Topic 5:Discrete-Time Fourier Transform (DTFT)

Size: px
Start display at page:

Download "Topic 5:Discrete-Time Fourier Transform (DTFT)"

Transcription

1 ELEC64: Sigals Ad Systms Tpic 5:Discrt-Tim Furir Trasfrm DTFT Aishy Amr Ccrdia Uivrsity Elctrical ad Cmputr Egirig Itrducti DT Furir Trasfrm Sufficit cditi fr th DTFT DT Furir Trasfrm f Pridic Sigals DTFT ad LTI systms: Frqucy rsps Prprtis f DT Furir Trasfrm Summary Appdix: Trasiti frm DT Furir Sris t DT Furir Trasfrm Appdix: Rlatis amg Furir Mthds Figurs ad xampls i ths curs slids ar ta frm th fllwig surcs: A. Opphim, A.S. Willsy ad S.H. Nawab, Sigals ad Systms, d Editi, Prtic-Hall, 997 M.J. Rbrts, Sigals ad Systms, McGraw Hill, 004 J. McCllla, R. Schafr, M. Ydr, Sigal Prcssig First, Prtic Hall, 003

2 Furir rprstati A Furir fucti is uiqu, i.., tw sam sigals i tim giv th sam fucti i frqucy Th DT Furir Sris is a gd aalysis tl fr systms with pridic xcitati but cat rprst a apridic DT sigal fr all tim Th DT Furir Trasfrm ca rprst a apridic discrt-tim sigal fr all tim Its dvlpmt fllws xactly th sam as that f th Furir trasfrm fr ctiuus-tim apridic sigals

3 Ovrviw f Frqucy Aalysis Mthds 3

4 Ovrviw f Furir Aalysis Mthds Pridic i Tim Discrt i Frqucy Apridic i Tim Ctiuus i Frqucy Ctiuus i Tim Apridic i Frqucy CT Furir Sris : a x t T T 0 x t a 0 t 0 t dt CT - P CT IvrsFurir Sris : T DT DT CT - P T CT Furir Trasfrm: X x t x t X t dt t d CT IvrsCT Furir Trasfrm: CT CT CT Discrt i Tim Pridic i Frqucy DT Furir Sris X x N N 0 x IvrsDT Furir Sris N 0 0 X DT - P 0 N DT - P DT - P N N DT - P N DT Furir Trasfrm: X IvrsDT Furir Trasfrm: x x X d DT CT CT P P DT 4

5 Ovrviw f Furir symbls Variabl Prid Ctiuus Frqucy DT x N Discrt Frqucy / N CT xt t T / T 5 DT-FT: Discrt i tim; Apridic i tim; Ctius i Frqucy; Pridic i Frqucy DT-FS: Discrt i tim; Pridic i tim; Discrt i Frqucy; Pridic i Frqucy CT-FS: Ctiuus i tim; Pridic i tim; Discrt i Frqucy; Apridic i Frqucy CT-FT: Ctiuus i tim; Apridic i tim; Ctius i Frqucy; Apridic i Frqucy

6 Outli Itrducti DT Furir Trasfrm Sufficit cditi fr DTFT DT Furir Trasfrm f Pridic Sigals Prprtis f DT Furir Trasfrm DTFT & LTI systms: Frqucy rsps DTFT: Summary Appdix: Trasiti frm DT Furir Sris t DT Furir Trasfrm Appdix: Rlatis amg Furir Mthds 6

7 7 DT Furir Trasfrm DT Furir trasfrm ad th ivrs FT FT dscribs which frqucis ar prst i th rigial fucti Th rigial sigal ca b rcvrd frm wig th Furir trasfrm, ad vic vrsa Th fucti X ω is pridic i ω with prid π Th fucti ω is pridic with N=π d X x x X, f x f X x X : Frms

8 8 DT Furir Trasfrm DT sigal rprstatis: A sum f scald, dlayd impuls A liar cmbiati f wightd siusidal sigals x x d X x

9 DT Furir Trasfrm: Drivati Lt x b th apridic DT sigal W cstruct a pridic sigal x fr which x is prid x is cmprisd f ifiit umbr f rplicas f x Each rplica is ctrd at a itgr multipl f N N is th prid f x Csidr th fllwig figur which illustrats a xampl f x ad th cstructi f Clarly, x is dfid btw N ad N Csqutly, N has t b chs such that N > N + N + s that adact rplicas d t vrlap Clarly, as w lt as dsird 9

10 DT Furir Trasfrm: Drivati Lt us w xami th FS rprstati f Sic x is dfid btw N ad N a i th abv xprssi simplifis t 0 ω = π/n

11 DT Furir Trasfrm: Drivati Nw dfiig th fucti W ca s that th cfficits a ar rlatd t X ω as whr ω 0 = π/n is th spacig f th sampls i th frqucy dmai Thrfr As N icrass ω 0 dcrass, ad as N th abv quati bcms a itgral

12 DT Furir Trasfrm: Drivati O imprtat bsrvati hr is that th fucti X ω is pridic i ω with prid π Thrfr, as N, Nt: th fucti ω is pridic with N=π This lads us t th DT-FT pair f quatis

13 DT Furir Trasfrm: Exampls x X r r Th pridic impuls trai Lt x a u a X a 3

14 DT Furir Trasfrm: Exampls Apridic Pridic 4

15 5 Furir trasfrm pairs

16 Outli Itrducti DT Furir Trasfrm Sufficit cditi fr DTFT DT Furir Trasfrm f Pridic Sigals Prprtis f DT Furir Trasfrm DTFT & LTI systms: Frqucy rsps DTFT: Summary Appdix: Trasiti frm DT Furir Sris t DT Furir Trasfrm Appdix: Rlatis amg Furir Mthds 6

17 Sufficit cditi fr DTFT Cditi fr th cvrgc f th ifiit sum X x x x If x is abslutly summabl, its FT xists sufficit cditi 7

18 8 Exampl: Exptial squc DTFTds t xist : : : a X a a X a u a x

19 Outli Itrducti DT Furir Trasfrm Sufficit cditi fr DTFT DT Furir Trasfrm f Pridic Sigals Prprtis f DT Furir Trasfrm DTFT & LTI systms: Frqucy rsps DTFT: Summary Appdix: Trasiti frm DT Furir Sris t DT Furir Trasfrm Appdix: Rlatis amg Furir Mthds 9

20 FT f Pridic DT Sigals Csidr th ctiuus tim sigal This sigal is pridic Furthrmr, th Furir sris f this sigal is ust a impuls f wight ctrd at ω= ω 0 Nw csidr this sigal It is als pridic ad thr is impuls pr prid Hwvr, th sparati btw adact impulss is π I particular, th DT Furir Trasfrm fr this sigal is 0 DTFT f a pridic sigal with prid N X X ; N

