On the deformed Einstein equations and quantum black holes

Size: px
Start display at page:

Download "On the deformed Einstein equations and quantum black holes"

Transcription

1 Journal of Physics: Conference Series PAPER OPEN ACCESS On the deformed Einstein euations and uantum black holes To cite this article: E Dil et al 016 J. Phys.: Conf. Ser View the article online for updates and enhancements. Related content - Excision techniue in constrained formulations of Einstein euations: collapse scenario I Cordero-Carrión, N Vasset, J Novak et al. - Two gravitational shock waves on the AdS brane Mohamed Anber and Lorenzo Sorbo - On the vacuum Einstein euations along curves with a discrete local rotation and reflection symmetry Mikoaj Korzyski, Ian Hinder and Eloisa Bentivegna This content was downloaded from IP address on 0/01/019 at 09:1

2 International Conference on Quantum Science and Applications (ICQSA-016) Journal of Physics: Conference Series 766 (016) doi: / /766/1/01004 On the deformed Einstein euations and uantum black holes E Dil 1, E Kolay and C C Ersanli 1 1 Department of Physics, Sinop University, Korucuk, Sinop, Turkey Department of Statistics, Sinop University, Korucuk, Sinop, Turkey Abstract. Recently -deformed Einstein euations have been studied for extremal uantum black holes which have been proposed to obey deformed statistics by Strominger. In this study, we give the solutions of deformed Einstein euations by considering these euations for the charged black holes. Also we present the implications of the solutions, such as the deformation parameters lead the charged black holes to have a smaller mass than the classical Reissner- Nordström black holes. The reduction in mass of a classical black hole can be viewed as a transition from classical to uantum black hole regime. 1. Introduction Recently, we have studied the -deformed Einstein euations [1] for describing the gravitational fields of the Strominger s extremal uantum black holes which obey the deformed statistics []. Here, Verlinde s entropic gravity approach [] have been used to obtain the -deformed Eintein euations which are the gravitational field euations of charged uantum black holes with possible minimal mass. A charged black hole loses its mass via Hawking radiation and reaches a minimum mass proportional to the charge. The resulting black hole with a minimal mass is considered to be a micro black hole. Since these black holes can be considered as deformed bosons or deformed fermions, the micro black holes defined by -deformed Einstein euations are assumed be the Ubriaco s -deformed bosons [4]. We first give a brief summary of obtaining the -deformed Einstein euations then obtain the solutions of the deformed Einstein euations for charged black holes. Since the solutions of standard Einstein euations for charged black holes are the Reissner-Nordström solutions in classical gravity, the solutions of the deformed Einstein euations for charged black holes can be considered in uantum gravity. Lastly the implications of the solutions are represented. These are that the deformation parameters lead the charged black holes to have a smaller mass than the usual Reissner-Nordström black holes. This reduction in mass of a usual black hole can be considered as a transition from classical to uantum black hole regime.. -Deformed Einstein euations We obtain the -deformed Einstein euations which describe the gravitational fields uantum black holes by using the entropy of the Ubriaco s -deformed Bose gas models in Verlinde s entropic gravity approach. The uantum algebraic structure of this -deformed Bose gas model is given by the -deformed boson algebra [4] a a a a 1, (1) Content from this work may be used under the terms of the Creative Commons Attribution.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI. Published under licence by Ltd 1

3 International Conference on Quantum Science and Applications (ICQSA-016) Journal of Physics: Conference Series 766 (016) doi: / /766/1/01004 a 1 a1 a1 a1 ( 1) a1 a1a 1 aa, () a, () a a1 a1 a. (4) Here a and a represents the deformed annihilation and creation operators, respectively. is also a real deformation parameter with 0. The grand partition function of the -deformed boson model is [4] Z k m0 ( m 1) e k { m } z m, (5) where 1/ kt and k is the Boltzmann constant, z e is the fugacity, k is the energy of the single-particle state, m is the occupation number of the single-particle state, and {m} is the deformed occupation number and given by m 1 { m}. (6) 1 The deformed entropy of the model is also given as S / 4V (m) 5 / 5 5 E z ( ) z z ln z ( ) z h T 4 ln z, (7) where E kt is the average energy of single particle, V is the volume enclosed by the deformed bosons, m is the mass of deformed bosons, T is the temperature of the model and ( ) (1/ 4).{[/(1 ) / ] (1/ )} [4]. The deformed entropy in (7) is used to obtain the oneparameter deformed or euivalently the -deformed Einstein euations for -deformed bosons. We apply the Verlinde s proposal to the -deformed Bose gas models, in order to construct the - deformed Einstein euations from the entropy in (7). The fundamental notion needed to derive the gravity is information in the Verlinde s proposal. It is formally the amount of information associated with the matter and its location, measured in terms of entropy. When matter is displaced in space due to a reason, the result is a change in the entropy and this change causes a reaction force. This force is the gravity being an entropic force as an inertial reaction against the force causing the increase of the entropy []. The source of gravity is energy or matter and it is distributed evenly over the degrees of freedom in spacetime. The existence of energy or matter in spacetime causes a temperature in the spacetime. The product of the change of entropy during the displacement of source and the temperature is in fact the work and this work is originally led by the force which is known to be gravity []. By using the Verlinde s idea, -deformed Einstein euations have recently been derived from the deformed entropy (7) of the -deformed Bose gas model [1]. Eventually the -deformed Einstein euations is given, as [1] / 10 V (me) 1 g ( ) R g R 8 GT, (8) h where 5 5 g( ) z ( ) z z ln z ( ) z ln z. (9) 4 By rewriting (8), we get 1 R g R 8 GT, (10)

