Miami Modified dark matter in galaxy clusters. Douglas Edmonds Emory & Henry College

Size: px
Start display at page:

Download "Miami Modified dark matter in galaxy clusters. Douglas Edmonds Emory & Henry College"

Transcription

1 Miami 2015 Modified dark matter in galaxy clusters Douglas Edmonds Emory & Henry College

2 Collaboration D. Edmonds Emory & Henry College D. Farrah Virginia Tech C.M. Ho Michigan State University D. Minic Virginia Tech Y.J. Ng University of North Carolina T. Takeuchi Virginia Tech

3 Outline Modified Dark Matter (MDM) What is MDM? MDM from entropic gravity What is the mass profile of an MDM halo? Does MDM resolve mass discrepancies? Observed galactic rotation curves Observed vs. dynamical mass in Galaxy clusters

4 MDM MoNDian Modified dark matter (MDM) is dark matter i.e., it is an EXTRA source (beyond the baryonic source) MDM is NOT a modification of gravity

5 MDM Theory via entropic gravity FΔx = TΔS entropic force from 1 st and 2 nd laws of thermodynamics ΔS = 2πk mc! Δx kt =!a 2πc! F entropic = m! a Bekenstein-Hawking formula for black hole entropy (at event horizon) Unruh temperature Newton s 2 nd law (Vector from gradient of entropy) Verlinde, 2010 [arxiv: ]

6 Consider a quasi-local (spherical) holographic screen with area and temperature A = 4πr 2 E = NkT / 2 MDM Theory via entropic gravity Equipartition of energy:, N = A / l 2 P = Ac 3 / (G ) being the total number of degrees of freedom (bits) on the screen T Unruh temperature for a uniformly accelerating (Rindler) observer kt = a 2πc Along with E = Mc 2 Mc 2 = Ac2 a 4πG = r2 c 2 a G a = GM r 2 Newton s law of gravity Verlinde, 2010 [arxiv: ]

7 Generalization to de Sitter space: MDM Theory via entropic gravity Unruh temperature measured by an inertial observer, where T ds = a 0 2πkc a 0 = c Λ / 3 T ds+a = a2 + a 0 2 2πkc Unruh temperature measured by a non-inertial observer with accleration a Net temperature measured by a non-inertial observer T T ds+a T ds = # 2πkc a2 +a 2 0 a & $% 0'( Verlinde s approach F entropic = T " = m a 2 +a 2 $ # 0 a 0 % Deser & Levin [arxiv:gr-qc/ ]; Jacobson [arxiv:gr-qc/ ]; Ho, Minic & Ng [arxiv: ]

8 Consider a quasi-local (spherical) holographic screen with area and effective temperature A = 4πr 2 MDM Theory via entropic gravity T a 2 + a 0 2 a 0 = 2πck T = 2πck " $ # 2 E Nk % " ' = 4π $ & # Unruh equipartition Einstein MG % ' = G M A & r 2 where M represents the total mass enclosed within the volume. M = M + M ' M ', where is the dark matter mass. What is the MDM mass profile? Ho, Minic & Ng [arxiv: ]; [arxiv: ]; [arxiv: ]

9 What is the mass profile? MDM Theory observational constraints F entropic = T " = m a 2 +a 2 $ # 0 a 0 % a >> a 0, F entropic ma; a << a 0, F entropic ma 2 / (2a 0 ) a << a 0 For, consistency with flat rotation curves (v independent of r) and the observed Tully-Fisher relation ( ) requires that v 4 M a (2a N a 3 0 / π )1/4 The entropic force for the low acceleration regime is then where a c F entropic ma2 2a 0 m a N a c F MoND is the critical acceleration in MOND, and we have used the fact that a 0 2πa c Ho, Minic & Ng [arxiv: ]; [arxiv: ]; [arxiv: ]

10 What is the mass profile? MDM Theory observational constraints Galactic rotation curves suggest: ' M ' = M 1! ) # () π " a 0 a $ & % 2 *, +, Note: This form is also suggested by introducing a fundamental acceleration which is related to the cosmological constant into Jacobson s rewriting of GR as a form of thermodynamics Ho, Minic & Ng [arxiv: ]; Jacobson [1995; Phys. Rev. Lett. 75]

11 Observations Galactic Rotation Curves Solve the force equation for circular orbits for a(r) and v(r) " F entropic = m a 2 +a 2 $ # 0 a 0 % = mgm ρ ' r! ( ) = a c # ρ '( r) = " r s r $ & % 2 ρ 0 d dr! # " r! 1+ r $ # & " r s % 2 M a 2 $ & % ln( 1+ cx) cx / ( 1+ cx) ( ) = v 200 x ln( 1+ c) c / ( 1+ c) v r " & r 2 1+ a 0 ), ( + # ' a * 2 $ - = mv2 % r Once we have a(r), we can find the MDM density profile We compare MDM fits to CDM (using NFW profile) DE, Farrah, Ho, Minic, Ng & Takeuchi, 2014 [arxiv: ] "# $ %

12 Observations Galactic Rotation Curves Data black squares MDM red line Stars blue line CDM (NFW) black line Gas green line [Sanders & Verheijen, 1998] Fitting parameters: MDM M/L CDM c, V 200, M/L DE, Farrah, Ho, Minic, Ng & Takeuchi, 2014 [arxiv: ]

13 Observations Galactic Rotation Curves MDM red line CDM (NFW) black line Fitting parameters: MDM M/L CDM c, V 200, M/L DE, Farrah, Ho, Minic, Ng & Takeuchi, 2014 [arxiv: ]

14 What is the mass profile? MDM Theory observational constraints Galactic rotation curves suggest: ' M ' = M 1! ) # () π " a 0 a $ & % 2 *, +, But, the mass profile above does not work for galaxy clusters. In principle, the mass profile may be modified in any number of ways search for mass profiles which are consistent with thermodynamics. A better profile for galaxy clusters:! α $ M ' = # & a2 0 " 1+ r / r s % a M 2 Note: This mass profile also works for galactic rotation curves.

