F. R., Mumbai. Workshop on LHC Physics 2006, T. I. F. R., Mumbai, September 7, 2006 R. V. Quark Gluon Plasma Rajiv V. Gavai T. I. F. R., Mumbai Workshop on LHC Physics 2006, T. I. F. R., Mumbai, September 7, 2006 R. V. Gavai Top 1 Quark Gluon Plasma Rajiv V. Gavai T. I. F. R., Mumbai Introduction

More information

Disintegration of quarkonia in QGP due to time dependent potential

Disintegration of quarkonia in QGP due to time dependent potential Disintegration of quarkonia in QGP due to time dependent potential Partha Bagchi Institute Of Physics December 9, 2014 XXI DAE-BRNS High Energy Physics Symposium 2014, 8-12 December 2014, IIT Guwahati,

More information

The ALICE experiment at LHC. Experimental conditions at LHC The ALICE detector Some physics observables Conclusions

The ALICE experiment at LHC. Experimental conditions at LHC The ALICE detector Some physics observables Conclusions The ALICE experiment at LHC Experimental conditions at LHC The ALICE detector Some physics observables Conclusions ALICE @ LHC PbPb collisions at 1150 TeV = 0.18 mj Experimental conditions @LHC 2007 start

More information

arxiv:hep-lat/ v1 5 Oct 2006

arxiv:hep-lat/ v1 5 Oct 2006 arxiv:hep-lat/6141v1 5 Oct 26 Singlet Free Energies and the Renormalized Polyakov Loop in full QCD for RBC-Bielefeld collaboration Niels Bohr Institute E-mail: kpetrov@nbi.dk We calculate the free energy

More information

arxiv: v1 [hep-lat] 26 Dec 2009

arxiv: v1 [hep-lat] 26 Dec 2009 arxiv:091.5037v1 [hep-lat] 6 Dec 009 On Equation of State at physical quark masses Physics Department, Brookhaven National Laboratory, Upton NY 11973 E-mail: petreczk@bnl.gov QCD equation of state is calculated

More information

Bottomonium melting at T >> Tc. Pedro Bicudo CFTP, IST, Lisboa

Bottomonium melting at T >> Tc. Pedro Bicudo CFTP, IST, Lisboa Bottomonium melting at T >> Tc Pedro Bicudo CFTP, IST, Lisboa Motivation The finite T string tension The quark mass gap equation with finite T and finite quark mass Chiral symmetry and confinement crossovers

More information

A prediction from string theory, with strings attached

A prediction from string theory, with strings attached A prediction from string theory, with strings attached Hong Liu Massachusetts Institute of Technology HL, Krishna Rajagopal, Urs. Wiedemann hep-ph/0607062, hep-ph/0612168 Qudsia Ejaz, Thomas Faulkner,

More information

Deconfinement at high temperatures and moderately high baryon densities Péter Petreczky

Deconfinement at high temperatures and moderately high baryon densities Péter Petreczky Deconfinement at high temperatures and moderately high baryon densities Péter Petreczky What is the limiting temperature on hadronic matter? What is the nature of the deconfined matter? In this talk: Chiral

More information

Lecture II: Owe Philipsen. The ideal gas on the lattice. QCD in the static and chiral limit. The strong coupling expansion at finite temperature

Lecture II: Owe Philipsen. The ideal gas on the lattice. QCD in the static and chiral limit. The strong coupling expansion at finite temperature Lattice QCD, Hadron Structure and Hadronic Matter Dubna, August/September 2014 Lecture II: Owe Philipsen The ideal gas on the lattice QCD in the static and chiral limit The strong coupling expansion at

More information

The Chiral and Deconfinement Phase Transitions in Strongly-Interacting Matter

The Chiral and Deconfinement Phase Transitions in Strongly-Interacting Matter The Chiral and Deconfinement Phase Transitions in Strongly-Interacting Matter in collaboration with: B-J. Schaefer & J. Wambach Schaefer, MW: PRD 79 (1418) arxiv: 812.2855 [hep-ph] 9.3.29 Mathias Wagner

More information

The interplay of flavour- and Polyakov-loop- degrees of freedom

The interplay of flavour- and Polyakov-loop- degrees of freedom The interplay of flavour- and Polyakov-loopdegrees of freedom A PNJL model analysis Simon Rößner, Nino Bratović, Thomas Hell and Wolfram Weise Physik Department Technische Universität München Thursday,

