MOdified Newtonian Dynamics an introductory review. Riccardo Scarpa European Southern Observatory

Size: px
Start display at page:

Download "MOdified Newtonian Dynamics an introductory review. Riccardo Scarpa European Southern Observatory"

Transcription

1 MOdified Newtonian Dynamics an introductory review By Riccardo Scarpa European Southern Observatory

2 Everything started in 1933 with the work by Zwicky on the Coma cluster of galaxies, but were galaxy rotation curves to convince everybody there was dark matter in the universe Rotational velocity sensibly constant at large radii Implies an halo of non-luminous matter surrounds galaxies NGC 3198 (Begeman( 1987) Halo density 1/r, mass diverges

3 Justification for Modifying Newtonian Dynamics It t is increasingly difficult to explain observations with non- baryonic dark matter. Effects of non-baryonic dark matter appears when and only when the acceleration of gravity (computed including only baryons) falls below a certain value, baptized a 0. a 0 is smaller than n the smallest acceleration probed in the solar system,, e.g., the acceleration of Mercury on Pluto is > a 0 Thus the idea is simple: Newtonian dynamics breaks down below a 0

4 Proposed by M. Milgrom in 1983, MOND introduces a new constant of physics: a 0

5 Distance doesn t t matter! What matters is the strength of the acceleration, not distance/size of objects (though for any given object low accelerations are reached at correspondingly large distances).

6 MOND basic definition # a >> a 0 " % $ % & a << a 0 " a N = GM r 2 a = GMa 0 r Functional form derived from rotation curves, where we know v = constant a 1/r at large radii. Square root of Newtonian acceleration 1/r. Multiplied by an acceleration we get right dimensions. An interpolation function derived empirically joins the two regimes " µ a % " $ ' = (a /a 0 ) $ 1+ a2 # a 0 & # a 0 2 % ' & (1/ 2 " a N = aµ $ a # a 0 % ' &

7 Comparing MOND to real data DARK MATTER MOND

8 Galaxies Rotation Curves with MOND Sanders & Verheijen Rotation curves derived from stellar light and 21cm hydrogen line a = GMa 0 r Velocity in km/s Distance in kpc

9 Fits to v(r) for LSB & HSB Galaxies Sanders & McGaugh 02 a 0 =1.2 x10-8 cm s -2

10 Does MOND fit any rotation curve? MOND fails to fit this one. MOND DARK MATTER This is a fake galaxy! Photometry from one object and velocity from another! In this case, a failure is a good thing!

11 Counterexamples?! Romanowsky et al 2003 Claimed the discovery of 3 elliptical galaxies without dark matter halo. Dashed line: isothermal dark-matter halo Dotted line: constant mass-to-light ratio and NO dark matter.

12 No! These galaxies are in Newtonian regime a>a 0 Milgrom & Sanders 03 Dotted line: Newtonian prediction for constant M/L. Solid line: MOND prediction for the same M/L.

13 The Tully-Fisher Relation v A relation between asymptotic velocity and luminosity of galaxies v 4 " L

14 Galaxies mean surface brightness Σ High surface Brightness Low surface brightness Galaxy luminosity L = πr 2 Σ

15 Newtonian dynamics and T-F v 2 { { r 2 = L r = GM r 2 L = "r 2 # v 4 = (GM) 2 r 2 " v 4 " M 2 # L = $ 2 #L L 2 "# T-F requires τ 2 Σ = const. But M/L=τ depends on stellar population, basically the same in all galaxies Surface brightness Σ varies significantly going from HSB to LSB galaxies and has nothing to do with M/L. Therefore Newton implies a link of two very unrelated quantities and predicts LSB and HSB galaxies to follow different T-F relations.

16 Tully-Fisher relation and MOND v 2 r = GMa 0 r v 4 " M L L = # % M $ L & ( L ' MOND requires M/L= constant AND The T-F is universal

17 The Tully-Fisher is universal as MOND predicted Note that data for low surface brightness galaxies became available some 10 years later Milgrom made its prediction. Sanders & Verheijen LSB HSB

18 Baryonic Tully-Fisher McGaugh et al ApJL, 533, 99 Left: Luminous mass vs. rotational Velocity. Galaxies with v<90 km/s fall below the relation. Right: Including gas the relation is restored. The solid line has slope 4 The T-F is a relation between MASS and Velocity, as indeed predicted by MOND

19 Fundamental plane of ellipticals LSB HSB Edge on view of the fundamental plane HSB define a a relation M/L L 0.25 LSB define an opposite trend M/L L -0.40

20 MOND explanation of the tilt Tilt due to the different trend in gravitational filed strength In HSB the acceleration decreases with size In LSB the acceleration increases with size This is demonstrated by their average surface brightness

21 MOND defines specific trends Log L/L sun

22 Acceleration from velocity and luminosity MOND agrees with real data over 7 orders of magnitudes

23 Ultra Compact Dwarf Galaxies Drinkwater et al DARK MATTER vs. MOND Dwarf galaxies are usually FULL of dark matter with M/L~100, thus plenty of dark matter expected. UCD luminosity and size imply internal acceleration > a 0 everywhere, hence no dark matter should be found.

24 No Dark Matter Found in UCDs Accepted explanation: The dark matter was there but was lost together with the halo. Possible but NOT predicted and ad hoc MOND explanation: simple, elegant, fully logic and exactly as predicted!

25 Clusters of Galaxies (Sanders 1998) This may be the only place where MOND fails (by a factor 2. MOND predicts some baryonic matter still to be discovered

26 Gravitational lensing Difficult to address because MOND lack a relativistic Extension The Usual assumption is that light is bent twice has much as predicted by Newton s law. That is: Compute field with MOND Double the effect Warning: Gravitational lensing NEVER occur in MOND regime.