15 Observations Galaxy Clusters M(r) = kt(r)r µm p G! d ln ρ g d lnr + d lnt(r) $ # & " d lnr % spherical symmetry and hydrostatic equilibrium (Sarazin 1988) Vikhlinin et al. (2006) ρ g =1.2m p n e n p modification of traditional β- model T(r) = T 0 t cool (r)t(r) Allen et al. (2001)

16 Observations Galaxy Clusters Dynamical (virial) mass: (implied by Newton) M N (r) = kt(r)r µm p G! d ln ρ g d lnr + d lnt(r) $ # & " d lnr % Total mass with MDM: '! α M MDM = M baryonic ) 1+ # ( " 1+ r / R s $ & a2 0 a 2 % *, + MOND effective mass (mass required in Newtonian dynamics to give the same observed acceleration as MOND): M MOND = M baryonic 1+ ( a c / a) 2

17 Observations Galaxy Clusters black solid: virial mass dashed: gas mass green solid: MDM dash-dotted: CDM dotted: MOND USGC S152 A133 A262 A1795 A1991 A383 A478 A2029 A2390 A907 A1413 RX J MKW 4

18 Conclusion Summary By generalizing entropic gravity to desitter space, we are led to a form of dark matter which naturally accounts for Milgrom s scaling. The mass profile is not uniquely determined we choose mass profiles that are consistent with thermodynamics. We have tested the MDM model at galactic and cluster scales, and it fares well. We can fit galactic rotation curves and galaxy cluster dynamics with the same dark matter mass profile up to a constant scale factor. We not only fit the average cluster mass, but the shape of the mass profile as well.

19 Conclusion Future Work Can we better constrain the mass profile? The Bullet Cluster; How strongly coupled is MDM to baryonic matter? How does MDM self-interact? Acoustic oscillations measured in the CMB Simulations of structure formation: Hard? Particle physics: MDM is (likely) non-local How does one detect such a thing?

20 Conclusion Thank you! Ho, Minic & Ng, 2010, Phys. Lett. B, 693, 567 Ho, Minic & Ng, 2011, Gen. Rel. and Grav., 43, 2567 Ho, Minic & Ng, 2012, Phys. Rev. D, 85, DE, Farrah, Ho, Minic, Ng & Takeuchi, 2014, ApJ 793, 41 DE, Farrah, Ho, Minic, Ng & Takeuchi, arxiv 2015?

Modified Dark Matter: Does Dark Matter Know about the Cosmological Constant? Douglas Edmonds Emory & Henry College

Modified Dark Matter: Does Dark Matter Know about the Cosmological Constant? Douglas Edmonds Emory & Henry College Modified Dark Matter: Does Dark Matter Know about the Cosmological Constant? Douglas Edmonds Emory & Henry College Collaborators Duncan Farrah Chiu Man Ho Djordje Minic Y. Jack Ng Tatsu Takeuchi Outline

More information

Modified Dark Matter: Does Dark Matter Know about the Cosmological Constant?

Modified Dark Matter: Does Dark Matter Know about the Cosmological Constant? Modified Dark Matter: Does Dark Matter Know about the Cosmological Constant? Douglas Edmonds Emory & Henry College (moving to Penn State, Hazleton) Collaborators Duncan Farrah Chiu Man Ho Djordje Minic

More information

arxiv: v1 [astro-ph.co] 13 Sep 2017

arxiv: v1 [astro-ph.co] 13 Sep 2017 International Journal of Modern Physics D c World Scientific Publishing Company arxiv:1709.04388v1 [astro-ph.co] 13 Sep 2017 Modified Dark Matter: Relating Dark Energy, Dark Matter and Baryonic Matter

More information

On the Origin of Gravity and the Laws of Newton

On the Origin of Gravity and the Laws of Newton S.N.Bose National Centre for Basic Sciences,India S.N. Bose National Centre for Basic Sciences, India Dept. of Theoretical Sciences 1 st April, 2010. E. Verlinde, arxiv:1001.0785 PLAN OF THE TALK (i) Why

More information

Synchronization of thermal Clocks and entropic Corrections of Gravity

Synchronization of thermal Clocks and entropic Corrections of Gravity Synchronization of thermal Clocks and entropic Corrections of Gravity Andreas Schlatter Burghaldeweg 2F, 5024 Küttigen, Switzerland schlatter.a@bluewin.ch Abstract There are so called MOND corrections

More information

EMERGENT GRAVITY AND COSMOLOGY: THERMODYNAMIC PERSPECTIVE

EMERGENT GRAVITY AND COSMOLOGY: THERMODYNAMIC PERSPECTIVE EMERGENT GRAVITY AND COSMOLOGY: THERMODYNAMIC PERSPECTIVE Master Colloquium Pranjal Dhole University of Bonn Supervisors: Prof. Dr. Claus Kiefer Prof. Dr. Pavel Kroupa May 22, 2015 Work done at: Institute

More information

arxiv: v1 [astro-ph.ga] 9 Jun 2017

arxiv: v1 [astro-ph.ga] 9 Jun 2017 Draft version June 2, 207 Preprint typeset using L A TEX style emulateapj v. 2/6/ ON THE ROTATION CURVES OF GALAXIES AT LOW AND HIGH REDSHIFTS C. E. Navia Instituto de Fisica, Universidade Federal Fluminense,

More information

Fitting the NGC 1560 rotation curve and other galaxies in the constant Lagrangian model for galactic dynamics.