More information

F. Karsch for USQCD, LQCD II p. 1/27. Lattice QCD at High Temperature and Density. Frithjof Karsch for USQCD Brookhaven National Laboratory

F. Karsch for USQCD, LQCD II p. 1/27. Lattice QCD at High Temperature and Density. Frithjof Karsch for USQCD Brookhaven National Laboratory F. Karsch for USQCD, LQCD II p. 1/27 Lattice QCD at High Temperature and Density Frithjof Karsch for USQCD Brookhaven National Laboratory F. Karsch for USQCD, LQCD II p. 2/27 Towards A New State of Matter

More information

SUNY Stony Brook August 16, Wolfram Weise. with. Thomas Hell Simon Rössner Claudia Ratti

SUNY Stony Brook August 16, Wolfram Weise. with. Thomas Hell Simon Rössner Claudia Ratti SUNY Stony Brook August 16, 27 PHASES of QCD POLYAKOV LOOP and QUASIPARTICLES Wolfram Weise with Thomas Hell Simon Rössner Claudia Ratti C. Ratti, M. Thaler, W. Weise: Phys. Rev. D 73 (26) 1419 C. Ratti,

More information

Heavy flavor with

Heavy flavor with Heavy flavor with CBM@FAIR Hendrik van Hees Goethe University Frankfurt and FIAS April 21, 2015 Hendrik van Hees (GU Frankfurt/FIAS) Heavy flavor with CBM@FAIR April 21, 2015 1 / 22 Outline 1 Motivation:

More information

The Quark-Gluon plasma in the LHC era

The Quark-Gluon plasma in the LHC era The Quark-Gluon plasma in the LHC era Journées de prospective IN2P3-IRFU, Giens, Avril 2012 t z IPhT, Saclay 1 Quarks and gluons Strong interactions : Quantum Chromo-Dynamics Matter : quarks ; Interaction

More information

Fluctuations, Correlations and bound states in the QGP

Fluctuations, Correlations and bound states in the QGP Fluctuations, Correlations and bound states in the QGP Introduction BS correlations Some speculations Work in collaboration with: A. Majumder and J. Randrup Phase diagram Z. Fodor et al., PLB Susceptibilities

More information

Lattice calculation of static quark correlators at finite temperature

Lattice calculation of static quark correlators at finite temperature Lattice calculation of static quark correlators at finite temperature J. Weber in collaboration with A. Bazavov 2, N. Brambilla, M.Berwein, P. Petrezcky 3 and A. Vairo Physik Department, Technische Universität

More information

Heavy Mesonic Spectral Functions at Finite Temperature and Finite Momentum

Heavy Mesonic Spectral Functions at Finite Temperature and Finite Momentum Heavy Mesonic Spectral Functions at Finite Temperature and Finite Momentum Masayuki Asakawa Department of Physics, Osaka University September 2011 @ EMMI Workshop QCD Phase Diagram T LHC RHIC QGP (quark-gluon

More information

Quarkonia physics in Heavy Ion Collisions. Hugo Pereira Da Costa CEA/IRFU Rencontres LHC France Friday, April

Quarkonia physics in Heavy Ion Collisions. Hugo Pereira Da Costa CEA/IRFU Rencontres LHC France Friday, April Quarkonia physics in Heavy Ion Collisions Hugo Pereira Da Costa CEA/IRFU Rencontres LHC France Friday, April 5 2013 1 2 Contents Introduction (QGP, Heavy Ion Collisions, Quarkonia) Quarkonia at the SPS

More information

Weakly coupled QGP? Péter Petreczky

Weakly coupled QGP? Péter Petreczky Weakly coupled QGP? Péter Petreczky QGP is expected to be strongly coupled around T c : how does this features manifest itself in terms of different quantities, how do we observe it on lattice? QGP: state

More information

MD Simulations of classical sqgp

MD Simulations of classical sqgp MD Simulations of classical sqgp From RHIC to LHC: Achievements and Opportunities Tuesday, November 7, 2006 Kevin Dusling Ismail Zahed Outline Introduction Motivation for sqgp Motivation for classical

More information

Can we locate the QCD critical endpoint with a Taylor expansion?