21 DTFT: Pridic sigal Th sigal ca b xprssd as W ca immdiatly writ Equivaltly prid π

22 DT FT f pridic sigals FS vs. FT

23 Outli Itrducti DT Furir Trasfrm Sufficit cditi fr DTFT DT Furir Trasfrm f Pridic Sigals Prprtis f DT Furir Trasfrm DTFT & LTI systms: Frqucy rsps DTFT: Summary Appdix: Trasiti frm DT Furir Sris t DT Furir Trasfrm Appdix: Rlatis amg Furir Mthds 3

24 Cmplx umbrs *Cartsia rprstati : z x y Magitud f It is is * Plar rprstati : Cmplx Cugat : z Phasargumtf ca chagby ay multipl radias t dgrsar big usd z * * * 4 z x y ; z z ad zz ar ral r th distacf th agl t thral psitiv z a z z x f y pit z frm th rigi z z axis ad still cs ta y x giv z si thsamagl

25 Prprtis f th DTFT Th fucti ω is pridic with N=π 5

26 6 Prprtis f th DTFT

27 7 Prprtis f th DTFT

28 8 Exampl: Tim shift Dtrmiig th DTFT f Sluti F a a X u a x a x a X X u a x x a X u a x 5 i.. 5 i u a x

29 9 Prprtis f th DTFT

30 30 Prprtis f th DTFT

31 3

32 Symmtry prprtis f th DTFT

33 Symmtry prprtis f th DTFT Duality prprty

34 34 Prprtis f th DTFT

35 Prprtis f th DT FT Accumulati : m m - - xm xm - - ω whr thimpuls trai thright - had sid rflcts th avrag valur dc cmptthat may rsult frm thsummati f X ω Xf πx 0 m X 0 cmb f δω πm 35 Trai f impulss cmb

36 36 Prprtis f th DT FT

37 37 Prprtis f th DT FT

38 38 Prprtis f th DT FT

39 39 Prprtis f th DT FT

40 40 Prprtis f th DT FT

41 4 Prprtis f th DT FT * impuls rspsh: a LTI systmwith fr It fllws: Multiplicati & Cvluti duality : X H Y x h y Y X y x Y X y x

42 4 Prprtis f th DT FT

43 43 Prprtis f th DT FT

44 Prprtis f th DT FT: Diffrc quati DT LTI Systms ar charactrizd by Liar Cstat-Cfficit Diffrc Equatis A gral liar cstat-cfficit diffrc quati fr a LTI systm with iput x ad utput y is f th frm Nw applyig th FT t bth sids f th abv quati, w hav But w w that th iput ad th utput ar rlatd t ach thr thrugh th impuls rsps f th systm, dtd by h, i.., 44

45 Prprtis f th DT FT : Diffrc quati Applyig th cvluti prprty if is giv a diffrc quati crrspdig t sm systm, th FT f th impuls rsps f th systm ca fud dirctly frm th diffrc quati by applyig th Furir trasfrm FT f th impuls rsps = Frqucy rsps Ivrs FT f th frqucy rsps = Impuls rsps 45

46 Prprtis f th DT FT: Exampl With a <, csidr th causal LTI systm that is charactrizd by th diffrc quati Th frqucy rsps f th systm is Frm tabls r by applyig ivrs FT, w gt 46

47 47 Tabl.

48 Outli Itrducti DT Furir Trasfrm Sufficit cditi fr DTFT DT Furir Trasfrm f Pridic Sigals Prprtis f DT Furir Trasfrm DTFT & LTI systms: Frqucy rsps DTFT: Summary Appdix: Trasiti frm DT Furir Sris t DT Furir Trasfrm Appdix: Rlatis amg Furir Mthds 48

49 49 Frqucy rsps f LTI systms If iput is cmplx xptials Dfi h & H: Frqucy ad impuls rspss ar a FT pair h h T y x } { H y h H d H X y d X x if

50 50 Frqucy rsps Th frqucy rsps f discrt-tim LTI systms is always a pridic fucti f th frqucy variabl w with prid Oly spcify vr th itrval Th lw frqucis ar cls t 0 Th high frqucis ar cls t Frqucy rsps is grally cmplx H h h H H I R H H H H dscribs chags t x i magitud ad phas

51 5 Frqucy rsps: Exampl Frqucy rsps f th idal dlay systm d d I d R d d d H H H H H h x y d, si, cs Idaldlay :

52 5 Frqucy rsps FT pair & impuls rspssar a Frqucy rsps thfrqucy with ; Rsps: iput If Cvluti thrm: thimpuls rsps with ; systms: LTI Rspsf H H X X h x y x x h h y x

53 53 Frqucy rsps: Exampl

54 Idal frqucy-slctiv LTIsystms r filtrs Idal frqucy-slctiv filtr hav uity frqucy rsps vr a crtai rag f frqucis, ad is zr at th rmaiig frqucis Exampl: Idal lw-pass filtr: passs ly lw frqucis ad rcts high frqucis f a iput sigal x 54

55 Exampl : idal lwpass filtr Frqucy rsps H lp, 0, c c h lp c c d si c, h is t abslutly summabl Filtr causal 55

56 Outli Itrducti DT Furir Trasfrm Sufficit cditi fr DTFT DT Furir Trasfrm f Pridic Sigals Prprtis f DT Furir Trasfrm DTFT & LTI systms: Frqucy rsps DTFT: Summary Appdix: Trasiti frm DT Furir Sris t DT Furir Trasfrm Appdix: Rlatis amg Furir Mthds 56

57 DTFT: Summary DT Furir Trasfrm rprsts a discrt tim apridic sigal as a sum f ifiitly may cmplx xptials, with th frqucy varyig ctiuusly i -π, π DTFT is pridic ly d t dtrmi it fr 57

58 58 Summary: Sigal & Systm rprstatis Sigal: A sum f scald, dlayd impuls Sigal: A liar cmbiati f wightd siusidal sigals LTI systm: Cvluti LTI systm: Diffrc quati: x x d X x * y H X Y h x h x

59 59 Ral-wrld applicati: Imag cmprssi Ergy Distributi f trasfrm DCT Cfficits i Typical Imags

60 Ral-wrld applicatis: Imag cmprssi Imags Apprximatd by Diffrt Numbr f trasfrm DCT Cfficits Origial With 6/64 Cfficits With 8/64 Cfficits With 4/64 Cfficits 60 Wavfrm-basd vid cdig

