Heavy quarkonium in a weaky-coupled plasma in an EFT approach

Size: px
Start display at page:

Download "Heavy quarkonium in a weaky-coupled plasma in an EFT approach"

Transcription

1 Heavy quarkonium in a weaky-coupled plasma in an EFT approach Jacopo Ghiglieri TU München & Excellence Cluster Universe in collaboration with N. Brambilla, M.A. Escobedo, J. Soto and A. Vairo 474th WE Heraeus Seminar, Bad Honnef, February 5th 20

2 Outline Quarkonium in media: the EFT approach Building blocks: non-relativistic EFTs at zero temperature and the real-time formalism Integrating out in succession the relevant scales and calculating the spectrum and width of quarkonium Conclusions and outlook

3 The structure: Charmonium dissociation at SPS and RHIC Quarkonium suppression In!In, SPS Pb!Pb, SPS Au!Au, RHIC, y < 0.35 Au!Au, RHIC, y =[.2,2.2] 0.25 {ψ/ncoll (AB)} / {ψ/ncoll (pp)} Experimental data show a suppression pattern S(J/!) 2 3 " (GeV/fm 3) PHENIX d-au y=0 0.4 PHENIX Au-Au y=0 (preliminary) NA38 S-U 200 GeV ycms=0.5 NA50 Pb-Pb 58 GeV ycms= NA60 In-In 58 GeV ycms=0.5 (preliminary) Npart

4 The structure: Charmonium dissociation at SPS and RHIC Quarkonium suppression A good understanding of suppression requires understanding of In!In, SPS Pb!Pb, SPS Au!Au, RHIC, y < 0.35 Au!Au, RHIC, y =[.2,2.2] 0.25 {ψ/ncoll (AB)} / {ψ/ncoll (pp)} Experimental data show a suppression pattern S(J/!) 2 3 " (GeV/fm 3) PHENIX d-au y=0 0.4 PHENIX Au-Au y=0 (preliminary) NA38 S-U 200 GeV ycms=0.5 NA50 Pb-Pb 58 GeV ycms= NA60 In-In 58 GeV ycms=0.5 (preliminary) Npart

5 The structure: Charmonium dissociation at SPS and RHIC Quarkonium suppression A good understanding of suppression requires understanding of In-medium production and cold nuclear matter effects In!In, SPS Pb!Pb, SPS Au!Au, RHIC, y < 0.35 Au!Au, RHIC, y =[.2,2.2] 0.25 {ψ/ncoll (AB)} / {ψ/ncoll (pp)} Experimental data show a suppression pattern S(J/!) 2 3 " (GeV/fm 3) PHENIX d-au y=0 0.4 PHENIX Au-Au y=0 (preliminary) NA38 S-U 200 GeV ycms=0.5 NA50 Pb-Pb 58 GeV ycms= NA60 In-In 58 GeV ycms=0.5 (preliminary) Npart

6 The structure: Charmonium dissociation at SPS and RHIC Quarkonium suppression A good understanding of suppression requires understanding of In-medium production and cold nuclear matter effects In-medium bound-state dynamics In!In, SPS Pb!Pb, SPS Au!Au, RHIC, y < 0.35 Au!Au, RHIC, y =[.2,2.2] 0.25 {ψ/ncoll (AB)} / {ψ/ncoll (pp)} Experimental data show a suppression pattern S(J/!) 2 3 " (GeV/fm 3) PHENIX d-au y=0 0.4 PHENIX Au-Au y=0 (preliminary) NA38 S-U 200 GeV ycms=0.5 NA50 Pb-Pb 58 GeV ycms= NA60 In-In 58 GeV ycms=0.5 (preliminary) Npart

7 The structure: Charmonium dissociation at SPS and RHIC Quarkonium suppression A good understanding of suppression requires understanding of In-medium production and cold nuclear matter effects In-medium bound-state dynamics In!In, SPS Pb!Pb, SPS Au!Au, RHIC, y < 0.35 Au!Au, RHIC, y =[.2,2.2] 0.25 {ψ/ncoll (AB)} / {ψ/ncoll (pp)} Experimental data show a suppression pattern S(J/!) 2 3 " (GeV/fm 3) PHENIX d-au y=0 Recombination effects 0.4 PHENIX Au-Au y=0 (preliminary) NA38 S-U 200 GeV ycms=0.5 NA50 Pb-Pb 58 GeV ycms= NA60 In-In 58 GeV ycms=0.5 (preliminary) Npart

8 The structure: Charmonium dissociation at SPS and RHIC Quarkonium suppression A good understanding of suppression requires understanding of In-medium production and cold nuclear matter effects In-medium bound-state dynamics In!In, SPS Pb!Pb, SPS Au!Au, RHIC, y < 0.35 Au!Au, RHIC, y =[.2,2.2] 0.25 {ψ/ncoll (AB)} / {ψ/ncoll (pp)} Experimental data show a suppression pattern S(J/!) 2 3 " (GeV/fm 3) PHENIX d-au y=0 Recombination effects 0.4 PHENIX Au-Au y=0 (preliminary) NA38 S-U 200 GeV ycms=0.5 NA50 Pb-Pb 58 GeV ycms= NA60 In-In 58 GeV ycms=0.5 (preliminary) Npart

9 Quarkonium suppression Proposed in 986 as a probe and thermometer of the medium produced by the collision Matsui Satz PLB78 (986)

10 Quarkonium suppression Proposed in 986 as a probe and thermometer of the medium produced by the collision Matsui Satz PLB78 (986) Motivated by colour screening of the interaction

11 Quarkonium suppression Proposed in 986 as a probe and thermometer of the medium produced by the collision Matsui Satz PLB78 (986) Motivated by colour screening of the interaction

12 Quarkonium suppression Proposed in 986 as a probe and thermometer of the medium produced by the collision Matsui Satz PLB78 (986) Motivated by colour screening of the interaction

13 Quarkonium suppression Proposed in 986 as a probe and thermometer of the medium produced by the collision Matsui Satz PLB78 (986) Motivated by colour screening of the interaction V (r) αs md r e r

14 Quarkonium suppression Proposed in 986 as a probe and thermometer of the medium produced by the collision Matsui Satz PLB78 (986) Motivated by colour screening of the interaction V (r) αs r md md r e r Bound state dissolves

15 Quarkonium suppression Proposed in 986 as a probe and thermometer of the medium produced by the collision Matsui Satz PLB78 (986) Motivated by colour screening of the interaction V (r) αs r md md r e r Bound state dissolves Studied with potential models, lattice spectral functions,...

16 Potential models Digal, Petreczky, Satz 0 Wong Mannarelli, Rapp 05 Mocsy, Petreczky Alberico, Beraudo, Molinari, de Pace Cabrera, Rapp 2007 Wong, Crater 07 Dumitru, Guo, Mocsy, Strickland 09 Rapp, Riek F [MeV] r [fm] 0.76T c 0.8T c 0.90T c 0.96T c.00t c.02t c.07t c.23t c.50t c.98t c 4.0T c Kaczmarek Zantow T/T C 2.2 & /!r" #(S) % b (P) J/$(S) % c (P) There is qualitative agreement on this picture of sequential melting However there are still issues with the definition of an inmedium potential

17 The method: an EFT approach Perturbative computation of the real-time potential between a static quark and antiquark for T>>/r: V HTL (r) = α s C F e m D r When m D ImV ReV Laine Philipsen Romatschke Tassler JHEP0703 (2007) r r i 2T m D r f(m Dr)

18 The method: an EFT approach Perturbative computation of the real-time potential between a static quark and antiquark for T>>/r: V HTL (r) = α s C F e m D r When m D ImV ReV Laine Philipsen Romatschke Tassler JHEP0703 (2007) r EFT approach for standard and muonic hydrogen at finite temperature within pnrqed (Abelian, non-static) Escobedo Soto PRA78 (2008), PRA82 (200) r i 2T m D r f(m Dr)

19 The method: an EFT approach Perturbative computation of the real-time potential between a static quark and antiquark for T>>/r: V HTL (r) = α s C F e m D r When m D ImV ReV Laine Philipsen Romatschke Tassler JHEP0703 (2007) r EFT approach for standard and muonic hydrogen at finite temperature within pnrqed (Abelian, non-static) Escobedo Soto PRA78 (2008), PRA82 (200) EFT approach for static quark-antiquark pairs in finite T pnrqcd (Non-Abelian, static) Brambilla JG Petreczky Vairo PRD78 (2008) r i 2T m D r f(m Dr)

20 The method: an EFT approach Perturbative computation of the real-time potential between a static quark and antiquark for T>>/r: V HTL (r) = α s C F e m D r When m D ImV ReV Laine Philipsen Romatschke Tassler JHEP0703 (2007) r r i 2T m D r f(m Dr) EFT approach for heavy quark-antiquark pairs in finite T pnrqcd (Non-Abelian, non-static) Brambilla Escobedo JG Soto Vairo JHEP009 (200)