Can we locate the QCD critical endpoint with a Taylor expansion? Can we locate the QCD critical endpoint with a Taylor expansion? Bernd-Jochen Schaefer Karl-Franzens-Universität Graz, Austria 7 th February - 6 th March, 1 48. Internationale Universitätswochen für Theoretische

More information

QCD confinement and chiral crossovers, two critical points?

QCD confinement and chiral crossovers, two critical points? QCD confinement and chiral crossovers, two critical points? CFTP, Dep. Física, Instituto Superior Técnico, Av. Rovisco Pais, 1049-001 Lisboa, Portugal E-mail: bicudo@ist.utl.pt We study the QCD phase diagram,

More information

Pions in the quark matter phase diagram

Pions in the quark matter phase diagram Pions in the quark matter phase diagram Daniel Zabłocki Instytut Fizyki Teoretycznej, Uniwersytet Wrocławski, Poland Institut für Physik, Universität Rostock, Germany Bogoliubov Laboratory of Theoretical

More information

Static quark correlators on the 2+1 flavor TUMQCD lattices

Static quark correlators on the 2+1 flavor TUMQCD lattices Static quark correlators on the 2+1 flavor TUMQCD lattices J. H. Weber 1 in collaboration with A. Bazavov 2, N. Brambilla 1, P. Petreczky 3 and A. Vairo 1 (TUMQCD collaboration) 1 Technische Universität

More information

J/Ψ-suppression in the hadron resonance gas

J/Ψ-suppression in the hadron resonance gas J/Ψ-suppression in the hadron resonance gas Dariusz Prorok Institute of Theoretical Physics University of Wroc law Wroc law, 17 February 2014 HECOLS workshop and XXXII Max-Born Symposium Dariusz Prorok

More information

Q a u r a k k m a m t a t t e t r e p r p ob o e b d e d b y b y di d l i e l p e t p o t n o s

Q a u r a k k m a m t a t t e t r e p r p ob o e b d e d b y b y di d l i e l p e t p o t n o s Quark matter probed by dileptons Olena Linnyk July 02, 2010 Information from photons and dileptons 14 12 10 ε/t 4 8 6 4 2 Lattice QCD: µ B =0 µ B =530 MeV 0 0.5 1.0 1.5 2.0 2.5 3.0 T/T c But what are the

More information

Dimensional reduction near the deconfinement transition

Dimensional reduction near the deconfinement transition Dimensional reduction near the deconfinement transition Aleksi Kurkela ETH Zürich Wien 27.11.2009 Outline Introduction Dimensional reduction Center symmetry The deconfinement transition: QCD has two remarkable

More information

Ultra-relativistic nuclear collisions and Production of Hot Fireballs at SPS/RHIC

Ultra-relativistic nuclear collisions and Production of Hot Fireballs at SPS/RHIC Ultra-relativistic nuclear collisions and Production of Hot Fireballs at SPS/RHIC Benjamin Dönigus 03.12.2009 Seminar WS 2009/2010 Relativistische Schwerionenphysik Interface of Quark-Gluon Plasma and

More information

The strange degrees of freedom in QCD at high temperature. Christian Schmidt

The strange degrees of freedom in QCD at high temperature. Christian Schmidt The strange degrees of freedom in QCD at high temperature Christian Schmidt Christian Schmidt LAT 213 1 Abstract We use up to fourth order cumulants of net strangeness fluctuations and their correlations

More information

Disintegration of quarkonia in QGP due to time dependent potential

Disintegration of quarkonia in QGP due to time dependent potential Disintegration of quarkonia in QGP due to time dependent potential and Ajit M. Srivastava Institute of Physics Bhubaneswar, India, 71 E-mail: parphy8@gmail.com, ajit@iopb.res.in Rapid thermalization in

More information

Cold and dense QCD matter

Cold and dense QCD matter Cold and dense QCD matter GCOE sympodium Feb. 15, 2010 Yoshimasa Hidaka Quantum ChromoDynamics Atom Electron 10-10 m Quantum ChromoDynamics Atom Nucleon Electron 10-10 m 10-15 m Quantum ElectroDynamics

More information

from Taylor expansion at non-zero density From Lattices to Stars INT, University of Washington, Seattle, 28. April 2004

from Taylor expansion at non-zero density From Lattices to Stars INT, University of Washington, Seattle, 28. April 2004 The chiral critical point in 3 flavor QCD from Taylor expansion at non-zero density From Lattices to Stars INT, University of Washington, Seattle, 28. April 2004 Christian Schmidt Universität Wuppertal