Fitting the NGC 1560 rotation curve and other galaxies in the constant Lagrangian model for galactic dynamics. Fitting the NGC 1560 rotation curve and other galaxies in the constant Lagrangian model for galactic dynamics. 1, a) E.P.J. de Haas Nijmegen, The Netherlands (Dated: April 24, 2018) The velocity rotation

More information

Emergent Gravity. Chih-Chieh Chen. December 13, 2010

Emergent Gravity. Chih-Chieh Chen. December 13, 2010 Emergent Gravity Chih-Chieh Chen December 13, 2010 Abstract The idea of the emergent gravity came from the study of black hole thermodynamics. Basically by inversion the logic in the derivation of the

More information

Dark Matter. 4/24: Homework 4 due 4/26: Exam ASTR 333/433. Today. Modified Gravity Theories MOND

Dark Matter. 4/24: Homework 4 due 4/26: Exam ASTR 333/433. Today. Modified Gravity Theories MOND Dark Matter ASTR 333/433 Today Modified Gravity Theories MOND 4/24: Homework 4 due 4/26: Exam Not any theory will do - length scale based modifications can be immediately excluded as the discrepancy does

More information

Modified Newtonian Dynamics (MOND) and the Bullet Cluster (1E )

Modified Newtonian Dynamics (MOND) and the Bullet Cluster (1E ) Modified Newtonian Dynamics (MOND) and the Bullet Cluster (1E 0657-558) Alan G. Aversa ABSTRACT Modified Newtonian Dynamics (MOND) is a theory that modifies Newton s force law to explain observations that

More information

arxiv: v1 [physics.gen-ph] 5 Nov 2018

arxiv: v1 [physics.gen-ph] 5 Nov 2018 q-deformed Einstein equations from entropic force Mustafa Şenay 1a and Salih Kibaroğlu 1b arxiv:1811.02891v1 [physics.gen-ph] 5 Nov 2018 1 Department of Basic Sciences, Naval Academy, National Defence

More information

GMU, April 13, The Pros and Cons of Invisible Mass and Modified Gravity. Stacy McGaugh University of Maryland

GMU, April 13, The Pros and Cons of Invisible Mass and Modified Gravity. Stacy McGaugh University of Maryland GMU, April 13, 2007 The Pros and Cons of Invisible Mass and Modified Gravity Stacy McGaugh University of Maryland What gets us into trouble is not what we don t know. It s what we know for sure that just

More information

Everything in baryons?

Everything in baryons? Everything in baryons? Benoit Famaey (ULB) Rencontres de Blois 2007 General Relativity -> Dark Matter R αβ - 1/2 R g αβ + Λg αβ = (8πG/c 4 ) T αβ very precisely tested on solar system scales (but Pioneer)

More information

The Need for Dark Matter in MOND on Galactic Scales

The Need for Dark Matter in MOND on Galactic Scales The Need for Dark Matter in MOND on Galactic Scales Muhammad Furqaan Yusaf Kings College London, Strand Campus, Department of Physics. muhammad.yusaf@kcl.ac.uk September 28, 2007 As presented by I. Ferreras,

More information

EFFECTIVE COSMOLOGICAL CONSTANT AND THE DARK SECTOR

EFFECTIVE COSMOLOGICAL CONSTANT AND THE DARK SECTOR EFFECTIVE COSMOLOGICAL CONSTANT AND THE DARK SECTOR Jack Ng University of North Carolina at Chapel Hill Bahamas Advanced Study Institute & Conferences (March 2017) References: Ng, IJMP D1, 145 (1992);

More information

Gravity as Entropic Force?

Gravity as Entropic Force? Gravity as Entropic Force? Bo-Qiang Ma ( 马伯强 ) Peking University ( 北京大学 )? Wulanhaote Workshop July 20, 2010 In collaboration with Xiao-Gang He X.-G. He & B.-Q. Ma, Black Holes and Photons with Entropic

More information

Entropic Force between Two Distant Black Holes in a Background Temperature

Entropic Force between Two Distant Black Holes in a Background Temperature Entropic Force between Two Distant Black Holes in a Background Temperature Davoud Kamani Faculty of Physics, Amirkabir University of Technology (Tehran Polytechnic) Tehran, Iran Abstract: We use the Newton

More information

MODEL OF DARK MATTER AND DARK ENERGY BASED ON GRAVITATIONAL POLARIZATION. Luc Blanchet. 15 septembre 2008

MODEL OF DARK MATTER AND DARK ENERGY BASED ON GRAVITATIONAL POLARIZATION. Luc Blanchet. 15 septembre 2008 MODEL OF DARK MATTER AND DARK ENERGY BASED ON GRAVITATIONAL POLARIZATION Luc Blanchet Gravitation et Cosmologie (GRεCO) Institut d Astrophysique de Paris 15 septembre 2008 Luc Blanchet (GRεCO) Séminaire

More information

Modified Gravity (MOG) and Dark Matter: Can Dark Matter be Detected in the Present Universe?

Modified Gravity (MOG) and Dark Matter: Can Dark Matter be Detected in the Present Universe? Modified Gravity (MOG) and Dark Matter: Can Dark Matter be Detected in the Present Universe? John Moffat Perimeter Institute, Waterloo, Ontario, Canada Talk given at the Miami 2014 topical conference on

More information

Exploring Extended MOND in Galaxy Clusters. Alistair Hodson Supervisor Hongsheng Zhao

Exploring Extended MOND in Galaxy Clusters. Alistair Hodson Supervisor Hongsheng Zhao Exploring Extended MOND in Galaxy Clusters Alistair Hodson Supervisor Hongsheng Zhao Overview What is Extended MOND (EMOND)? What is the motivation for EMOND? What are the implications of EMOND? How successful

More information

The Dark Matter Problem

The Dark Matter Problem The Dark Matter Problem Dr. Yves Gaspar, Ph.D. ( University of Cambridge, UK) Università Cattolica del Sacro Cuore, Brescia Department of Mathematics and Physics. Implications of astronomical data. James

More information

A new estimator of the deceleration parameter from galaxy rotation curves

A new estimator of the deceleration parameter from galaxy rotation curves A new estimator of the deceleration parameter from galaxy rotation curves Maurice H.P.M. van Putten 11 1 Sejong University, 98 Gunja-Dong Gwangin-gu, Seoul 143-747, Korea and Kavli Institute for Theoretical

More information

MOdified Newtonian Dynamics an introductory review. Riccardo Scarpa European Southern Observatory