27 Strong Lensing The critical surface density required for strong lensing is " c = 1 ch 0 4# G F where F~10 is a dimensionless function of the lens and source redshifts [35], MOND applies at surface densities below Σ ~ a 0 /G ~ Σ c /5 Strong lensing NEVER occurs in MOND regime

28 We are left with weak lensing Mortlock & Turner 2001 For a point source we get an asymptotic deviation: A M = 2" c 2 GMa 0 A M = 2 for M=10 12 M sun The deflection is independent from the impact parameter as much as rotation velocity is independent from r.

29 Real data agree with MOND

30 Bulge vs Black Hole masses M BH σ 4 AND M BH L In presence of dark matter these two relations are difficult to explain because from the tilt of the fundamental plane we get M/L L Ferrarese & Merritt Astro-ph Piece of cake for MOND because M L σ 4

31 MOND and WMAP Power spectrum of temperature fluctuations in CMB McGaugh 2004 ApJ 611, 26 The ratio of the second to first peak depends on the baryon density

32 Baryon density from Primordial Nucleosynthesis McGaugh 2004 ApJ 611, 26 ΛCDM fit to WMAP data (Spergel et al. 2003) implies ω b =0.024 ± 0.001

33 Modern Cosmology is based on: Cosmological principle FRW equations based on extrapolating General relativity to low accelerations (Newtonian limit). Thus: If any of these two hypothesis is wrong - MOND suggests the second - FRW equations are inappropriate to describe the universe. Progress in cosmology seems not to depend on one s ability to describe observations within one particular FRW based model, rather on re-writing these equations within the contest of a new theory of gravity.

34 Probing Gravity in the Low Acceleration Regime with Globular Clusters By Riccardo Scarpa, Gianni Marconi & Roberto Gilmozzi European Southern Observatory

35 Membership determination difficult Target selection based on: HR diagram Proper motion (when possible) Radial velocity 35'x35'

36 ω Centauri: velocity dispersion constant at large radii cm s -2

37 M 15 confirms what found for ω Cen cm s -2

38 Also in NGC 6171 the velocity dispersion profile flattens out at large radii All data together 206 stars cm s -2

39 Conclusions for MOND Amazing ability to describe many properties of astronomical objects. Explains many data taken after it was proposed. Keep focus on demonstrating whether Newtonian dynamics fails at low accelerations. At present, I would compare MOND to Borh s atom, which was based on un-justified assumptions and worked only for Hydrogen. This model eventually became the basis for quantum mechanics. Similarly, MOND might be the way to the next great step in physics.

Probing Gravity in the Low Acceleration Regime with Globular Clusters

Probing Gravity in the Low Acceleration Regime with Globular Clusters Probing Gravity in the Low Acceleration Regime with Globular Clusters By Riccardo Scarpa, Gianni Marconi & Roberto Gilmozzi European Southern Observatory The idea of this study sparked from the following

More information

Probing Gravity in the Low Acceleration Regime with Globular Clusters

Probing Gravity in the Low Acceleration Regime with Globular Clusters Probing Gravity in the Low Acceleration Regime with Globular Clusters By Riccardo Scarpa Instituto de astrofisica de Canarias Gran Telescopio Canarias The idea for this study sparked from the desire of

More information

Using globular clusters to test gravity in the weak acceleration regime

Using globular clusters to test gravity in the weak acceleration regime Using globular clusters to test gravity in the weak acceleration regime Riccardo Scarpa 1, Gianni Marconi 2, Roberto Gilmozzi 2, and Giovanni Carraro 3 1 Instituto de Astrofísica de Canarias, Spain 2 European

More information

Modified Newtonian Dynamics (MOND) and the Bullet Cluster (1E )

Modified Newtonian Dynamics (MOND) and the Bullet Cluster (1E ) Modified Newtonian Dynamics (MOND) and the Bullet Cluster (1E 0657-558) Alan G. Aversa ABSTRACT Modified Newtonian Dynamics (MOND) is a theory that modifies Newton s force law to explain observations that

More information

Laws of Galactic Rotation. Stacy McGaugh Case Western Reserve University

Laws of Galactic Rotation. Stacy McGaugh Case Western Reserve University Laws of Galactic Rotation Stacy McGaugh Case Western Reserve University UGC 2885 Galaxies NGC 2403 Huge dynamic range in 10 kpc Gravitationally self-bound entities composed of stars, gas, dust, [& dark

More information

Rotation curves of spiral galaxies

Rotation curves of spiral galaxies Rotation curves of spiral galaxies Rotation curves Mass discrepancy Circular velocity of spherical systems and disks Dark matter halos Inner and outer regions Tully-Fisher relation From datacubes to rotation

More information

Dark Matter. 4/24: Homework 4 due 4/26: Exam ASTR 333/433. Today. Modified Gravity Theories MOND

Dark Matter. 4/24: Homework 4 due 4/26: Exam ASTR 333/433. Today. Modified Gravity Theories MOND Dark Matter ASTR 333/433 Today Modified Gravity Theories MOND 4/24: Homework 4 due 4/26: Exam Not any theory will do - length scale based modifications can be immediately excluded as the discrepancy does

More information

Visible Matter. References: Ryden, Introduction to Cosmology - Par. 8.1 Liddle, Introduction to Modern Cosmology - Par. 9.1

Visible Matter. References: Ryden, Introduction to Cosmology - Par. 8.1 Liddle, Introduction to Modern Cosmology - Par. 9.1 COSMOLOGY PHYS 30392 DENSITY OF THE UNIVERSE Part I Giampaolo Pisano - Jodrell Bank Centre for Astrophysics The University of Manchester - March 2013 http://www.jb.man.ac.uk/~gp/ giampaolo.pisano@manchester.ac.uk

More information

ROE, Edinburgh, 20 April Observational Constraints on the Acceleration Discrepancy Problem. Stacy McGaugh University of Maryland