4 International Conference on Quantum Science and Applications (ICQSA-016) Journal of Physics: Conference Series 766 (016) doi: / /766/1/01004 / where 10 V (me) g ( ) / h. The euation (10) is the -deformed Einstein euations, and it is assumed to describe the gravitational fields generated by the extremal uantum black holes which obey the statistics of deformed particles in accordance with the Strominger s proposal. In the next section, we solve the deformed Einstein euations for a charged extremal black hole, and investigate the implications of the solutions.. Solution of the -deformed Einstein euations Deformed Einstein field euations will be used to describe the geometry of the spacetime around a charged and spherically symmetric uantum black hole. Therefore we need to solve the deformed Einstein-Maxwell euations due to the charge of the uantum black holes. Also, because of the spherical symmetry the metric has to be in the form for 4-dimension is [5] ( r, ( r, t ) ds e dt e dr r d r sin d. (11) The energy-momentum tensor T in (10) is 1 T FF g F F, (1) 4 where F is the electromagnetic field strength tensor and the trace of T is zero due to the electromagnetic strength tensor. Taking the trace of (0) leads to R 8 GT. (1) Spherical symmetry and absence of magnetic charge for our uantum black hole gives the electromagnetic field strength tensor has only radial electric field components E F F f ( r,. r tr rt By euating the non-zero components of the Ricci tensor for the metric (11) and the corresponding non-zero components of the energy-momentum tensor obtained by (1), we find ( r, ( r) ( r). The solution of the Maxwell euations g F 0 and F 0 gives [ ] f ( r, f ( r) Q / 4 r. Using this electromagnetic field strength tensor for one of the components of the Ricci tensor and the corresponding energy-momentum tensor in (1) gives the solutions of the deformed Einstein euations: 1 ds dt dr r d r sin d, (14) where Gm 1 GQ 1. (15) r r The singularities and the event horizons for these black holes are determined by the function and the radius r. There is a true curvature singularity at r 0, since the metric goes to infinity for this value. The coordinate singularity also occurs at 0 and the conditions giving this singularity occur from the solution of 0, such as The case Gm Q / r Gm hole decreases to the minimum value from the case G m GQ. (16) stands for the uantum charged black hole case, since the mass of the black Gm Q /. A minimum mass solution for the uantum black holes is reached by the Hawking radiation and remains stationary. Gm Q / case makes 0 at a single radius r Gm and refers to a single event horizon. This deformed

5 International Conference on Quantum Science and Applications (ICQSA-016) Journal of Physics: Conference Series 766 (016) doi: / /766/1/01004 case solution Gm Q / is the analogue of classical Reissner-Nordström solution m Q / which is often examined in the studies of uantum gravity. For Gm Q / case, the mass of the black hole is allowed to be in very large classical scales due to the ability of getting bigger values than the charge. Whereas the mass of the deformed black hole is allowed to decrease very small values which could fall into the uantum regime, because the decrease of the mass is governed by a very 6 / 7 small term 1 / being order of h. Mass reduction with respect to the classical Reissner-Nordström case can be compared for -deformed cases. Using 1 / from (10) gives the mass of the extremal uantum black hole in case of Gm Q /, such as m h 10 V (E) / 1 g ( ) 7 Q G 7 G, (17) The comparison of the deformed black hole mass and classical Reissner-Nordström black hole mass m Q / G reads as m / / ) 1 10 V (E) Q / h G g ( m, (18) The euation in (18) implies that the mass of the charged extremal black hole in the deformed uantum case can decrease to a smaller value than that of the classical Reissner-Nordström case. We / 4 / 7 figure out the decrease in the mass by examining the behaviours of the factor ( h G / g( )) in / 4 the classical mass of the charged black hole in (18). We illustrate the behaviour of ( h G / g( )) with respect to z and in Figure 1 and Figure, for 1 and 1, respectively. / 7 4

6 International Conference on Quantum Science and Applications (ICQSA-016) Journal of Physics: Conference Series 766 (016) doi: / /766/1/01004 / 4 Figure 1. Mass reduction factor ( h G / g( )) for various values of the deformation parameter 1. / 7 / 4 Figure. Mass reduction factor ( h G / g( )) for various values of the deformation parameter Conclusions In this study, we review the -deformed statistics of bosons and obtained the -deformed Einstein euations, which is based on the Strominger s idea, such that the micro uantum black holes obey the deformed statistics. We then obtain the solutions of -deformed Einstein euations for the charged extremal uantum black holes. We then interpret the solutions for -deformed Einstein euations. There occur two singularities from the solutions of deformed Einstein euations, such that the true and coordinate singularities. The possible decrease in mass via Hawking radiation to the minimum value which is determined by the charge of uantum black hole is investigated and the difference between the classical black holes and uantum black holes is compared from the euations (18). We represent the decrease in uantum mass m in Figure 1 and Figure. According to the Figures 1 and, the 0 mass of the uantum black hole m in (18) is at least 10 times smaller than the classical black hole mass m, in the deformed case, with the inverse of the volume, charge and energy factors, mass 0 gets smaller than 10 m. Three independent studies, Strominger s micro black holes obeying the deformed statistics, Verlinde s entropic gravity approach and the thermostatistics of deformed Bose gas model, seem to be consistent with each other, since the theoretical possibility of concentrating a mass into its reduced Planck mass leads to a uantum black hole whose dynamics described by the deformed Einstein euations and the mass reduction to a smaller value than that of the classical black holes. / 7 m 5

7 International Conference on Quantum Science and Applications (ICQSA-016) Journal of Physics: Conference Series 766 (016) doi: / /766/1/ References [1] Dil E 015 Canad. J. Phys [] Strominger A 199 Phys. Rev. Lett [] Verlinde E 011 J. High Energy Phys. JHEP04(011)09 [4] Ubriaco M R 1997 Phys. Rev. E 55(1) 91 [5] Wald R M 1984 General Relativity (Chicago: The University of Chicago Press) 6

Research Article Solution of Deformed Einstein Equations and Quantum Black Holes

Research Article Solution of Deformed Einstein Equations and Quantum Black Holes Advances in High Energy Physics Volume 6, Article ID 397376, 7 pages http://dx.doi.org/.55/6/397376 Research Article Solution of Deformed Einstein Equations and Quantum Black Holes Emre Dil and Erdinç

More information

EXCISION TECHNIQUE IN CONSTRAINED FORMULATIONS OF EINSTEIN EQUATIONS

EXCISION TECHNIQUE IN CONSTRAINED FORMULATIONS OF EINSTEIN EQUATIONS EXCISION TECHNIQUE IN CONSTRAINED FORMULATIONS OF EINSTEIN EQUATIONS Journée Gravitation et Physique Fondamentale Meudon, 27 May 2014 Isabel Cordero-Carrión Laboratoire Univers et Théories (LUTh), Observatory

More information

arxiv: v1 [physics.gen-ph] 5 Nov 2018

arxiv: v1 [physics.gen-ph] 5 Nov 2018 q-deformed Einstein equations from entropic force Mustafa Şenay 1a and Salih Kibaroğlu 1b arxiv:1811.02891v1 [physics.gen-ph] 5 Nov 2018 1 Department of Basic Sciences, Naval Academy, National Defence

More information

BLACK HOLES (ADVANCED GENERAL RELATIV- ITY)

BLACK HOLES (ADVANCED GENERAL RELATIV- ITY) Imperial College London MSc EXAMINATION May 2015 BLACK HOLES (ADVANCED GENERAL RELATIV- ITY) For MSc students, including QFFF students Wednesday, 13th May 2015: 14:00 17:00 Answer Question 1 (40%) and

More information

Inside the horizon 2GM. The Schw. Metric cannot be extended inside the horizon.