21 The EFT approach Extend the well-established zero temperature EFT framework for heavy quark-antiquark bound states (NRQCD, pnrqcd) to finite temperature Systematic approach with modern, rigorous definition of the potential (real-time matching coefficient) Transparent connection with quantum mechanics and the Schrödinger equation picture, which appears as the zeroth-order approximation in the EFT framework

22 Building blocks: NR EFTs and the real-time formalism

23 Effective Field Theories EFTs prove to be a valuable tool for physical problems characterized by various sufficiently separated energy/ momentum scales An EFT is constructed by integrating out modes of energy and momentum larger than the cut-off µ Λ O n c n (µ/λ) Λ d n 4 L EFT = n Wilson coefficient Low-energy operator/ large scale The Wilson coefficient are obtained by matching appropriate Green functions in the two theories The procedure can be iterated... µ 2 Λ 2 µ Λ

24 T=0 NR bound states Non-relativistic QQ bound states are characterized by the hierarchy of the mass, momentum and energy scales m mv mα s r mv 2 mα 2 s E

25 T=0 NR bound states Non-relativistic QQ bound states are characterized by the hierarchy of the mass, momentum and energy scales One can then expand observables in terms of the ratio of the scales and construct a hierarchy of EFTs that are equivalent to QCD orderby-order in the expansion parameter m mv mα s r mv 2 mα 2 s E

26 T=0 Scales m mα s r Integration of the mass scale: NRQCD mα 2 s E

27 T=0 Scales m mα s r Integration of the soft (momentum transfer) scale: pnrqcd mα 2 s E

28 T=0 Scales m mα s r Λ QCD Integration of the soft (momentum transfer) scale: pnrqcd mα 2 s E

29 T=0 Scales m mα s r Integration of the soft (momentum transfer) scale: pnrqcd mα 2 s E Λ QCD

30 Thermodynamical scales The thermal medium introduces new scales in the physical problem T The temperature The electric screening scale (Debye mass) gt m D The magnetic screening scale (magnetic mass) In the weak coupling assumption these scales develop a hierarchy g 2 T m m

31 Scales of the problem m T mα s r? gt m D mα 2 s E Λ QCD g 2 T m m

32 In our previous works various possibilities have been studied, from T E to m T /r m D In the regime T the result of Laine et al r m D 2007 is reobtained (also in the Abelian case) V HTL (r) = α s C F e m D r r i 2T m D r f(m Dr)

33 In our previous works various possibilities have been studied, from T E to m T /r m D In the regime T the result of Laine et al r m D 2007 is reobtained (also in the Abelian case) V HTL (r) = α s C F e m D r In this new work we adopt this hierarchy r i 2T m D r f(m Dr) m mα s T mα 2 s m D. m mα s T mα 2 s m D Λ QCD

34 In our previous works various possibilities have been studied, from T E to m T /r m D In the regime T the result of Laine et al r m D 2007 is reobtained (also in the Abelian case) V HTL (r) = α s C F e m D r In this new work we adopt this hierarchy Thermal effects are thus a perturbation to the Coulombic bound state, but they still modify the potential r i 2T m D r f(m Dr) m mα s T mα 2 s m D. m mα s T mα 2 s m D Λ QCD

35 In our previous works various possibilities have been studied, from T E to m T /r m D In the regime T the result of Laine et al r m D 2007 is reobtained (also in the Abelian case) V HTL (r) = α s C F e m D r In this new work we adopt this hierarchy Thermal effects are thus a perturbation to the Coulombic bound state, but they still modify the potential Relevance for bottomonium phenomenology r i 2T m D r f(m Dr) m mα s T mα 2 s m D. m mα s T mαs 2 m D Λ QCD

36 In our previous works various possibilities have been studied, from T E to m T /r m D In the regime T the result of Laine et al r m D 2007 is reobtained (also in the Abelian case) V HTL (r) = α s C F e m D r In this new work we adopt this hierarchy Thermal effects are thus a perturbation to the Coulombic bound state, but they still modify the potential Relevance for bottomonium phenomenology The temperature is below the dissociation temperature r i 2T m D r f(m Dr) m mα s T mα 2 s m D. T d mα 2 3 s m mα s T mαs 2 m D Λ QCD

37 Our goal m Our goal is then to compute the spectrum (or thermal corrections to it) mα s T mαs 2 m D and the thermal width in this hierarchy and power counting, up to order mα 5 s This will be achieved by integrating out the heavier scales in succession and creating a series of EFTs Before starting, a reminder of the RTF Λ QCD

38 The real-time formalism Time evolution along this Schwinger- Keldysh path t i limit Doubling of the degrees of freedom

39 The real-time formalism Time evolution Real d.o.f. () along this Schwinger- Keldysh path t i limit Doubling of the degrees of freedom

40 The real-time formalism Time evolution Real d.o.f. () along this Schwinger- Keldysh path t i limit Virtual d.o.f. (2) Doubling of the degrees of freedom

41 The real-time formalism Closer to the T=0 EFT approach In the static quark sector the virtual DOF decouple Simpler than the imaginary-time + analytical continuation (potential as pole of the propagator in the large real-time limit) Propagators as 2X2 matrices, vertices of type 2 have opposite sign

42 Free propagators Propagators written as D D D = 2 D 2 D 22 Static quark S (0) αβ (k 0)=δ αβ i k 0 + iη 2πδ(k 0 ) 0 i k 0 iη (static quark of type 2 decouple) Gluons (Coulomb gauge) D (0) 00 (k) = i k i k 2 ( ) D (0) ij (k 0,k)= δ ij ki k j k 2 i k 2 0 k2 + iη θ(k 0 )2πδ(k 2 0 k 2 ) θ( k 0 )2πδ(k0 2 k 2 ) i +2πδ(k0 2 k 2 ) n B ( k 0 ) k0 2 k2 iη

43 m mα s Integrating out and.

44 Mass scale: NRQCD m Smaller scales are put to zero in the matching. This means that the thermal scales do not affect the result of the mα s T integration, which yields standard NRQCD NRQCD is organized as an expansion mα 2 s in /m Caswell Lepage PLB67 (986) m D Bodwin Braaten Lepage PRD5 (995) Λ QCD

45 Mass scale: NRQCD m L NRQCD = L YM + L light + ψ id 0 + D2 2m +... ψ + χ (id 0 D2 2m +...)χ +... mα s T mα 2 s m D Λ QCD... Caswell Lepage PLB67 (986) Bodwin Braaten Lepage PRD5 (995)

46 Relative momentum scale: pnrqcd m mα s T mα 2 s m D Λ QCD E p 2 /m V (r) Pineda Soto Nucl. Phys. Proc. Suppl. 64(998) Brambilla Pineda Soto Vairo NPB566 (2000)

47 Weakly coupled pnrqcd L pnrqcd = L YM + L light +Tr S [i 0 H s ] S + O [id 0 H o ] O +V A Tr O r ge S+S r ge O + V B 2 Tr O r ge O+O Or ge +... Degrees of freedom: and momentum Singlet and octet color states QQ states with energy E Λ QCD, mv 2 p mv US gluons with energy/momentum mv α s m Expansion in, and Potentials are Wilson coefficients, receive contributions from all scales higher than the energy r

48 Contribution to the spectrum Power-counting in the singlet Hamiltonian H s = p2 m C F α s r + O(mα3 s )

49 Contribution to the spectrum Power-counting in the singlet Hamiltonian H s = p2 m C F α s r + O(mα3 s ) Solve the singlet EOM (Schrödinger Eq.) with this Hamiltonian and obtain the Coulomb levels E n = mc2 F α2 s 4n 2 = ma 2 0 n2, a 0 2 mc F α s

50 Contribution to the spectrum Power-counting in the singlet Hamiltonian H s = p2 m C F Solve the singlet EOM (Schrödinger Eq.) with this Hamiltonian and obtain the Coulomb levels E n = mc2 F α2 s 4n 2 = ma 2 0 n2, α s r + O(mα3 s ) a 0 Treat further terms in the expansion in QM perturbation theory, obtaining the mα contributions to the s 3 mαs 5 spectrum from this scale Brambilla Pineda Soto Vairo PLB470 (999) Kniehl Penin NPB563 (999) Kniehl Penin Smirnov Steinhauser NPB635 (2002) 2 mc F α s

51 Contribution to the spectrum Power-counting in the singlet Hamiltonian H s = p2 m C F Solve the singlet EOM (Schrödinger Eq.) with this Hamiltonian and obtain the Coulomb levels E n = mc2 F α2 s 4n 2 = ma 2 0 n2, α s r + O(mα3 s ) a 0 Treat further terms in the expansion in QM perturbation theory, obtaining the mα contributions to the s 3 mαs 5 spectrum from this scale Brambilla Pineda Soto Vairo PLB470 (999) Kniehl Penin NPB563 (999) Kniehl Penin Smirnov Steinhauser NPB635 (2002) 2 mc F α s IR divergences manifest themselves at mα 5 s