More information

A NEARLY PERFECT INK: The quest for the quark-gluon plasma at the Relativistic Heavy Ion Collider

A NEARLY PERFECT INK: The quest for the quark-gluon plasma at the Relativistic Heavy Ion Collider A NEARLY PERFECT INK: The quest for the quark-gluon plasma at the Relativistic Heavy Ion Collider Berndt Mueller (Duke University) LANL Theory Colloquium 2 June 2005 The Road to the Quark-Gluon Plasma

More information

Heavy Probes in Heavy-Ion Collisions Theory Part IV

Heavy Probes in Heavy-Ion Collisions Theory Part IV Heavy Probes in Heavy-Ion Collisions Theory Part IV Hendrik van Hees Justus-Liebig Universität Gießen August 31-September 5, 21 Institut für Theoretische Physik JUSTUS-LIEBIG- UNIVERSITÄT GIESSEN Hendrik

More information

Heavy-Quark Transport in the QGP

Heavy-Quark Transport in the QGP Heavy-Quark Transport in the QGP Hendrik van Hees Goethe-Universität Frankfurt November 9, 211 Hendrik van Hees (GU Frankfurt) Heavy-Quark Transport November 9, 211 1 / 19 Motivation Fast equilibration

More information

The Phases of QCD. Thomas Schaefer. North Carolina State University

The Phases of QCD. Thomas Schaefer. North Carolina State University The Phases of QCD Thomas Schaefer North Carolina State University 1 Motivation Different phases of QCD occur in the universe Neutron Stars, Big Bang Exploring the phase diagram is important to understanding

More information

Color screening in 2+1 flavor QCD

Color screening in 2+1 flavor QCD Color screening in 2+1 flavor QCD J. H. Weber 1 in collaboration with A. Bazavov 2, N. Brambilla 1, P. Petreczky 3 and A. Vairo 1 (TUMQCD collaboration) 1 Technische Universität München 2 Michigan State

More information

The Flavors of the Quark-Gluon Plasma

The Flavors of the Quark-Gluon Plasma The Flavors of the Quark-Gluon Plasma Berndt Mueller SQM 2008 - October 6-10, 2008 The QGP is a strange state of matter 2 QCD phase diagram T Quark- Gluon Critical end point? Plasma Strange quarks play

More information

Thermodynamics. Quark-Gluon Plasma

Thermodynamics. Quark-Gluon Plasma Thermodynamics of the Quark-Gluon Plasma Claudia Ratti Torino University and INFN, Italy Claudia Ratti 1 Quick review of thermodynamics In lectures I and II we saw... QCD and its symmetries Polyakov loop

More information

arxiv: v1 [hep-lat] 10 Oct 2015

arxiv: v1 [hep-lat] 10 Oct 2015 BI-TP /6 A stochastic approach to the reconstruction of spectral functions in lattice QCD arxiv:.9v [hep-lat] Oct, Heng-Tong Ding Key Laboratory of Quark & Lepton Physics (MOE) and Institute of Particle

More information

Flavor quark at high temperature from a holographic Model

Flavor quark at high temperature from a holographic Model Flavor quark at high temperature from a holographic Model Ghoroku (Fukuoka Institute of Technology) Sakaguchi (Kyushu University) Uekusa (Kyushu University) Yahiro (Kyushu University) Hep-th/0502088 (Phys.Rev.D71:106002,2005

More information

QCD in Heavy-ion collisions

QCD in Heavy-ion collisions QCD in Heavy-ion collisions RPP 2012, Montpellier transition t p z q IPhT, Saclay 1 Outline 1 2 3 4 5 6 7 transition 2 1 transition 2 3 4 5 6 transition 7 2 Asymptotic freedom Running coupling : α s =

More information

QGP Thermodynamics and Phase Transitions. Mahnaz Q. Haseeb Department of Physics CIIT, Islamabad

QGP Thermodynamics and Phase Transitions. Mahnaz Q. Haseeb Department of Physics CIIT, Islamabad QGP Thermodynamics and Phase Transitions Mahnaz Q. Haseeb Department of Physics CIIT, Islamabad Outline Thermodynamics in QGP What are the phase transitions? Order of the phase transition Where to study

More information

Equation of state. Pasi Huovinen Uniwersytet Wroc lawski. Collective Flows and Hydrodynamics in High Energy Nuclear Collisions