Inside the horizon 2GM. The Schw. Metric cannot be extended inside the horizon. G. Srinivasan Schwarzschild metric Schwarzschild s solution of Einstein s equations for the gravitational field describes the curvature of space and time near a spherically symmetric massive body. 2GM

More information

TOPIC V BLACK HOLES IN STRING THEORY

TOPIC V BLACK HOLES IN STRING THEORY TOPIC V BLACK HOLES IN STRING THEORY Lecture notes Making black holes How should we make a black hole in string theory? A black hole forms when a large amount of mass is collected together. In classical

More information

Theoretical Aspects of Black Hole Physics

Theoretical Aspects of Black Hole Physics Les Chercheurs Luxembourgeois à l Etranger, Luxembourg-Ville, October 24, 2011 Hawking & Ellis Theoretical Aspects of Black Hole Physics Glenn Barnich Physique théorique et mathématique Université Libre

More information

Gravitational collapse and the vacuum energy

Gravitational collapse and the vacuum energy Journal of Physics: Conference Series OPEN ACCESS Gravitational collapse and the vacuum energy To cite this article: M Campos 2014 J. Phys.: Conf. Ser. 496 012021 View the article online for updates and

More information

High-velocity collision of particles around a rapidly rotating black hole

High-velocity collision of particles around a rapidly rotating black hole Journal of Physics: Conference Series OPEN ACCESS High-velocity collision of particles around a rapidly rotating black hole To cite this article: T Harada 2014 J. Phys.: Conf. Ser. 484 012016 Related content

More information

The Role of Black Holes in the AdS/CFT Correspondence

The Role of Black Holes in the AdS/CFT Correspondence The Role of Black Holes in the AdS/CFT Correspondence Mario Flory 23.07.2013 Mario Flory BHs in AdS/CFT 1 / 30 GR and BHs Part I: General Relativity and Black Holes Einstein Field Equations Lightcones

More information

A Panoramic Tour in Black Holes Physics

A Panoramic Tour in Black Holes Physics Figure 1: The ergosphere of Kerr s black hole A Panoramic Tour in Black Holes Physics - A brief history of black holes The milestones of black holes physics Astronomical observations - Exact solutions

More information

The Time Arrow of Spacetime Geometry

The Time Arrow of Spacetime Geometry 5 The Time Arrow of Spacetime Geometry In the framework of general relativity, gravity is a consequence of spacetime curvature. Its dynamical laws (Einstein s field equations) are again symmetric under

More information

A rotating charged black hole solution in f (R) gravity

A rotating charged black hole solution in f (R) gravity PRAMANA c Indian Academy of Sciences Vol. 78, No. 5 journal of May 01 physics pp. 697 703 A rotating charged black hole solution in f R) gravity ALEXIS LARRAÑAGA National Astronomical Observatory, National

More information

Black Holes. Jan Gutowski. King s College London

Black Holes. Jan Gutowski. King s College London Black Holes Jan Gutowski King s College London A Very Brief History John Michell and Pierre Simon de Laplace calculated (1784, 1796) that light emitted radially from a sphere of radius R and mass M would

More information

A UNIFIED TREATMENT OF GRAVITATIONAL COLLAPSE IN GENERAL RELATIVITY

A UNIFIED TREATMENT OF GRAVITATIONAL COLLAPSE IN GENERAL RELATIVITY A UNIFIED TREATMENT OF GRAVITATIONAL COLLAPSE IN GENERAL RELATIVITY & Anthony Lun Fourth Aegean Summer School on Black Holes Mytilene, Island of Lesvos 17/9/2007 CONTENTS Junction Conditions Standard approach

More information

Electromagnetic Energy for a Charged Kerr Black Hole. in a Uniform Magnetic Field. Abstract

Electromagnetic Energy for a Charged Kerr Black Hole. in a Uniform Magnetic Field. Abstract Electromagnetic Energy for a Charged Kerr Black Hole in a Uniform Magnetic Field Li-Xin Li Department of Astrophysical Sciences, Princeton University, Princeton, NJ 08544 (December 12, 1999) arxiv:astro-ph/0001494v1

More information

Collapse of Kaluza-Klein Bubbles. Abstract. Kaluza-Klein theory admits \bubble" congurations, in which the

Collapse of Kaluza-Klein Bubbles. Abstract. Kaluza-Klein theory admits \bubble congurations, in which the UMDGR{94{089 gr{qc/940307 Collapse of Kaluza-Klein Bubbles Steven Corley and Ted Jacobson 2 Department of Physics, University of Maryland, College Park, MD 20742{4 Abstract Kaluza-Klein theory admits \bubble"

More information

Strings and Black Holes

Strings and Black Holes Strings and Black Holes Erik Verlinde Institute for Theoretical Physics University of Amsterdam General Relativity R Rg GT µν µν = 8π µν Gravity = geometry Einstein: geometry => physics Strings: physics

More information

First, Second Quantization and Q-Deformed Harmonic Oscillator

First, Second Quantization and Q-Deformed Harmonic Oscillator Journal of Physics: Conference Series PAPER OPEN ACCESS First, Second Quantization and Q-Deformed Harmonic Oscillator To cite this article: Man Van Ngu et al 015 J. Phys.: Conf. Ser. 67 0101 View the article

More information

PRINCIPLES OF PHYSICS. \Hp. Ni Jun TSINGHUA. Physics. From Quantum Field Theory. to Classical Mechanics. World Scientific. Vol.2. Report and Review in