61 DTFT: Summary Kw hw t calculat th DTFT f simpl fuctis Kw th gmtric sum: Kw Furir trasfrms f spcial fuctis,.g. δ, xptial Kw hw t calculat th ivrs trasfrm f ratial fuctis usig partial fracti xpasi Prprtis f DT Furir trasfrm Liarity, Tim-shift, Frqucy-shift, 6

62 6 DT-FT Summary: a quiz A discrt-tim LTI systm has impuls rsps Fid th utput y du t iput Sluti : Us th cvluti prprty: u h 7 u x * X H Y x h y, a a M u a m X H 7 ad

63 63 DT-FT Summary: a quiz ct. Usig partial fracti xpasi mthd f fidig ivrs FT givs: Thrfr, sic a FT is uiqu, i.. tw sam sigals i tim giv th sam fucti i frqucy ad sic It ca b s that a FT f th typ shuld crrspd t a sigal. Thrfr, th ivrs FT f is th ivrs FT f is Thus th cmplt utput 7 Y Y 7 / 5 7/5 a M u a m a a u 7 /5 7 5 u 7/5 5 7 u u u y

64 Outli Itrducti DT Furir Trasfrm Sufficit cditi fr DTFT DT Furir Trasfrm f Pridic Sigals Prprtis f DT Furir Trasfrm DTFT & LTI systms: Frqucy rsps DTFT: Summary Appdix: Trasiti frm DT Furir Sris t DT Furir Trasfrm Appdix: Rlatis amg Furir Mthds 64

65 Trasiti: DT Furir Sris t DT Furir Trasfrm DT Puls Trai Sigal 65 This DT pridic rctagular-wav sigal is aalgus t th CT pridic rctagularwav sigal usd t illustrat th trasiti frm th CT Furir Sris t th CT Furir Trasfrm

66 Trasiti: DT Furir Sris t DT Furir Trasfrm DTFS f DT Puls Trai As th prid f th rctagular wav icrass, th prid f th DT Furir Sris icrass ad th amplitud f th DT Furir Sris dcrass 66

67 Trasiti: DT Furir Sris t DT Furir Trasfrm Nrmalizd DT Furir Sris f DT Puls Trai By multiplyig th DT Furir Sris by its prid ad plttig vrsus istad f, th amplitud f th DT Furir Sris stays th sam as th prid icrass ad th prid f th rmalizd DT Furir Sris stays at 67

68 Trasiti: DT Furir Sris t DT Furir Trasfrm Th rmalizd DT Furir Sris apprachs this limit as th DT prid apprachs ifiity 68

69 Outli Itrducti DT Furir Trasfrm Sufficit cditi fr DTFT DT Furir Trasfrm f Pridic Sigals Prprtis f DT Furir Trasfrm DTFT & LTI systms: Frqucy rsps DTFT: Summary Appdix: Trasiti frm DT Furir Sris t DT Furir Trasfrm Appdix: Rlatis amg Furir Mthds 69

70 Rlatis Amg Furir Mthds Pridic i Tim Discrt i Frqucy Apridic i Tim Ctiuus i Frqucy Ctiuus i Tim Apridic i Frqucy CT Furir Sris : a x t T T 0 x t a 0 t 0 t dt CT - P CT IvrsFurir Sris : T DT DT CT - P T CT Furir Trasfrm: X x t x t X t dt t d CT IvrsCT Furir Trasfrm: CT CT CT Discrt i Tim Pridic i Frqucy DT Furir Sris X x N N 0 x IvrsDT Furir Sris N 0 0 X DT - P 0 N DT - P DT - P N N DT - P N DT Furir Trasfrm: X IvrsDT Furir Trasfrm: x x X d DT CT CT P P DT 70

71 Rlatis Amg Furir Mthds 7

72 7 CT Furir Trasfrm - CT Furir Sris

73 73 CT Furir Trasfrm - CT Furir Sris

74 74 CT Furir Trasfrm - DT Furir Trasfrm

75 75 CT Furir Trasfrm - DT Furir Trasfrm

76 76 DT Furir Sris - DT Furir Trasfrm

77 77 DT Furir Sris - DT Furir Trasfrm

Topic 5: Discrete-Time Fourier Transform (DTFT)

Topic 5: Discrete-Time Fourier Transform (DTFT) ELEC36: Signals And Systms Tpic 5: Discrt-Tim Furir Transfrm (DTFT) Dr. Aishy Amr Cncrdia Univrsity Elctrical and Cmputr Enginring DT Furir Transfrm Ovrviw f Furir mthds DT Furir Transfrm f Pridic Signals

More information

Continuous-Time Fourier Transform. Transform. Transform. Transform. Transform. Transform. Definition The CTFT of a continuoustime

Continuous-Time Fourier Transform. Transform. Transform. Transform. Transform. Transform. Definition The CTFT of a continuoustime Ctiuus-Tim Furir Dfiiti Th CTFT f a ctiuustim sigal x a (t is giv by Xa ( jω xa( t jωt Oft rfrrd t as th Furir spctrum r simply th spctrum f th ctiuus-tim sigal dt Ctiuus-Tim Furir Dfiiti Th ivrs CTFT

More information

Lectures 9 IIR Systems: First Order System

Lectures 9 IIR Systems: First Order System EE3054 Sigals ad Systms Lcturs 9 IIR Systms: First Ordr Systm Yao Wag Polytchic Uivrsity Som slids icludd ar xtractd from lctur prstatios prpard by McCllla ad Schafr Lics Ifo for SPFirst Slids This work

More information

DTFT Properties. Example - Determine the DTFT Y ( e ) of n. Let. We can therefore write. From Table 3.1, the DTFT of x[n] is given by 1

DTFT Properties. Example - Determine the DTFT Y ( e ) of n. Let. We can therefore write. From Table 3.1, the DTFT of x[n] is given by 1 DTFT Proprtis Exampl - Dtrmi th DTFT Y of y α µ, α < Lt x α µ, α < W ca thrfor writ y x x From Tabl 3., th DTFT of x is giv by ω X ω α ω Copyright, S. K. Mitra Copyright, S. K. Mitra DTFT Proprtis DTFT

More information

Digital Signal Processing, Fall 2006

Digital Signal Processing, Fall 2006 Digital Sigal Procssig, Fall 6 Lctur 9: Th Discrt Fourir Trasfor Zhg-Hua Ta Dpartt of Elctroic Systs Aalborg Uivrsity, Dar zt@o.aau.d Digital Sigal Procssig, I, Zhg-Hua Ta, 6 Cours at a glac MM Discrt-ti

More information

15/03/1439. Lectures on Signals & systems Engineering

15/03/1439. Lectures on Signals & systems Engineering Lcturs o Sigals & syms Egirig Dsigd ad Prd by Dr. Ayma Elshawy Elsfy Dpt. of Syms & Computr Eg. Al-Azhar Uivrsity Email : aymalshawy@yahoo.com A sigal ca b rprd as a liar combiatio of basic sigals. Th

More information

Chapter 4 - The Fourier Series

Chapter 4 - The Fourier Series M. J. Robrts - 8/8/4 Chaptr 4 - Th Fourir Sris Slctd Solutios (I this solutio maual, th symbol,, is usd for priodic covolutio bcaus th prfrrd symbol which appars i th txt is ot i th fot slctio of th word

More information

Bohr type models of the atom give a totally incorrect picture of the atom and are of only historical significance.