ROE, Edinburgh, 20 April Observational Constraints on the Acceleration Discrepancy Problem. Stacy McGaugh University of Maryland ROE, Edinburgh, 20 April 2006 Observational Constraints on the Acceleration Discrepancy Problem Stacy McGaugh University of Maryland What gets us into trouble is not what we don t know. It s what we know

More information

AS1001:Extra-Galactic Astronomy

AS1001:Extra-Galactic Astronomy AS1001:Extra-Galactic Astronomy Lecture 5: Dark Matter Simon Driver Theatre B spd3@st-andrews.ac.uk http://www-star.st-and.ac.uk/~spd3 Stars and Gas in Galaxies Stars form from gas in galaxy In the high-density

More information

GMU, April 13, The Pros and Cons of Invisible Mass and Modified Gravity. Stacy McGaugh University of Maryland

GMU, April 13, The Pros and Cons of Invisible Mass and Modified Gravity. Stacy McGaugh University of Maryland GMU, April 13, 2007 The Pros and Cons of Invisible Mass and Modified Gravity Stacy McGaugh University of Maryland What gets us into trouble is not what we don t know. It s what we know for sure that just

More information

Components of Galaxies: Dark Matter

Components of Galaxies: Dark Matter Components of Galaxies: Dark Matter Dark Matter: Any Form of matter whose existence is inferred solely through its gravitational effects. -B&T, pg 590 Nature of Major Component of Universe Galaxy Formation

More information

Astrophysical observations preferring Modified Gravity

Astrophysical observations preferring Modified Gravity Astrophysical observations preferring Modified Gravity A natural approach to extended Newtonian gravity: tests and predictions across astrophysical scales. Mon.Not.Roy.Astron.Soc. 411 (2011) 226-234 Wide

More information

The MOND Limit of the Inverse Square Law

The MOND Limit of the Inverse Square Law The MOND Limit of the Inverse Square Law Abstract Kurt L. Becker This paper attempts to give a theoretical foundation for the Modified Newtonian Dynamics equations developed by M. Milgrom Ref.1. It will

More information

Dark Matter. ASTR 333/433 Spring 2018 T R 4:00-5:15pm Sears 552

Dark Matter. ASTR 333/433 Spring 2018 T R 4:00-5:15pm Sears 552 Dark Matter ASTR 333/433 Spring 2018 T R 4:00-5:15pm Sears 552 TODAY - Laws of Galactic Rotation - Flat rotation curves - Tully-Fisher - Universal Rotation curve - central Density Relation - Renzo s Rule

More information

Modified Gravity (MOG) and Dark Matter: Can Dark Matter be Detected in the Present Universe?

Modified Gravity (MOG) and Dark Matter: Can Dark Matter be Detected in the Present Universe? Modified Gravity (MOG) and Dark Matter: Can Dark Matter be Detected in the Present Universe? John Moffat Perimeter Institute, Waterloo, Ontario, Canada Talk given at the Miami 2014 topical conference on

More information

Astro-2: History of the Universe. Lecture 5; April

Astro-2: History of the Universe. Lecture 5; April Astro-2: History of the Universe Lecture 5; April 23 2013 Previously.. On Astro-2 Galaxies do not live in isolation but in larger structures, called groups, clusters, or superclusters This is called the

More information

Everything in baryons?

Everything in baryons? Everything in baryons? Benoit Famaey (ULB) Rencontres de Blois 2007 General Relativity -> Dark Matter R αβ - 1/2 R g αβ + Λg αβ = (8πG/c 4 ) T αβ very precisely tested on solar system scales (but Pioneer)

More information

Relationship Between Newtonian and MONDian Acceleration

Relationship Between Newtonian and MONDian Acceleration Advances in Applied Physics, Vol. 4, 2016, no. 1, 31-37 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/10.12988/aap.2016.6810 Relationship Between Newtonian and MONDian Acceleration A. S. Sarabi Department

More information

Cosmologists dedicate a great deal of effort to determine the density of matter in the universe. Type Ia supernovae observations are consistent with

Cosmologists dedicate a great deal of effort to determine the density of matter in the universe. Type Ia supernovae observations are consistent with Notes for Cosmology course, fall 2005 Dark Matter Prelude Cosmologists dedicate a great deal of effort to determine the density of matter in the universe Type Ia supernovae observations are consistent

More information

The Dark Matter Problem

The Dark Matter Problem The Dark Matter Problem Dr. Yves Gaspar, Ph.D. ( University of Cambridge, UK) Università Cattolica del Sacro Cuore, Brescia Department of Mathematics and Physics. Implications of astronomical data. James

More information

A Survey of Modified Newtonian Dynamics. The current model of the universe builds on the assumption that the entire

A Survey of Modified Newtonian Dynamics. The current model of the universe builds on the assumption that the entire Andy Terrel May 7, 2004 Phys. 4304 Myles A Survey of Modified Newtonian Dynamics The current model of the universe builds on the assumption that the entire universe follows the same physical laws as those

More information

The Need for Dark Matter in MOND on Galactic Scales

The Need for Dark Matter in MOND on Galactic Scales The Need for Dark Matter in MOND on Galactic Scales Muhammad Furqaan Yusaf Kings College London, Strand Campus, Department of Physics. muhammad.yusaf@kcl.ac.uk September 28, 2007 As presented by I. Ferreras,

More information

Galaxies in the Cosmic Web

Galaxies in the Cosmic Web Galaxies in the Cosmic Web Empirical Constraints on Halo Profiles from Rotation Curves Stacy McGaugh University of Maryland New Mexico State University, Las Cruces, 19 May 2006 1. Global Correlations:

More information

Clusters of Galaxies Groups: Clusters poor rich Superclusters:

Clusters of Galaxies Groups: Clusters poor rich Superclusters: Clusters of Galaxies Galaxies are not randomly strewn throughout space. Instead the majority belong to groups and clusters of galaxies. In these structures, galaxies are bound gravitationally and orbit

