Bottomonium and transport in the QGP

Size: px
Start display at page:

Download "Bottomonium and transport in the QGP"

Transcription

1 Bottomonium and transport in the QGP Gert Aarts (FASTSUM collaboration) Kyoto, December 201 p. 1

2 Introduction QCD thermodynamics euclidean formulation lattice QCD pressure, entropy, fluctuations,... this talk: QCD real-time dynamics in or close to thermal equilibrium (linear response) lattice QCD analytical continuation to real time Green functions, in particular spectral functions quarkonium spectral functions transport coefficients from the lattice Kyoto, December 201 p. 2

3 Outline quarkonia bottomonium spectral functions in the QGP S waves: Υ at rest, moving P waves: melting light quarks transport: electrical conductivity conclusion Kyoto, December 201 p.

4 FASTSUM collaboration GA (Swansea) Chris Allton (Swansea) Seyong Kim (Sejong University) Maria-Paola Lombardo (Frascati) Sinead Ryan (Trinity College Dublin) Jonivar Skullerud (Maynooth) Simon Hands (Swansea) Don Sinclair (Argonne) Alessandro Amato (Swansea) Wynne Evans (Swansea) Pietro Giudice (Münster) Tim Harris (Trinity College Dublin) Aoife Kelly (Maynooth) Bugra Oktay (Utah) bottomonium: PRL (2011) [hep-lat] JHEP (2011) [hep-lat] JHEP (201) [hep-lat] JHEP (2014) [hep-lat] conductivity: PRL (201) [hep-lat] Kyoto, December 201 p. 4

5 Quarkonia and the QGP quarkonia as a thermometer for the quark-gluon plasma Matsui & Satz 86 tightly bound states of charm quarks (J/ψ,...) or bottom quarks (Υ,...) survive to higher temperatures broader states melt at lower temperatures melting pattern informs about temperature of the QGP figure by A. Mocsy relevant for heavy-ion collisions quantitative predictions required Kyoto, December 201 p. 5

6 Quarkonia and the QGP CMS results at the LHC: Υ spectrum compare PbPb collisions (left) and pp collisions (right) Υ(1S) survives Υ(2S,S) suppressed sequential melting Kyoto, December 201 p. 6

7 Quarkonia and the QGP how to find the response of quarkonia to the QGP? potential models lattice QCD... at T > 0: plethora of potential models: (seemingly) conflicting results interpretation of lattice correlators hindered by thermal (periodic) boundary conditions re-addressed recently using first-principle approach: effective field theories (EFTs) and separation of scales Kyoto, December 201 p. 7

8 Quarkonia and EFTs M T >... hierarchy of scales: heavy quark mass M temperature T inverse size Mv Debye mass gt binding energy Mv 2 weak coupling corresponding EFTs: NRQCD NRQCD + HTL pnrqcd pnrqcd + HTL... Laine, Philipsen, Romatschke & Tassler 07 Laine Burnier, Laine & Vepsäläinen Beraudo, Blaizot & Ratti 08 Escobedo & Soto 08 Brambilla, Ghiglieri, Vairo & Petreczky 08 Brambilla, Escobedo, Ghiglieri, Soto & Vairo 10 Escobedo, Soto & Mannarelli Kyoto, December 201 p. 8

9 Non-relativistic QCD this talk: use NRQCD, one of the EFTs, nonperturbatively no potential model / no weak coupling lattice QCD: heavy quarks with NRQCD requirement M T bottomonium: M b 4.5 GeV T MeV use of NRQCD very well motivated Kyoto, December 201 p. 9

10 Lattice QCD QGP with two light flavours (Wilson-like) many time slices: highly anisotropic lattices (a s /a τ = 6) lattice spacing: a 1 τ 7.5 GeV, a s fm lattice size: 12 N τ N τ N cfg bottom quark: NRQCD mean-field improved action with tree-level coefficients, including up to O(v 4 ) terms Davies et al 94 in progress: extension to N f = [hep-lat] Kyoto, December 201 p. 10

11 Spectrum at zero temperature exponential decay G(τ) exp( m eff τ) no periodicity in euclidean time: initial-value problem 0.25 S1 (Upsilon) = P1 (χ b1 ) = a τ m eff a τ m eff τ/a τ Υ (S wave) τ/a τ χ b1 (P wave) effective mass plot m eff = log[g(τ)/g(τ a τ )] Kyoto, December 201 p. 11

12 Spectrum zero temperature: ground and first excited states state a τ E Mass (MeV) Exp. (MeV) 1 1 S 0 (η b ) 0.118(1) 948(8) 990.9(2.8) 2 1 S 0 (η b (2S)) 0.197(2) 10019(15) - 1 S 1 (Υ) 0.121(1) (26) 2 S 1 (Υ ) 0.198(2) 10026(15) (1) 1 1 P 1 (h b ) 0.178(2) 9879(15) 9898.(1.1)(1.1) 1 P 0 (χ b0 ) 0.175(4) 9857(29) (42)(1) 1 P 1 (χ b1 ) 0.176() 9864(22) (26)(1) 1 P 2 (χ b2 ) 0.182() 9908(22) (26)(1) Υ(1S) used to set the scale Kyoto, December 201 p. 12

13 Increasing the temperature Υ S wave χ b1 P wave 0.25 S1 (Upsilon) = P1 (χ b1 ) = a τ m eff a τ m eff τ/a τ τ/a τ = 0.42 Kyoto, December 201 p. 1

14 Increasing the temperature Υ S wave χ b1 P wave S1 (Upsilon) =0.42 P1 (χ b1 ) =0.42 =1.05 = a τ m eff a τ m eff τ/a τ τ/a τ = 1.05 Kyoto, December 201 p. 1

15 Increasing the temperature Υ S wave χ b1 P wave S1 (Upsilon) =0.42 P1 (χ b1 ) =0.42 =1.05 =1.20 =1.05 = a τ m eff a τ m eff τ/a τ τ/a τ = 1.20 Kyoto, December 201 p. 1

16 Increasing the temperature Υ S wave χ b1 P wave S1 (Upsilon) =0.42 P1 (χ b1 ) = =1.05 =1.20 = =1.05 =1.20 =1.40 a τ m eff a τ m eff τ/a τ τ/a τ = 1.40 Kyoto, December 201 p. 1

17 Increasing the temperature Υ S wave χ b1 P wave S1 (Upsilon) =0.42 P1 (χ b1 ) =0.42 a τ m eff 0.2 =1.05 =1.20 =1.40 =1.68 a τ m eff 0.5 =1.05 =1.20 =1.40 = τ/a τ τ/a τ = 1.68 Kyoto, December 201 p. 1