Equation of state. Pasi Huovinen Uniwersytet Wroc lawski. Collective Flows and Hydrodynamics in High Energy Nuclear Collisions Equation of state Pasi Huovinen Uniwersytet Wroc lawski Collective Flows and Hydrodynamics in High Energy Nuclear Collisions Dec 14, 2016, University of Science and Technology of China, Hefei, China The

More information

SYMMETRY BREAKING PATTERNS in QCD: CHIRAL and DECONFINEMENT Transitions

SYMMETRY BREAKING PATTERNS in QCD: CHIRAL and DECONFINEMENT Transitions QCD Green s Functions, Confinement and Phenomenology ECT*, Trento, 1 September 29 SYMMETRY BREAKING PATTERNS in QCD: CHIRAL and DECONFINEMENT Transitions Wolfram Weise Modelling the PHASES of QCD in contact

More information

Quark Model of Hadrons

Quark Model of Hadrons Quark Model of Hadrons mesons baryons symmetric antisymmetric mixed symmetry Quark Model of Hadrons 2 Why do quarks have color? ground state baryons orbital wave function = symmetic with L=0 SU(3) f x

More information

Quarkonium as Probe of Hot QCD Medium. Ágnes Mócsy

Quarkonium as Probe of Hot QCD Medium. Ágnes Mócsy Quarkonium as Probe of Hot QCD Medium Ágnes Mócsy Quarkonium as Probe of Hot QCD Medium Ágnes Mócsy in collaboration with Peter Petreczky (BNL), Chuan Miao (Uni Mainz) QCD Expectations - Temperature effects

More information

The Phases of QCD. Thomas Schaefer. North Carolina State University

The Phases of QCD. Thomas Schaefer. North Carolina State University The Phases of QCD Thomas Schaefer North Carolina State University 1 Plan of the lectures 1. QCD and States of Matter 2. The High Temperature Phase: Theory 3. Exploring QCD at High Temperature: Experiment

More information

arxiv:hep-lat/ v1 22 Sep 2004

arxiv:hep-lat/ v1 22 Sep 2004 BNL-NT-4/32 QCD Thermodynamics on lattice P. Petreczky a a Physics Department and RIKEN-BNL, Brookhaven National Laboratory, Upton, NY 11973 USA arxiv:hep-lat/49139v1 22 Sep 24 I discuss recent developments

More information

POLYAKOV LOOP FLUCTUATIONS AND DECONFINEMENT IN THE LIMIT OF HEAVY QUARKS P. M. Lo 1,, K. Redlich 1, C. Sasaki 1,2

POLYAKOV LOOP FLUCTUATIONS AND DECONFINEMENT IN THE LIMIT OF HEAVY QUARKS P. M. Lo 1,, K. Redlich 1, C. Sasaki 1,2 ˆ ˆŠ Œ ˆ ˆ Œ ƒ Ÿ 2015.. 46.. 5 POLYAKOV LOOP FLUCTUATIONS AND DECONFINEMENT IN THE LIMIT OF HEAVY QUARKS P. M. Lo 1,, K. Redlich 1, C. Sasaki 1,2 1 Institute of Theoretical Physics, University of Wroclaw,

More information

Thermodynamics of (2+1)-flavor QCD from the lattice

Thermodynamics of (2+1)-flavor QCD from the lattice INT Seattle, December 7, 2006 Thermodynamics of (2+1)-flavor QCD from the lattice Christian Schmidt for the RBC-Bielefeld Collaboration --- results from QCDOC --RIKEN BNL Saumen Datta Frithjof Karsch Chulwoo

More information

Possible Color Octet Quark-Anti-Quark Condensate in the. Instanton Model. Abstract

Possible Color Octet Quark-Anti-Quark Condensate in the. Instanton Model. Abstract SUNY-NTG-01-03 Possible Color Octet Quark-Anti-Quark Condensate in the Instanton Model Thomas Schäfer Department of Physics, SUNY Stony Brook, Stony Brook, NY 11794 and Riken-BNL Research Center, Brookhaven

More information

Low mass dileptons from Pb + Au collisions at 158 A GeV

Low mass dileptons from Pb + Au collisions at 158 A GeV PRAMANA cfl Indian Academy of Sciences Vol. 60, No. 5 journal of May 2003 physics pp. 1073 1077 Low mass dileptons from Pb + Au collisions at 158 A GeV SOURAV SARKAR 1, JAN-E ALAM 2;Λ and T HATSUDA 2 1