More information

Baryonic Masses from Rotation Curves. Stacy McGaugh University of Maryland

Baryonic Masses from Rotation Curves. Stacy McGaugh University of Maryland Unveiling the Mass - Extracting and Interpreting Galaxy Masses, Kingston, Ontario, 19 June 2009 Baryonic Masses from Rotation Curves Stacy McGaugh University of Maryland Rotation curves tend to become

More information

Clusters of Galaxies Groups: Clusters poor rich Superclusters:

Clusters of Galaxies Groups: Clusters poor rich Superclusters: Clusters of Galaxies Galaxies are not randomly strewn throughout space. Instead the majority belong to groups and clusters of galaxies. In these structures, galaxies are bound gravitationally and orbit

More information

Modified Dark Matter: Does Dark Matter Know about the Cosmological Constant?

Modified Dark Matter: Does Dark Matter Know about the Cosmological Constant? Modified Dark Matter: Does Dark Matter Know about the Cosmological Constant? Douglas Edmonds Emory & Henry College (moving to Penn State, Hazleton) Collaborators Duncan Farrah Chiu Man Ho Djordje Minic

More information

Dark Matter. Galaxy Counts Redshift Surveys Galaxy Rotation Curves Cluster Dynamics Gravitational Lenses ~ 0.3 Ω M Ω b.

Dark Matter. Galaxy Counts Redshift Surveys Galaxy Rotation Curves Cluster Dynamics Gravitational Lenses ~ 0.3 Ω M Ω b. Dark Matter Galaxy Counts Redshift Surveys Galaxy Rotation Curves Cluster Dynamics Gravitational Lenses Ω M ~ 0.3 2 1 Ω b 0.04 3 Mass Density by Direct Counting Add up the mass of all the galaxies per

More information

Moment of beginning of space-time about 13.7 billion years ago. The time at which all the material and energy in the expanding Universe was coincident

Moment of beginning of space-time about 13.7 billion years ago. The time at which all the material and energy in the expanding Universe was coincident Big Bang Moment of beginning of space-time about 13.7 billion years ago The time at which all the material and energy in the expanding Universe was coincident Only moment in the history of the Universe

More information

Scaling Relations of late-type galaxies

Scaling Relations of late-type galaxies Scaling Relations of late-type galaxies - an observational perspective - Lecture I Lecture II Trends along the Hubble sequence Galaxy rotation curves Lecture III Tully-Fisher relations Marc Verheijen Kapteyn

More information

Evidence for/constraints on dark matter in galaxies and clusters

Evidence for/constraints on dark matter in galaxies and clusters Nov 11, 2015 Evidence for/constraints on dark matter in galaxies and clusters HW#9 is due; please hand in your summaries; then you get to talk (I have slides of the different facilities/telescopes. HW#10

More information

Dark matter and galaxy formation

Dark matter and galaxy formation Dark matter and galaxy formation Galaxy rotation The virial theorem Galaxy masses via K3 Mass-to-light ratios Rotation curves Milky Way Nearby galaxies Dark matter Baryonic or non-baryonic A problem with

More information

arxiv: v1 [astro-ph.ga] 14 Sep 2017

arxiv: v1 [astro-ph.ga] 14 Sep 2017 arxiv:1709.04918v1 [astro-ph.ga] 14 Sep 2017 Galaxy rotations from quantised inertia and visible matter only. M.E. McCulloch September 18, 2017 Abstract It is shown here that a model for inertial mass,

More information

ASTRON 449: Stellar (Galactic) Dynamics. Fall 2014

ASTRON 449: Stellar (Galactic) Dynamics. Fall 2014 ASTRON 449: Stellar (Galactic) Dynamics Fall 2014 In this course, we will cover the basic phenomenology of galaxies (including dark matter halos, stars clusters, nuclear black holes) theoretical tools

More information

AST1100 Lecture Notes

AST1100 Lecture Notes AST1100 Lecture Notes 4 Stellar orbits and dark matter 1 Using Kepler s laws for stars orbiting the center of a galaxy We will now use Kepler s laws of gravitation on much larger scales. We will study

More information

3 The lives of galaxies

3 The lives of galaxies Discovering Astronomy : Galaxies and Cosmology 24 3 The lives of galaxies In this section, we look at how galaxies formed and evolved, and likewise how the large scale pattern of galaxies formed. But before

More information

Universal Properties of Galactic Rotation Curves and a First Principles Derivation of the Tully-Fisher Relation

Universal Properties of Galactic Rotation Curves and a First Principles Derivation of the Tully-Fisher Relation Universal Properties of Galactic Rotation Curves and a First Principles Derivation of the Tully-Fisher Relation James G. O Brien 1, Thomas L. Chiarelli 2, and Philip D. Mannheim 3 1 Department of Sciences,

More information

Clusters: Observations

Clusters: Observations Clusters: Observations Last time we talked about some of the context of clusters, and why observations of them have importance to cosmological issues. Some of the reasons why clusters are useful probes

More information

Dark Matter & Dark Energy. Astronomy 1101

Dark Matter & Dark Energy. Astronomy 1101 Dark Matter & Dark Energy Astronomy 1101 Key Ideas: Dark Matter Matter we cannot see directly with light Detected only by its gravity (possible future direct detection in the lab) Most of the matter in

More information

Stars + Galaxies: Back of the Envelope Properties. David Spergel

Stars + Galaxies: Back of the Envelope Properties. David Spergel Stars + Galaxies: Back of the Envelope Properties David Spergel Free-fall time (1) r = GM r 2 (2) r t = GM 2 r 2 (3) t free fall r3 GM 1 Gρ Free-fall time for neutron star is milliseconds (characteristic