MOdified Newtonian Dynamics an introductory review. Riccardo Scarpa European Southern Observatory MOdified Newtonian Dynamics an introductory review By Riccardo Scarpa European Southern Observatory Everything started in 1933 with the work by Zwicky on the Coma cluster of galaxies, but were galaxy rotation

More information

arxiv: v1 [astro-ph.co] 4 Jan 2016

arxiv: v1 [astro-ph.co] 4 Jan 2016 Preprint 6 January 2016 Compiled using MNRAS LATEX style file v3.0 Testing Modified Dark Matter with Galaxy Clusters Does Dark Matter know about the Cosmological Constant? Doug Edmonds, 1,2 Duncan Farrah,

More information

Gravitational Lensing by Intercluster Filaments in MOND/TeVeS

Gravitational Lensing by Intercluster Filaments in MOND/TeVeS Gravitational Lensing by Intercluster Filaments in MOND/TeVeS Martin Feix SUPA, School of Physics and Astronomy, University of St Andrews ATM workshop Toulouse November 8th 2007 Outline 1 Introduction

More information

TESTING GRAVITY WITH COSMOLOGY

TESTING GRAVITY WITH COSMOLOGY 21 IV. TESTING GRAVITY WITH COSMOLOGY We now turn to the different ways with which cosmological observations can constrain modified gravity models. We have already seen that Solar System tests provide

More information

Astrophysical observations preferring Modified Gravity

Astrophysical observations preferring Modified Gravity Astrophysical observations preferring Modified Gravity A natural approach to extended Newtonian gravity: tests and predictions across astrophysical scales. Mon.Not.Roy.Astron.Soc. 411 (2011) 226-234 Wide

More information

MOND and the Galaxies

MOND and the Galaxies MOND and the Galaxies Françoise Combes Observatoire de Paris With Olivier Tiret Angus, Famaey, Gentile, Wu, Zhao Wednesday 1st July 2009 MOND =MOdified Newtonian Dynamics Modification at weak acceleration

More information

Tristan Clark. And. Dr. Stephen Alexander. Capstone Final Paper. Miami University of Ohio

Tristan Clark. And. Dr. Stephen Alexander. Capstone Final Paper. Miami University of Ohio 1 N- Body Simulations of a Dwarf Spheroidal Galaxy Comparing Newtonian, Modified Newtonian, and Dark Matter Models. Tristan Clark And Dr. Stephen Alexander Capstone Final Paper Miami University of Ohio

More information

Rotation curves of spiral galaxies

Rotation curves of spiral galaxies Rotation curves of spiral galaxies Rotation curves Mass discrepancy Circular velocity of spherical systems and disks Dark matter halos Inner and outer regions Tully-Fisher relation From datacubes to rotation

More information

Dwarf Galaxy Dispersion Profile Calculations Using a Simplified MOND External Field Effect

Dwarf Galaxy Dispersion Profile Calculations Using a Simplified MOND External Field Effect Dwarf Galaxy Dispersion Profile Calculations Using a Simplified MOND External Field Effect On the Shoulders of Giants Workshop Case Western Reserve University June 7, 2017 Stephen Alexander Physics Department

More information

arxiv:astro-ph/ v1 22 Sep 2005

arxiv:astro-ph/ v1 22 Sep 2005 Mass Profiles and Shapes of Cosmological Structures G. Mamon, F. Combes, C. Deffayet, B. Fort (eds) EAS Publications Series, Vol.?, 2005 arxiv:astro-ph/0509665v1 22 Sep 2005 MONDIAN COSMOLOGICAL SIMULATIONS

More information

Holographic Cosmological Constant and Dark Energy arxiv: v1 [hep-th] 16 Sep 2007

Holographic Cosmological Constant and Dark Energy arxiv: v1 [hep-th] 16 Sep 2007 Holographic Cosmological Constant and Dark Energy arxiv:0709.2456v1 [hep-th] 16 Sep 2007 Chao-Jun Feng Institute of Theoretical Physics, Academia Sinica Beijing 100080, China fengcj@itp.ac.cn A general

More information

Dark Energy and the Entropy of the Observable Universe

Dark Energy and the Entropy of the Observable Universe Dark Energy and the Entropy of the Observable Universe Charles H. Lineweaver a and Chas A. Egan b a Planetary Scinece Institute, Research School of Astronomy and Astrophysics, and Research School of Earth

More information

Evidence for/constraints on dark matter in galaxies and clusters

Evidence for/constraints on dark matter in galaxies and clusters Nov 11, 2015 Evidence for/constraints on dark matter in galaxies and clusters HW#9 is due; please hand in your summaries; then you get to talk (I have slides of the different facilities/telescopes. HW#10

More information

Galaxy Rotation Curves of a Galactic Mass Distribution. By: Camiel Pieterse Supervised by: Prof. dr. Wim Beenakker Theoretical High Energy Physics

Galaxy Rotation Curves of a Galactic Mass Distribution. By: Camiel Pieterse Supervised by: Prof. dr. Wim Beenakker Theoretical High Energy Physics Galaxy Rotation Curves of a Galactic Mass Distribution By: Camiel Pieterse Supervised by: Prof. dr. Wim Beenakker Theoretical High Energy Physics 1 Contents 1 Introduction 3 2 Mass Distribution 5 2.1 The

More information

Stellar Population Synthesis, a Discriminant Between Gravity Models

Stellar Population Synthesis, a Discriminant Between Gravity Models Stellar Population Synthesis, a Discriminant Between Gravity Models Akram Hasani Zonoozi Institute for Advanced Studies in Basic Sciences, IASBS Zanjan, Iran In collaboration with: H.Haghi & Y.Sobouti

More information

Relationship Between Newtonian and MONDian Acceleration

Relationship Between Newtonian and MONDian Acceleration Advances in Applied Physics, Vol. 4, 2016, no. 1, 31-37 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/10.12988/aap.2016.6810 Relationship Between Newtonian and MONDian Acceleration A. S. Sarabi Department

More information

Are Energy and Space-time Expanding Together?