PRINCIPLES OF PHYSICS. \Hp. Ni Jun TSINGHUA. Physics. From Quantum Field Theory. to Classical Mechanics. World Scientific. Vol.2. Report and Review in LONDON BEIJING HONG TSINGHUA Report and Review in Physics Vol2 PRINCIPLES OF PHYSICS From Quantum Field Theory to Classical Mechanics Ni Jun Tsinghua University, China NEW JERSEY \Hp SINGAPORE World Scientific

More information

TO GET SCHWARZSCHILD BLACKHOLE SOLUTION USING MATHEMATICA FOR COMPULSORY COURSE WORK PAPER PHY 601

TO GET SCHWARZSCHILD BLACKHOLE SOLUTION USING MATHEMATICA FOR COMPULSORY COURSE WORK PAPER PHY 601 TO GET SCHWARZSCHILD BLACKHOLE SOLUTION USING MATHEMATICA FOR COMPULSORY COURSE WORK PAPER PHY 601 PRESENTED BY: DEOBRAT SINGH RESEARCH SCHOLAR DEPARTMENT OF PHYSICS AND ASTROPHYSICS UNIVERSITY OF DELHI

More information

arxiv:gr-qc/ v1 7 Sep 1998

arxiv:gr-qc/ v1 7 Sep 1998 Thermodynamics of toroidal black holes Claudia S. Peça Departamento de Física, Instituto Superior Técnico, Av. Rovisco Pais, 096 Lisboa Codex, Portugal José P. S. Lemos Departamento de Astrofísica. Observatório

More information

Radiation energy flux of Dirac field of static spherically symmetric black holes

Radiation energy flux of Dirac field of static spherically symmetric black holes Radiation energy flux of Dirac field of static spherically symmetric black holes Meng Qing-Miao( 孟庆苗 ), Jiang Ji-Jian( 蒋继建 ), Li Zhong-Rang( 李中让 ), and Wang Shuai( 王帅 ) Department of Physics, Heze University,

More information

November 24, Energy Extraction from Black Holes. T. Daniel Brennan. Special Relativity. General Relativity. Black Holes.

November 24, Energy Extraction from Black Holes. T. Daniel Brennan. Special Relativity. General Relativity. Black Holes. from November 24, 2014 1 2 3 4 5 Problem with Electricity and Magnetism In the late 1800 s physicists realized there was a problem with electromagnetism: the speed of light was given in terms of fundamental

More information

Black Hole solutions in Einstein-Maxwell-Yang-Mills-Born-Infeld Theory

Black Hole solutions in Einstein-Maxwell-Yang-Mills-Born-Infeld Theory 1 Black Hole solutions in Einstein-Maxwell-Yang-Mills-Born-Infeld Theory S Habib Mazharimousavi Eastern Mediterranean University, north Cyprus S. Habib Mazharimousavi and M. Halilsoy, Phys. Rev. D 76 (2007)

More information

Introduction to Black Hole Thermodynamics. Satoshi Iso (KEK)

Introduction to Black Hole Thermodynamics. Satoshi Iso (KEK) Introduction to Black Hole Thermodynamics Satoshi Iso (KEK) Plan of the talk [1] Overview of BH thermodynamics causal structure of horizon Hawking radiation stringy picture of BH entropy [2] Hawking radiation

More information

Deformations of Spacetime Horizons and Entropy

Deformations of Spacetime Horizons and Entropy Adv. Studies Theor. Phys., ol. 7, 2013, no. 22, 1095-1100 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/10.12988/astp.2013.39100 Deformations of Spacetime Horizons and Entropy Paul Bracken Department

More information

Synchronization of thermal Clocks and entropic Corrections of Gravity

Synchronization of thermal Clocks and entropic Corrections of Gravity Synchronization of thermal Clocks and entropic Corrections of Gravity Andreas Schlatter Burghaldeweg 2F, 5024 Küttigen, Switzerland schlatter.a@bluewin.ch Abstract There are so called MOND corrections

More information

arxiv:hep-th/ v1 19 May 2004

arxiv:hep-th/ v1 19 May 2004 CU-TP-1114 arxiv:hep-th/0405160v1 19 May 2004 A Secret Tunnel Through The Horizon Maulik Parikh 1 Department of Physics, Columbia University, New York, NY 10027 Abstract Hawking radiation is often intuitively

More information

/95 $ $.25 per page

/95 $ $.25 per page Fields Institute Communications Volume 00, 0000 McGill/95-40 gr-qc/950063 Two-Dimensional Dilaton Black Holes Guy Michaud and Robert C. Myers Department of Physics, McGill University Montreal, Quebec,

More information

Do semiclassical zero temperature black holes exist?

Do semiclassical zero temperature black holes exist? Do semiclassical zero temperature black holes exist? Paul R. Anderson Department of Physics, Wake Forest University, Winston-Salem, North Carolina 7109 William A. Hiscock, Brett E. Taylor Department of

More information

Black holes and the leaking faucet in your bathroom

Black holes and the leaking faucet in your bathroom Black holes and the leaking faucet in your bathroom Nicolas Vasset Journal club May 5th, 2011 Nicolas Vasset (Basel) Black holes and leaking faucets 05/11 1 / 17 Based on the following articles [Lehner

More information

Black holes in Einstein s gravity and beyond

Black holes in Einstein s gravity and beyond Black holes in Einstein s gravity and beyond Andrei Starinets Rudolf Peierls Centre for Theore=cal Physics University of Oxford 20 September 2014 Outline Gravity and the metric Einstein s equa=ons Symmetry

More information

Black Hole Entropy and Gauge/Gravity Duality

Black Hole Entropy and Gauge/Gravity Duality Tatsuma Nishioka (Kyoto,IPMU) based on PRD 77:064005,2008 with T. Azeyanagi and T. Takayanagi JHEP 0904:019,2009 with T. Hartman, K. Murata and A. Strominger JHEP 0905:077,2009 with G. Compere and K. Murata

More information

From An Apple To Black Holes Gravity in General Relativity

From An Apple To Black Holes Gravity in General Relativity From An Apple To Black Holes Gravity in General Relativity Gravity as Geometry Central Idea of General Relativity Gravitational field vs magnetic field Uniqueness of trajectory in space and time Uniqueness