Bohr type models of the atom give a totally incorrect picture of the atom and are of only historical significance. VISUAL PHYSICS ONLIN BOHR MODL OF TH ATOM Bhr typ mdls f th atm giv a ttally icrrct pictur f th atm ad ar f ly histrical sigificac. Fig.. Bhr s platary mdl f th atm. Hwvr, th Bhr mdls wr a imprtat stp

More information

Discrete Fourier Transform (DFT)

Discrete Fourier Transform (DFT) Discrt Fourir Trasorm DFT Major: All Egirig Majors Authors: Duc guy http://umricalmthods.g.us.du umrical Mthods or STEM udrgraduats 8/3/29 http://umricalmthods.g.us.du Discrt Fourir Trasorm Rcalld th xpotial

More information

Frequency Response. Lecture #12 Chapter 10. BME 310 Biomedical Computing - J.Schesser

Frequency Response. Lecture #12 Chapter 10. BME 310 Biomedical Computing - J.Schesser Frquncy Rspns Lcur # Chapr BME 3 Bimdical Cmpuing - J.Schssr 99 Idal Filrs W wan sudy Hω funcins which prvid frquncy slciviy such as: Lw Pass High Pass Band Pass Hwvr, w will lk a idal filring, ha is,

More information

GUC (Dr. Hany Hammad) 4/20/2016

GUC (Dr. Hany Hammad) 4/20/2016 GU (r. Hay Hamma) 4/0/06 Lctur # 0 Filtr sig y Th srti Lss Mth sig Stps Lw-pass prttyp sig. () Scalig a cvrsi. () mplmtati. Usig Stus. Usig High-Lw mpac Sctis. Thry f priic structurs. mag impacs a Trasfr

More information

PURE MATHEMATICS A-LEVEL PAPER 1

PURE MATHEMATICS A-LEVEL PAPER 1 -AL P MATH PAPER HONG KONG EXAMINATIONS AUTHORITY HONG KONG ADVANCED LEVEL EXAMINATION PURE MATHEMATICS A-LEVEL PAPER 8 am am ( hours) This papr must b aswrd i Eglish This papr cosists of Sctio A ad Sctio

More information

Lectur 22. RF and Microwave Circuit Design Γ-Plane and Smith Chart Analysis. ECE 303 Fall 2005 Farhan Rana Cornell University

Lectur 22. RF and Microwave Circuit Design Γ-Plane and Smith Chart Analysis. ECE 303 Fall 2005 Farhan Rana Cornell University ctur RF ad Micrwav Circuit Dig -Pla ad Smith Chart Aalyi I thi lctur yu will lar: -pla ad Smith Chart Stub tuig Quartr-Wav trafrmr ECE 33 Fall 5 Farha Raa Crll Uivrity V V Impdac Trafrmati i Tramii i ω

More information

O QP P. Limit Theorems. p and to see if it will be less than a pre-assigned number,. p n

O QP P. Limit Theorems. p and to see if it will be less than a pre-assigned number,. p n Limit Trms W ft av t d fr apprximatis w gts vry larg. Fr xampl, smtims fidig t prbability distributis f radm variabls lad t utractabl matmatical prblms. W ca s tat t distributi fr crtai fuctis f a radm

More information

Part B: Transform Methods. Professor E. Ambikairajah UNSW, Australia

Part B: Transform Methods. Professor E. Ambikairajah UNSW, Australia Part B: Trasform Mthods Chaptr 3: Discrt-Tim Fourir Trasform (DTFT) 3. Discrt Tim Fourir Trasform (DTFT) 3. Proprtis of DTFT 3.3 Discrt Fourir Trasform (DFT) 3.4 Paddig with Zros ad frqucy Rsolutio 3.5

More information

International Journal of Mathematical Archive-7(5), 2016, Available online through ISSN

International Journal of Mathematical Archive-7(5), 2016, Available online through   ISSN Itratial Jural f athmatial Arhiv-7(5), 06, 60-70 Availabl li thrugh wwwimaif ISSN 9 5046 IDEALS IN ALOST SEILATTICE G NANAJI RAO, TEREFE GETACHEW BEYENE*,Dpartmt f athmatis, Adhra Uivrsity, Visakhpataam,

More information

[ ] Review. For a discrete-time periodic signal xn with period N, the Fourier series representation is

[ ] Review. For a discrete-time periodic signal xn with period N, the Fourier series representation is Discrt-tim ourir Trsform Rviw or discrt-tim priodic sigl x with priod, th ourir sris rprsttio is x + < > < > x, Rviw or discrt-tim LTI systm with priodic iput sigl, y H ( ) < > < > x H r rfrrd to s th

More information

Some Families of Higher Order Three-Step Iterative Techniques. where is a real number and y (5)

Some Families of Higher Order Three-Step Iterative Techniques. where is a real number and y (5) Lif Scic Jural 03;0s http://www.lifscicsit.cm Sm Familis f Highr Orr Thr-Stp Itrativ Tchiqus Nair Ahma Mir Sahr Akmal Kha Naila Rafiq Nusrut Yasmi. Dpartmt f Basic Scics Riphah Itratial Uivrsit Islamaba

More information

Chapter 2 Infinite Series Page 1 of 11. Chapter 2 : Infinite Series

Chapter 2 Infinite Series Page 1 of 11. Chapter 2 : Infinite Series Chatr Ifiit Sris Pag of Sctio F Itgral Tst Chatr : Ifiit Sris By th d of this sctio you will b abl to valuat imror itgrals tst a sris for covrgc by alyig th itgral tst aly th itgral tst to rov th -sris

More information

PREPARATORY MATHEMATICS FOR ENGINEERS

PREPARATORY MATHEMATICS FOR ENGINEERS CIVE 690 This qusti ppr csists f 6 pritd pgs, ch f which is idtifid by th Cd Numbr CIVE690 FORMULA SHEET ATTACHED UNIVERSITY OF LEEDS Jury 008 Emiti fr th dgr f BEg/ MEg Civil Egirig PREPARATORY MATHEMATICS

More information

Worksheet: Taylor Series, Lagrange Error Bound ilearnmath.net

Worksheet: Taylor Series, Lagrange Error Bound ilearnmath.net Taylor s Thorm & Lagrag Error Bouds Actual Error This is th ral amout o rror, ot th rror boud (worst cas scario). It is th dirc btw th actual () ad th polyomial. Stps:. Plug -valu ito () to gt a valu.