18 Increasing the temperature Υ S wave χ b1 P wave S1 (Upsilon) =0.42 P1 (χ b1 ) =0.42 a τ m eff 0.2 =1.05 =1.20 =1.40 =1.68 =1.86 a τ m eff 0.5 =1.05 =1.20 =1.40 =1.68 = τ/a τ τ/a τ = 1.86 Kyoto, December 201 p. 1

19 Increasing the temperature Υ S wave χ b1 P wave a τ m eff S1 (Upsilon) =0.42 =1.05 =1.20 =1.40 =1.68 =1.86 =2.09 a τ m eff P1 (χ b1 ) =0.42 =1.05 =1.20 =1.40 =1.68 =1.86 = τ/a τ τ/a τ = 2.09 little T dependence substantial T dependence no exponential decay melting? clear difference in S and P wave correlators Kyoto, December 201 p. 1

20 Spectral functions from euclidean correlators to spectral functions G(τ,p) = dωk(τ,ω)ρ(ω,p) K(τ,ω) = cosh[ω(τ 1/2T)] sinh(ω/2t) inversion: use Maximal Entropy Method (MEM) first discussed quite some time ago but full of pitfalls and obstacles Asakawa & Hatsuda 1999, 2001 Karsch, Petreczky et al GA & Martinez Resco 02 Umeda 07 Petreczky et al Kyoto, December 201 p. 14

21 Spectral functions most problems absent in NRQCD: effective theory around two-quark threshold no transport contribution as ω 0 no thermal boundary conditions simple spectral relation G(τ,p) = dωe ωτ ρ(ω,p) why? factor out heavy quark mass scale: ω = 2M +ω M T : thermal effects exponentially suppressed Laine et al 08, GA et al 10 Kyoto, December 201 p. 15

22 Spectral functions no thermal boundary conditions simple spectral relation G(τ) = dωe ωτ ρ(ω) example at p = 0: correlators for free quarks with kinetic energy E k = k2 2M G S (τ) G P (τ) d k exp( 2E k τ) d kk 2 exp( 2E k τ) ρ S (ω) ρ P (ω) d kδ(ω 2E k ) d kk 2 δ(ω 2E k ) Burnier, Laine & Vepsäläinen 08 temperature dependence only enters via medium! Kyoto, December 201 p. 16

23 S wave at finite temperature Υ spectral function: zero temperature = ρ(ω)/m S1 (vector) Upsilon ω [GeV] dotted lines: ground and first excited state Υ(1S, 2S) from exponential fits Kyoto, December 201 p. 17

24 S wave at finite temperature temperature dependence in Υ channel =0.42 =1.05 =1.05 =1.20 =1.20 = ρ(ω)/m =1.40 =1.68 =1.68 =1.86 =1.86 =2.09 S1 (vector) Upsilon ω [GeV] Υ ground state survives excited states suppressed Kyoto, December 201 p. 17

25 S wave at finite temperature temperature dependence in η b channel =0.42 =1.05 =1.05 =1.20 =1.20 = ρ(ω)/m =1.40 =1.68 =1.68 =1.86 =1.86 = S0 (pseudoscalar) 200 η b ω [GeV] η b ground state survives excited states suppressed Kyoto, December 201 p. 17

26 movingυat finite temperature non-zero momentum: moving through the QGP predictions from EFT, AdS/CFT, potential models,... no clear picture: e.g. dissociates at lower/higher temperatures on the lattice in our case: a s p i = 2πn i N s n i N s 4 maximal momentum: p max 1.7 GeV maximal velocity of ground state: v = p/m S 0.2 non-relativistic Kyoto, December 201 p. 18

27 movingυat finite temperature non-relativistic speeds: v/c S1 (vector) Upsilon =0.42 G(τ,p)/G(τ,0) p (GeV) ratio G(τ, p)/g(τ, 0): τ/a τ clear momentum dependence in correlators expected from dispersion relation M(p) = M +p 2 /(2M) Kyoto, December 201 p. 19

28 movingυat finite temperature non-relativistic speeds: v/c 0.2 [G(τ,p:T)/G(τ,0;T)] / [G(τ,p:T 0 )/G(τ,0;T 0 )] S1 (vector) Upsilon =1.40 p (GeV) τ/a τ double ratio [G(τ,p;T)/G(τ,0;T)]/[G(τ,p;T 0 )/G(τ,0;T 0 )] very little temperature dependence in the momentum dependence Kyoto, December 201 p. 19

29 movingυat finite temperature non-relativistic speeds: v/c 0.2 ρ(ω)/m 2 2 S1 (vector) Upsilon =1.05 p (GeV) ρ(ω)/m 2 2 S1 (vector) Upsilon =1.40 p (GeV) ω [GeV] ω [GeV] spectral functions: survival of moving groundstate Kyoto, December 201 p. 19

30 P waves at finite temperature Kyoto, December 201 p. 20

31 P waves at finite temperature P wave correlators show drastically different behaviour a τ m eff P1 (χ b1 ) =0.42 =1.05 =1.20 =1.40 =1.68 =1.86 = τ/a τ no exponential decay what to expect: no isolated states? melting? spectral analysis Kyoto, December 201 p. 21

32 P waves at finite temperature χ b1 axial-vector channel 0.12 P1 (χ b1 ) = ρ(ω)/m ω [GeV] groundstate below T c, agreement with exp. fit Kyoto, December 201 p. 22

33 P waves at finite temperature χ b1 axial-vector channel ρ(ω)/m P1 (χ b1 ) =0.42 =1.05 =1.20 =1.40 =1.68 =1.86 = ω [GeV] melting immediately above T c consistent with correlator decay Kyoto, December 201 p. 22

34 P waves at finite temperature χ b1 axial-vector channel ρ(ω)/m P1 (χ b1 ) =1.05 =1.20 =1.40 =1.68 =1.86 = ω [GeV] no sign of ground state immediate melting above T c Kyoto, December 201 p. 22

35 Systematics systematic checks for MEM: default model dependence ω range: ω min < ω < ω max sensitive to ω min, additive constant in NRQCD! number of configurations high-precision data important, rel. error 10 4 τ range: τ = τ min...τ max a τ (N τ 1) see papers for details, in particular , Kyoto, December 201 p. 2

36 Transport coefficients dynamics on long length and timescales: effective theory: hydrodynamics ideal hydrodynamics: equation of state viscous hydro: transport coefficients shear/bulk viscosity, conductivity,... depend on underlying microscopic theory typically: large in weakly interacting theory small in strongly coupled systems perfect-fluid paradigm: η/s = 1/4π (holography) Kyoto, December 201 p. 24

37 linear response: Kubo relation Transport coefficients proportional to slope of current-current spectral function at ω = 0 example: conductivity 1 σ = lim ω 0 6ω ρ ii(ω,0) where ρ µν (x) = [j µ (x),j ν (0)] eq is current-current spectral function, j µ is EM current real-time correlator in equilibrium routinely computed with holography Kyoto, December 201 p. 25