More information

Charm production in AA collisions

Charm production in AA collisions Charm production in AA collisions François Gelis and CEA/Saclay François Gelis 2008 Initial conditions in Heavy Ion Collisions, Goa, September 2008 - p. 1 François Gelis 2008 Initial conditions in Heavy

More information

The Phase Structure of the Polyakov Quark-Meson Model beyond Mean Field

The Phase Structure of the Polyakov Quark-Meson Model beyond Mean Field The Phase Structure of the Polyakov Quark-Meson Model beyond Mean Field Tina Katharina Herbst In Collaboration with B.-J. Schaefer and J.M. Pawlowski arxiv: 18.81 [hep-ph] (to appear in Phys. Lett. B)

More information

Charmonium Production and the Quark Gluon Plasma

Charmonium Production and the Quark Gluon Plasma Charmonium Production and the Quark Gluon Plasma introductory remarks on charmonium and QGP discussion of time scales and open charm conservation equation remarks on 'cold nuclear matter effects' the statistical

More information

Heavy quarkonium in a weaky-coupled plasma in an EFT approach

Heavy quarkonium in a weaky-coupled plasma in an EFT approach Heavy quarkonium in a weaky-coupled plasma in an EFT approach Jacopo Ghiglieri TU München & Excellence Cluster Universe in collaboration with N. Brambilla, M.A. Escobedo, J. Soto and A. Vairo 474th WE

More information

QCD and Instantons: 12 Years Later. Thomas Schaefer North Carolina State

QCD and Instantons: 12 Years Later. Thomas Schaefer North Carolina State QCD and Instantons: 12 Years Later Thomas Schaefer North Carolina State 1 ESQGP: A man ahead of his time 2 Instanton Liquid: Pre-History 1975 (Polyakov): The instanton solution r 2 2 E + B A a µ(x) = 2

More information

arxiv:hep-lat/ v2 13 Oct 1998

arxiv:hep-lat/ v2 13 Oct 1998 Preprint numbers: BI-TP 98/15 UUHEP 98/3 String Breaking in Lattice Quantum Chromodynamics Carleton DeTar Department of Physics, University of Utah Salt Lake City, UT 84112, USA arxiv:hep-lat/9808028v2

More information

Outlook: 1) Hard probes: definitions. 2) High p T hadrons. 3) Heavy Flavours

Outlook: 1) Hard probes: definitions. 2) High p T hadrons. 3) Heavy Flavours 5 th International School on QGP and Heavy Ions Collisions: past, present and future Torino, 5-12 March 2011 1 Outlook: 1) Hard probes: definitions 2) High p T hadrons 3) Heavy Flavours 4) Quarkonia 1)

More information

Helmut Satz Fakultät für Physik, Universität Bielefeld, D Bielefeld, Germany and Theory Division, CERN, CH-1211 Geneva 23, Switzerland

Helmut Satz Fakultät für Physik, Universität Bielefeld, D Bielefeld, Germany and Theory Division, CERN, CH-1211 Geneva 23, Switzerland CERN-TH/96-172 BI-TP 96/25 COLOUR DECONFINEMENT IN HOT AND DENSE MATTER arxiv:hep-ph/9611366v1 19 Nov 1996 Helmut Satz Fakultät für Physik, Universität Bielefeld, D-33501 Bielefeld, Germany and Theory

More information

arxiv:hep-ph/ v1 9 Jul 1997

arxiv:hep-ph/ v1 9 Jul 1997 The p T Distribution of J/ψ in QGP Xiao-Fei Zhang a, Han-Wen Huang b, Xue-Qian Li c,d, and Wei-Qin Chao a,c arxiv:hep-ph/9707288v1 9 Jul 1997 a Institute of High Energy Physics, Academia Sinica, P.O.Box

More information

PHY397K - NUCLEAR PHYSICS - 2

PHY397K - NUCLEAR PHYSICS - 2 PHY397K - NUCLEAR PHYSICS - 2 PHY397K - NUCLEAR PHYSICS Spring 2015, Unique numbers: 57115 RLM 5.116, TTH 12:30-2:00 pm Christina Markert Office: RLM: 10.305 Phone: 512 471 8834 Email: cmarkert@physics.utexas.edu