More information

Problem Value Score Earned No/Wrong Rec -3 Total

Problem Value Score Earned No/Wrong Rec -3 Total GEORGIA INSTITUTE OF TECHNOLOGY SCHOOL of ELECTRICAL & COMPUTER ENGINEERING ECE6 Fall Quiz # Writt Eam Novmr, NAME: Solutio Kys GT Usram: LAST FIRST.g., gtiit Rcitatio Sctio: Circl t dat & tim w your Rcitatio

More information

Discrete Fourier Transform. Discrete Fourier Transform. Discrete Fourier Transform. Discrete Fourier Transform. Discrete Fourier Transform

Discrete Fourier Transform. Discrete Fourier Transform. Discrete Fourier Transform. Discrete Fourier Transform. Discrete Fourier Transform Discrt Fourir Trasform Dfiitio - T simplst rlatio btw a lt- squc x dfid for ω ad its DTFT X ( ) is ω obtaid by uiformly sampli X ( ) o t ω-axis btw ω < at ω From t dfiitio of t DTFT w tus av X X( ω ) ω

More information

z 1+ 3 z = Π n =1 z f() z = n e - z = ( 1-z) e z e n z z 1- n = ( 1-z/2) 1+ 2n z e 2n e n -1 ( 1-z )/2 e 2n-1 1-2n -1 1 () z

z 1+ 3 z = Π n =1 z f() z = n e - z = ( 1-z) e z e n z z 1- n = ( 1-z/2) 1+ 2n z e 2n e n -1 ( 1-z )/2 e 2n-1 1-2n -1 1 () z Sris Expasio of Rciprocal of Gamma Fuctio. Fuctios with Itgrs as Roots Fuctio f with gativ itgrs as roots ca b dscribd as follows. f() Howvr, this ifiit product divrgs. That is, such a fuctio caot xist

More information

ELEC9721: Digital Signal Processing Theory and Applications

ELEC9721: Digital Signal Processing Theory and Applications ELEC97: Digital Sigal Pocssig Thoy ad Applicatios Tutoial ad solutios Not: som of th solutios may hav som typos. Q a Show that oth digital filts giv low hav th sam magitud spos: i [] [ ] m m i i i x c

More information

DFT: Discrete Fourier Transform

DFT: Discrete Fourier Transform : Discrt Fourir Trasform Cogruc (Itgr modulo m) I this sctio, all lttrs stad for itgrs. gcd m, = th gratst commo divisor of ad m Lt d = gcd(,m) All th liar combiatios r s m of ad m ar multils of d. a b

More information

H2 Mathematics Arithmetic & Geometric Series ( )

H2 Mathematics Arithmetic & Geometric Series ( ) H Mathmatics Arithmtic & Gomtric Sris (08 09) Basic Mastry Qustios Arithmtic Progrssio ad Sris. Th rth trm of a squc is 4r 7. (i) Stat th first four trms ad th 0th trm. (ii) Show that th squc is a arithmtic

More information

Signals & Systems - Chapter 3

Signals & Systems - Chapter 3 .EgrCS.cm, i Sigls d Sysms pg 9 Sigls & Sysms - Chpr S. Ciuus-im pridic sigl is rl vlud d hs fudml prid 8. h zr Furir sris cfficis r -, - *. Eprss i h m. cs A φ Slui: 8cs cs 8 8si cs si cs Eulrs Apply

More information

VI. FIR digital filters

VI. FIR digital filters www.jtuworld.com www.jtuworld.com Digital Sigal Procssig 6 Dcmbr 24, 29 VI. FIR digital filtrs (No chag i 27 syllabus). 27 Syllabus: Charactristics of FIR digital filtrs, Frqucy rspos, Dsig of FIR digital

More information

Systems in Transform Domain Frequency Response Transfer Function Introduction to Filters

Systems in Transform Domain Frequency Response Transfer Function Introduction to Filters LTI Discrt-Tim Systms i Trasform Domai Frqucy Rspos Trasfr Fuctio Itroductio to Filtrs Taia Stathai 811b t.stathai@imprial.ac.u Frqucy Rspos of a LTI Discrt-Tim Systm Th wll ow covolutio sum dscriptio

More information

Chapter 2 Linear Waveshaping: High-pass Circuits

Chapter 2 Linear Waveshaping: High-pass Circuits Puls and Digital Circuits nkata Ra K., Rama Sudha K. and Manmadha Ra G. Chaptr 2 Linar Wavshaping: High-pass Circuits. A ramp shwn in Fig.2p. is applid t a high-pass circuit. Draw t scal th utput wavfrm

More information

Chapter 3 Fourier Series Representation of Periodic Signals

Chapter 3 Fourier Series Representation of Periodic Signals Chptr Fourir Sris Rprsttio of Priodic Sigls If ritrry sigl x(t or x[] is xprssd s lir comitio of som sic sigls th rspos of LI systm coms th sum of th idividul rsposs of thos sic sigls Such sic sigl must:

More information

Linear-Phase FIR Transfer Functions. Functions. Functions. Functions. Functions. Functions. Let

Linear-Phase FIR Transfer Functions. Functions. Functions. Functions. Functions. Functions. Let It is impossibl to dsign an IIR transfr function with an xact linar-phas It is always possibl to dsign an FIR transfr function with an xact linar-phas rspons W now dvlop th forms of th linarphas FIR transfr

More information

1985 AP Calculus BC: Section I

1985 AP Calculus BC: Section I 985 AP Calculus BC: Sctio I 9 Miuts No Calculator Nots: () I this amiatio, l dots th atural logarithm of (that is, logarithm to th bas ). () Ulss othrwis spcifid, th domai of a fuctio f is assumd to b

More information

Probability & Statistics,

Probability & Statistics, Probability & Statistics, BITS Pilai K K Birla Goa Campus Dr. Jajati Kshari Sahoo Dpartmt of Mathmatics BITS Pilai, K K Birla Goa Campus Poisso Distributio Poisso Distributio: A radom variabl X is said

More information

Part B: Transform Methods. Professor E. Ambikairajah UNSW, Australia

Part B: Transform Methods. Professor E. Ambikairajah UNSW, Australia Par B: rasform Mhods Profssor E. Ambikairaah UNSW, Ausralia Chapr : Fourir Rprsaio of Sigal. Fourir Sris. Fourir rasform.3 Ivrs Fourir rasform.4 Propris.4. Frqucy Shif.4. im Shif.4.3 Scalig.4.4 Diffriaio

More information

Discrete Fourier Transform. Nuno Vasconcelos UCSD

Discrete Fourier Transform. Nuno Vasconcelos UCSD Discrt Fourir Trasform uo Vascoclos UCSD Liar Shift Ivariat (LSI) systms o of th most importat cocpts i liar systms thory is that of a LSI systm Dfiitio: a systm T that maps [ ito y[ is LSI if ad oly if

More information

Lecture 26: Quadrature (90º) Hybrid.