Are Energy and Space-time Expanding Together? Are Energy and Space-time Expanding Together? Jacques Consiglio 52, Chemin de Labarthe. 31600 Labastidette. France. E-mail: Jacques.Consiglio@gmail.com Assuming the universe has permanent critical density

More information

Laws of Galactic Rotation. Stacy McGaugh Case Western Reserve University

Laws of Galactic Rotation. Stacy McGaugh Case Western Reserve University Laws of Galactic Rotation Stacy McGaugh Case Western Reserve University UGC 2885 Galaxies NGC 2403 Huge dynamic range in 10 kpc Gravitationally self-bound entities composed of stars, gas, dust, [& dark

More information

Potential energy deficit as an alternative for dark matter?

Potential energy deficit as an alternative for dark matter? Potential energy deficit as an alternative for dark matter? M. Kurpiewski Szczecin, Poland E-mail: marek.qrp@gmail.com This article has been published in Global Journal of Physics Vol 6, No 1. 1 Abstract

More information

Galaxy Formation Seminar 2: Cosmological Structure Formation as Initial Conditions for Galaxy Formation. Prof. Eric Gawiser

Galaxy Formation Seminar 2: Cosmological Structure Formation as Initial Conditions for Galaxy Formation. Prof. Eric Gawiser Galaxy Formation Seminar 2: Cosmological Structure Formation as Initial Conditions for Galaxy Formation Prof. Eric Gawiser Cosmic Microwave Background anisotropy and Large-scale structure Cosmic Microwave

More information

Holographic unification of dark matter and dark energy

Holographic unification of dark matter and dark energy Holographic unification of dark matter and dark energy arxiv:1101.5033v4 [hep-th] 2 Feb 2011 L.N. Granda Departamento de Fisica, Universidad del Valle, A.A. 25360 Cali, Colombia Departamento de Fisica,

More information

Cosmology ASTR 2120 Sarazin. Hubble Ultra-Deep Field

Cosmology ASTR 2120 Sarazin. Hubble Ultra-Deep Field Cosmology ASTR 2120 Sarazin Hubble Ultra-Deep Field Cosmology - Da Facts! 1) Big Universe of Galaxies 2) Sky is Dark at Night 3) Isotropy of Universe Cosmological Principle = Universe Homogeneous 4) Hubble

More information

REINVENTING GRAVITY: Living Without Dark Matter

REINVENTING GRAVITY: Living Without Dark Matter REINVENTING GRAVITY: Living Without Dark Matter John Moffat Perimeter Institute for Theoretical Physics and Department of Physics University of Toronto and University of Waterloo Talk given at Astronomy

More information

Emergent gravity. Diana Vaman. Physics Dept, U. Virginia. September 24, U Virginia, Charlottesville, VA

Emergent gravity. Diana Vaman. Physics Dept, U. Virginia. September 24, U Virginia, Charlottesville, VA Emergent gravity Diana Vaman Physics Dept, U. Virginia September 24, U Virginia, Charlottesville, VA What is gravity? Newton, 1686: Universal gravitational attraction law F = G M 1 M 2 R 2 12 Einstein,

More information

Clusters: Observations

Clusters: Observations Clusters: Observations Last time we talked about some of the context of clusters, and why observations of them have importance to cosmological issues. Some of the reasons why clusters are useful probes

More information

The Gravitational Memory of a Galaxy arxiv: v2 [hep-th] 13 Oct 2018

The Gravitational Memory of a Galaxy arxiv: v2 [hep-th] 13 Oct 2018 RUNHETC-2018-27, UTTG-17-18 The Gravitational Memory of a Galaxy arxiv:1810.03028v2 [hep-th] 13 Oct 2018 Tom Banks Department of Physics and NHETC Rutgers University, Piscataway, NJ 08854 E-mail: tibanks@ucsc.edu

More information

arxiv:astro-ph/ v1 5 Oct 2005

arxiv:astro-ph/ v1 5 Oct 2005 Mass Profiles and Shapes of Cosmological Structures G. Mamon, F. Combes, C. Deffayet, B. Fort (eds) EAS Publications Series, Vol.?, 2005 arxiv:astro-ph/0510117v1 5 Oct 2005 MOND AS MODIFIED INERTIA Milgrom,

More information

Components of Galaxies: Dark Matter

Components of Galaxies: Dark Matter Components of Galaxies: Dark Matter Dark Matter: Any Form of matter whose existence is inferred solely through its gravitational effects. -B&T, pg 590 Nature of Major Component of Universe Galaxy Formation

More information

arxiv: v1 [physics.gen-ph] 13 Oct 2016

arxiv: v1 [physics.gen-ph] 13 Oct 2016 arxiv:1610.06787v1 [physics.gen-ph] 13 Oct 2016 Quantised inertia from relativity and the uncertainty principle. M.E. McCulloch October 24, 2016 Abstract It is shown here that if we assume that what is

More information

Atelier vide quantique et gravitation DARK MATTER AND GRAVITATIONAL THEORY. Luc Blanchet. 12 décembre 2012

Atelier vide quantique et gravitation DARK MATTER AND GRAVITATIONAL THEORY. Luc Blanchet. 12 décembre 2012 Atelier vide quantique et gravitation DARK MATTER AND GRAVITATIONAL THEORY Luc Blanchet Gravitation et Cosmologie (GRεCO) Institut d Astrophysique de Paris 12 décembre 2012 Luc Blanchet (GRεCO) Atelier

More information

Modified gravity. Kazuya Koyama ICG, University of Portsmouth

Modified gravity. Kazuya Koyama ICG, University of Portsmouth Modified gravity Kazuya Koyama ICG, University of Portsmouth Cosmic acceleration Cosmic acceleration Big surprise in cosmology Simplest best fit model LCDM 4D general relativity + cosmological const. H

More information

A Guide to the Next Few Lectures!