38 Transport coefficients from the lattice on the lattice: euclidean correlator related to spectral function G(τ) = dωk(τ,ω)ρ(ω) inversion/analytical continuation much harder than previous problem: K(τ,ω) = cosh[ω(τ 1/2T)] sinh(ω/2t) need reliable estimate of ρ(ω)/ω ω=0 not just ρ(ω) in weakly-coupled theories, correlator is remarkably insensitive to details of ρ(ω) at small ω GA & Martinez Resco 02 Kyoto, December 201 p. 26

39 Transport coefficients from the lattice previous attempts: shear and bulk viscosity Nakamura & Sakai 05, Meyer 07 electrical conductivity quenched (TIFR) S. Gupta 04 (Swansea) GA, Allton, Foley, Hands & Kim 07 (Bielefeld) Ding, Francis, Karsch, Kaczmarek, Laermann & Söldner 11 dynamical (Mainz) Brandt, Francis, Meyer & Wittig 1 (Swansea) GA, Amato, Allton, Giudice, Hands & Skullerud 1 Kyoto, December 201 p. 27

40 several results above T c : Conductivity from the lattice C 1 emσ/t TIFR 1.5, 2, 7 0 staggered Swansea 1.5, (1) 0 staggered Bielefeld (1), Wilson, cont. extrapolated N f Mainz (12) 2 Wilson note: divide out common EM factor C em = e 2 f q 2 f q f = 2, 1 all studies used local current j µ = ψγ µ ψ not the exactly conserved lattice current Kyoto, December 201 p. 28

41 Conductivity from the lattice recent work: Amato, GA et al, [hep-lat] improvements: N f = 2+1 dynamical quark flavours conserved lattice current (no renormalisation required) many temperatures, below and above T c anisotropic lattice, a s /a τ =.5, many time slices N s N τ N cfg Kyoto, December 201 p. 29

42 spectral function ρ(ω)/ω 2 Conductivity from the lattice rho-particle peak around 800 MeV below T c nonzero conductivity: ρ(ω) σω +... inset ρ(ω)/ω: intercept conductivity Kyoto, December 201 p. 0

43 Conductivity from the lattice σ/t across the deconfinement transition N f = 0 (Aarts et al ) N f = 0 (Ding et al ) N f = 2 (Brandt et al ) -1 C em σ/τ T [MeV] previous results Kyoto, December 201 p. 1

44 Conductivity from the lattice σ/t across the deconfinement transition -1 C em σ/τ N f = 0 (Aarts et al ) N f = 0 (Ding et al ) N f = 2 (Brandt et al ) 24 N f = 2+1 } 2 (this work) T [MeV] consistent with previous (quenched) results in QGP first observation of T dependence Kyoto, December 201 p. 1

45 Summary bottomonium: NRQCD on QGP background S wave ground states survive, at rest and moving excited states appear suppressed P wave states melt immediately above T c transport from the lattice: electrical conductivity first large-scale computation with dynamical quarks number of results available above T c mostly consistent, σ/t C em in QGP temperature dependence of σ/t found across T c Kyoto, December 201 p. 2

46 Back-up: melted P waves ρ(ω)/m P1 (χ b1 ) =1.05 =1.20 =1.40 =1.68 =1.86 =2.09 ρ(ω)/m P1 (χ b1 ) =1.05 =1.20 =1.40 =1.68 =1.86 =2.09 free ω [GeV] a τ ω melting above T c : a featureless blob? shape is similar to free lattice spectral function ρ P (ω) p 2 δ(ω 2E p ) Brillouin zone Kyoto, December 201 p.

47 Back-up: conductivity systematics: default model dependence -1 C em σ/τ x16 24 x20 2 x24 2 x28 2 x2 2 x6 24 x40 2 x48 input: no structure b ρ default (ω)/ω = b+cω b needed to allow for a nonzero conductivity stable results provided b is not too small (no bias) Kyoto, December 201 p. 4

Spectral functions in QCD

Spectral functions in QCD Spectral functions in QCD Gert Aarts ECT*, May 2016 p. 1 Strongly interacting matter: transport and response aim of the meeting common questions for diverse systems cold atomic gases hadronic and quark-gluon

More information

Bottomonium from lattice QCD as a probe of the Quark-Gluon Plasma

Bottomonium from lattice QCD as a probe of the Quark-Gluon Plasma Home Search Collections Journals About Contact us My IOPscience Bottomonium from lattice QCD as a probe of the Quark-Gluon Plasma This content has been downloaded from IOPscience. Please scroll down to

More information

Cronfa - Swansea University Open Access Repository

Cronfa - Swansea University Open Access Repository Cronfa - Swansea University Open Access Repository This is an author produced version of a paper published in : Journal of Physics: Conference Series Cronfa URL for this paper: http://cronfa.swan.ac.uk/record/cronfa65

More information

Hyperons in a thermal medium: chiral symmetry, parity doubling and the lattice

Hyperons in a thermal medium: chiral symmetry, parity doubling and the lattice Hyperons in a thermal medium: chiral symmetry, parity doubling and the lattice Gert Aarts Saariselkä April 2018 p. 1 Mesons in a medium mesons in a medium very well studied hadronic phase: thermal broadening,

More information

Quark-Gluon Plasma: from lattice simulations to experimental results

Quark-Gluon Plasma: from lattice simulations to experimental results Home Search Collections Journals About Contact us My IOPscience Quark-Gluon Plasma: from lattice simulations to experimental results This content has been downloaded from IOPscience. Please scroll down

More information

arxiv: v1 [hep-lat] 24 Oct 2013

arxiv: v1 [hep-lat] 24 Oct 2013 arxiv:30.646v [hep-lat] 24 Oct 203 Lattice NRQCD study of in-medium bottomonium states using N f = 2+,48 3 2 HotQCD configurations Department of Physics, Sejong University, Seoul 43-747, Korea E-mail:

More information

Quark Gluon Plasma. Rajiv V. Gavai T. I. F. R., Mumbai. Workshop on LHC Physics 2006, T. I. F. R., Mumbai, September 7, 2006 R. V.