More information

arxiv:astro-ph/ v1 14 Oct 2003

arxiv:astro-ph/ v1 14 Oct 2003 **TITLE** ASP Conference Series, Vol. **VOLUME***, **YEAR OF PUBLICATION** **NAMES OF EDITORS** Galaxy threshing and the origin of intracluster stellar objects arxiv:astro-ph/0310350v1 14 Oct 2003 Kenji

More information

REINVENTING GRAVITY: Living Without Dark Matter

REINVENTING GRAVITY: Living Without Dark Matter REINVENTING GRAVITY: Living Without Dark Matter John Moffat Perimeter Institute for Theoretical Physics and Department of Physics University of Toronto and University of Waterloo Talk given at Astronomy

More information

Observational Evidence for Dark Matter. Simona Murgia, SLAC-KIPAC

Observational Evidence for Dark Matter. Simona Murgia, SLAC-KIPAC Observational Evidence for Dark Matter Simona Murgia, SLAC-KIPAC XXXIX SLAC Summer Institute 28 July 2011 Outline Evidence for dark matter at very different scales Galaxies Clusters of galaxies Universe???

More information

Galaxy rotations from quantised inertia and visible matter only

Galaxy rotations from quantised inertia and visible matter only Astrophys Space Sci (2017 362:149 DOI 10.1007/s10509-017-3128-6 ORIGINAL ARTICLE Galaxy rotations from quantised inertia and visible matter only M.E. McCulloch 1 Received: 3 March 2017 / Accepted: 26 June

More information

Galaxies Astro 530 Prof. Jeff Kenney

Galaxies Astro 530 Prof. Jeff Kenney Galaxies Astro 530 Prof. Jeff Kenney CLASS 7 February 5, 2018 Tully-Fisher Relation (finish) & Spiral Structure (start) 1 Tully-Fisher relation M B,i Tradi7onal Tully- Fisher rela7on: Good correla7on between

More information

Brief update (3 mins/2 slides) on astrophysics behind final project

Brief update (3 mins/2 slides) on astrophysics behind final project Nov 1, 2017 Brief update (3 mins/2 slides) on astrophysics behind final project Evidence for Dark Matter Next Wed: Prelim #2, similar to last one (30 mins). Review especially lecture slides, PEs and non-project

More information

What are the Contents of the Universe? Taking an Inventory of the Baryonic and Dark Matter Content of the Universe

What are the Contents of the Universe? Taking an Inventory of the Baryonic and Dark Matter Content of the Universe What are the Contents of the Universe? Taking an Inventory of the Baryonic and Dark Matter Content of the Universe Layout of the Course Sept 4: Introduction / Overview / General Concepts Sept 11: No Class

More information

Dark Matter: Observational Constraints

Dark Matter: Observational Constraints Dark Matter: Observational Constraints Properties of Dark Matter: What is it? And what isn t it? Leo Blitz UC Berkeley Stanford July 31, 2007 How much is there? WMAP results Rotation curves of Galaxies

More information

Clusters: Observations

Clusters: Observations Clusters: Observations Last time we talked about some of the context of clusters, and why observations of them have importance to cosmological issues. Some of the reasons why clusters are useful probes

More information

arxiv:astro-ph/ v1 10 May 1998

arxiv:astro-ph/ v1 10 May 1998 Testing Modified Newtonian Dynamics with Low Surface Brightness Galaxies Rotation curve fits arxiv:astro-ph/9805120v1 10 May 1998 W.J.G. de Blok 1 and S.S. McGaugh 2 1 Kapteyn Astronomical Institute, P.O.

More information

OBSERVATIONAL EVIDENCE FOR DARK MATTER AND DARK ENERGY. Marco Roncadelli INFN Pavia (Italy)

OBSERVATIONAL EVIDENCE FOR DARK MATTER AND DARK ENERGY. Marco Roncadelli INFN Pavia (Italy) OBSERVATIONAL EVIDENCE FOR DARK MATTER AND DARK ENERGY Marco Roncadelli INFN Pavia (Italy) ABSTRACT Assuming KNOWN physical laws, I first discuss OBSERVATIONAL evidence for dark matter in galaxies and

More information

The Baryonic Tully-Fisher Relation

The Baryonic Tully-Fisher Relation NRAO - TF35: Global Properties of HI in Galaxies Workshop - 1 April 2012 The Baryonic Tully-Fisher Relation Stacy McGaugh University of Maryland Tully & Fisher (1977) Abs. Mag. line-width 9/30/10 3/30/10

More information

Large Scale Structure

Large Scale Structure Large Scale Structure Measuring Distance in Universe-- a ladder of steps, building from nearby Redshift distance Redshift = z = (λ observed - λ rest )/ λ rest Every part of a distant spectrum has same

More information

The Tools of Cosmology. Andrew Zentner The University of Pittsburgh

The Tools of Cosmology. Andrew Zentner The University of Pittsburgh The Tools of Cosmology Andrew Zentner The University of Pittsburgh 1 Part Two: The Contemporary Universe 2 Contents Review of Part One The Pillars of Modern Cosmology Primordial Synthesis of Light Nuclei

More information

Part two of a year-long introduction to astrophysics:

Part two of a year-long introduction to astrophysics: ASTR 3830 Astrophysics 2 - Galactic and Extragalactic Phil Armitage office: JILA tower A909 email: pja@jilau1.colorado.edu Spitzer Space telescope image of M81 Part two of a year-long introduction to astrophysics:

More information

MODEL OF DARK MATTER AND DARK ENERGY BASED ON GRAVITATIONAL POLARIZATION. Luc Blanchet. 15 septembre 2008

MODEL OF DARK MATTER AND DARK ENERGY BASED ON GRAVITATIONAL POLARIZATION. Luc Blanchet. 15 septembre 2008 MODEL OF DARK MATTER AND DARK ENERGY BASED ON GRAVITATIONAL POLARIZATION Luc Blanchet Gravitation et Cosmologie (GRεCO) Institut d Astrophysique de Paris 15 septembre 2008 Luc Blanchet (GRεCO) Séminaire