52 Divergent contributions to the spectrum Scale Vacuum Thermal mα s mα 5 s IR / T mα 2 s

53 Integrating out the temperature

54 pnrqcd HTL m mα s T mαs 2 m D Λ QCD Integrating out the temperature brings us to a new EFT called pnrqcd HTL In this EFT modes with energy and momenta of the order of the temperature are no longer present. This amounts to: Hard Thermal Loop (HTL) resummation in the gauge and light quark sectors Braaten Pisarski PRD45 (992) Thermal modifications to the potentials in the singlet and octet sector This EFT and its matching coefficients are independent of the hierarchy of low-lying scales

55 The pnrqcd HTL Lagrangian L pnrqcdhtl = L HTL +Tr S [i 0 H s δv s ] S + O [id 0 H o δv o ] O +Tr O r ge S+S r ge O + 2 Tr O r ge O+O Or ge +... The new matching coefficients in the singlet and octet sectors have to be computed by matching pnrqcd to pnrqcd HTL We only do this for the singlet sector, which is the only one relevant for the spectrum at our accuracy In the matching procedure we have to single out the contribution from the scale T: this will be achieved by appropriate expansions in E/T and m D /T

56 Matching pnrqcd to pnrqcd HTL The leading contribution to vertices δv s comes from the dipole It gives rise to a correction to the potential and to the spectrum Subleading contributions come from the radiative correction to that diagram It gives rise to an imaginary part, corresponding to a thermal width. The phenomenon is called Landau damping

57 Matching pnrqcd to pnrqcd HTL The leading contribution to vertices δv s comes from the dipole It gives rise to a correction to the potential and to the spectrum Subleading contributions come from the radiative correction to that diagram It gives rise to an imaginary part, corresponding to a thermal width. The phenomenon is called Landau damping

58 Matching pnrqcd to pnrqcd HTL The leading contribution to vertices r i δv s d D k (2π) D comes from the dipole i E H o k 0 + iη k0 2 D (0) ii + k 2 D (0) 00 r i

59 Matching pnrqcd to pnrqcd HTL The leading contribution to vertices ig 2 C F D 2 D ri µ 4 D d D k (2π) D r i i E H o k 0 + iη k2 0 δv s d D k (2π) D comes from the dipole i E H o k 0 + iη k0 2 D (0) ii + k 2 D (0) 00 r i i k 2 0 k2 + iη + 2πδ k 2 0 k 2 n B ( k 0 ) r i

60 Matching pnrqcd to pnrqcd HTL The leading contribution to vertices ig 2 C F D 2 D ri µ 4 D d D k (2π) D r i i E H o k 0 + iη k2 0 δv s d D k (2π) D comes from the dipole i E H o k 0 + iη k0 2 D (0) ii + k 2 D (0) 00 r i i k 2 0 k2 + iη + 2πδ k 2 0 k 2 n B ( k 0 ) The octet propagator must be expanded in k 0 T (E H o ) r i

61 Matching pnrqcd to pnrqcd HTL The leading contribution to vertices ig 2 C F D 2 D ri µ 4 D d D k (2π) D r i i E H o k 0 + iη k2 0 δv s d D k (2π) D comes from the dipole i E H o k 0 + iη k0 2 D (0) ii + k 2 D (0) 00 r i i k 2 0 k2 + iη + 2πδ k 2 0 k 2 n B ( k 0 ) r i The octet propagator must be expanded in k 0 T (E H o ) The vacuum part then yields a series of scaleless integrals In the thermal part the linear and cubic terms (in the energy) contribute within our accuracy, whereas the quadratic term vanishes in D.R.

62 Results: the potential The correction to the potential from the temperature scale is, when T mα s δv s = π 9 N cc F αs 2 T 2 r + 2π 3m C F α s T 2 + α sc F I T 3π α s N 3 c 8 αs 3 r (N c 2 +2N c C F ) α2 s mr 2 +4(N c 2C F ) πα s m 2 δ3 (r)+n c α s m 2 2 r, r 3 2 ζ(3) C F π r2 Tm 2 D ζ(3) N cc F αs 2 r 2 T 3 CF +i 6 α s r 2 Tm 2 D 2 + γ E +lnπ ln T 2 µ ln2 (2) 2ζ ζ(2) + 4π 9 ln 2 N cc F αs 2 r 2 T 3 m 2 D = g2 T 2 3 N + n f 2 Both the real and the imaginary part are IR divergent; the divergences cancel in the related physical observables, the spectrum and the width, against UV divergences from some lower scale

63 Divergent contributions to the spectrum Scale Vacuum Thermal mα s mα 5 s IR / T scaleless mα 5 s IR mα 2 s

64 Divergent contributions to the spectrum Scale Vacuum Thermal mα s mα 5 s IR / T mα 5 s IR UV mα 5 s IR mα 2 s

65 Divergent contributions to the spectrum Scale Vacuum Thermal mα s mα 5 s IR / T mα 5 s IR UV mα 5 s IR mα 2 s

66 Divergent contributions to the spectrum Scale Vacuum Thermal mα s mα 5 s IR / T mα 5 s IR UV mα 5 s IR mα 2 s

67 Results: spectrum and width The corresponding correction to the spectrum is δe (T ) n,l = π 9 N cc F α 2 s T 2 a 0 2 (3n2 l(l +))+ 2π 3m C F α s T 2 + E ni T α 3 { s 4C 3 ( F δ l0 + N c C 2 8 F 3π n n(2l +) n 2 2δ ) l0 + 2N c 2 C F n n(2l +) + N c 3 } 4 ( ζ(3) C α s F π Tm2 D + 2 ) a 3 ζ(3) N cc F α 2 s T n 2 [ 5n 2 + 3l(l +) ] [ ]. 2 The width is (2 loops) Γ n,l = [ ] [ [ C F 6 α stm 2 D ( 2ɛ + γ E +lnπ ln T 2 µ ) 3 4ln2 (2) 2ζ ζ(2) 4π 9 ln 2 N cc F α 2 s T 3 ] a 2 0 n2 [ 5n 2 + 3l(l +) ].

68 Calculating the contribution from the energy scale

69 Calculating at the energy scale m mα s T mαs 2 m D Since we have reached the binding energy scale we cannot proceed further with EFTs in the heavy quark-antiquark sector We thus calculate the contributions to the spectrum and the width within pnrqcd HTL We thus have to use the HTL-resummed propagators Λ QCD We employ the expansions T mα 2 s m D

70 The calculation Only the leading order diagram contributes within our accuracy r i d D k (2π) D i E H o k 0 + iη k 2 0 D HTL ii + k 2 D00 HTL r i

71 The calculation Only the leading order diagram contributes within our accuracy r i d D k (2π) D i E H o k 0 + iη k 2 0 D HTL ii + k 2 D00 HTL r i This diagram introduces a second source of imaginary parts! thermal width. It is the singlet-to-octet decay width

72 The calculation Only the leading order diagram contributes within our accuracy r i d D k (2π) D i E H o k 0 + iη k 2 0 D HTL ii + k 2 D00 HTL r i This diagram introduces a second source of imaginary parts! thermal width. It is the singlet-to-octet decay width

73 The calculation Only the leading order diagram contributes within our accuracy r i d D k (2π) D i E H o k 0 + iη k 2 0 D HTL ii + k 2 D00 HTL r i This diagram introduces a second source of imaginary parts! thermal width. It is the singlet-to-octet decay width The calculation is quite involved, requiring expansions in the propagators and in the Bose distribution

74 The calculation Only the leading order diagram contributes within our accuracy r i d D k (2π) D i E H o k 0 + iη k 2 0 D HTL ii + k 2 D00 HTL r i This diagram introduces a second source of imaginary parts! thermal width. It is the singlet-to-octet decay width The calculation is quite involved, requiring expansions in the propagators and in the Bose distribution UV divergences appear and cancel the IR divergencies from higher scales

75 Divergent contributions to the spectrum Scale Vacuum Thermal mα s mα 5 s IR / T mα 5 s IR UV mα 5 s IR mα 2 s mα 5 s UV mα 5 s UV

76 Summary and conclusions

77 The spectrum The contribution of the thermal medium only to the spectrum is δe n,l = π 9 N cc F αs 2 T 2 a 0 3n 2 l(l + ) + π 2 3 C2 F αs 2 T 2 a 0 + E nαs 3 2 4C 2πT 3 log 2γ F δ l0 E + N c C 2 8 F 3π n n(2l + ) n 2 2δ l0 n + a2 0n 2 2 E + 2N c 2 C F n(2l + ) + N c 3 4 5n 2 + 3l(l + ) 3 2π ζ(3) + π 3 C F α s Tm 2 D + 2E nc 3 F α3 s 3π L n,l ζ(3) N cc F α 2 s T 3

78 The spectrum The contribution of the thermal medium only to the spectrum is δe n,l = π 9 N cc F αs 2 T 2 a 0 3n 2 l(l + ) + π 2 3 C2 F αs 2 T 2 a 0 + E nαs 3 2 4C 2πT 3 log 2γ F δ l0 E + N c C 2 8 F 3π n + a2 0n 2 2 E + 2N c 2 C F n(2l + ) + N c 3 4 5n 2 + 3l(l + ) 3 2π ζ(3) + π 3 n(2l + ) n 2 2δ l0 n + 2E ncf 3 α3 s L n,l 3π C F α s Tm 2 D mα 5 s T 2 E ζ(3) N cc F α 2 s T 3