More information

Heavy Quarks in Heavy-Ion Collisions

Heavy Quarks in Heavy-Ion Collisions Heavy Quarks in Heavy-Ion Collisions Hendrik van Hees with T. Lang, J. Steinheimer, M. Bleicher Goethe University Frankfurt and FIAS July 18, 213 Hendrik van Hees (GU Frankfurt/FIAS) Heavy Quarks in HICs

More information

WIMP Dark Matter and the QCD Equation of State

WIMP Dark Matter and the QCD Equation of State Doktoratskolleg Graz Karl-Franzens-Universität, May 2006 WIMP Dark Matter and the QCD Equation of State Owe Philipsen Universität Münster Motivation + overview Cosmology I: expansion and contents of the

More information

arxiv: v1 [hep-lat] 5 Nov 2007

arxiv: v1 [hep-lat] 5 Nov 2007 arxiv:0711.0661v1 [hep-lat] 5 Nov 2007 Recent lattice results on finite temperature and density QCD, part II Physics Department, Brookhaven National Laboratory, Upton, NY 11973, USA E-mail: karsch@bnl.gov

More information

Fluctuations of Conserved Charges

Fluctuations of Conserved Charges Fluctuations of Conserved Charges Theory, Experiment, and Lattice Masakiyo Kitazawa (Osaka U.) KEK, 2014/Jan./20 QCD @ nonzero T Theory (Motivation) QCD @ nonzero T Lattice Heavy Ion Collisions QCD @ nonzero

More information

Critical Behavior of heavy quarkonia in medium from QCD sum rules

Critical Behavior of heavy quarkonia in medium from QCD sum rules Critical Behavior of heavy quarkonia in medium from QCD sum rules Kenji Morita Institute of Physics and Applied Physics, Yonsei University in Collaboration with Su Houng Lee Aim of this talk: 1. Practical

More information

G 2 QCD Neutron Star. Ouraman Hajizadeh in collaboration with Axel Maas. November 30, 2016

G 2 QCD Neutron Star. Ouraman Hajizadeh in collaboration with Axel Maas. November 30, 2016 G 2 QCD Neutron Star Ouraman Hajizadeh in collaboration with Axel Maas November 30, 2016 Motivation Why Neutron Stars? Neutron Stars: Laboratory of Strong Interaction Dense Objects: Study of strong interaction

More information

Scalar-pseudoscalar meson spectrum in SU(3) PNJL model

Scalar-pseudoscalar meson spectrum in SU(3) PNJL model Scalar-pseudoscalar meson spectrum in SU(3) model E.S.T.G., Instituto Politécnico de Leiria, Morro do Lena-Alto do Vieiro, 2411-901 Leiria, Portugal E-mail: pcosta@teor.fis.uc.pt M. C. Ruivo E-mail: maria@teor.fis.uc.pt

More information

Lattice based Equation(s) of State and its (their) effect(s) on the hydrodynamical evolution

Lattice based Equation(s) of State and its (their) effect(s) on the hydrodynamical evolution Lattice based Equation(s) of State and its (their) effect(s) on the hydrodynamical evolution Pasi Huovinen J. W. Goethe Universität, Frankfurt Quantifying the properties of Hot QCD matter June 11, 1, Institute

More information

Collisional energy loss in the sqgp

Collisional energy loss in the sqgp Parton propagation through Strongly interacting Systems ECT, Trento, September 005 Collisional energy loss in the sqgp André Peshier Institute for Theoretical Physics, Giessen University, Germany Bjorken

More information

Beijing. Charmed hadron signals of partonic medium. Olena Linnyk

Beijing. Charmed hadron signals of partonic medium. Olena Linnyk Beijing Charmed hadron signals of partonic medium Olena Linnyk Our goal properties of partonic matter Hadron-string models Experiment QGP models Observables Hadron abundances J/Ψ anomalous suppression

More information

Phase diagram and EoS from a Taylor expansion of the pressure

Phase diagram and EoS from a Taylor expansion of the pressure he XXVI International Symposium on Lattice Field heory (Lattice 28), Williamsburg, Virginia, USA, 28 July 14 19. Phase diagram and EoS from a aylor expansion of the pressure Christian Schmidt Universität