Quark Gluon Plasma. Rajiv V. Gavai T. I. F. R., Mumbai. Workshop on LHC Physics 2006, T. I. F. R., Mumbai, September 7, 2006 R. V. Quark Gluon Plasma Rajiv V. Gavai T. I. F. R., Mumbai Workshop on LHC Physics 2006, T. I. F. R., Mumbai, September 7, 2006 R. V. Gavai Top 1 Quark Gluon Plasma Rajiv V. Gavai T. I. F. R., Mumbai Introduction

More information

News on Hadrons in a Hot Medium

News on Hadrons in a Hot Medium News on Hadrons in a Hot Medium Mikko Laine (University of Bielefeld, Germany) 1 How to interpret the title? Hot Medium : 50 MeV T 1000 MeV; µ πt. Hadrons : In this talk only those which maintain their

More information

Lattice QCD and transport coefficients

Lattice QCD and transport coefficients International Nuclear Physics Conference, Adelaide, Australia, 13 Sep. 2016 Cluster of Excellence Institute for Nuclear Physics Helmholtz Institute Mainz Plan Strongly interacting matter at temperatures

More information

Geistes-, Natur-, Sozial- und Technikwissenschaften gemeinsam unter einem Dach. Olaf Kaczmarek. University of Bielefeld

Geistes-, Natur-, Sozial- und Technikwissenschaften gemeinsam unter einem Dach. Olaf Kaczmarek. University of Bielefeld Geistes-, Natur-, Sozial- und Technikwissenschaften gemeinsam unter einem Dach (some selected) Recent Developments in Lattice Studies for Quarkonia Olaf Kaczmarek University of Bielefeld Hard Probes 2012

More information

arxiv: v1 [hep-lat] 14 Oct 2015

arxiv: v1 [hep-lat] 14 Oct 2015 Calculation of free baryon spectral densities at finite temperature arxiv:151.469v1 [hep-lat] 14 Oct 15 and Gert Aarts Department of Physics, College of Science, Swansea University, Swansea, United Kingdom

More information

The relation between cross-section, decay width and imaginary potential of heavy quarkonium in a quark-gluon plasma

The relation between cross-section, decay width and imaginary potential of heavy quarkonium in a quark-gluon plasma The relation between cross-section, decay width and imaginary potential of heavy quarkonium in a quark-gluon plasma Miguel A. Escobedo Physik-Department T30f. Technische Universität München 19th of September

More information

Effective Field Theories for Quarkonium

Effective Field Theories for Quarkonium Effective Field Theories for Quarkonium recent progress Antonio Vairo Technische Universität München Outline 1. Scales and EFTs for quarkonium at zero and finite temperature 2.1 Static energy at zero temperature

More information

Heavy quarkonium in a weaky-coupled plasma in an EFT approach

Heavy quarkonium in a weaky-coupled plasma in an EFT approach Heavy quarkonium in a weaky-coupled plasma in an EFT approach Jacopo Ghiglieri TU München & Excellence Cluster Universe in collaboration with N. Brambilla, M.A. Escobedo, J. Soto and A. Vairo 474th WE

More information

Lattice Methods for Hadron Spectroscopy: new problems and challenges

Lattice Methods for Hadron Spectroscopy: new problems and challenges Lattice Methods for Hadron Spectroscopy: new problems and challenges Sinéad Ryan School of Mathematics, Trinity College Dublin, Ireland INT, Seattle, 10 th August, 2012 Sinéad Ryan (TCD) 1 / 28 Plan A

More information

arxiv: v1 [nucl-th] 19 Nov 2018

arxiv: v1 [nucl-th] 19 Nov 2018 Quarkonium dissociation in perturbative QCD Juhee Hong and Su Houng Lee Department of Physics and Institute of Physics and Applied Physics, Yonsei University, Seoul 37, Korea (Dated: November, 18) arxiv:1811.767v1

More information

Hadronic correlation and spectral functions in the QGP from Quenched Lattice QCD. Olaf Kaczmarek

Hadronic correlation and spectral functions in the QGP from Quenched Lattice QCD. Olaf Kaczmarek Geistes-, Natur-, Sozial- und Technikwissenschaften gemeinsam unter einem Dach Hadronic correlation and spectral functions in the QGP from Quenched Lattice QCD Olaf Kaczmarek in collaboration with: HengTong

More information

Quarkonium as Probe of Hot QCD Medium. Ágnes Mócsy

Quarkonium as Probe of Hot QCD Medium. Ágnes Mócsy Quarkonium as Probe of Hot QCD Medium Ágnes Mócsy Quarkonium as Probe of Hot QCD Medium Ágnes Mócsy in collaboration with Peter Petreczky (BNL), Chuan Miao (Uni Mainz) QCD Expectations - Temperature effects

More information

strong coupling Antonio Vairo INFN and University of Milano

strong coupling Antonio Vairo INFN and University of Milano potential Non-Relativistic QCD strong coupling Antonio Vairo INFN and University of Milano For most of the quarkonium states: 1/r mv Λ QCD (0) V (r) (GeV) 2 1 Υ Υ Υ Υ η ψ c χ ψ ψ 2 0 1 2 r(fm) -1 weak

More information

High Temperature/Density QCD

High Temperature/Density QCD High Temperature/Density QCD Frithjof Karsch, BNL and Bielefeld University Temperature ~17 MeV Early Universe Future LHC Experiments Crossover Current RHIC Experiments RHIC Energy Scan Critical Point 1

More information

Geistes-, Natur-, Sozial- und Technikwissenschaften gemeinsam unter einem Dach. Olaf Kaczmarek. University of Bielefeld

Geistes-, Natur-, Sozial- und Technikwissenschaften gemeinsam unter einem Dach. Olaf Kaczmarek. University of Bielefeld Geistes-, Natur-, Sozial- und Technikwissenschaften gemeinsam unter einem Dach (some selected) Recent Developments in Lattice Studies for Quarkonia Olaf Kaczmarek University of Bielefeld 5th International

More information

Heavy quarkonia at finite temperature: The EFT approach

Heavy quarkonia at finite temperature: The EFT approach Heavy quarkonia at finite temperature: he EF approach Jacopo Ghiglieri - echnische Universität München 5th Vienna Central European Seminar on QF 28 November 2008 Outline Motivation Introduction to Effective

More information

Heavy Mesonic Spectral Functions at Finite Temperature and Finite Momentum

Heavy Mesonic Spectral Functions at Finite Temperature and Finite Momentum Heavy Mesonic Spectral Functions at Finite Temperature and Finite Momentum Masayuki Asakawa Department of Physics, Osaka University September 2011 @ EMMI Workshop QCD Phase Diagram T LHC RHIC QGP (quark-gluon

More information

The Quark-Gluon plasma in the LHC era

The Quark-Gluon plasma in the LHC era The Quark-Gluon plasma in the LHC era Journées de prospective IN2P3-IRFU, Giens, Avril 2012 t z IPhT, Saclay 1 Quarks and gluons Strong interactions : Quantum Chromo-Dynamics Matter : quarks ; Interaction

More information

Heavy quarkonium physics from Euclidean correlators

Heavy quarkonium physics from Euclidean correlators Heavy quarkonium physics from Euclidean correlators Yannis Burnier Albert Einstein Center for Fundamental Physics, Bern University Talk at ECT*, based on [YB, M. Laine, JHEP 1211 (2012) 086] [YB, A.Rothkopf,

More information

Baryonic Spectral Functions at Finite Temperature

Baryonic Spectral Functions at Finite Temperature Baryonic Spectral Functions at Finite Temperature Masayuki Asakawa Department of Physics, Osaka University July 2008 @ XQCD 2008 QCD Phase Diagram T LHC 160-190 MeV 100MeV ~ 10 12 K RHIC crossover CEP(critical