79 The spectrum The contribution of the thermal medium only to the spectrum is mα 5 s { δe n,l = π 9 N cc F αs 2 T 2 a 0 3n 2 l(l + ) + π 2 3 C2 F αs 2 T 2 a 0 mαs 5 + E nαs 3 2 4C 2πT 3 log 2γ F δ l0 E + N c CF 2 8 3π E n n(2l + ) n 2 2δ l0 n + 2N c 2 C F n(2l + ) + N c 3 + 2E ncf 3 α3 s L n,l 4 3π + a2 0n 2 2 5n 2 + 3l(l + ) 3 2π ζ(3) + π 3 C F α s Tm 2 D T 2 E ζ(3) N cc F α 2 s T 3

80 The spectrum The contribution of the thermal medium only to the spectrum is mα 5 s { mα 6 s T 3 E 3 δe n,l = π 9 N cc F αs 2 T 2 a 0 3n 2 l(l + ) + π 2 3 C2 F αs 2 T 2 a 0 mαs 5 + E nαs 3 2 4C 2πT 3 log 2γ F δ l0 E + N c CF 2 8 3π E n n(2l + ) n 2 2δ l0 n + 2N c 2 C F n(2l + ) + N c 3 + 2E ncf 3 α3 s L n,l 4 3π + a2 0n 2 2 5n 2 + 3l(l + ) 3 2π ζ(3) + π 3 C F α s Tm 2 D T 2 E ζ(3) N cc F α 2 s T 3

81 The spectrum The contribution of the thermal medium only to the spectrum is mα 5 s { mα 6 s T 3 E 3 δe n,l = π 9 N cc F αs 2 T 2 a 0 3n 2 l(l + ) + π 2 3 C2 F αs 2 T 2 a 0 mαs 5 + E nαs 3 2 4C 2πT 3 log 2γ F δ l0 E + N c CF 2 8 3π E n n(2l + ) n 2 2δ l0 n + 2N c 2 C F n(2l + ) + N c 3 + 2E ncf 3 α3 s L n,l 4 3π + a2 0n 2 2 5n 2 + 3l(l + ) 3 2π ζ(3) + π 3 C F α s Tm 2 D T 2 E ζ(3) N cc F α 2 s T 3 The leading terms thus indicate that the mass of the bound state increases quadratically with the temperature. Up to this order the thermal shift to the spectrum is independent of the spin

82 The thermal width The contribution of the thermal medium to the width is Γ n,l = 3 N c 2 C F αs 3 T + 4 CF 2 α3 s T 3 n 2 (C F + N c ) + 2E nαs 3 4C 3 F δ l0 + N c CF 2 3 n CF 6 α stm 2 D C F α s Tm 2 D a 2 0n 4 I n,l 8 n(2l + ) n 2 2δ l0 n ln E2 T 2 +2γ E 3 log 4 2 ζ (2) ζ(2) + 2N c 2 C F n(2l + ) + N c π9 ln 2 N cc F α 2s T 3 a 2 0n 2 5n 2 + 3l(l + )

83 The thermal width The contribution of the thermal medium to the width is Γ n,l = 3 N c 2 C F αs 3 T + 4 CF 2 α3 s T 3 n 2 (C F + N c ) + 2E nαs 3 4C 3 F δ l0 + N c CF 2 3 n CF 6 α stm 2 D C F α s Tm 2 D a 2 0n 4 I n,l 8 n(2l + ) n 2 2δ l0 n ln E2 T 2 +2γ E 3 log 4 2 ζ (2) ζ(2) + 2N c 2 C F n(2l + ) + N c π9 ln 2 N cc F α 2s T 3 a 2 0n 2 5n 2 + 3l(l + ) Two sources of decay: singlet-to-octet thermal breakup and Landau damping

84 The thermal width The contribution of the thermal medium to the width is Γ n,l = 3 N c 2 C F αs 3 T + 4 CF 2 α3 s T 3 n 2 (C F + N c ) + 2E nαs 3 4C 3 F δ l0 + N c CF 2 3 n CF 6 α stm 2 D C F α s Tm 2 D a 2 0n 4 I n,l mα 5 s 8 n(2l + ) n 2 2δ l0 n ln E2 T 2 +2γ E 3 log 4 2 ζ (2) ζ(2) T E + 2N c 2 C F n(2l + ) + N c π9 ln 2 N cc F α 2s T 3 a 2 0n 2 5n 2 + 3l(l + ) Two sources of decay: singlet-to-octet thermal breakup and Landau damping

85 The thermal width The contribution of the thermal medium to the width is mα 5 s Γ n,l = 3 N c 2 C F αs 3 T + 4 CF 2 α3 s T 3 n 2 (C F + N c ) + 2E nαs 3 4C 3 F δ l0 + N c CF 2 3 n CF 6 α stm 2 D C F α s Tm 2 D a 2 0n 4 I n,l mα 5 s 8 n(2l + ) n 2 2δ l0 n ln E2 T 2 +2γ E 3 log 4 2 ζ (2) ζ(2) T E + 2N c 2 C F n(2l + ) + N c π9 ln 2 N cc F α 2s T 3 a 2 0n 2 5n 2 + 3l(l + ) Two sources of decay: singlet-to-octet thermal breakup and Landau damping

86 mα 6 s The thermal width The contribution of the thermal medium to the width is mα 5 s { T 3 E 3 Γ n,l = 3 N c 2 C F αs 3 T + 4 CF 2 α3 s T 3 n 2 (C F + N c ) + 2E nαs 3 4C 3 F δ l0 + N c CF 2 3 n CF 6 α stm 2 D C F α s Tm 2 D a 2 0n 4 I n,l mα 5 s 8 n(2l + ) n 2 2δ l0 n ln E2 T 2 +2γ E 3 log 4 2 ζ (2) ζ(2) Two sources of decay: singlet-to-octet thermal breakup and Landau damping T E + 2N c 2 C F n(2l + ) + N c π9 ln 2 N cc F α 2s T 3 a 2 0n 2 5n 2 + 3l(l + )

87 mα 6 s The thermal width The contribution of the thermal medium to the width is mα 5 s { T 3 E 3 Γ n,l = 3 N c 2 C F αs 3 T + 4 CF 2 α3 s T 3 n 2 (C F + N c ) + 2E nαs 3 4C 3 F δ l0 + N c CF 2 3 n CF 6 α stm 2 D C F α s Tm 2 D a 2 0n 4 I n,l mα 5 s 8 n(2l + ) n 2 2δ l0 n ln E2 T 2 +2γ E 3 log 4 2 ζ (2) ζ(2) Two sources of decay: singlet-to-octet thermal breakup and Landau damping In our hiearchy the former is larger than the latter T E + 2N c 2 C F n(2l + ) + N c π9 ln 2 N cc F α 2s T 3 a 2 0n 2 5n 2 + 3l(l + )

88 mα 6 s The thermal width The contribution of the thermal medium to the width is mα 5 s { T 3 E 3 Γ n,l = 3 N c 2 C F αs 3 T + 4 CF 2 α3 s T 3 n 2 (C F + N c ) + 2E nαs 3 4C 3 F δ l0 + N c CF 2 3 n CF 6 α stm 2 D C F α s Tm 2 D a 2 0n 4 I n,l mα 5 s 8 n(2l + ) n 2 2δ l0 n ln E2 T 2 +2γ E 3 log 4 2 ζ (2) ζ(2) Two sources of decay: singlet-to-octet thermal breakup and Landau damping In our hiearchy the former is larger than the latter Up to this order the width as well is independent of the spin T E + 2N c 2 C F n(2l + ) + N c π9 ln 2 N cc F α 2s T 3 a 2 0n 2 5n 2 + 3l(l + )

89 Conclusions The method: we have shown how to construct a series of EFT to integrate out in succession the many scales that characterize a non-relativistic bound state at finite temperature We have obtained the contribution to the singlet potential from the scale T, when T mα s Back to the structure: we have obtained the contribution of the thermal bath to the spectrum and the width of heavy quarkonia, in a scale setup that can be relevant for the ground state of bottomonium

90

Heavy quarkonia at finite temperature: The EFT approach

Heavy quarkonia at finite temperature: The EFT approach Heavy quarkonia at finite temperature: he EF approach Jacopo Ghiglieri - echnische Universität München 5th Vienna Central European Seminar on QF 28 November 2008 Outline Motivation Introduction to Effective

More information

The relation between cross-section, decay width and imaginary potential of heavy quarkonium in a quark-gluon plasma

The relation between cross-section, decay width and imaginary potential of heavy quarkonium in a quark-gluon plasma The relation between cross-section, decay width and imaginary potential of heavy quarkonium in a quark-gluon plasma Miguel A. Escobedo Physik-Department T30f. Technische Universität München 19th of September