Lecture 26: Quadrature (90º) Hybrid. Whits, EE 48/58 Lctur 26 Pag f Lctur 26: Quadratur (9º) Hybrid. Back in Lctur 23, w bgan ur discussin f dividrs and cuplrs by cnsidring imprtant gnral prprtis f thrand fur-prt ntwrks. This was fllwd by

More information

Thomas J. Osler. 1. INTRODUCTION. This paper gives another proof for the remarkable simple

Thomas J. Osler. 1. INTRODUCTION. This paper gives another proof for the remarkable simple 5/24/5 A PROOF OF THE CONTINUED FRACTION EXPANSION OF / Thomas J Oslr INTRODUCTION This ar givs aothr roof for th rmarkabl siml cotiud fractio = 3 5 / Hr is ay ositiv umbr W us th otatio x= [ a; a, a2,

More information

A Review of Complex Arithmetic

A Review of Complex Arithmetic /0/005 Rviw of omplx Arithmti.do /9 A Rviw of omplx Arithmti A omplx valu has both a ral ad imagiary ompot: { } ad Im{ } a R b so that w a xprss this omplx valu as: whr. a + b Just as a ral valu a b xprssd

More information

The Excel FFT Function v1.1 P. T. Debevec February 12, The discrete Fourier transform may be used to identify periodic structures in time ht.

The Excel FFT Function v1.1 P. T. Debevec February 12, The discrete Fourier transform may be used to identify periodic structures in time ht. The Excel FFT Fucti v P T Debevec February 2, 26 The discrete Furier trasfrm may be used t idetify peridic structures i time ht series data Suppse that a physical prcess is represeted by the fucti f time,

More information

Introduction to Medical Imaging. Lecture 4: Fourier Theory = = ( ) 2sin(2 ) Introduction

Introduction to Medical Imaging. Lecture 4: Fourier Theory = = ( ) 2sin(2 ) Introduction Introduction Introduction to Mdical aging Lctur 4: Fourir Thory Thory dvlopd by Josph Fourir (768-83) Th Fourir transform of a signal s() yilds its frquncy spctrum S(k) Klaus Mullr s() forward transform

More information

The Phase Probability for Some Excited Binomial States

The Phase Probability for Some Excited Binomial States Egypt. J. Sl., Vl. 5, N., 3 Th Pha Prbability fr S Excitd Biial Stat. Darwih Faculty f Educati, Suz Caal Uivrity at Al-Arih, Egypt. I thi papr, th pha prprti i Pgg-Bartt frali ar cidrd. Th pha ditributi

More information

Frequency Response & Digital Filters

Frequency Response & Digital Filters Frquy Rspos & Digital Filtrs S Wogsa Dpt. of Cotrol Systms ad Istrumtatio Egirig, KUTT Today s goals Frquy rspos aalysis of digital filtrs LTI Digital Filtrs Digital filtr rprstatios ad struturs Idal filtrs

More information

07 - SEQUENCES AND SERIES Page 1 ( Answers at he end of all questions ) b, z = n

07 - SEQUENCES AND SERIES Page 1 ( Answers at he end of all questions ) b, z = n 07 - SEQUENCES AND SERIES Pag ( Aswrs at h d of all qustios ) ( ) If = a, y = b, z = c, whr a, b, c ar i A.P. ad = 0 = 0 = 0 l a l

More information

Mathematical Preliminaries for Transforms, Subbands, and Wavelets

Mathematical Preliminaries for Transforms, Subbands, and Wavelets Mahmaical Prlimiaris for rasforms, Subbads, ad Wavls C.M. Liu Prcpual Sigal Procssig Lab Collg of Compur Scic Naioal Chiao-ug Uivrsiy hp://www.csi.cu.du.w/~cmliu/courss/comprssio/ Offic: EC538 (03)5731877

More information

EC1305 SIGNALS & SYSTEMS

EC1305 SIGNALS & SYSTEMS EC35 SIGNALS & SYSTES DEPT/ YEAR/ SE: IT/ III/ V PREPARED BY: s. S. TENOZI/ Lcturr/ECE SYLLABUS UNIT I CLASSIFICATION OF SIGNALS AND SYSTES Cotiuous Tim Sigals (CT Sigals Discrt Tim Sigals (DT Sigals Stp

More information

More on FT. Lecture 10 4CT.5 3CT.3-5,7,8. BME 333 Biomedical Signals and Systems - J.Schesser

More on FT. Lecture 10 4CT.5 3CT.3-5,7,8. BME 333 Biomedical Signals and Systems - J.Schesser Mr n FT Lcur 4CT.5 3CT.3-5,7,8 BME 333 Bimdicl Signls nd Sysms - J.Schssr 43 Highr Ordr Diffrniin d y d x, m b Y b X N n M m N M n n n m m n m n d m d n m Y n d f n [ n ] F d M m bm m X N n n n n n m p

More information

Lecture 2: Discrete-Time Signals & Systems. Reza Mohammadkhani, Digital Signal Processing, 2015 University of Kurdistan eng.uok.ac.

Lecture 2: Discrete-Time Signals & Systems. Reza Mohammadkhani, Digital Signal Processing, 2015 University of Kurdistan eng.uok.ac. Lctur 2: Discrt-Tim Signals & Systms Rza Mohammadkhani, Digital Signal Procssing, 2015 Univrsity of Kurdistan ng.uok.ac.ir/mohammadkhani 1 Signal Dfinition and Exampls 2 Signal: any physical quantity that

More information

LECTURE 5 Guassian Wave Packet

LECTURE 5 Guassian Wave Packet LECTURE 5 Guassian Wav Pact 1.5 Eampl f a guassian shap fr dscribing a wav pact Elctrn Pact ψ Guassian Assumptin Apprimatin ψ As w hav sn in QM th wav functin is ftn rprsntd as a Furir transfrm r sris.