More information

Quarkonium Free Energy on the lattice and in effective field theories

Quarkonium Free Energy on the lattice and in effective field theories Quarkonium Free Energy on the lattice and in effective field theories J. H. Weber 1,2 in collaboration with A. Bazavov 2, N. Brambilla 1, P. Petreczky 3 and A. Vairo 1 (TUMQCD collaboration) 1 Technische

More information

Effective Field Theory in Open Quantum Systems: Heavy Quarkonium in a Fireball

Effective Field Theory in Open Quantum Systems: Heavy Quarkonium in a Fireball Effective Field Theory in Open Quantum Systems: Heavy Quarkonium in a Fireball Joan Soto Departament de Física Quàntica i Astrofísica and Institut de Ciències del Cosmos Universitat de Barcelona Plan Effective

More information

Disintegration of quarkonia in QGP due to time dependent potential

Disintegration of quarkonia in QGP due to time dependent potential Disintegration of quarkonia in QGP due to time dependent potential and Ajit M. Srivastava Institute of Physics Bhubaneswar, India, 71 E-mail: parphy8@gmail.com, ajit@iopb.res.in Rapid thermalization in

More information

Viscosity Correlators in Improved Holographic QCD

Viscosity Correlators in Improved Holographic QCD Bielefeld University October 18, 2012 based on K. Kajantie, M.K., M. Vepsäläinen, A. Vuorinen, arxiv:1104.5352[hep-ph]. K. Kajantie, M.K., A. Vuorinen, to be published. 1 Motivation 2 Improved Holographics

More information

Thermal width and quarkonium dissociation in an EFT framework

Thermal width and quarkonium dissociation in an EFT framework Thermal width and quarkonium dissociation in an EFT framework Antonio Vairo Technische Universität München in collaboration with N. Brambilla, M. A. Escobedo and J. Ghiglieri based on arxiv:1303.6097 and

More information

Disintegration of quarkonia in QGP due to time dependent potential

Disintegration of quarkonia in QGP due to time dependent potential Disintegration of quarkonia in QGP due to time dependent potential Partha Bagchi Institute Of Physics December 9, 2014 XXI DAE-BRNS High Energy Physics Symposium 2014, 8-12 December 2014, IIT Guwahati,

More information

Relativistic correction to the static potential at O(1/m)

Relativistic correction to the static potential at O(1/m) Relativistic correction to the static potential at O(1/m) Miho Koma (Inst. f. Kernphysik, Mainz Univ.) Yoshiaki Koma, Hartmut Wittig Lattice 2007, Regensburg, 30 July 2007 We investigate the relativistic

More information

Parity doubling of nucleons, Delta and Omega baryons across the deconfinement phase transition

Parity doubling of nucleons, Delta and Omega baryons across the deconfinement phase transition Parity doubling of nucleons, Delta and Omega baryons across the deconfinement phase transition Gert Aarts 1, Chris Allton 1, Davide De Boni 1,a, Simon Hands 1, Chrisanthi Praki 1, Benjamin Jäger 1,2,b,

More information

Conference Report Mailing address: CMS CERN, CH-1211 GENEVA 23, Switzerland

Conference Report Mailing address: CMS CERN, CH-1211 GENEVA 23, Switzerland Available on the CMS information server CMS CR 3-78 he Compact Muon Solenoid Experiment Conference Report Mailing address: CMS CERN, CH- GENEVA 3, Switzerland 8//9 Υ suppression in PbPb collisions at the

More information

Lectures on NRQCD Factorization for Quarkonium Production and Decay

Lectures on NRQCD Factorization for Quarkonium Production and Decay Lectures on NRQCD Factorization for Quarkonium Production and Decay Eric Braaten Ohio State University I. Nonrelativistic QCD II. Annihilation decays III. Inclusive hard production 1 NRQCD Factorization

More information

Quarkonium Results from Fermilab and NRQCD

Quarkonium Results from Fermilab and NRQCD Quarkonium Results from Fermilab and NRQCD Paul Mackenzie mackenzie@fnal.gov International Workshop on Heavy Quarkonium Fermilab Sept. 20-22 2003 Thanks Christine Davies (HPQCD), Jim Simone Recent progress

More information

Bottomonia physics at RHIC and LHC energies

Bottomonia physics at RHIC and LHC energies Bottomonia physics at RHIC and LHC energies Georg Wolschin Heidelberg University Institut für Theoretische Physik Philosophenweg 16 D-69120 Heidelberg ISMD_2017_Tlaxcala Topics 1. Introduction: ϒ suppression

More information

Heating up QGP: towards charm quark chemical equilibration

Heating up QGP: towards charm quark chemical equilibration Heating up QGP: towards charm quark chemical equilibration Mikko Laine (University of Bern, Switzerland) 1 What is it? 2 Melting / recombination: Leptonic annihilation: q q l + l Chemical equilibration:

More information

arxiv: v1 [hep-lat] 19 Dec 2013

arxiv: v1 [hep-lat] 19 Dec 2013 emerature deendence of electrical conductivity and dileton rates from hot quenched lattice QCD arxiv:32.5609v [he-lat] 9 Dec 203 and Marcel Müller Fakultät für Physik, Universität Bielefeld, D-3365 Bielefeld,

More information

Opportunities for Lattice QCD Thermodynamics. 1 QCD at nonzero temperature and density

Opportunities for Lattice QCD Thermodynamics. 1 QCD at nonzero temperature and density Opportunities for Lattice QCD Thermodynamics Lattice QCD Executive Committee R. Brower, (Boston U.) N. Christ (Columbia U.), M. Creutz (BNL), P. Mackenzie (Fermilab), J. Negele (MIT), C. Rebbi (Boston

More information

arxiv: v1 [hep-lat] 10 Oct 2015

arxiv: v1 [hep-lat] 10 Oct 2015 BI-TP /6 A stochastic approach to the reconstruction of spectral functions in lattice QCD arxiv:.9v [hep-lat] Oct, Heng-Tong Ding Key Laboratory of Quark & Lepton Physics (MOE) and Institute of Particle

More information

A prediction from string theory, with strings attached

A prediction from string theory, with strings attached A prediction from string theory, with strings attached Hong Liu Massachusetts Institute of Technology HL, Krishna Rajagopal, Urs. Wiedemann hep-ph/0607062, hep-ph/0612168 Qudsia Ejaz, Thomas Faulkner,

More information

Thermodynamics of (2+1)-flavor QCD from the lattice

Thermodynamics of (2+1)-flavor QCD from the lattice INT Seattle, December 7, 2006 Thermodynamics of (2+1)-flavor QCD from the lattice Christian Schmidt for the RBC-Bielefeld Collaboration --- results from QCDOC --RIKEN BNL Saumen Datta Frithjof Karsch Chulwoo