More information

κ = f (r 0 ) k µ µ k ν = κk ν (5)

κ = f (r 0 ) k µ µ k ν = κk ν (5) 1. Horizon regularity and surface gravity Consider a static, spherically symmetric metric of the form where f(r) vanishes at r = r 0 linearly, and g(r 0 ) 0. Show that near r = r 0 the metric is approximately

More information

Gravity, Strings and Branes

Gravity, Strings and Branes Gravity, Strings and Branes Joaquim Gomis Universitat Barcelona Miami, 23 April 2009 Fundamental Forces Strong Weak Electromagnetism QCD Electroweak SM Gravity Standard Model Basic building blocks, quarks,

More information

THE 2D ANALOGUE OF THE REISSNER-NORDSTROM SOLUTION. S. Monni and M. Cadoni ABSTRACT

THE 2D ANALOGUE OF THE REISSNER-NORDSTROM SOLUTION. S. Monni and M. Cadoni ABSTRACT INFNCA-TH9618 September 1996 THE 2D ANALOGUE OF THE REISSNER-NORDSTROM SOLUTION S. Monni and M. Cadoni Dipartimento di Scienze Fisiche, Università di Cagliari, Via Ospedale 72, I-09100 Cagliari, Italy.

More information

Research Article Remarks on Null Geodesics of Born-Infeld Black Holes

Research Article Remarks on Null Geodesics of Born-Infeld Black Holes International Scholarly Research Network ISRN Mathematical Physics Volume 1, Article ID 86969, 13 pages doi:1.54/1/86969 Research Article Remarks on Null Geodesics of Born-Infeld Black Holes Sharmanthie

More information

Holography Duality (8.821/8.871) Fall 2014 Assignment 2

Holography Duality (8.821/8.871) Fall 2014 Assignment 2 Holography Duality (8.821/8.871) Fall 2014 Assignment 2 Sept. 27, 2014 Due Thursday, Oct. 9, 2014 Please remember to put your name at the top of your paper. Note: The four laws of black hole mechanics

More information

Excluding Black Hole Firewalls with Extreme Cosmic Censorship

Excluding Black Hole Firewalls with Extreme Cosmic Censorship Excluding Black Hole Firewalls with Extreme Cosmic Censorship arxiv:1306.0562 Don N. Page University of Alberta February 14, 2014 Introduction A goal of theoretical cosmology is to find a quantum state

More information

Gravity, Strings and Branes

Gravity, Strings and Branes Gravity, Strings and Branes Joaquim Gomis International Francqui Chair Inaugural Lecture Leuven, 11 February 2005 Fundamental Forces Strong Weak Electromagnetism QCD Electroweak SM Gravity Standard Model

More information

SCIENTIFIC UNDERSTANDING OF THE ANISOTROPIC UNIVERSE IN THE WARPED PRODUCTS SPACETIME FOR AEROSPACE POWER. Jaedong Choi

SCIENTIFIC UNDERSTANDING OF THE ANISOTROPIC UNIVERSE IN THE WARPED PRODUCTS SPACETIME FOR AEROSPACE POWER. Jaedong Choi Korean J. Math. 23 (2015) No. 3 pp. 479 489 http://dx.doi.org/10.11568/kjm.2015.23.3.479 SCIENTIFIC UNDERSTANDING OF THE ANISOTROPIC UNIVERSE IN THE WARPED PRODUCTS SPACETIME FOR AEROSPACE POWER Jaedong

More information

Hawking Emission and Black Hole Thermodynamics

Hawking Emission and Black Hole Thermodynamics Hawking Emission and Black Hole Thermodynamics arxiv:hep-th/0612193v1 18 Dec 2006 1 Introduction Don N. Page Theoretical Physics Institute Department of Physics, University of Alberta Room 238 CEB, 11322

More information

Solutions of Einstein s Equations & Black Holes 2

Solutions of Einstein s Equations & Black Holes 2 Solutions of Einstein s Equations & Black Holes 2 Kostas Kokkotas December 19, 2011 2 S.L.Shapiro & S. Teukolsky Black Holes, Neutron Stars and White Dwarfs Kostas Kokkotas Solutions of Einstein s Equations

More information

Approaching the Event Horizon of a Black Hole

Approaching the Event Horizon of a Black Hole Adv. Studies Theor. Phys., Vol. 6, 2012, no. 23, 1147-1152 Approaching the Event Horizon of a Black Hole A. Y. Shiekh Department of Physics Colorado Mesa University Grand Junction, CO, USA ashiekh@coloradomesa.edu

More information

Visible, invisible and trapped ghosts as sources of wormholes and black universes

Visible, invisible and trapped ghosts as sources of wormholes and black universes Journal of Physics: Conference Series PAPER OPEN ACCESS Visible, invisible and trapped ghosts as sources of wormholes and black universes To cite this article: S V Bolokhov et al 2016 J. Phys.: Conf. Ser.

More information

Physics 161 Homework 3 Wednesday September 21, 2011

Physics 161 Homework 3 Wednesday September 21, 2011 Physics 161 Homework 3 Wednesday September 21, 2011 Make sure your name is on every page, and please box your final answer. Because we will be giving partial credit, be sure to attempt all the problems,

More information

Black Hole thermodynamics

Black Hole thermodynamics Black Hole thermodynamics I Black holes evaporates I Black holes have a partition function For a Schwarzschild black hole, the famous Bekenstein-Hawking results are: T = 1 8 M S = A 4G = 4 r + 4G Note

More information

Physics Department. Northeastern University ABSTRACT. An electric monopole solution to the equations of Maxwell and Einstein's

Physics Department. Northeastern University ABSTRACT. An electric monopole solution to the equations of Maxwell and Einstein's NUB 302 October 994 Another Look at the Einstein-Maxwell Equations M. H. Friedman Physics Department Northeastern University Boston, MA 025, USA ABSTRACT HEP-PH-95030 An electric monopole solution to the

More information

arxiv:gr-qc/ v1 29 Jan 2003

arxiv:gr-qc/ v1 29 Jan 2003 Some properties of a string V. Dzhunushaliev June, 8 Dept. Phys. and Microel. Engineer., KRSU, Bishkek, Kievskaya Str., 7, Kyrgyz Republic arxiv:gr-qc/38v 9 Jan 3 Abstract The properties of 5D gravitational

More information

WHY BLACK HOLES PHYSICS?