More information

Chapter 6: DFT/FFT Transforms and Applications 6.1 DFT and its Inverse

Chapter 6: DFT/FFT Transforms and Applications 6.1 DFT and its Inverse 6. Chaptr 6: DFT/FFT Trasforms ad Applicatios 6. DFT ad its Ivrs DFT: It is a trasformatio that maps a -poit Discrt-tim DT) sigal ] ito a fuctio of th compl discrt harmoics. That is, giv,,,, ]; L, a -poit

More information

COLLECTION OF SUPPLEMENTARY PROBLEMS CALCULUS II

COLLECTION OF SUPPLEMENTARY PROBLEMS CALCULUS II COLLECTION OF SUPPLEMENTARY PROBLEMS I. CHAPTER 6 --- Trscdtl Fuctios CALCULUS II A. FROM CALCULUS BY J. STEWART:. ( How is th umbr dfid? ( Wht is pproimt vlu for? (c ) Sktch th grph of th turl potil fuctios.

More information

MONTGOMERY COLLEGE Department of Mathematics Rockville Campus. 6x dx a. b. cos 2x dx ( ) 7. arctan x dx e. cos 2x dx. 2 cos3x dx

MONTGOMERY COLLEGE Department of Mathematics Rockville Campus. 6x dx a. b. cos 2x dx ( ) 7. arctan x dx e. cos 2x dx. 2 cos3x dx MONTGOMERY COLLEGE Dpartmt of Mathmatics Rockvill Campus MATH 8 - REVIEW PROBLEMS. Stat whthr ach of th followig ca b itgratd by partial fractios (PF), itgratio by parts (PI), u-substitutio (U), or o of

More information

ln x = n e = 20 (nearest integer)

ln x = n e = 20 (nearest integer) H JC Prlim Solutios 6 a + b y a + b / / dy a b 3/ d dy a b at, d Giv quatio of ormal at is y dy ad y wh. d a b () (,) is o th curv a+ b () y.9958 Qustio Solvig () ad (), w hav a, b. Qustio d.77 d d d.77

More information

Fourier Series: main points

Fourier Series: main points BIOEN 3 Lcur 6 Fourir rasforms Novmbr 9, Fourir Sris: mai pois Ifii sum of sis, cosis, or boh + a a cos( + b si( All frqucis ar igr mulipls of a fudamal frqucy, o F.S. ca rprs ay priodic fucio ha w ca

More information

Fourier Series & Fourier Transforms

Fourier Series & Fourier Transforms Experimet 1 Furier Series & Furier Trasfrms MATLAB Simulati Objectives Furier aalysis plays a imprtat rle i cmmuicati thery. The mai bjectives f this experimet are: 1) T gai a gd uderstadig ad practice

More information

A Propagating Wave Packet Group Velocity Dispersion

A Propagating Wave Packet Group Velocity Dispersion Lctur 8 Phys 375 A Propagating Wav Packt Group Vlocity Disprsion Ovrviw and Motivation: In th last lctur w lookd at a localizd solution t) to th 1D fr-particl Schrödingr quation (SE) that corrsponds to

More information

A Simple Proof that e is Irrational

A Simple Proof that e is Irrational Two of th most bautiful ad sigificat umbrs i mathmatics ar π ad. π (approximatly qual to 3.459) rprsts th ratio of th circumfrc of a circl to its diamtr. (approximatly qual to.788) is th bas of th atural

More information

Response of LTI Systems to Complex Exponentials

Response of LTI Systems to Complex Exponentials 3 Fourir sris coiuous-im Rspos of LI Sysms o Complx Expoials Ouli Cosidr a LI sysm wih h ui impuls rspos Suppos h ipu sigal is a complx xpoial s x s is a complx umbr, xz zis a complx umbr h or h h w will

More information

+ x. x 2x. 12. dx. 24. dx + 1)

+ x. x 2x. 12. dx. 24. dx + 1) INTEGRATION of FUNCTION of ONE VARIABLE INDEFINITE INTEGRAL Fidig th idfiit itgrals Rductio to basic itgrals, usig th rul f ( ) f ( ) d =... ( ). ( )d. d. d ( ). d. d. d 7. d 8. d 9. d. d. d. d 9. d 9.

More information

SIGNALS AND LINEAR SYSTEMS UNIT-1 SIGNALS

SIGNALS AND LINEAR SYSTEMS UNIT-1 SIGNALS SIGNALS AND LINEAR SYSTEMS UNIT- SIGNALS. Dfi a sigal. A sigal is a fuctio of o or mor idpdt variabls which cotais som iformatio. Eg: Radio sigal, TV sigal, Tlpho sigal, tc.. Dfi systm. A systm is a st

More information

Partition Functions and Ideal Gases

Partition Functions and Ideal Gases Partitio Fuctios ad Idal Gass PFIG- You v lard about partitio fuctios ad som uss ow w ll xplor tm i mor dpt usig idal moatomic diatomic ad polyatomic gass! for w start rmmbr: Q( N ( N! N Wat ar N ad? W

More information

10. Joint Moments and Joint Characteristic Functions

10. Joint Moments and Joint Characteristic Functions 0 Joit Momts ad Joit Charactristic Fctios Followig sctio 6 i this sctio w shall itrodc varios paramtrs to compactly rprst th iformatio cotaid i th joit pdf of two rvs Giv two rvs ad ad a fctio g x y dfi

More information

MATH Midterm Examination Victor Matveev October 26, 2016

MATH Midterm Examination Victor Matveev October 26, 2016 MATH 33- Midterm Examiati Victr Matveev Octber 6, 6. (5pts, mi) Suppse f(x) equals si x the iterval < x < (=), ad is a eve peridic extesi f this fucti t the rest f the real lie. Fid the csie series fr

More information

Law of large numbers

Law of large numbers Law of larg umbrs Saya Mukhrj W rvisit th law of larg umbrs ad study i som dtail two typs of law of larg umbrs ( 0 = lim S ) p ε ε > 0, Wak law of larrg umbrs [ ] S = ω : lim = p, Strog law of larg umbrs

More information

Solution to 1223 The Evil Warden.

Solution to 1223 The Evil Warden. Solutio to 1 Th Evil Ward. This is o of thos vry rar PoWs (I caot thik of aothr cas) that o o solvd. About 10 of you submittd th basic approach, which givs a probability of 47%. I was shockd wh I foud

More information

Option 3. b) xe dx = and therefore the series is convergent. 12 a) Divergent b) Convergent Proof 15 For. p = 1 1so the series diverges.