More information

Overview of heavy ion CMS results

Overview of heavy ion CMS results Overview of heavy ion CMS results Gian Michele Innocenti on behalf of the CMS Collaboration Massachusetts Institute of echnology Rencontres de Moriond QCD and High Energy Interactions March 19th - 26th,

More information

The direct photon puzzle

The direct photon puzzle The direct photon puzzle Jean-François Paquet January 16, 2017 ALICE Journal Club Jean-François Paquet (Stony Brook) 2 What is the direct photon puzzle? > Background

More information

Spectral Properties of Quarks in the Quark-Gluon Plasma

Spectral Properties of Quarks in the Quark-Gluon Plasma Lattice27 : 2, Aug., 27 Spectral Properties of Quarks in the Quark-Gluon Plasma Masakiyo Kitazawa (Osaka Univ.) F. Karsch and M.K., arxiv:78.299 Why Quark? Because there are quarks. in the deconfined phase

More information

Spectral functions and transport properties from lattice QCD. Olaf Kaczmarek

Spectral functions and transport properties from lattice QCD. Olaf Kaczmarek Geistes-, Natur-, Sozial- und Technikwissenschaften gemeinsam unter einem Dach Spectral functions and transport properties from lattice QCD Olaf Kaczmarek University of Bielefeld 8th International Workshop

More information

QCD thermodynamics with two-flavours of Wilson fermions on large lattices

QCD thermodynamics with two-flavours of Wilson fermions on large lattices QCD thermodynamics with two-flavours of Wilson fermions on large lattices Bastian Brandt Institute for nuclear physics In collaboration with A. Francis, H.B. Meyer, O. Philipsen (Frankfurt) and H. Wittig

More information

Heavy Quarkonium in a Quark-Gluon Plasma

Heavy Quarkonium in a Quark-Gluon Plasma Heavy Quarkonium in a Quark-Gluon Plasma Joan Soto Departament d Estructura i Constituents de la Matèria and Institut de Ciències del Cosmos Universitat de Barcelona Charmonium Eichten, Godfrey, Mahlke,

More information

Effective Field Theories for heavy probes in a hot QCD plasma and in the early universe

Effective Field Theories for heavy probes in a hot QCD plasma and in the early universe Effective Field Theories for heavy probes in a hot QCD plasma and in the early universe Miguel A. Escobedo 1,2,a 1 Institut de Physique Théorique, Université Paris Saclay, CNRS, CEA, F-91191, Gif-sur-Yvette,

More information

arxiv: v1 [hep-ph] 24 Oct 2012

arxiv: v1 [hep-ph] 24 Oct 2012 Screening Masses of Scalar and Pseudo-scalar Excitations in Quark-gluon Plasma P. Czerski The H. Niewodniczański Institute of Nuclear Physics, Polish Academy of Sciences, ul. Radzikowskiego 152, arxiv:1210.6531v1

More information

Spectral functions and hadron spectroscopy in lattice QCD

Spectral functions and hadron spectroscopy in lattice QCD Spectral functions and hadron spectroscopy in lattice QCD Anthony Francis Jefferson Laboratory 06.01.2014 Outline Biography Pre-academia Academia Spectral functions in lattice QCD at finite temperature

More information

Transport Coefficients of Hadron Matter at Finite Temperature

Transport Coefficients of Hadron Matter at Finite Temperature Transport Coefficients of Hadron Matter at Finite Temperature Andres Ortiz University of Texas at El Paso Department of Physics Dr. Ralf Rapp Texas A&M University Cyclotron Institute Objectives To obtain

More information

Quarkonium suppression

Quarkonium suppression Quarkonium suppression an EFT approach to open quantum systems Antonio Vairo Technische Universität München Based on (1) N. Brambilla, M.A. Escobedo, J. Soto and A. Vairo Heavy quarkonium suppression in

More information

Bulk Thermodynamics: What do we (want to) know?

Bulk Thermodynamics: What do we (want to) know? Bulk Thermodynamics: What do we (want to) know? µ = : properties of transition in, ( + 1)-flavor QCD: crossover or phase transition, deconfinement vs. chiral symmetry restoration, universality,... T c,

More information

LQCD at non-zero temperature : strongly interacting matter at high temperatures and densities Péter Petreczky

LQCD at non-zero temperature : strongly interacting matter at high temperatures and densities Péter Petreczky LQCD at non-zero temperature : strongly interacting matter at high temperatures and densities Péter Petreczky QCD and hot and dense matter Lattice formulation of QCD Deconfinement transition in QCD : EoS

More information

Steffen Hauf

Steffen Hauf Charmonium in the QGP Debye screening a' la Matsui & Satz Steffen Hauf 17.01.2008 22. Januar 2008 Fachbereich nn Institut nn Prof. nn 1 Overview (1)Charmonium: an Introduction (2)Rehersion: Debye Screening

More information

Heavy quark free energies and screening from lattice QCD

Heavy quark free energies and screening from lattice QCD Heavy quark free energies and screening from lattice QCD Olaf Kaczmarek Universität Bielefeld February 9, 29 RBC-Bielefeld collaboration O. Kaczmarek, PoS CPOD7 (27) 43 RBC-Bielefeld, Phys.Rev.D77 (28)

More information

Heavy quark free energies, screening and the renormalized Polyakov loop

Heavy quark free energies, screening and the renormalized Polyakov loop Heavy quark free energies, screening and the renormalized Polyakov loop Olaf Kaczmarek Felix Zantow Universität Bielefeld October 6, 26 VI Workshop III, Rathen, October, 26 p./9 Charmonium suppression..75.5

More information

Lattice calculation of static quark correlators at finite temperature

Lattice calculation of static quark correlators at finite temperature Lattice calculation of static quark correlators at finite temperature J. Weber in collaboration with A. Bazavov 2, N. Brambilla, M.Berwein, P. Petrezcky 3 and A. Vairo Physik Department, Technische Universität

More information

Color screening in 2+1 flavor QCD

Color screening in 2+1 flavor QCD Color screening in 2+1 flavor QCD J. H. Weber 1 in collaboration with A. Bazavov 2, N. Brambilla 1, P. Petreczky 3 and A. Vairo 1 (TUMQCD collaboration) 1 Technische Universität München 2 Michigan State

More information

Critical Behavior of heavy quarkonia in medium from QCD sum rules

Critical Behavior of heavy quarkonia in medium from QCD sum rules Critical Behavior of heavy quarkonia in medium from QCD sum rules Kenji Morita Institute of Physics and Applied Physics, Yonsei University in Collaboration with Su Houng Lee Aim of this talk: 1. Practical