More information

Survey of Astrophysics A110

Survey of Astrophysics A110 Goals: Galaxies To determine the types and distributions of galaxies? How do we measure the mass of galaxies and what comprises this mass? How do we measure distances to galaxies and what does this tell

More information

Tully-Fisher relation, key to dark matter in galaxies

Tully-Fisher relation, key to dark matter in galaxies Invisible Universe Paris, June 29- July 3, 2009 Tully-Fisher relation, key to dark matter in galaxies Y. Sobouti Institute for Advanced Studies in Basic Sciences, Zanjan, P O Box 45195-1159, Zanjan 45195,

More information

7/5. Consequences of the principle of equivalence (#3) 1. Gravity is a manifestation of the curvature of space.

7/5. Consequences of the principle of equivalence (#3) 1. Gravity is a manifestation of the curvature of space. 7/5 Consequences of the principle of equivalence (#3) 1. Gravity is a manifestation of the curvature of space. Follow the path of a light pulse in an elevator accelerating in gravityfree space. The dashed

More information

Dwarf Galaxy Dispersion Profile Calculations Using a Simplified MOND External Field Effect

Dwarf Galaxy Dispersion Profile Calculations Using a Simplified MOND External Field Effect Dwarf Galaxy Dispersion Profile Calculations Using a Simplified MOND External Field Effect On the Shoulders of Giants Workshop Case Western Reserve University June 7, 2017 Stephen Alexander Physics Department

More information

Chapter 19 Galaxies. Hubble Ultra Deep Field: Each dot is a galaxy of stars. More distant, further into the past. halo

Chapter 19 Galaxies. Hubble Ultra Deep Field: Each dot is a galaxy of stars. More distant, further into the past. halo Chapter 19 Galaxies Hubble Ultra Deep Field: Each dot is a galaxy of stars. More distant, further into the past halo disk bulge Barred Spiral Galaxy: Has a bar of stars across the bulge Spiral Galaxy 1

More information

Why the new Bullet Cluster / Dark Matter results are important. Rob Knop Astronomy Journal Club, 2006/08/31

Why the new Bullet Cluster / Dark Matter results are important. Rob Knop Astronomy Journal Club, 2006/08/31 Why the new Bullet Cluster / Dark Matter results are important Rob Knop Astronomy Journal Club, 2006/08/31 Outline I. Evidence for dark matter II. Evidence for non-baryonic dark matter III. Alternatives

More information

MODIFIED NEWTONIAN DYNAMICS AS AN ALTERNATIVE TO DARK MATTER

MODIFIED NEWTONIAN DYNAMICS AS AN ALTERNATIVE TO DARK MATTER MODIFIED NEWTONIAN DYNAMICS AS AN ALTERNATIVE TO DARK MATTER Robert H. Sanders 1 & Stacy S. McGaugh 2 1 Kapteyn Astronomical Institute, University of Groningen, Groningen, The Netherlands 2 Department

More information

Dark Matter: Observational Constraints

Dark Matter: Observational Constraints Dark Matter: Observational Constraints Does Dark Matter Exist? Leo Blitz UC Berkeley Stanford July 30, 2007 Questions I ll be addressing Does dark matter exist? Where do we know it does not exist? How

More information

On the Extension of the Baryonic Tully-Fisher Relation to Galaxy Clusters and Super Massive-Cosmic Systems

On the Extension of the Baryonic Tully-Fisher Relation to Galaxy Clusters and Super Massive-Cosmic Systems Open Access Library Journal 17, Volume 4, e3686 ISSN Online: 333-971 ISSN Print: 333-975 On the Extension of the Baryonic Tully-Fisher Relation to Galaxy Clusters and Super Massive-Cosmic Systems Barbaro

More information

arxiv: v1 [gr-qc] 12 Oct 2011

arxiv: v1 [gr-qc] 12 Oct 2011 MOND s acceleration scale as a fundamental quantity Tula Bernal 1, Salvatore Capozziello 2,3, Gerardo Cristofano 2,3, Mariafelicia De Laurentis 2,3 1 Instituto de Astronomía, Universidad Nacional Autónoma

More information

Miami Modified dark matter in galaxy clusters. Douglas Edmonds Emory & Henry College

Miami Modified dark matter in galaxy clusters. Douglas Edmonds Emory & Henry College Miami 2015 Modified dark matter in galaxy clusters Douglas Edmonds Emory & Henry College Collaboration D. Edmonds Emory & Henry College D. Farrah Virginia Tech C.M. Ho Michigan State University D. Minic

More information

ASTR 200 : Lecture 22 Structure of our Galaxy

ASTR 200 : Lecture 22 Structure of our Galaxy ASTR 200 : Lecture 22 Structure of our Galaxy 1 The 'Milky Way' is known to all cultures on Earth (perhaps, unfortunately, except for recent city-bound dwellers) 2 Fish Eye Lens of visible hemisphere (but

More information

Tristan Clark. And. Dr. Stephen Alexander. Capstone Final Paper. Miami University of Ohio

Tristan Clark. And. Dr. Stephen Alexander. Capstone Final Paper. Miami University of Ohio 1 N- Body Simulations of a Dwarf Spheroidal Galaxy Comparing Newtonian, Modified Newtonian, and Dark Matter Models. Tristan Clark And Dr. Stephen Alexander Capstone Final Paper Miami University of Ohio

More information

A. Thermal radiation from a massive star cluster. B. Emission lines from hot gas C. 21 cm from hydrogen D. Synchrotron radiation from a black hole