A Guide to the Next Few Lectures! Dynamics and how to use the orbits of stars to do interesting things chapter 3 of S+G- parts of Ch 11 of MWB (Mo, van den Bosch, White) READ S&G Ch 3 sec 3.1, 3.2, 3.4 we are skipping over epicycles 1

More information

Universal predictions of screened modified gravity in galaxy clusters. David F. Mota

Universal predictions of screened modified gravity in galaxy clusters. David F. Mota Universal predictions of screened modified gravity in galaxy clusters David F. Mota Universal predictions of screened modified gravity in galaxy clusters Mass of clusters inferred via lensing, kinematics

More information

CONSTRAINING MOND WITH SOLAR SYSTEM DYNAMICS LORENZO IORIO 1. Received 10 Dec.2007; Accepted 13 Feb.2008

CONSTRAINING MOND WITH SOLAR SYSTEM DYNAMICS LORENZO IORIO 1. Received 10 Dec.2007; Accepted 13 Feb.2008 CONSTRAINING MOND WITH SOLAR SYSTEM DYNAMICS LORENZO IORIO 1 1 Viale Unità di Italia 68, 70125, Bari (BA), Italy. tel. 0039 328 6128815. lorenzo.iorio@libero.it. Received 10 Dec.2007; Accepted 13 Feb.2008

More information

arxiv: v1 [astro-ph.ga] 14 Sep 2017

arxiv: v1 [astro-ph.ga] 14 Sep 2017 arxiv:1709.04918v1 [astro-ph.ga] 14 Sep 2017 Galaxy rotations from quantised inertia and visible matter only. M.E. McCulloch September 18, 2017 Abstract It is shown here that a model for inertial mass,

More information

Black hole entropy of gauge fields

Black hole entropy of gauge fields Black hole entropy of gauge fields William Donnelly (University of Waterloo) with Aron Wall (UC Santa Barbara) September 29 th, 2012 William Donnelly (UW) Black hole entropy of gauge fields September 29

More information

On the deformed Einstein equations and quantum black holes

On the deformed Einstein equations and quantum black holes Journal of Physics: Conference Series PAPER OPEN ACCESS On the deformed Einstein euations and uantum black holes To cite this article: E Dil et al 016 J. Phys.: Conf. Ser. 766 01004 View the article online

More information

arxiv: v3 [gr-qc] 31 Aug 2011

arxiv: v3 [gr-qc] 31 Aug 2011 Gravo-Magnetic force in the MOND regime Qasem Exirifard School of Physics, Institute for Research in Fundamental Sciences, Tehran 19538-33511, Iran We derive the gravomagnetic field in the Λ-CDM and Modified

More information

arxiv: v1 [astro-ph.co] 28 Apr 2012

arxiv: v1 [astro-ph.co] 28 Apr 2012 Hubble Constant, Lensing, and Time Delay in TeVe S Yong Tian 1, Chung-Ming Ko, Mu-Chen Chiu 3 1 Department of Physics, National Central University, Jhongli, Taiwan 30, R.O.C. Institute of Astronomy, Department

More information

Observational Evidence for Dark Matter. Simona Murgia, SLAC-KIPAC

Observational Evidence for Dark Matter. Simona Murgia, SLAC-KIPAC Observational Evidence for Dark Matter Simona Murgia, SLAC-KIPAC XXXIX SLAC Summer Institute 28 July 2011 Outline Evidence for dark matter at very different scales Galaxies Clusters of galaxies Universe???

More information

A Survey of Modified Newtonian Dynamics. The current model of the universe builds on the assumption that the entire

A Survey of Modified Newtonian Dynamics. The current model of the universe builds on the assumption that the entire Andy Terrel May 7, 2004 Phys. 4304 Myles A Survey of Modified Newtonian Dynamics The current model of the universe builds on the assumption that the entire universe follows the same physical laws as those

More information

Dark Matter. Galaxy Counts Redshift Surveys Galaxy Rotation Curves Cluster Dynamics Gravitational Lenses ~ 0.3 Ω M Ω b.

Dark Matter. Galaxy Counts Redshift Surveys Galaxy Rotation Curves Cluster Dynamics Gravitational Lenses ~ 0.3 Ω M Ω b. Dark Matter Galaxy Counts Redshift Surveys Galaxy Rotation Curves Cluster Dynamics Gravitational Lenses Ω M ~ 0.3 2 1 Ω b 0.04 3 Mass Density by Direct Counting Add up the mass of all the galaxies per

More information

Black Holes. Robert M. Wald

Black Holes. Robert M. Wald Black Holes Robert M. Wald Black Holes Black Holes: A black hole is a region of spacetime where gravity is so strong that nothing not even light that enters that region can ever escape from it. Michell

More information

Dark matter and galaxy formation

Dark matter and galaxy formation Dark matter and galaxy formation Galaxy rotation The virial theorem Galaxy masses via K3 Mass-to-light ratios Rotation curves Milky Way Nearby galaxies Dark matter Baryonic or non-baryonic A problem with

More information

The Horizon Energy of a Black Hole

The Horizon Energy of a Black Hole arxiv:1712.08462v1 [gr-qc] 19 Dec 2017 The Horizon Energy of a Black Hole Yuan K. Ha Department of Physics, Temple University Philadelphia, Pennsylvania 19122 U.S.A. yuanha@temple.edu December 1, 2017

More information

A Guide to the Next Few Lectures!