WHY BLACK HOLES PHYSICS? WHY BLACK HOLES PHYSICS? Nicolò Petri 13/10/2015 Nicolò Petri 13/10/2015 1 / 13 General motivations I Find a microscopic description of gravity, compatibile with the Standard Model (SM) and whose low-energy

More information

carroll/notes/ has a lot of good notes on GR and links to other pages. General Relativity Philosophy of general

carroll/notes/ has a lot of good notes on GR and links to other pages. General Relativity Philosophy of general http://pancake.uchicago.edu/ carroll/notes/ has a lot of good notes on GR and links to other pages. General Relativity Philosophy of general relativity. As with any major theory in physics, GR has been

More information

Stationarity of non-radiating spacetimes

Stationarity of non-radiating spacetimes University of Warwick April 4th, 2016 Motivation Theorem Motivation Newtonian gravity: Periodic solutions for two-body system. Einstein gravity: Periodic solutions? At first Post-Newtonian order, Yes!

More information

arxiv: v2 [gr-qc] 27 Apr 2013

arxiv: v2 [gr-qc] 27 Apr 2013 Free of centrifugal acceleration spacetime - Geodesics arxiv:1303.7376v2 [gr-qc] 27 Apr 2013 Hristu Culetu Ovidius University, Dept.of Physics and Electronics, B-dul Mamaia 124, 900527 Constanta, Romania

More information

Quantum Black Holes and Global Symmetries

Quantum Black Holes and Global Symmetries Quantum Black Holes and Global Symmetries Daniel Klaewer Max-Planck-Institute for Physics, Munich Young Scientist Workshop 217, Schloss Ringberg Outline 1) Quantum fields in curved spacetime 2) The Unruh

More information

BLACK HOLE MECHANICS AND THERMODYNAMICS

BLACK HOLE MECHANICS AND THERMODYNAMICS PHYS 253:THERMAL PHYSICS BLACK HOLE MECHANICS AND THERMODYNAMICS (NASA) THE TAKE-AWAY In General Relativity, the laws of black hole mechanics describe black holes near equilibrium. There is a deep analogy

More information

Dynamics of a Charged Spherically Symmetric Thick Shell

Dynamics of a Charged Spherically Symmetric Thick Shell EJTP 3, No. 12 (2006) 145 150 Electronic Journal of Theoretical Physics Dynamics of a Charged Spherically Symmetric Thick Shell A. Eid Department of Astronomy, Faculty of Science, Cairo University, Egypt

More information

Black Holes, Quantum Mechanics, and Firewalls

Black Holes, Quantum Mechanics, and Firewalls Black Holes, Quantum Mechanics, and Firewalls Joseph Polchinski Simons Symposium, NYC 11/18/13 A Brief History of the Black Hole Information Paradox: A Brief History of the Black Hole Information Paradox:

More information

A Summary of the Black Hole Perturbation Theory. Steven Hochman

A Summary of the Black Hole Perturbation Theory. Steven Hochman A Summary of the Black Hole Perturbation Theory Steven Hochman Introduction Many frameworks for doing perturbation theory The two most popular ones Direct examination of the Einstein equations -> Zerilli-Regge-Wheeler

More information

What happens at the horizon of an extreme black hole?

What happens at the horizon of an extreme black hole? What happens at the horizon of an extreme black hole? Harvey Reall DAMTP, Cambridge University Lucietti and HSR arxiv:1208.1437 Lucietti, Murata, HSR and Tanahashi arxiv:1212.2557 Murata, HSR and Tanahashi,

More information

Jose Luis Blázquez Salcedo

Jose Luis Blázquez Salcedo Jose Luis Blázquez Salcedo In collaboration with Jutta Kunz, Francisco Navarro Lérida, and Eugen Radu GR Spring School, March 2015, Brandenburg an der Havel 1. Introduction 2. General properties of EMCS-AdS

More information

Implication of Negative Temperature in the Inner Horizon of Reissner-Nordström Black Hole

Implication of Negative Temperature in the Inner Horizon of Reissner-Nordström Black Hole 94 J. Math. Fund. Sci., Vol. 49, No. 3, 017, 94-305 Implication of Negative Temperature in the Inner Horizon of Reissner-Nordström Black Hole Yuant Tiandho Department of Physics, Universitas Bangka Belitung

More information

Microscopic entropy of the charged BTZ black hole

Microscopic entropy of the charged BTZ black hole Microscopic entropy of the charged BTZ black hole Mariano Cadoni 1, Maurizio Melis 1 and Mohammad R. Setare 2 1 Dipartimento di Fisica, Università di Cagliari and INFN, Sezione di Cagliari arxiv:0710.3009v1

More information

Theory. V H Satheeshkumar. XXVII Texas Symposium, Dallas, TX December 8 13, 2013

Theory. V H Satheeshkumar. XXVII Texas Symposium, Dallas, TX December 8 13, 2013 Department of Physics Baylor University Waco, TX 76798-7316, based on my paper with J Greenwald, J Lenells and A Wang Phys. Rev. D 88 (2013) 024044 with XXVII Texas Symposium, Dallas, TX December 8 13,

More information

Brief course of lectures at 18th APCTP Winter School on Fundamental Physics

Brief course of lectures at 18th APCTP Winter School on Fundamental Physics Brief course of lectures at 18th APCTP Winter School on Fundamental Physics Pohang, January 20 -- January 28, 2014 Motivations : (1) Extra-dimensions and string theory (2) Brane-world models (3) Black

More information

Geometric Entropy: Black Hole Background

Geometric Entropy: Black Hole Background Geometric Entropy: Black Hole Background Frank Wilczek Center for Theoretical Physics, MIT, Cambridge MA 02139 USA March 13, 2014 Abstract I review the derivation of Hawking temperature and entropy through

More information

Fermionic matter under the effects of high magnetic fields and its consequences in white dwarfs

Fermionic matter under the effects of high magnetic fields and its consequences in white dwarfs Journal of Physics: Conference Series PAPER OPEN ACCESS Fermionic matter under the effects of high magnetic fields and its consequences in white dwarfs To cite this article: E Otoniel et al 2015 J. Phys.:

More information

Thermodynamics of Lifshitz Black Holes

Thermodynamics of Lifshitz Black Holes Thermodynamics of Lifshitz Black Holes Hai-Shan Liu Zhejiang University of Technology @USTC-ICTS, 2014.12.04 Based on work with Hong Lu and C.N.Pope, arxiv:1401.0010 PLB; arxiv:1402:5153 JHEP; arxiv:1410.6181

More information

Emergent Gravity. Chih-Chieh Chen. December 13, 2010

Emergent Gravity. Chih-Chieh Chen. December 13, 2010 Emergent Gravity Chih-Chieh Chen December 13, 2010 Abstract The idea of the emergent gravity came from the study of black hole thermodynamics. Basically by inversion the logic in the derivation of the

More information

Entropy, Area, and Black Hole Pairs. University of Cambridge, 20 Clarkson Rd., Cambridge CB3 0EH

Entropy, Area, and Black Hole Pairs. University of Cambridge, 20 Clarkson Rd., Cambridge CB3 0EH NI-9-0 DAMTP/R 9-6 UCSBTH-9-5 gr-qc/90903 Entropy, Area, and Black Hole Pairs S. W. Hawking, Gary T. Horowitz, y and Simon F. Ross Isaac Newton Institute for Mathematical Sciences University of Cambridge,

More information

Semiclassical geometry of charged black holes

Semiclassical geometry of charged black holes PHYSICAL REVIEW D 72, 021501(R) (2005) Semiclassical geometry of charged black holes Andrei V. Frolov* KIPAC/SITP, Stanford University, Stanford, California 94305-4060, USA Kristján R. Kristjánsson and

More information

Radially Inhomogeneous Cosmological Models with Cosmological Constant

Radially Inhomogeneous Cosmological Models with Cosmological Constant Radially Inhomogeneous Cosmological Models with Cosmological Constant N. Riazi Shiraz University 10/7/2004 DESY, Hamburg, September 2004 1 Introduction and motivation CMB isotropy and cosmological principle

More information

EMERGENT GRAVITY AND COSMOLOGY: THERMODYNAMIC PERSPECTIVE

EMERGENT GRAVITY AND COSMOLOGY: THERMODYNAMIC PERSPECTIVE EMERGENT GRAVITY AND COSMOLOGY: THERMODYNAMIC PERSPECTIVE Master Colloquium Pranjal Dhole University of Bonn Supervisors: Prof. Dr. Claus Kiefer Prof. Dr. Pavel Kroupa May 22, 2015 Work done at: Institute

More information

arxiv: v2 [hep-th] 5 Apr 2016

arxiv: v2 [hep-th] 5 Apr 2016 USTC-ICTS-16-03 Phase structures of 4D stringy charged black holes in canonical ensemble arxiv:1603.08084v [hep-th] 5 Apr 016 Qiang Jia, J. X. Lu and Xiao-Jun Tan Interdisciplinary Center for Theoretical

More information

arxiv: v1 [hep-th] 3 Feb 2016

arxiv: v1 [hep-th] 3 Feb 2016 Noname manuscript No. (will be inserted by the editor) Thermodynamics of Asymptotically Flat Black Holes in Lovelock Background N. Abbasvandi M. J. Soleimani Shahidan Radiman W.A.T. Wan Abdullah G. Gopir

More information

arxiv:gr-qc/ v1 2 Mar 1999

arxiv:gr-qc/ v1 2 Mar 1999 Universal Upper Bound to the Entropy of a Charged System Shahar Hod The Racah Institute for Physics, The Hebrew University, Jerusalem 91904, Israel (June 6, 2018) arxiv:gr-qc/9903010v1 2 Mar 1999 Abstract

More information

Homework 1: Special Relativity. Reading Assignment. Essential Problems. 1 Pole-in-Barn (Hartle 4-3) 2 Black Hole Entropy and Dimensional Analysis

Homework 1: Special Relativity. Reading Assignment. Essential Problems. 1 Pole-in-Barn (Hartle 4-3) 2 Black Hole Entropy and Dimensional Analysis Homework 1: Special Relativity Course: Physics 208, General Relativity (Winter 2017) Instructor: Flip Tanedo (flip.tanedo@ucr.edu) Due Date: Tuesday, January 17 in class You are required to complete the

More information

Catalysing Vacuum Decay

Catalysing Vacuum Decay Catalysing Vacuum Decay Ruth Gregory Centre for Particle Theory + Ian Moss and Ben Withers 1401.0017 JHEP 1403 081 The Question The Coleman de Luccia instanton started a trend of understanding more complex

More information

How beaming of gravitational waves compares to the beaming of electromagnetic waves: impacts to gravitational wave detection

How beaming of gravitational waves compares to the beaming of electromagnetic waves: impacts to gravitational wave detection Journal of Physics: Conference Series PAPER OPEN ACCESS How beaming of gravitational waves compares to the beaming of electromagnetic waves: impacts to gravitational wave detection To cite this article:

More information

Einstein Toolkit Workshop. Joshua Faber Apr

Einstein Toolkit Workshop. Joshua Faber Apr Einstein Toolkit Workshop Joshua Faber Apr 05 2012 Outline Space, time, and special relativity The metric tensor and geometry Curvature Geodesics Einstein s equations The Stress-energy tensor 3+1 formalisms

More information

arxiv:gr-qc/ v1 23 Sep 1996

arxiv:gr-qc/ v1 23 Sep 1996 Negative Pressure and Naked Singularities in Spherical Gravitational Collapse TIFR-TAP Preprint arxiv:gr-qc/9609051v1 23 Sep 1996 F. I. Cooperstock 1, S. Jhingan, P. S. Joshi and T. P. Singh Theoretical

More information

Instability of extreme black holes

Instability of extreme black holes Instability of extreme black holes James Lucietti University of Edinburgh EMPG seminar, 31 Oct 2012 Based on: J.L., H. Reall arxiv:1208.1437 Extreme black holes Extreme black holes do not emit Hawking

More information

The Cardy-Verlinde equation and the gravitational collapse. Cosimo Stornaiolo INFN -- Napoli

The Cardy-Verlinde equation and the gravitational collapse. Cosimo Stornaiolo INFN -- Napoli The Cardy-Verlinde equation and the gravitational collapse Cosimo Stornaiolo INFN -- Napoli G. Maiella and C. Stornaiolo The Cardy-Verlinde equation and the gravitational collapse Int.J.Mod.Phys. A25 (2010)