A. Thermal radiation from a massive star cluster. B. Emission lines from hot gas C. 21 cm from hydrogen D. Synchrotron radiation from a black hole ASTR 1040 Accel Astro: Stars & Galaxies Prof. Juri Toomre TA: Nicholas Nelson Lecture 26 Thur 14 Apr 2011 zeus.colorado.edu/astr1040-toomre toomre HST Abell 2218 Reading clicker what makes the light? What

More information

Chapter 16 Dark Matter, Dark Energy, & The Fate of the Universe

Chapter 16 Dark Matter, Dark Energy, & The Fate of the Universe 16.1 Unseen Influences Chapter 16 Dark Matter, Dark Energy, & The Fate of the Universe Dark Matter: An undetected form of mass that emits little or no light but whose existence we infer from its gravitational

More information

On MOND and dark matter in ultra compact dwarf galaxies

On MOND and dark matter in ultra compact dwarf galaxies On MOND and dark matter in ultra compact dwarf galaxies Jörg Dabringhausen Argelander-Institut für Astronomie, University of Bonn Pavel Kroupa Michael Hilker, Michael Fellhauer, Steffen Mieske, Michael

More information

arxiv: v1 [gr-qc] 1 Dec 2017

arxiv: v1 [gr-qc] 1 Dec 2017 Can ΛCDM model reproduce MOND-like behavior? De-Chang Dai, Chunyu Lu Institute of Natural Sciences, Shanghai Key Lab for Particle Physics and Cosmology, School of Physics and Astronomy, Shanghai Jiao Tong

More information

Does Low Surface Brightness Mean Low Density? W.J.G. de Blok. Kapteyn Astronomical Institute. P.O. Box AV Groningen. The Netherlands.

Does Low Surface Brightness Mean Low Density? W.J.G. de Blok. Kapteyn Astronomical Institute. P.O. Box AV Groningen. The Netherlands. Does Low Surface Brightness Mean Low Density? W.J.G. de Blok Kapteyn Astronomical Institute P.O. Box 800 9700 AV Groningen The Netherlands and S.S. McGaugh Department of Terrestrial Magnetism Carnegie

More information

Dark Matter in Disk Galaxies

Dark Matter in Disk Galaxies Chapter 14 Dark Matter in Disk Galaxies Rotation curves of disk galaxies rise steeply in their inner regions and then remain roughly flat out to the last point measured. To explain these observations within

More information

arxiv:astro-ph/ v1 14 Nov 2003

arxiv:astro-ph/ v1 14 Nov 2003 **TITLE** ASP Conference Series, Vol. **VOLUME***, **YEAR OF PUBLICATION** **NAMES OF EDITORS** The visible matter dark matter coupling arxiv:astro-ph/0311348v1 14 Nov 2003 Renzo Sancisi Osservatorio Astronomico,

More information

The Local Group Timing Argument

The Local Group Timing Argument The Local Group Timing Argument Real galaxies Milky Way (MW) Andromeda (M31) Indranil Banik (ib45@st-andrews.ac.uk) Supervisor: Hongsheng Zhao University of Saint Andrews MNRAS, 467 (2), 2180 2198 Basic

More information

Today. Last homework Due next time FINAL EXAM: 8:00 AM TUE Dec. 14 Course Evaluations Open. Modern Cosmology. Big Bang Nucleosynthesis.

Today. Last homework Due next time FINAL EXAM: 8:00 AM TUE Dec. 14 Course Evaluations Open. Modern Cosmology. Big Bang Nucleosynthesis. Today Modern Cosmology Big Bang Nucleosynthesis Dark Matter Dark Energy Last homework Due next time FINAL EXAM: 8:00 AM TUE Dec. 14 Course Evaluations Open Elements of Modern Cosmology 1.Expanding Universe

More information

MOND and the Galaxies

MOND and the Galaxies MOND and the Galaxies Françoise Combes Observatoire de Paris With Olivier Tiret Angus, Famaey, Gentile, Wu, Zhao Wednesday 1st July 2009 MOND =MOdified Newtonian Dynamics Modification at weak acceleration

More information

Hubble s Law. Tully-Fisher relation. The redshift. λ λ0. Are there other ways to estimate distances? Yes.

Hubble s Law. Tully-Fisher relation. The redshift. λ λ0. Are there other ways to estimate distances? Yes. Distances to galaxies Cepheids used by Hubble, 1924 to show that spiral nebulae like M31 were further from the Sun than any part of the Milky Way, therefore galaxies in their own right. Review of Cepheids

More information

Learning Objectives: Chapter 13, Part 1: Lower Main Sequence Stars. AST 2010: Chapter 13. AST 2010 Descriptive Astronomy

Learning Objectives: Chapter 13, Part 1: Lower Main Sequence Stars. AST 2010: Chapter 13. AST 2010 Descriptive Astronomy Chapter 13, Part 1: Lower Main Sequence Stars Define red dwarf, and describe the internal dynamics and later evolution of these low-mass stars. Appreciate the time scale of late-stage stellar evolution

More information

The interpretation is that gravity bends spacetime and that light follows the curvature of space.

The interpretation is that gravity bends spacetime and that light follows the curvature of space. 7/8 General Theory of Relativity GR Two Postulates of the General Theory of Relativity: 1. The laws of physics are the same in all frames of reference. 2. The principle of equivalence. Three statements

More information

3/6/12! Astro 358/Spring 2012! Galaxies and the Universe! Dark Matter in Spiral Galaxies. Dark Matter in Galaxies!