A Guide to the Next Few Lectures! Dynamics and how to use the orbits of stars to do interesting things chapter 3 of S+G- parts of Ch 11 of MWB (Mo, van den Bosch, White) READ S&G Ch 3 sec 3.1, 3.2, 3.4 we are skipping over epicycles 1

More information

Emergent perspective of gravity and dark energy

Emergent perspective of gravity and dark energy Research in Astron. Astrophys. 2012 Vol. 12 No. 8, 891 916 http://www.raa-journal.org http://www.iop.org/journals/raa Research in Astronomy and Astrophysics Emergent perspective of gravity and dark energy

More information

Black hole thermodynamics

Black hole thermodynamics Black hole thermodynamics Daniel Grumiller Institute for Theoretical Physics Vienna University of Technology Spring workshop/kosmologietag, Bielefeld, May 2014 with R. McNees and J. Salzer: 1402.5127 Main

More information

On the Origin of Gravity and the Laws of Newton

On the Origin of Gravity and the Laws of Newton arxiv:1001.0785v1 [hep-th] 6 Jan 2010 On the Origin of Gravity and the Laws of Newton Erik Verlinde 1 Institute for Theoretical Physics University of Amsterdam Valckenierstraat 65 1018 XE, Amsterdam The

More information

AY202a Galaxies & Dynamics Lecture 7: Jeans Law, Virial Theorem Structure of E Galaxies

AY202a Galaxies & Dynamics Lecture 7: Jeans Law, Virial Theorem Structure of E Galaxies AY202a Galaxies & Dynamics Lecture 7: Jeans Law, Virial Theorem Structure of E Galaxies Jean s Law Star/Galaxy Formation is most simply defined as the process of going from hydrostatic equilibrium to gravitational

More information

arxiv:astro-ph/ v1 20 Sep 2006

arxiv:astro-ph/ v1 20 Sep 2006 Formation of Neutrino Stars from Cosmological Background Neutrinos M. H. Chan, M.-C. Chu Department of Physics, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China arxiv:astro-ph/0609564v1

More information

entropy Thermodynamics of Horizons from a Dual Quantum System Full Paper Entropy 2007, 9, ISSN c 2007 by MDPI

entropy Thermodynamics of Horizons from a Dual Quantum System Full Paper Entropy 2007, 9, ISSN c 2007 by MDPI Entropy 2007, 9, 100-107 Full Paper entropy ISSN 1099-4300 c 2007 by MDPI www.mdpi.org/entropy/ Thermodynamics of Horizons from a Dual Quantum System Sudipta Sarkar and T Padmanabhan IUCAA, Post Bag 4,

More information

Galaxy rotations from quantised inertia and visible matter only

Galaxy rotations from quantised inertia and visible matter only Astrophys Space Sci (2017 362:149 DOI 10.1007/s10509-017-3128-6 ORIGINAL ARTICLE Galaxy rotations from quantised inertia and visible matter only M.E. McCulloch 1 Received: 3 March 2017 / Accepted: 26 June

More information

Comments on and Comments on Comments on Verlinde s paper On the Origin of Gravity and the Laws of Newton

Comments on and Comments on Comments on Verlinde s paper On the Origin of Gravity and the Laws of Newton Comments on and Comments on Comments on Verlinde s paper On the Origin of Gravity and the Laws of Newton Sabine Hossenfelder NORDITA, Roslagstullsbacken 23, 106 91 Stockholm, Sweden Abstract We offer some,

More information

On the Hawking Wormhole Horizon Entropy

On the Hawking Wormhole Horizon Entropy ESI The Erwin Schrödinger International Boltzmanngasse 9 Institute for Mathematical Physics A-1090 Wien, Austria On the Hawking Wormhole Horizon Entropy Hristu Culetu Vienna, Preprint ESI 1760 (2005) December

More information

Brief update (3 mins/2 slides) on astrophysics behind final project

Brief update (3 mins/2 slides) on astrophysics behind final project Nov 1, 2017 Brief update (3 mins/2 slides) on astrophysics behind final project Evidence for Dark Matter Next Wed: Prelim #2, similar to last one (30 mins). Review especially lecture slides, PEs and non-project

More information

Astr 2320 Tues. May 2, 2017 Today s Topics Chapter 23: Cosmology: The Big Bang and Beyond Introduction Newtonian Cosmology Solutions to Einstein s

Astr 2320 Tues. May 2, 2017 Today s Topics Chapter 23: Cosmology: The Big Bang and Beyond Introduction Newtonian Cosmology Solutions to Einstein s Astr 0 Tues. May, 07 Today s Topics Chapter : Cosmology: The Big Bang and Beyond Introduction Newtonian Cosmology Solutions to Einstein s Field Equations The Primeval Fireball Standard Big Bang Model Chapter

More information

2. What are the largest objects that could have formed so far? 3. How do the cosmological parameters influence structure formation?

2. What are the largest objects that could have formed so far? 3. How do the cosmological parameters influence structure formation? Einführung in die beobachtungsorientierte Kosmologie I / Introduction to observational Cosmology I LMU WS 2009/10 Rene Fassbender, MPE Tel: 30000-3319, rfassben@mpe.mpg.de 1. Cosmological Principles, Newtonian

More information

Modifications of Gravity vs. Dark Matter/Energy

Modifications of Gravity vs. Dark Matter/Energy Massachusetts Institute of Technology Marie-Curie Fellowship MC-OIF 021421 Finnish-Japanese Workshop on Particle Cosmology Helsinki, March 2007 Outline 1 Gravity Problems with General Relativity 2 Galactic

More information

Galaxy Formation! Lecture Seven: Galaxy Formation! Cosmic History. Big Bang! time! present! ...fluctuations to galaxies!