More information

Effective Field Theories for Quarkonium

Effective Field Theories for Quarkonium Effective Field Theories for Quarkonium recent progress Antonio Vairo Technische Universität München Outline 1. Scales and EFTs for quarkonium at zero and finite temperature 2.1 Static energy at zero temperature

More information

Thermal width and quarkonium dissociation in an EFT framework

Thermal width and quarkonium dissociation in an EFT framework Thermal width and quarkonium dissociation in an EFT framework Antonio Vairo Technische Universität München in collaboration with N. Brambilla, M. A. Escobedo and J. Ghiglieri based on arxiv:1303.6097 and

More information

Quarkonium Free Energy on the lattice and in effective field theories

Quarkonium Free Energy on the lattice and in effective field theories Quarkonium Free Energy on the lattice and in effective field theories J. H. Weber 1,2 in collaboration with A. Bazavov 2, N. Brambilla 1, P. Petreczky 3 and A. Vairo 1 (TUMQCD collaboration) 1 Technische

More information

Effective Field Theory in Open Quantum Systems: Heavy Quarkonium in a Fireball

Effective Field Theory in Open Quantum Systems: Heavy Quarkonium in a Fireball Effective Field Theory in Open Quantum Systems: Heavy Quarkonium in a Fireball Joan Soto Departament de Física Quàntica i Astrofísica and Institut de Ciències del Cosmos Universitat de Barcelona Plan Effective

More information

Lattice calculation of static quark correlators at finite temperature

Lattice calculation of static quark correlators at finite temperature Lattice calculation of static quark correlators at finite temperature J. Weber in collaboration with A. Bazavov 2, N. Brambilla, M.Berwein, P. Petrezcky 3 and A. Vairo Physik Department, Technische Universität

More information

strong coupling Antonio Vairo INFN and University of Milano

strong coupling Antonio Vairo INFN and University of Milano potential Non-Relativistic QCD strong coupling Antonio Vairo INFN and University of Milano For most of the quarkonium states: 1/r mv Λ QCD (0) V (r) (GeV) 2 1 Υ Υ Υ Υ η ψ c χ ψ ψ 2 0 1 2 r(fm) -1 weak

More information

arxiv: v1 [nucl-th] 19 Nov 2018

arxiv: v1 [nucl-th] 19 Nov 2018 Quarkonium dissociation in perturbative QCD Juhee Hong and Su Houng Lee Department of Physics and Institute of Physics and Applied Physics, Yonsei University, Seoul 37, Korea (Dated: November, 18) arxiv:1811.767v1

More information

Quarkonium suppression

Quarkonium suppression Quarkonium suppression an EFT approach to open quantum systems Antonio Vairo Technische Universität München Based on (1) N. Brambilla, M.A. Escobedo, J. Soto and A. Vairo Heavy quarkonium suppression in

More information

Heavy Quarkonium in a Quark-Gluon Plasma

Heavy Quarkonium in a Quark-Gluon Plasma Heavy Quarkonium in a Quark-Gluon Plasma Joan Soto Departament d Estructura i Constituents de la Matèria and Institut de Ciències del Cosmos Universitat de Barcelona Charmonium Eichten, Godfrey, Mahlke,

More information

Color screening in 2+1 flavor QCD

Color screening in 2+1 flavor QCD Color screening in 2+1 flavor QCD J. H. Weber 1 in collaboration with A. Bazavov 2, N. Brambilla 1, P. Petreczky 3 and A. Vairo 1 (TUMQCD collaboration) 1 Technische Universität München 2 Michigan State

More information

arxiv: v1 [hep-ph] 21 Sep 2007

arxiv: v1 [hep-ph] 21 Sep 2007 The QCD potential Antonio Vairo arxiv:0709.3341v1 [hep-ph] 1 Sep 007 Dipartimento di Fisica dell Università di Milano and INFN, via Celoria 16, 0133 Milano, Italy IFIC, Universitat de València-CSIC, Apt.

More information

Effective Field Theories for heavy probes in a hot QCD plasma and in the early universe

Effective Field Theories for heavy probes in a hot QCD plasma and in the early universe Effective Field Theories for heavy probes in a hot QCD plasma and in the early universe Miguel A. Escobedo 1,2,a 1 Institut de Physique Théorique, Université Paris Saclay, CNRS, CEA, F-91191, Gif-sur-Yvette,

More information

News on Hadrons in a Hot Medium

News on Hadrons in a Hot Medium News on Hadrons in a Hot Medium Mikko Laine (University of Bielefeld, Germany) 1 How to interpret the title? Hot Medium : 50 MeV T 1000 MeV; µ πt. Hadrons : In this talk only those which maintain their

More information

A pnrqcd approach to t t near threshold

A pnrqcd approach to t t near threshold LoopFest V, SLAC, 20. June 2006 A pnrqcd approach to t t near threshold Adrian Signer IPPP, Durham University BASED ON WORK DONE IN COLLABORATION WITH A. PINEDA AND M. BENEKE, V. SMIRNOV LoopFest V p.

More information

Lectures on NRQCD Factorization for Quarkonium Production and Decay

Lectures on NRQCD Factorization for Quarkonium Production and Decay Lectures on NRQCD Factorization for Quarkonium Production and Decay Eric Braaten Ohio State University I. Nonrelativistic QCD II. Annihilation decays III. Inclusive hard production 1 NRQCD Factorization

More information

High order corrections in theory of heavy quarkonium

High order corrections in theory of heavy quarkonium High order corrections in theory of heavy quarkonium Alexander Penin TTP Karlsruhe & INR Moscow ECT Workshop in Heavy Quarkonium Trento, Italy, August 17-31, 2006 A. Penin, TTP Karlsruhe & INR Moscow ECT

More information

Real time lattice simulations and heavy quarkonia beyond deconfinement

Real time lattice simulations and heavy quarkonia beyond deconfinement Real time lattice simulations and heavy quarkonia beyond deconfinement Institute for Theoretical Physics Westfälische Wilhelms-Universität, Münster August 20, 2007 The static potential of the strong interactions

More information

Heavy quark free energies, screening and the renormalized Polyakov loop

Heavy quark free energies, screening and the renormalized Polyakov loop Heavy quark free energies, screening and the renormalized Polyakov loop Olaf Kaczmarek Felix Zantow Universität Bielefeld October 6, 26 VI Workshop III, Rathen, October, 26 p./9 Charmonium suppression..75.5

More information

Recent Results in NRQCD

Recent Results in NRQCD Max-Planck-Institute für Physik (Werner-Heisenberg-Institut) Recent Results in NRQCD Pedro D. Ruiz-Femenía Continuous Advances in QCD 2006 Continuous Advances in QCD 2006 May 11-14, University of Minnesota

More information

String calculation of the long range Q Q potential

String calculation of the long range Q Q potential String calculation of the long range Q Q potential Héctor Martínez in collaboration with N. Brambilla, M. Groher (ETH) and A. Vairo April 4, 13 Outline 1 Motivation The String Hypothesis 3 O(1/m ) corrections

More information

Outlook: 1) Hard probes: definitions. 2) High p T hadrons. 3) Heavy Flavours

Outlook: 1) Hard probes: definitions. 2) High p T hadrons. 3) Heavy Flavours 5 th International School on QGP and Heavy Ions Collisions: past, present and future Torino, 5-12 March 2011 1 Outlook: 1) Hard probes: definitions 2) High p T hadrons 3) Heavy Flavours 4) Quarkonia 1)

More information

J/ suppression in relativistic heavy-ion collisions

J/ suppression in relativistic heavy-ion collisions J/ suppression in relativistic heavy-ion collisions Partha Pratim Bhaduri VECC, Kolkata 61st DAE-BRNS SYMPOSIUM ON NUCLEAR PHYSICS SAHA INSTITUTE OF NUCLEAR PHYSICS Kolkata, India Challenge: find the good

More information

QCD Thermodynamics at Intermediate Coupling. Nan Su. Frankfurt Institute for Advanced Studies

QCD Thermodynamics at Intermediate Coupling. Nan Su. Frankfurt Institute for Advanced Studies Nan Su p. 1 QCD Thermodynamics at Intermediate Coupling Nan Su Frankfurt Institute for Advanced Studies Collaborators: Jens O. Andersen & Lars E. Leganger (NTNU), Michael Strickland (Gettysburg) Phys.