3/6/12! Astro 358/Spring 2012! Galaxies and the Universe! Dark Matter in Spiral Galaxies. Dark Matter in Galaxies! 3/6/12 Astro 358/Spring 2012 Galaxies and the Universe Dark Matter in Galaxies Figures + Tables for Lectures (Feb 16-Mar 6) Dark Matter in Spiral Galaxies Flat rotation curve of Milky Way at large radii

More information

MODIFIED NEWTONIAN DYNAMICS AS AN ALTERNATIVE TO DARK MATTER

MODIFIED NEWTONIAN DYNAMICS AS AN ALTERNATIVE TO DARK MATTER Annu. Rev. Astron. Astrophys. 2002. 40:263 317 doi: 10.1146/annurev.astro.40.060401.093923 Copyright c 2002 by Annual Reviews. All rights reserved MODIFIED NEWTONIAN DYNAMICS AS AN ALTERNATIVE TO DARK

More information

Astro-2: History of the Universe

Astro-2: History of the Universe Astro-2: History of the Universe Lecture 6; April 30 2013 Lecture 5 - Summary 1 Mass concentrations between us and a given object in the sky distort the image of that object on the sky, acting like magnifying

More information

Galaxies. Hubble's measurement of distance to M31 Normal versus other galaxies Classification of galaxies Ellipticals Spirals Scaling relations

Galaxies. Hubble's measurement of distance to M31 Normal versus other galaxies Classification of galaxies Ellipticals Spirals Scaling relations Galaxies Hubble's measurement of distance to M31 Normal versus other galaxies Classification of galaxies Ellipticals Spirals Scaling relations Cepheids in M31 Up to 1920s, the Milky Way was thought by

More information

arxiv:astro-ph/ v1 30 Nov 2004

arxiv:astro-ph/ v1 30 Nov 2004 Probing Halos with PNe: Mass and Angular Momentum in Early-Type Galaxies Aaron J. Romanowsky arxiv:astro-ph/0411797v1 30 Nov 2004 School of Physics and Astronomy, University of Nottingham, University Park,

More information

Cosmology Dark Energy Models ASTR 2120 Sarazin

Cosmology Dark Energy Models ASTR 2120 Sarazin Cosmology Dark Energy Models ASTR 2120 Sarazin Late Homeworks Last day Wednesday, May 1 My mail box in ASTR 204 Maximum credit 50% unless excused (but, better than nothing) Final Exam Thursday, May 2,

More information

Dark Matter ASTR 2120 Sarazin. Bullet Cluster of Galaxies - Dark Matter Lab

Dark Matter ASTR 2120 Sarazin. Bullet Cluster of Galaxies - Dark Matter Lab Dark Matter ASTR 2120 Sarazin Bullet Cluster of Galaxies - Dark Matter Lab Mergers: Test of Dark Matter vs. Modified Gravity Gas behind DM Galaxies DM = location of gravity Gas = location of most baryons

More information

Galaxy Formation! Lecture Seven: Galaxy Formation! Cosmic History. Big Bang! time! present! ...fluctuations to galaxies!

Galaxy Formation! Lecture Seven: Galaxy Formation! Cosmic History. Big Bang! time! present! ...fluctuations to galaxies! Galaxy Formation Lecture Seven: Why is the universe populated by galaxies, rather than a uniform sea of stars? Galaxy Formation...fluctuations to galaxies Why are most stars in galaxies with luminosities

More information

More Galaxies. Scaling relations Extragalactic distances Luminosity functions Nuclear black holes

More Galaxies. Scaling relations Extragalactic distances Luminosity functions Nuclear black holes More Galaxies Scaling relations Extragalactic distances Luminosity functions Nuclear black holes Tully-Fisher relation velocity profile of gas Luminosity vs velocity width WR In spirals, luminosity L ~

More information

Modified Dark Matter: Does Dark Matter Know about the Cosmological Constant? Douglas Edmonds Emory & Henry College

Modified Dark Matter: Does Dark Matter Know about the Cosmological Constant? Douglas Edmonds Emory & Henry College Modified Dark Matter: Does Dark Matter Know about the Cosmological Constant? Douglas Edmonds Emory & Henry College Collaborators Duncan Farrah Chiu Man Ho Djordje Minic Y. Jack Ng Tatsu Takeuchi Outline

More information

Stellar Population Synthesis, a Discriminant Between Gravity Models

Stellar Population Synthesis, a Discriminant Between Gravity Models Stellar Population Synthesis, a Discriminant Between Gravity Models Akram Hasani Zonoozi Institute for Advanced Studies in Basic Sciences, IASBS Zanjan, Iran In collaboration with: H.Haghi & Y.Sobouti

More information

Structure of the Milky Way. Structure of the Milky Way. The Milky Way

Structure of the Milky Way. Structure of the Milky Way. The Milky Way Key Concepts: Lecture 29: Our first steps into the Galaxy Exploration of the Galaxy: first attempts to measure its structure (Herschel, Shapley). Structure of the Milky Way Initially, star counting was

More information

The Formation and Evolution of Galaxy Clusters

The Formation and Evolution of Galaxy Clusters IAU Joint Discussion # 10 Sydney, July, 2003 The Formation and Evolution of Galaxy Clusters Simon D.M. White Max Planck Institute for Astrophysics The WMAP of the whole CMB sky Bennett et al 2003 > 105

More information

Nature of Dark Matter

Nature of Dark Matter Nature of Dark Matter Amir Ali Tavajoh 1 1 Amir_ali3640@yahoo.com Introduction Can we apply Kepler s Laws to the motion of stars of a galaxy? Is it true that luminous matter contains the total galaxy s

More information

Today in Astronomy 142: the Milky Way

Today in Astronomy 142: the Milky Way Today in Astronomy 142: the Milky Way The shape of the Galaxy Stellar populations and motions Stars as a gas: Scale height, velocities and the mass per area of the disk Missing mass in the Solar neighborhood

More information

2. OBSERVATIONAL COSMOLOGY

2. OBSERVATIONAL COSMOLOGY 2. OBSERVATIONAL COSMOLOGY 1. OBSERVATIONAL PARAMETERS i. Introduction History of modern observational Cosmology ii. Cosmological Parameters The search for 2 (or more) numbers Hubble Parameter Deceleration

More information