More information

Quarkonia and Open Heavy Flavor Results from CMS

Quarkonia and Open Heavy Flavor Results from CMS Quarkonia and Open Heavy Flavor Results from CMS For the CMS collaboration Heavy Quark Physics in Heavy-Ion Collisions ECT*, Trento, Italy 16-20 March, 2015 Relativistic Heavy Ion Collisions Trying to

More information

Status of Heavy-Ion Physics at the LHC

Status of Heavy-Ion Physics at the LHC Status of Heavy-Ion Physics at the LHC Yvonne Pachmayer, Heidelberg University J. Jowett LHC Page 1 2 Motivation: What is the question? ALICE/LHC Pb+Pb snn = 2760 GeV What happens if you make matter Hotter

More information

Hydrodynamical description of ultrarelativistic heavy-ion collisions

Hydrodynamical description of ultrarelativistic heavy-ion collisions Frankfurt Institute for Advanced Studies June 27, 2011 with G. Denicol, E. Molnar, P. Huovinen, D. H. Rischke 1 Fluid dynamics (Navier-Stokes equations) Conservation laws momentum conservation Thermal

More information

Quarkonia physics in Heavy Ion Collisions. Hugo Pereira Da Costa CEA/IRFU Rencontres LHC France Friday, April

Quarkonia physics in Heavy Ion Collisions. Hugo Pereira Da Costa CEA/IRFU Rencontres LHC France Friday, April Quarkonia physics in Heavy Ion Collisions Hugo Pereira Da Costa CEA/IRFU Rencontres LHC France Friday, April 5 2013 1 2 Contents Introduction (QGP, Heavy Ion Collisions, Quarkonia) Quarkonia at the SPS

More information

arxiv: v1 [hep-ph] 7 Jan 2013

arxiv: v1 [hep-ph] 7 Jan 2013 arxiv:1301.1308v1 [hep-ph] 7 Jan 2013 Electric dipole transitions in pnrqcd Faculty of Physics, University of Vienna, Boltzmanngasse 5, A-1090 Wien E-mail: piotr.pietrulewicz@univie.ac.at We present a

More information

Heavy flavor with

Heavy flavor with Heavy flavor with CBM@FAIR Hendrik van Hees Goethe University Frankfurt and FIAS April 21, 2015 Hendrik van Hees (GU Frankfurt/FIAS) Heavy flavor with CBM@FAIR April 21, 2015 1 / 22 Outline 1 Motivation:

More information

The strange degrees of freedom in QCD at high temperature. Christian Schmidt

The strange degrees of freedom in QCD at high temperature. Christian Schmidt The strange degrees of freedom in QCD at high temperature Christian Schmidt Christian Schmidt LAT 213 1 Abstract We use up to fourth order cumulants of net strangeness fluctuations and their correlations

More information

Static quark correlators on the 2+1 flavor TUMQCD lattices

Static quark correlators on the 2+1 flavor TUMQCD lattices Static quark correlators on the 2+1 flavor TUMQCD lattices J. H. Weber 1 in collaboration with A. Bazavov 2, N. Brambilla 1, P. Petreczky 3 and A. Vairo 1 (TUMQCD collaboration) 1 Technische Universität

More information

Real time lattice simulations and heavy quarkonia beyond deconfinement

Real time lattice simulations and heavy quarkonia beyond deconfinement Real time lattice simulations and heavy quarkonia beyond deconfinement Institute for Theoretical Physics Westfälische Wilhelms-Universität, Münster August 20, 2007 The static potential of the strong interactions

More information

Longitudinal thermalization via the chromo-weibel instability

Longitudinal thermalization via the chromo-weibel instability Longitudinal thermalization via the chromo-weibel instability Maximilian Attems Frankfurt Institute of Advanced Studies 1207.5795, 1301.7749 Collaborators: Anton Rebhan, Michael Strickland Schladming,

More information

Latest results on heavy flavor di-lepton (p-pb and Pb-Pb)

Latest results on heavy flavor di-lepton (p-pb and Pb-Pb) Journal of Physics: Conference Series OPEN ACCESS Latest results on heavy flavor di-lepton (p-pb and Pb-Pb) o cite this article: Dong Ho Moon and the Cms collaboration J. Phys.: Conf. Ser. View the article

More information

Universal Peaks in Holographic Photon Production. David Mateos University of California at Santa Barbara

Universal Peaks in Holographic Photon Production. David Mateos University of California at Santa Barbara Universal Peaks in Holographic Photon Production David Mateos University of California at Santa Barbara Plan Introduction and motivation. Phase transitions for fundamental matter. Photon production. Summary

More information

arxiv: v1 [nucl-th] 2 Mar 2015

arxiv: v1 [nucl-th] 2 Mar 2015 The domain of validity of fluid dynamics and the onset of cavitation in ultrarelativistic heavy ion collisions arxiv:503.0053v [nucl-th] 2 Mar 205 Department of Physics, McGill University, 3600 University

More information

Temperature dependence of shear viscosity of SU(3) gluodynamics within lattice simulation

Temperature dependence of shear viscosity of SU(3) gluodynamics within lattice simulation Temperature dependence of shear viscosity of SU(3) gluodynamics within lattice simulation V.V. Braguta ITEP 20 April, 2017 Outline: Introduction Details of the calculation Shear viscocity Fitting of the

More information

Coupled-channel effects in radiative. Radiative charmonium transitions

Coupled-channel effects in radiative. Radiative charmonium transitions Coupled-channel effects in radiative charmonium transitions Feng-Kun Guo Helmholtz-Institut für Strahlen- und Kernphysik, Universität Bonn IHEP, Beijing, April 16, 2013 Based on: Guo, Meißner, PRL108(2012)112002;

More information

Lattice QCD. QCD 2002, I. I. T. Kanpur, November 19, 2002 R. V. Gavai Top 1

Lattice QCD. QCD 2002, I. I. T. Kanpur, November 19, 2002 R. V. Gavai Top 1 Lattice QCD QCD 2002, I. I. T. Kanpur, November 19, 2002 R. V. Gavai Top 1 Lattice QCD : Some Topics QCD 2002, I. I. T. Kanpur, November 19, 2002 R. V. Gavai Top 1 Lattice QCD : Some Topics Basic Lattice

More information

Latest results on Quarkonium production in nuclear matter at the LHC

Latest results on Quarkonium production in nuclear matter at the LHC Latest results on Quarkonium production in nuclear matter at the LHC Nicolas Filipovic ELTE Particle Physics Seminar April 27th, 2016 Outline A Quarkonium in the QGP Charmonium results in Run 1 Bottomonium

More information

From spectral functions to viscosity in the QuarkGluon Plasma

From spectral functions to viscosity in the QuarkGluon Plasma From spectral functions to viscosity in the QuarkGluon Plasma N.C., Haas, Pawlowski, Strodthoff: Phys. Rev. Lett. 115.112002, 2015 Hirschegg 21.1.2016 Outline Introduction Framework for transport coefficients