More information

Bottomonia physics at RHIC and LHC energies

Bottomonia physics at RHIC and LHC energies Bottomonia physics at RHIC and LHC energies Georg Wolschin Heidelberg University Institut für Theoretische Physik Philosophenweg 16 D-69120 Heidelberg ISMD_2017_Tlaxcala Topics 1. Introduction: ϒ suppression

More information

Radiative transitions and the quarkonium magnetic moment

Radiative transitions and the quarkonium magnetic moment Radiative transitions and the quarkonium magnetic moment Antonio Vairo based on Nora Brambilla, Yu Jia and Antonio Vairo Model-independent study of magnetic dipole transitions in quarkonium PRD 73 054005

More information

arxiv: v1 [hep-ph] 7 Jan 2013

arxiv: v1 [hep-ph] 7 Jan 2013 arxiv:1301.1308v1 [hep-ph] 7 Jan 2013 Electric dipole transitions in pnrqcd Faculty of Physics, University of Vienna, Boltzmanngasse 5, A-1090 Wien E-mail: piotr.pietrulewicz@univie.ac.at We present a

More information

Heavy flavor with

Heavy flavor with Heavy flavor with CBM@FAIR Hendrik van Hees Goethe University Frankfurt and FIAS April 21, 2015 Hendrik van Hees (GU Frankfurt/FIAS) Heavy flavor with CBM@FAIR April 21, 2015 1 / 22 Outline 1 Motivation:

More information

Steffen Hauf

Steffen Hauf Charmonium in the QGP Debye screening a' la Matsui & Satz Steffen Hauf 17.01.2008 22. Januar 2008 Fachbereich nn Institut nn Prof. nn 1 Overview (1)Charmonium: an Introduction (2)Rehersion: Debye Screening

More information

Quarkonium as Probe of Hot QCD Medium. Ágnes Mócsy

Quarkonium as Probe of Hot QCD Medium. Ágnes Mócsy Quarkonium as Probe of Hot QCD Medium Ágnes Mócsy Quarkonium as Probe of Hot QCD Medium Ágnes Mócsy in collaboration with Peter Petreczky (BNL), Chuan Miao (Uni Mainz) QCD Expectations - Temperature effects

More information

Charmonium Production and the Quark Gluon Plasma

Charmonium Production and the Quark Gluon Plasma Charmonium Production and the Quark Gluon Plasma introductory remarks on charmonium and QGP discussion of time scales and open charm conservation equation remarks on 'cold nuclear matter effects' the statistical

More information

Disintegration of quarkonia in QGP due to time dependent potential

Disintegration of quarkonia in QGP due to time dependent potential Disintegration of quarkonia in QGP due to time dependent potential Partha Bagchi Institute Of Physics December 9, 2014 XXI DAE-BRNS High Energy Physics Symposium 2014, 8-12 December 2014, IIT Guwahati,

More information

Determination of α s from the QCD static energy

Determination of α s from the QCD static energy Determination of α s from the QCD static energy Antonio Vairo Technische Universität München Bibliography (1) A. Bazavov, N. Brambilla, X. Garcia i Tormo, P. Petreczky, J. Soto and A. Vairo Determination

More information

Bottomonium and transport in the QGP

Bottomonium and transport in the QGP Bottomonium and transport in the QGP Gert Aarts (FASTSUM collaboration) Kyoto, December 201 p. 1 Introduction QCD thermodynamics euclidean formulation lattice QCD pressure, entropy, fluctuations,... this

More information

LQCD at non-zero temperature : strongly interacting matter at high temperatures and densities Péter Petreczky

LQCD at non-zero temperature : strongly interacting matter at high temperatures and densities Péter Petreczky LQCD at non-zero temperature : strongly interacting matter at high temperatures and densities Péter Petreczky QCD and hot and dense matter Lattice formulation of QCD Deconfinement transition in QCD : EoS

More information

On the definition and interpretation of a static quark anti-quark potential in the colour-adjoint channel

On the definition and interpretation of a static quark anti-quark potential in the colour-adjoint channel On the definition and interpretation of a static quark anti-quark potential in the colour-adjoint channel Effective Field Theory Seminar Technische Universität München, Germany Marc Wagner, Owe Philipsen

More information

T-Matrix approach to heavy quarks in the Quark-Gluon Plasma

T-Matrix approach to heavy quarks in the Quark-Gluon Plasma T-Matrix approach to heavy quarks in the Quark-Gluon Plasma Hendrik van Hees Justus-Liebig-Universität Gießen June 1, 28 with M. Mannarelli, V. Greco, and R. Rapp Institut für Theoretische Physik JUSTUS-LIEBIG-

More information

Heavy Probes in Heavy-Ion Collisions Theory Part IV

Heavy Probes in Heavy-Ion Collisions Theory Part IV Heavy Probes in Heavy-Ion Collisions Theory Part IV Hendrik van Hees Justus-Liebig Universität Gießen August 31-September 5, 21 Institut für Theoretische Physik JUSTUS-LIEBIG- UNIVERSITÄT GIESSEN Hendrik

More information

Relativistic correction to the static potential at O(1/m)

Relativistic correction to the static potential at O(1/m) Relativistic correction to the static potential at O(1/m) Miho Koma (Inst. f. Kernphysik, Mainz Univ.) Yoshiaki Koma, Hartmut Wittig Lattice 2007, Regensburg, 30 July 2007 We investigate the relativistic

More information

Weakly coupled QGP? Péter Petreczky

Weakly coupled QGP? Péter Petreczky Weakly coupled QGP? Péter Petreczky QGP is expected to be strongly coupled around T c : how does this features manifest itself in terms of different quantities, how do we observe it on lattice? QGP: state

More information

2nd Hadron Spanish Network Days. Universidad Complutense de Madrid (Spain) September 8-9, Rubén Oncala. In collaboration with Prof.

2nd Hadron Spanish Network Days. Universidad Complutense de Madrid (Spain) September 8-9, Rubén Oncala. In collaboration with Prof. 2nd Hadron Spanish Network Days Universidad Complutense de Madrid (Spain) September 8-9, 20016 Rubén Oncala In collaboration with Prof. Joan Soto Heavy Quarkonium is a heavy quark-antiquark pair in a colour

More information

Quarkonia physics in Heavy Ion Collisions. Hugo Pereira Da Costa CEA/IRFU Rencontres LHC France Friday, April

Quarkonia physics in Heavy Ion Collisions. Hugo Pereira Da Costa CEA/IRFU Rencontres LHC France Friday, April Quarkonia physics in Heavy Ion Collisions Hugo Pereira Da Costa CEA/IRFU Rencontres LHC France Friday, April 5 2013 1 2 Contents Introduction (QGP, Heavy Ion Collisions, Quarkonia) Quarkonia at the SPS

More information

Bulk Thermodynamics: What do we (want to) know?

Bulk Thermodynamics: What do we (want to) know? Bulk Thermodynamics: What do we (want to) know? µ = : properties of transition in, ( + 1)-flavor QCD: crossover or phase transition, deconfinement vs. chiral symmetry restoration, universality,... T c,

More information

Bottomonium melting at T >> Tc. Pedro Bicudo CFTP, IST, Lisboa

Bottomonium melting at T >> Tc. Pedro Bicudo CFTP, IST, Lisboa Bottomonium melting at T >> Tc Pedro Bicudo CFTP, IST, Lisboa Motivation The finite T string tension The quark mass gap equation with finite T and finite quark mass Chiral symmetry and confinement crossovers

More information

Disintegration of quarkonia in QGP due to time dependent potential

Disintegration of quarkonia in QGP due to time dependent potential Disintegration of quarkonia in QGP due to time dependent potential and Ajit M. Srivastava Institute of Physics Bhubaneswar, India, 71 E-mail: parphy8@gmail.com, ajit@iopb.res.in Rapid thermalization in

More information

Top and bottom at threshold

Top and bottom at threshold Top and bottom at threshold Matthias Steinhauser TTP Karlsruhe Vienna, January 27, 2015 KIT University of the State of Baden-Wuerttemberg and National Laboratory of the Helmholtz Association www.kit.edu

More information

Hyperfine Splitting in the Bottomonium System on the Lattice and in the Continuum

Hyperfine Splitting in the Bottomonium System on the Lattice and in the Continuum Hyperfine Splitting in the Bottomonium System on the Lattice and in the Continuum Nikolai Zerf in collaboration with M. Baker, A. Penin, D. Seidel Department of Physics University of Alberta Radcor-Loopfest,

More information

Dimensional reduction near the deconfinement transition

Dimensional reduction near the deconfinement transition Dimensional reduction near the deconfinement transition Aleksi Kurkela ETH Zürich Wien 27.11.2009 Outline Introduction Dimensional reduction Center symmetry The deconfinement transition: QCD has two remarkable

More information

Heating up QGP: towards charm quark chemical equilibration

Heating up QGP: towards charm quark chemical equilibration Heating up QGP: towards charm quark chemical equilibration Mikko Laine (University of Bern, Switzerland) 1 What is it? 2 Melting / recombination: Leptonic annihilation: q q l + l Chemical equilibration:

More information

Figure 1. (a) (b) (c)

Figure 1. (a) (b) (c) arxiv:hep-ph/9407339 v 15 Jan 1997 (a) (b) (c) Figure 1 arxiv:hep-ph/9407339 v 15 Jan 1997 H S Figure arxiv:hep-ph/9407339 v 15 Jan 1997 P/ + p - P/ + p (a) (b) Figure 3 arxiv:hep-ph/9407339 v 15 Jan 1997

More information

Production of Charmed Hadrons by Statistical Hadronization of a Quark Gluon Plasma as a proof of deconfinement