More information

Quarkonia Production and Dissociation in a Langevin Approach

Quarkonia Production and Dissociation in a Langevin Approach proceedings Proceedings Quarkonia Production and Dissociation in a Langevin Approach Nadja Krenz 1, Hendrik van Hees 1 and Carsten Greiner 1, * Institut für Theoretische Physik, Goethe-Universität Frankfurt,

More information

Role of fluctuations in detecting the QCD phase transition

Role of fluctuations in detecting the QCD phase transition Role of fluctuations in detecting the QCD phase transition Fluctuations of the Polyakov loop and deconfinement in a pure SU(N) gauge theory and in QCD Fluctuations of conserved charges as probe for the

More information

The Beam Energy Scan at RHIC

The Beam Energy Scan at RHIC 2013 ICNT Program @ FRIB, MSU July 31, 2013 The Beam Energy Scan at RHIC Jinfeng Liao Indiana University, Physics Dept. & CEEM RIKEN BNL Research Center 1 Outline Brief Intro: High Energy Heavy Ion Collisions

More information

arxiv:hep-ph/ v1 6 Feb 1997

arxiv:hep-ph/ v1 6 Feb 1997 BI-TP 97/02 The Transverse Momentum Dependence of Anomalous J/ψ Suppression arxiv:hep-ph/9702273v1 6 Feb 1997 D. Kharzeev, M. Nardi and H. Satz Fakultät für Physik, Universität Bielefeld D-33501 Bielefeld,

More information

arxiv: v1 [hep-lat] 24 Oct 2013

arxiv: v1 [hep-lat] 24 Oct 2013 arxiv:30.646v [hep-lat] 24 Oct 203 Lattice NRQCD study of in-medium bottomonium states using N f = 2+,48 3 2 HotQCD configurations Department of Physics, Sejong University, Seoul 43-747, Korea E-mail:

More information

Probing the QCD phase diagram with higher moments

Probing the QCD phase diagram with higher moments Probing the QCD phase diagram with higher moments in collaboration with: F. Karsch B.-J. Schaefer A. Walther J. Wambach Outline Why higher moments? Algorithmic differentiation Lattice Taylor expansion

More information

Center-symmetric dimensional reduction of hot Yang-Mills theory

Center-symmetric dimensional reduction of hot Yang-Mills theory Center-symmetric dimensional reduction of hot Yang-Mills theory Aleksi Kurkela, Univ. of Helsinki Lattice 2008 arxiv:0704.1416, arxiv:0801.1566 with Philippe de Forcrand and Aleksi Vuorinen Aleksi Kurkela,Univ.

More information

QCD Thermodynamics Péter Petreczky

QCD Thermodynamics Péter Petreczky QCD Thermodynamics Péter Petreczky What is deconfinement in QCD? What is the nature of the deconfined matter? Tools: screening of color charges, EoS, fluctuation of conserved quantum numbers QGP: state

More information

Lepton and Charm Measurements in the First Two Years of RHIC: An Experimental Overview

Lepton and Charm Measurements in the First Two Years of RHIC: An Experimental Overview Lepton and Charm Measurements in the First Two Years of RHIC: An Experimental Overview Ralf Averbeck State University of New York at Stony Brook INT/RHIC Winter Workshop, Seattle, December 13-15, 2002

More information

Quark-Gluon Plasma and Relativistic Heavy Ion Collisions

Quark-Gluon Plasma and Relativistic Heavy Ion Collisions June 23-25, Bautzen, Quark-Gluon Plasma and Relativistic Heavy Ion Collisions G.Zinovjev Bogolyubov Institute for Theoretical Physics, Kiev, UKRAINE High energy density physics E.Teller, Ya.Zeldovich 4

More information

Lecture 9 Valence Quark Model of Hadrons

Lecture 9 Valence Quark Model of Hadrons Lecture 9 Valence Quark Model of Hadrons Isospin symmetry SU(3) flavour symmetry Meson & Baryon states Hadronic wavefunctions Masses and magnetic moments Heavy quark states 1 Isospin Symmetry Strong interactions

More information

Volume Effect of Bound States in Quark-Gluon Plasma

Volume Effect of Bound States in Quark-Gluon Plasma Commun. Theor. Phys. (Beijing, China) 46 (2006) pp. 1040 1046 c International Academic Publishers Vol. 46, No. 6, December 15, 2006 Volume Effect of Bound States in Quark-Gluon Plasma MIAO Hong, 1 GAO

More information