More information

Energy-momentum tensor correlators in hot Yang-Mills theory

Energy-momentum tensor correlators in hot Yang-Mills theory Energy-momentum tensor correlators in hot Yang-Mills theory Aleksi Vuorinen University of Helsinki Micro-workshop on analytic properties of thermal correlators University of Oxford, 6.3.017 Mikko Laine,

More information

Past, Present, and Future of the QGP Physics

Past, Present, and Future of the QGP Physics Past, Present, and Future of the QGP Physics Masayuki Asakawa Department of Physics, Osaka University November 8, 2018 oward Microscopic Understanding In Condensed Matter Physics 1st Macroscopic Properties

More information

Thermal dilepton production from hot QCD

Thermal dilepton production from hot QCD Institute for Theoretical Physics, AEC, University of Bern, Sidlerstrasse 5, 301 Bern, Switzerland E-mail: laine@itp.unibe.ch NLO and LPM-resummed computations of thermal dilepton production from a hot

More information

Towards new relativistic hydrodynamcis from AdS/CFT

Towards new relativistic hydrodynamcis from AdS/CFT Towards new relativistic hydrodynamcis from AdS/CFT Michael Lublinsky Stony Brook with Edward Shuryak QGP is Deconfined QGP is strongly coupled (sqgp) behaves almost like a perfect liquid (Navier-Stokes

More information

Quarkonium production in CMS

Quarkonium production in CMS Quarkonium production in CMS Hyunchul Kim (Korea University For the CMS collaboration Content CMS detector@lhc Quarkonia physics motivation Result from CMS Charmonia : J/ψ Bottomonia : ϒ Summary HIM@Pyeongchang,

More information

Momentum diffusion of heavy quarks from Lattice QCD

Momentum diffusion of heavy quarks from Lattice QCD Momentum diffusion of heavy quarks from Lattice QCD in collaboration with Saumen Datta, Rajiv Gavai, Pushan Majumdar Phys.Rev. D85 (2012) 014510 Debasish Banerjee Albert Einstein Center for Fundamental

More information

arxiv:hep-lat/ v2 17 Jun 2005

arxiv:hep-lat/ v2 17 Jun 2005 BI-TP 25/8 and BNL-NT-5/8 Static quark anti-quark interactions in zero and finite temperature QCD. I. Heavy quark free energies, running coupling and quarkonium binding Olaf Kaczmarek Fakultät für Physik,

More information

Melting the QCD Vacuum with Relativistic Heavy-Ion Collisions

Melting the QCD Vacuum with Relativistic Heavy-Ion Collisions Melting the QCD Vacuum with Relativistic Heavy-Ion Collisions Steffen A. Bass QCD Theory Group Introduction: the Quark-Gluon-Plasma How can one create a QGP? Basic tools for a Theorist: Transport Theory

More information

Radiative transitions and the quarkonium magnetic moment

Radiative transitions and the quarkonium magnetic moment Radiative transitions and the quarkonium magnetic moment Antonio Vairo based on Nora Brambilla, Yu Jia and Antonio Vairo Model-independent study of magnetic dipole transitions in quarkonium PRD 73 054005

More information

MD Simulations of classical sqgp

MD Simulations of classical sqgp MD Simulations of classical sqgp From RHIC to LHC: Achievements and Opportunities Tuesday, November 7, 2006 Kevin Dusling Ismail Zahed Outline Introduction Motivation for sqgp Motivation for classical

More information

annihilation of charm quarks in the plasma

annihilation of charm quarks in the plasma Quarkonia Production suppression vs enhancement quarkonia suppression ingredients and assumptions quarkonia in the QGP confrontation with data quarkonia enhancement ingredients and assumptions annihilation

More information

Phase diagram and EoS from a Taylor expansion of the pressure

Phase diagram and EoS from a Taylor expansion of the pressure he XXVI International Symposium on Lattice Field heory (Lattice 28), Williamsburg, Virginia, USA, 28 July 14 19. Phase diagram and EoS from a aylor expansion of the pressure Christian Schmidt Universität

More information

T-Matrix approach to heavy quarks in the Quark-Gluon Plasma

T-Matrix approach to heavy quarks in the Quark-Gluon Plasma T-Matrix approach to heavy quarks in the Quark-Gluon Plasma Hendrik van Hees Justus-Liebig-Universität Gießen June 1, 28 with M. Mannarelli, V. Greco, and R. Rapp Institut für Theoretische Physik JUSTUS-LIEBIG-

More information

Constraining the QCD equation of state in hadron colliders

Constraining the QCD equation of state in hadron colliders Constraining the QCD equation of state in hadron colliders Akihiko Monnai (KEK, Japan) with Jean-Yves Ollitrault (IPhT Saclay, France) AM and J.-Y. Ollitrault, Phys. Rev. C 96, 044902 (2017) New Frontiers

More information

The Big Picture. Thomas Schaefer. North Carolina State University

The Big Picture. Thomas Schaefer. North Carolina State University The Big Picture Thomas Schaefer North Carolina State University 1 Big Questions What is QCD? What is a Phase of QCD? What is a Plasma? What is a (perfect) Liquid? What is a wqgp/sqgp? 2 What is QCD (Quantum

More information

QCD Matter above Tc. Atsushi NAKAMURA RIISE, Hiroshima University 5 th International Workshop on Extreme QCD Frascati, Aug.

QCD Matter above Tc. Atsushi NAKAMURA RIISE, Hiroshima University 5 th International Workshop on Extreme QCD Frascati, Aug. QCD Matter above Tc Atsushi NAKAMURA RIISE, Hiroshima University 5 th International Workshop on Extreme QCD Frascati, Aug.6-8, 2007 QCD Collaboration with R. Gupta and S. Sakai M. Chernodub and V. Zakharov

More information

arxiv:hep-lat/ v2 4 Mar 2005

arxiv:hep-lat/ v2 4 Mar 2005 EPJ manuscript No. (will be inserted by the editor) Deconfinement and Quarkonium Suppression Frithjof Karsch,2 a arxiv:hep-lat/524v2 4 Mar 25 Fakultät für Physik, Universität Bielefeld, D-3365 Bielefeld,

More information

Constraining the bulk viscosity of QCD

Constraining the bulk viscosity of QCD Constraining the bulk viscosity of QCD (with heavy ion collisions) Bwidth Bnorm Jean-François Paquet Tpeak July 21, 2017 Triangle Nuclear Theory Colloquium In collaboration with... Charles Gale Sangyong

More information

Some aspects of dilepton production in HIC

Some aspects of dilepton production in HIC Some aspects of dilepton production in HIC Qun Wang University of Science and Technology of China (USTC) In collaboration with H.J.Xu, J.Deng, X.Dong, L.J.Ruan, Z.B.Xu, N.Xu, P.F.Zhuang, Y.F. Zhang Electromagnetic

More information