Production of Charmed Hadrons by Statistical Hadronization of a Quark Gluon Plasma as a proof of deconfinement Production of Charmed Hadrons by Statistical Hadronization of a Quark Gluon Plasma as a proof of deconfinement statistical hadronization model comparison to RHIC data (also SPS) predictions for LHC comments

More information

Cornell potential in anisotropic hot QCD medium

Cornell potential in anisotropic hot QCD medium Cornell potential in anisotropic hot QC medium Binoy Patra (with Lata, Uttam,Najmul) epartment of Physics Indian Institute of Technology Roorkee ECT* Workshop on Heavy quarks and quarkonia in thermal QC

More information

Determination of α s from the QCD static energy

Determination of α s from the QCD static energy Determination of α s from the QCD static energy Antonio Vairo Technische Universität München Bibliography (1) A. Bazakov, N. Brambilla, X. Garcia i Tormo, P. Petreczky, J. Soto and A. Vairo Determination

More information

Bottomonium from lattice QCD as a probe of the Quark-Gluon Plasma

Bottomonium from lattice QCD as a probe of the Quark-Gluon Plasma Home Search Collections Journals About Contact us My IOPscience Bottomonium from lattice QCD as a probe of the Quark-Gluon Plasma This content has been downloaded from IOPscience. Please scroll down to

More information

Effective Field Theory

Effective Field Theory Effective Field Theory Iain Stewart MIT The 19 th Taiwan Spring School on Particles and Fields April, 2006 Physics compartmentalized Quantum Field Theory String Theory? General Relativity short distance

More information

arxiv: v1 [hep-lat] 24 Oct 2013

arxiv: v1 [hep-lat] 24 Oct 2013 arxiv:30.646v [hep-lat] 24 Oct 203 Lattice NRQCD study of in-medium bottomonium states using N f = 2+,48 3 2 HotQCD configurations Department of Physics, Sejong University, Seoul 43-747, Korea E-mail:

More information

J/Ψ-Production in γγ-collisions at NLO. Michael Klasen LPSC Grenoble April 19, 2005

J/Ψ-Production in γγ-collisions at NLO. Michael Klasen LPSC Grenoble April 19, 2005 J/Ψ-Production in γγ-collisions at NLO Michael Klasen LPSC Grenoble April 19, 2005 CERN / Fréjus LPSC ILL ESRF April 19, 2005 Michael Klasen, LPSC Grenoble 2 Research at LPSC Grenoble Astroparticles: Particles:

More information

Status of Heavy-Ion Physics at the LHC

Status of Heavy-Ion Physics at the LHC Status of Heavy-Ion Physics at the LHC Yvonne Pachmayer, Heidelberg University J. Jowett LHC Page 1 2 Motivation: What is the question? ALICE/LHC Pb+Pb snn = 2760 GeV What happens if you make matter Hotter

More information

arxiv:hep-lat/ v2 17 Jun 2005

arxiv:hep-lat/ v2 17 Jun 2005 BI-TP 25/8 and BNL-NT-5/8 Static quark anti-quark interactions in zero and finite temperature QCD. I. Heavy quark free energies, running coupling and quarkonium binding Olaf Kaczmarek Fakultät für Physik,

More information

Deconfinement and Polyakov loop in 2+1 flavor QCD

Deconfinement and Polyakov loop in 2+1 flavor QCD Deconfinement and Polyakov loop in 2+ flavor QCD J. H. Weber in collaboration with A. Bazavov 2, N. Brambilla, H.T. Ding 3, P. Petreczky 4, A. Vairo and H.P. Schadler 5 Physik Department, Technische Universität

More information

Corrections of Order β 3 0α 3 s to the Energy Levels and Wave Function

Corrections of Order β 3 0α 3 s to the Energy Levels and Wave Function 005 International Linear Collider Workshop - Stanford U.S.A. Corrections of Order β 0α s to the Energy Levels and Wave Function M. Steinhauser Institut für Theoretische Teilchenphysik Universität Karlsruhe

More information

arxiv: v1 [hep-ph] 24 Oct 2012

arxiv: v1 [hep-ph] 24 Oct 2012 Screening Masses of Scalar and Pseudo-scalar Excitations in Quark-gluon Plasma P. Czerski The H. Niewodniczański Institute of Nuclear Physics, Polish Academy of Sciences, ul. Radzikowskiego 152, arxiv:1210.6531v1

More information

Heavy quark free energies and screening from lattice QCD

Heavy quark free energies and screening from lattice QCD Heavy quark free energies and screening from lattice QCD Olaf Kaczmarek Universität Bielefeld February 9, 29 RBC-Bielefeld collaboration O. Kaczmarek, PoS CPOD7 (27) 43 RBC-Bielefeld, Phys.Rev.D77 (28)

More information

Quarkonia Production and Dissociation in a Langevin Approach

Quarkonia Production and Dissociation in a Langevin Approach proceedings Proceedings Quarkonia Production and Dissociation in a Langevin Approach Nadja Krenz 1, Hendrik van Hees 1 and Carsten Greiner 1, * Institut für Theoretische Physik, Goethe-Universität Frankfurt,

More information

2. HEAVY QUARK PRODUCTION

2. HEAVY QUARK PRODUCTION 2. HEAVY QUARK PRODUCTION In this chapter a brief overview of the theoretical and experimental knowledge of heavy quark production is given. In particular the production of open beauty and J/ψ in hadronic

More information

Quarkonium Hybrids. Joan Soto. Universitat de Barcelona ) Departament de Física Quàntica i Astrofísica Institut de Ciències del Cosmos

Quarkonium Hybrids. Joan Soto. Universitat de Barcelona ) Departament de Física Quàntica i Astrofísica Institut de Ciències del Cosmos Quarkonium Hybrids Joan Soto Universitat de Barcelona ) Departament de Física Quàntica i Astrofísica Institut de Ciències del Cosmos INT-18-1b, Seattle, 05/29/18 Rubén Oncala, JS, Phys. Rev. D 96, 014004

More information

MD Simulations of classical sqgp

MD Simulations of classical sqgp MD Simulations of classical sqgp From RHIC to LHC: Achievements and Opportunities Tuesday, November 7, 2006 Kevin Dusling Ismail Zahed Outline Introduction Motivation for sqgp Motivation for classical

More information

Top Quarks, Unstable Particles... and NRQCD

Top Quarks, Unstable Particles... and NRQCD Top Quarks, Unstable Particles... and NRQCD André H. Hoang Max-Planck-Institute for Physics Munich (Thanks to A. Manohar, I. Stewart, T. Teubner, C. Farrell, C. Reisser, M. Stahlhofen ) INT Workshop, May

More information

Suppression of Heavy Quarkonium Production in pa Collisions

Suppression of Heavy Quarkonium Production in pa Collisions Suppression of Heavy Quarkonium Production in pa Collisions Jianwei Qiu Brookhaven National Laboratory Based on works done with Z.-B. Kang, G. Sterman, P. Sun, J.P. Vary, B.W. Xiao, F. Yuan, X.F. Zhang,

More information

pnrqcd determination of E1 radiative transitions

pnrqcd determination of E1 radiative transitions pnrqcd determination of E radiative transitions Sebastian Steinbeißer Group T3f Department of Physics Technical University Munich IMPRS talk 3.3.7 In collaboration with: Nora Brambilla, Antonio Vairo and

More information

QCD Equation of state in perturbation theory (and beyond... )

QCD Equation of state in perturbation theory (and beyond... ) QCD Equation of state in perturbation theory (and beyond... ) Kari Rummukainen CERN Theory & University of Oulu, Finland Physics of high baryon density K. Rummukainen (Oulu & CERN) EoS in pqcd Trento 06

More information

Conference Report Mailing address: CMS CERN, CH-1211 GENEVA 23, Switzerland

Conference Report Mailing address: CMS CERN, CH-1211 GENEVA 23, Switzerland Available on the CMS information server CMS CR 3-78 he Compact Muon Solenoid Experiment Conference Report Mailing address: CMS CERN, CH- GENEVA 3, Switzerland 8//9 Υ suppression in PbPb collisions at the

More information

Collisional energy loss in the sqgp

Collisional energy loss in the sqgp Parton propagation through Strongly interacting Systems ECT, Trento, September 005 Collisional energy loss in the sqgp André Peshier Institute for Theoretical Physics, Giessen University, Germany Bjorken

More information

Heavy-Quark Transport in the QGP

Heavy-Quark Transport in the QGP Heavy-Quark Transport in the QGP Hendrik van Hees Justus-Liebig Universität Gießen October 13, 29 Institut für Theoretische Physik JUSTUS-LIEBIG- UNIVERSITÄT GIESSEN Hendrik van Hees (JLU Gießen) Heavy-Quark

More information

arxiv: v1 [nucl-th] 4 Nov 2018

arxiv: v1 [nucl-th] 4 Nov 2018 arxiv:1811.0139v1 [nucl-th] 4 Nov 018 * Department of physics and astronomy, Wayne State University, Detroit, MI, USA E-mail: kumar.amit@wayne.edu Abhijit Majumder Department of physics and astronomy,

More information

Nicola Fabiano Perugia University and INFN, via Pascoli I-06100, Perugia, Italy. Abstract

Nicola Fabiano Perugia University and INFN, via Pascoli I-06100, Perugia, Italy. Abstract η b Decay into Two Photons Nicola Fabiano Perugia University and INFN, via Pascoli I-06100, Perugia, Italy Abstract We discuss the theoretical predictions for the two photon decay width of the pseudoscalar

More information

The 9th International Workshop on Heavy Quarkonium Monday 22 April Friday 26 April IHEP, Beijing.