Galaxy Formation! Lecture Seven: Galaxy Formation! Cosmic History. Big Bang! time! present! ...fluctuations to galaxies! Galaxy Formation Lecture Seven: Why is the universe populated by galaxies, rather than a uniform sea of stars? Galaxy Formation...fluctuations to galaxies Why are most stars in galaxies with luminosities

More information

AS1001:Extra-Galactic Astronomy

AS1001:Extra-Galactic Astronomy AS1001:Extra-Galactic Astronomy Lecture 5: Dark Matter Simon Driver Theatre B spd3@st-andrews.ac.uk http://www-star.st-and.ac.uk/~spd3 Stars and Gas in Galaxies Stars form from gas in galaxy In the high-density

More information

SMALL COSMOLOGICAL CONSTANT FROM RUNNING GRAVITATIONAL COUPLING

SMALL COSMOLOGICAL CONSTANT FROM RUNNING GRAVITATIONAL COUPLING SMALL COSMOLOGICAL CONSTANT FROM RUNNING GRAVITATIONAL COUPLING arxiv:1101.4995, arxiv:0803.2500 Andrei Frolov Department of Physics Simon Fraser University Jun-Qi Guo (SFU) Sternberg Astronomical Institute

More information

arxiv: v1 [gr-qc] 1 Dec 2017

arxiv: v1 [gr-qc] 1 Dec 2017 Can ΛCDM model reproduce MOND-like behavior? De-Chang Dai, Chunyu Lu Institute of Natural Sciences, Shanghai Key Lab for Particle Physics and Cosmology, School of Physics and Astronomy, Shanghai Jiao Tong

More information

Modelling the Sunyaev Zeldovich Scaling Relations

Modelling the Sunyaev Zeldovich Scaling Relations Modelling the Sunyaev Zeldovich Scaling Relations (Implication for SZ Power Spectrum) Anya Chaudhuri (with Subha Majumdar) Tata Institute of Fundamental Research 31 Oct 2009 Outline Sunyaev Zeldovich effect

More information

An Entropy depending only on the Probability (or the Density Matrix)

An Entropy depending only on the Probability (or the Density Matrix) An Entropy depending only on the Probability (or the Density Matrix) December, 2016 The Entropy and Superstatistics The Entropy and Superstatistics Boltzman-Gibbs (BG) statistics works perfectly well for

More information

On the origin of gravity and the laws of Newton

On the origin of gravity and the laws of Newton Published for SISSA by Springer Received: October 22, 2010 Accepted: March 19, 2011 Published: April 7, 2011 On the origin of gravity and the laws of Newton Erik Verlinde Institute for Theoretical Physics,

More information

Evolution of holographic dark energy with interaction term Q Hρ de and generalized second law

Evolution of holographic dark energy with interaction term Q Hρ de and generalized second law PRAMANA c Indian Academy of Sciences Vol. 86, No. 3 journal of March 016 physics pp. 701 71 Evolution of holographic dark energy with interaction term Q Hρ de and generalized second law P PRASEETHA and

More information

Horizontal Charge Excitation of Supertranslation and Superrotation

Horizontal Charge Excitation of Supertranslation and Superrotation Horizontal Charge Excitation of Supertranslation and Superrotation Masahiro Hotta Tohoku University Based on M. Hotta, J. Trevison and K. Yamaguchi arxiv:1606.02443. M. Hotta, K. Sasaki and T. Sasaki,

More information

κ = f (r 0 ) k µ µ k ν = κk ν (5)

κ = f (r 0 ) k µ µ k ν = κk ν (5) 1. Horizon regularity and surface gravity Consider a static, spherically symmetric metric of the form where f(r) vanishes at r = r 0 linearly, and g(r 0 ) 0. Show that near r = r 0 the metric is approximately

More information

The Holographic Principal and its Interplay with Cosmology. T. Nicholas Kypreos Final Presentation: General Relativity 09 December, 2008

The Holographic Principal and its Interplay with Cosmology. T. Nicholas Kypreos Final Presentation: General Relativity 09 December, 2008 The Holographic Principal and its Interplay with Cosmology T. Nicholas Kypreos Final Presentation: General Relativity 09 December, 2008 What is the temperature of a Black Hole? for simplicity, use the

More information

You may not start to read the questions printed on the subsequent pages until instructed to do so by the Invigilator.

You may not start to read the questions printed on the subsequent pages until instructed to do so by the Invigilator. MATHEMATICAL TRIPOS Part III Friday 8 June 2001 1.30 to 4.30 PAPER 41 PHYSICAL COSMOLOGY Answer any THREE questions. The questions carry equal weight. You may not start to read the questions printed on

More information

Advanced Topics on Astrophysics: Lectures on dark matter

Advanced Topics on Astrophysics: Lectures on dark matter Advanced Topics on Astrophysics: Lectures on dark matter Jesús Zavala Franco e-mail: jzavalaf@uwaterloo.ca UW, Department of Physics and Astronomy, office: PHY 208C, ext. 38400 Perimeter Institute for

More information

NEWTONIAN COSMOLOGY. Figure 2.1: All observers see galaxies expanding with the same Hubble law. v A = H 0 r A (2.1)

NEWTONIAN COSMOLOGY. Figure 2.1: All observers see galaxies expanding with the same Hubble law. v A = H 0 r A (2.1) M. Pettini: Introduction to Cosmology Lecture 2 NEWTONIAN COSMOLOGY The equations that describe the time evolution of an expanding universe which is homogeneous and isotropic can be deduced from Newtonian

More information

Black holes, Holography and Thermodynamics of Gauge Theories

Black holes, Holography and Thermodynamics of Gauge Theories Black holes, Holography and Thermodynamics of Gauge Theories N. Tetradis University of Athens Duality between a five-dimensional AdS-Schwarzschild geometry and a four-dimensional thermalized, strongly

More information

Black-Hole Solutions with Scalar Hair in Einstein-Scalar-Gauss-Bonnet Theories

Black-Hole Solutions with Scalar Hair in Einstein-Scalar-Gauss-Bonnet Theories Black-Hole Solutions with Scalar Hair in Einstein-Scalar-Gauss-Bonnet Theories Athanasios Bakopoulos Physics Department University of Ioannina In collaboration with: George Antoniou and Panagiota Kanti

More information

Accelerating Cosmologies and Black Holes in the Dilatonic Einstein-Gauss-Bonnet (EGB) Theory

Accelerating Cosmologies and Black Holes in the Dilatonic Einstein-Gauss-Bonnet (EGB) Theory Accelerating Cosmologies and Black Holes in the Dilatonic Einstein-Gauss-Bonnet (EGB) Theory Zong-Kuan Guo Fakultät für Physik, Universität Bielefeld Zong-Kuan Guo (Universität Bielefeld) Dilatonic Einstein-Gauss-Bonnet

More information