More information

Modelling the evolution of small black holes

Modelling the evolution of small black holes Modelling the evolution of small black holes Elizabeth Winstanley Astro-Particle Theory and Cosmology Group School of Mathematics and Statistics University of Sheffield United Kingdom Thanks to STFC UK

More information

Universal Dynamics from the Conformal Bootstrap

Universal Dynamics from the Conformal Bootstrap Universal Dynamics from the Conformal Bootstrap Liam Fitzpatrick Stanford University! in collaboration with Kaplan, Poland, Simmons-Duffin, and Walters Conformal Symmetry Conformal = coordinate transformations

More information

Gauss-Bonnet Black Holes in ds Spaces. Abstract

Gauss-Bonnet Black Holes in ds Spaces. Abstract USTC-ICTS-03-5 Gauss-Bonnet Black Holes in ds Spaces Rong-Gen Cai Institute of Theoretical Physics, Chinese Academy of Sciences, P.O. Box 735, Beijing 00080, China Interdisciplinary Center for Theoretical

More information

Physics 161 Homework 3 - Solutions Wednesday September 21, 2011

Physics 161 Homework 3 - Solutions Wednesday September 21, 2011 Physics 161 Homework 3 - Solutions Wednesday September 21, 2011 ake sure your name is on every page, and please box your final answer. Because we will be giving partial credit, be sure to attempt all the

More information

Introduction to Numerical Relativity I. Erik Schnetter, Pohang, July 2007

Introduction to Numerical Relativity I. Erik Schnetter, Pohang, July 2007 Introduction to Numerical Relativity I Erik Schnetter, Pohang, July 2007 Lectures Overview I. The Einstein Equations (Formulations and Gauge Conditions) II. Analysis Methods (Horizons and Gravitational

More information

Miami Modified dark matter in galaxy clusters. Douglas Edmonds Emory & Henry College

Miami Modified dark matter in galaxy clusters. Douglas Edmonds Emory & Henry College Miami 2015 Modified dark matter in galaxy clusters Douglas Edmonds Emory & Henry College Collaboration D. Edmonds Emory & Henry College D. Farrah Virginia Tech C.M. Ho Michigan State University D. Minic

More information

Part II Statistical Physics

Part II Statistical Physics Part II Statistical Physics Theorems Based on lectures by H. S. Reall Notes taken by Dexter Chua Lent 2017 These notes are not endorsed by the lecturers, and I have modified them (often significantly)

More information

21 July 2011, USTC-ICTS. Chiang-Mei Chen 陳江梅 Department of Physics, National Central University

21 July 2011, USTC-ICTS. Chiang-Mei Chen 陳江梅 Department of Physics, National Central University 21 July 2011, Seminar @ USTC-ICTS Chiang-Mei Chen 陳江梅 Department of Physics, National Central University Outline Black Hole Holographic Principle Kerr/CFT Correspondence Reissner-Nordstrom /CFT Correspondence

More information

Introduction to AdS/CFT

Introduction to AdS/CFT Introduction to AdS/CFT Who? From? Where? When? Nina Miekley University of Würzburg Young Scientists Workshop 2017 July 17, 2017 (Figure by Stan Brodsky) Intuitive motivation What is meant by holography?

More information

Classical Field Theory

Classical Field Theory April 13, 2010 Field Theory : Introduction A classical field theory is a physical theory that describes the study of how one or more physical fields interact with matter. The word classical is used in

More information

Valeri P. Frolov, Univ. of Alberta, Edmonton. GC2018, Yukawa Institute, Kyoto, February 5, 2018

Valeri P. Frolov, Univ. of Alberta, Edmonton. GC2018, Yukawa Institute, Kyoto, February 5, 2018 Valeri P. Frolov, Univ. of Alberta, Edmonton GC018, Yukawa Institute, Kyoto, February 5, 018 Based on: "Information loss problem and a 'black hole` model with a closed apparent horizon", V.F., JHEP 1405

More information

BLACK HOLE ENTROPY ENTANGLEMENT AND HOLOGRAPHIC SPACETIME. Ted Jacobson University of Maryland

BLACK HOLE ENTROPY ENTANGLEMENT AND HOLOGRAPHIC SPACETIME. Ted Jacobson University of Maryland BLACK HOLE ENTROPY ENTANGLEMENT AND HOLOGRAPHIC SPACETIME Ted Jacobson University of Maryland Goddard Scientific Colloquium, Feb. 7, 2018 Holographic principle Information paradox geometry from entanglement

More information

Spacetime emergence via holographic RG flow from incompressible Navier-Stokes at the horizon. based on

Spacetime emergence via holographic RG flow from incompressible Navier-Stokes at the horizon. based on Prifysgol Abertawe? Strong Fields, Strings and Holography Spacetime emergence via holographic RG flow from incompressible Navier-Stokes at the horizon based on arxiv:1105.4530 ; arxiv:arxiv:1307.1367 with

More information

Quantum Entanglement and Superconductivity. Subir Sachdev, Harvard University

Quantum Entanglement and Superconductivity. Subir Sachdev, Harvard University Quantum Entanglement and Superconductivity Subir Sachdev, Harvard University Quantum Entanglement and Superconductivity Superconductor, levitated by an unseen magnet, in which countless trillions of electrons

More information

Accelerating Cosmologies and Black Holes in the Dilatonic Einstein-Gauss-Bonnet (EGB) Theory

Accelerating Cosmologies and Black Holes in the Dilatonic Einstein-Gauss-Bonnet (EGB) Theory Accelerating Cosmologies and Black Holes in the Dilatonic Einstein-Gauss-Bonnet (EGB) Theory Zong-Kuan Guo Fakultät für Physik, Universität Bielefeld Zong-Kuan Guo (Universität Bielefeld) Dilatonic Einstein-Gauss-Bonnet

More information

Entropic Force between Two Distant Black Holes in a Background Temperature

Entropic Force between Two Distant Black Holes in a Background Temperature Entropic Force between Two Distant Black Holes in a Background Temperature Davoud Kamani Faculty of Physics, Amirkabir University of Technology (Tehran Polytechnic) Tehran, Iran Abstract: We use the Newton

More information