The 9th International Workshop on Heavy Quarkonium Monday 22 April Friday 26 April IHEP, Beijing. The 9th International Workshop on Heavy Quarkonium 2013 Monday 22 April 2013 - Friday 26 April 2013 IHEP, Beijing Book of Abstracts Contents Searches for XYZ exotic states at LHCb.......................

More information

Heavy quark bindings at high temperature

Heavy quark bindings at high temperature Universität Bielefeld Olaf Kaczmarek Felix Zantow Matthias Döring Kay Hübner Frithjof Karsch RBC-Bielefeld Sourendu Gupta February 9, 27 apenext workshop, Firenze, February 9, 27 p.1/25 Machines for lattice

More information

Quark Gluon Plasma. Rajiv V. Gavai T. I. F. R., Mumbai. Workshop on LHC Physics 2006, T. I. F. R., Mumbai, September 7, 2006 R. V.

Quark Gluon Plasma. Rajiv V. Gavai T. I. F. R., Mumbai. Workshop on LHC Physics 2006, T. I. F. R., Mumbai, September 7, 2006 R. V. Quark Gluon Plasma Rajiv V. Gavai T. I. F. R., Mumbai Workshop on LHC Physics 2006, T. I. F. R., Mumbai, September 7, 2006 R. V. Gavai Top 1 Quark Gluon Plasma Rajiv V. Gavai T. I. F. R., Mumbai Introduction

More information

arxiv:hep-lat/ v1 5 Feb 2007

arxiv:hep-lat/ v1 5 Feb 2007 BI-TP 27/1 BNL-NT-7/5 Color Screening and Quark-Quark Interactions in Finite Temperature QCD Matthias Döring, Kay Hübner, Olaf Kaczmarek, and Frithjof Karsch Fakultät für Physik, Universität Bielefeld,

More information

Finite Temperature Field Theory

Finite Temperature Field Theory Finite Temperature Field Theory Dietrich Bödeker, Universität Bielefeld 1. Thermodynamics (better: thermo-statics) (a) Imaginary time formalism (b) free energy: scalar particles, resummation i. pedestrian

More information

8.882 LHC Physics. Experimental Methods and Measurements. Onia as Probes in Heavy Ion Physics [Lecture 10, March 9, 2009]

8.882 LHC Physics. Experimental Methods and Measurements. Onia as Probes in Heavy Ion Physics [Lecture 10, March 9, 2009] 8.882 LHC Physics Experimental Methods and Measurements Onia as Probes in Heavy Ion Physics [Lecture 10, March 9, 2009] Lecture Outline Onia as Probes in Heavy Ion Physics what are onia? and bit of history

More information

Heavy-Quark Transport in the QGP

Heavy-Quark Transport in the QGP Heavy-Quark Transport in the QGP Hendrik van Hees Goethe-Universität Frankfurt November 9, 211 Hendrik van Hees (GU Frankfurt) Heavy-Quark Transport November 9, 211 1 / 19 Motivation Fast equilibration

More information

annihilation of charm quarks in the plasma

annihilation of charm quarks in the plasma Quarkonia Production suppression vs enhancement quarkonia suppression ingredients and assumptions quarkonia in the QGP confrontation with data quarkonia enhancement ingredients and assumptions annihilation

More information

Resonance properties from finite volume energy spectrum

Resonance properties from finite volume energy spectrum Resonance properties from finite volume energy spectrum Akaki Rusetsky Helmholtz-Institut für Strahlen- und Kernphysik Abteilung Theorie, Universität Bonn, Germany NPB 788 (2008) 1 JHEP 0808 (2008) 024

More information

Dynamical equilibration of stronglyinteracting

Dynamical equilibration of stronglyinteracting Dynamical equilibration of stronglyinteracting infinite parton matter Vitalii Ozvenchuk, in collaboration with E.Bratkovskaya, O.Linnyk, M.Gorenstein, W.Cassing CPOD, Wuhan, China 11 November 2011 1 Motivation

More information

Quarkonia in Medium: From Spectral Functions to Observables

Quarkonia in Medium: From Spectral Functions to Observables Quarkonia in Medium: From Spectral Functions to Observables Ralf Rapp Cyclotron Institute + Physics Department Texas A&M University College Station, USA with: D. Cabrera (Madrid), L. Grandchamp, F. Riek

More information

From spectral functions to viscosity in the QuarkGluon Plasma

From spectral functions to viscosity in the QuarkGluon Plasma From spectral functions to viscosity in the QuarkGluon Plasma N.C., Haas, Pawlowski, Strodthoff: Phys. Rev. Lett. 115.112002, 2015 Hirschegg 21.1.2016 Outline Introduction Framework for transport coefficients

More information

G 2 QCD Neutron Star. Ouraman Hajizadeh in collaboration with Axel Maas. November 30, 2016

G 2 QCD Neutron Star. Ouraman Hajizadeh in collaboration with Axel Maas. November 30, 2016 G 2 QCD Neutron Star Ouraman Hajizadeh in collaboration with Axel Maas November 30, 2016 Motivation Why Neutron Stars? Neutron Stars: Laboratory of Strong Interaction Dense Objects: Study of strong interaction

More information

Introduction to Perturbative QCD

Introduction to Perturbative QCD Introduction to Perturbative QCD Lecture Jianwei Qiu Iowa State University/Argonne National Laboratory PHENIX Spinfest at RIKEN 007 June 11 - July 7, 007 RIKEN Wako Campus, Wako, Japan June 5, 007 1 Infrared

More information

PoS(Confinement X)133

PoS(Confinement X)133 Endpoint Logarithms in e + e J/ψ + η c Geoffrey T. Bodwin HEP Division, Argonne National Laboratory E-mail: gtb@hep.anl.gov Department of Physics, Korea University E-mail: neville@korea.ac.kr Jungil Lee

More information

Coupled-channel effects in radiative. Radiative charmonium transitions

Coupled-channel effects in radiative. Radiative charmonium transitions Coupled-channel effects in radiative charmonium transitions Feng-Kun Guo Helmholtz-Institut für Strahlen- und Kernphysik, Universität Bonn IHEP, Beijing, April 16, 2013 Based on: Guo, Meißner, PRL108(2012)112002;

More information

Jet and bulk observables within a partonic transport approach

Jet and bulk observables within a partonic transport approach Jet and bulk observables within a partonic transport approach Florian Senzel with J. Uphoff, O. Fochler, C. Wesp, Z. Xu and C. Greiner based on Phys.Rev.Lett. 4 (25) 23 Transport meeting, 29.4.25 Outline

More information

Charm production at RHIC

Charm production at RHIC 1 Charm production at RHIC Charm 2007 Conference Cornell University, Ithaca, NY 5 August 2007 2 The Quark Gluon Plasma T c Early universe quark-gluon plasma LHC RHIC Tri-critical point? Quark deconfinement

More information

Quarkonium production in CMS

Quarkonium production in CMS Quarkonium production in CMS Hyunchul Kim (Korea University For the CMS collaboration Content CMS detector@lhc Quarkonia physics motivation Result from CMS Charmonia : J/ψ Bottomonia : ϒ Summary HIM@Pyeongchang,

More information

Heavy Flavours in ALICE

Heavy Flavours in ALICE Heavy Flavours in ALICE Yvonne Pachmayer, University of Heidelberg for the ALICE Collaboration Motivation Cold nuclear matter effects Results from p-pb collisions Open heavy flavour J/ψ, ψ(2s), ϒ(1S) Comparison

More information

Production of energetic dileptons with small invariant masses. from the quark-gluon plasma. Abstract

Production of energetic dileptons with small invariant masses. from the quark-gluon plasma. Abstract Production of energetic dileptons with small invariant masses from the quark-gluon plasma Markus H. Thoma and Christoph T. Traxler Institut für Theoretische Physik, Universität Giessen, 3539 Giessen, Germany

More information

Lattice calculation of the Polyakov loop and Polyakov loop correlators

Lattice calculation of the Polyakov loop and Polyakov loop correlators Lattice calculation of the Polyakov loop and Polyakov loop correlators Johannes Heinrich Weber 1,a (on behalf of TUMQCD collaboration) 1 Technische Universität München, Physik Department Tf, James-Franck-Str.

More information

Lattice QCD investigation of heavy-light four-quark systems

Lattice QCD investigation of heavy-light four-quark systems Lattice QCD investigation of heavy-light four-quark systems Antje Peters peters@th.physik.uni-frankfurt.de Goethe-Universität Frankfurt am Main in collaboration with Pedro Bicudo, Krzysztof Cichy, Luka

More information