Option 3. b) xe dx = and therefore the series is convergent. 12 a) Divergent b) Convergent Proof 15 For. p = 1 1so the series diverges. Optio Chaptr Ercis. Covrgs to Covrgs to Covrgs to Divrgs Covrgs to Covrgs to Divrgs 8 Divrgs Covrgs to Covrgs to Divrgs Covrgs to Covrgs to Covrgs to Covrgs to 8 Proof Covrgs to π l 8 l a b Divrgt π Divrgt

More information

Time : 1 hr. Test Paper 08 Date 04/01/15 Batch - R Marks : 120

Time : 1 hr. Test Paper 08 Date 04/01/15 Batch - R Marks : 120 Tim : hr. Tst Papr 8 D 4//5 Bch - R Marks : SINGLE CORRECT CHOICE TYPE [4, ]. If th compl umbr z sisfis th coditio z 3, th th last valu of z is qual to : z (A) 5/3 (B) 8/3 (C) /3 (D) o of ths 5 4. Th itgral,

More information

x 2 x 3 x b 0, then a, b, c log x 1 log z log x log y 1 logb log a dy 4. dx As tangent is perpendicular to the x axis, slope

x 2 x 3 x b 0, then a, b, c log x 1 log z log x log y 1 logb log a dy 4. dx As tangent is perpendicular to the x axis, slope The agle betwee the tagets draw t the parabla y = frm the pit (-,) 5 9 6 Here give pit lies the directri, hece the agle betwee the tagets frm that pit right agle Ratig :EASY The umber f values f c such

More information

ECE602 Exam 1 April 5, You must show ALL of your work for full credit.

ECE602 Exam 1 April 5, You must show ALL of your work for full credit. ECE62 Exam April 5, 27 Nam: Solution Scor: / This xam is closd-book. You must show ALL of your work for full crdit. Plas rad th qustions carfully. Plas chck your answrs carfully. Calculators may NOT b

More information

Frequency Measurement in Noise

Frequency Measurement in Noise Frqucy Masurmt i ois Porat Sctio 6.5 /4 Frqucy Mas. i ois Problm Wat to o look at th ct o ois o usig th DFT to masur th rqucy o a siusoid. Cosidr sigl complx siusoid cas: j y +, ssum Complx Whit ois Gaussia,

More information

SAFE OPERATION OF TUBULAR (PFR) ADIABATIC REACTORS. FIGURE 1: Temperature as a function of space time in an adiabatic PFR with exothermic reaction.

SAFE OPERATION OF TUBULAR (PFR) ADIABATIC REACTORS. FIGURE 1: Temperature as a function of space time in an adiabatic PFR with exothermic reaction. he 47 Lctu Fall 5 SFE OPERION OF UBULR (PFR DIBI REORS I a xthmic acti th tmatu will ctiu t is as mvs alg a lug flw act util all f th limitig actat is xhaust. Schmatically th aiabatic tmatu is as a fucti

More information

NET/JRF, GATE, IIT JAM, JEST, TIFR

NET/JRF, GATE, IIT JAM, JEST, TIFR Istitut for NET/JRF, GATE, IIT JAM, JEST, TIFR ad GRE i PHYSICAL SCIENCES Mathmatical Physics JEST-6 Q. Giv th coditio φ, th solutio of th quatio ψ φ φ is giv by k. kφ kφ lφ kφ lφ (a) ψ (b) ψ kφ (c) ψ

More information

APPENDIX: STATISTICAL TOOLS

APPENDIX: STATISTICAL TOOLS I. Nots o radom samplig Why do you d to sampl radomly? APPENDI: STATISTICAL TOOLS I ordr to masur som valu o a populatio of orgaisms, you usually caot masur all orgaisms, so you sampl a subst of th populatio.

More information

Hadamard Exponential Hankel Matrix, Its Eigenvalues and Some Norms

Hadamard Exponential Hankel Matrix, Its Eigenvalues and Some Norms Math Sci Ltt Vol No 8-87 (0) adamard Exotial al Matrix, Its Eigvalus ad Som Norms İ ad M bula Mathmatical Scics Lttrs Itratioal Joural @ 0 NSP Natural Scics Publishig Cor Dartmt of Mathmatics, aculty of

More information

Ordinary Differential Equations

Ordinary Differential Equations Basi Nomlatur MAE 0 all 005 Egirig Aalsis Ltur Nots o: Ordiar Diffrtial Equatios Author: Profssor Albrt Y. Tog Tpist: Sakurako Takahashi Cosidr a gral O. D. E. with t as th idpdt variabl, ad th dpdt variabl.

More information

Types of Transfer Functions. Types of Transfer Functions. Types of Transfer Functions. Ideal Filters. Ideal Filters

Types of Transfer Functions. Types of Transfer Functions. Types of Transfer Functions. Ideal Filters. Ideal Filters Typs of Transfr Typs of Transfr x[n] X( LTI h[n] H( y[n] Y( y [ n] h[ k] x[ n k] k Y ( H ( X ( Th tim-domain classification of an LTI digital transfr function is basd on th lngth of its impuls rspons h[n]:

More information

Chapter 5. Root Locus Techniques

Chapter 5. Root Locus Techniques Chapter 5 Rt Lcu Techique Itrducti Sytem perfrmace ad tability dt determied dby cled-lp l ple Typical cled-lp feedback ctrl ytem G Ope-lp TF KG H Zer -, - Ple 0, -, - K Lcati f ple eaily fud Variati f

More information

Review Exercises. 1. Evaluate using the definition of the definite integral as a Riemann Sum. Does the answer represent an area? 2

Review Exercises. 1. Evaluate using the definition of the definite integral as a Riemann Sum. Does the answer represent an area? 2 MATHEMATIS --RE Itgral alculus Marti Huard Witr 9 Rviw Erciss. Evaluat usig th dfiitio of th dfiit itgral as a Rima Sum. Dos th aswr rprst a ara? a ( d b ( d c ( ( d d ( d. Fid f ( usig th Fudamtal Thorm

More information

Digital Signal Processing

Digital Signal Processing Digital Sigal Procssig Brli C 4 Rfrcs:.. V. Oppi ad R. W. Scafr, Discrt-ti Sigal Procssig, 999.. uag t. al., Spo Laguag Procssig, Captrs 5, 6. J. R. Dllr t. al., Discrt-Ti Procssig of Spc Sigals, Captrs

More information

Chapter Five. More Dimensions. is simply the set of all ordered n-tuples of real numbers x = ( x 1

Chapter Five. More Dimensions. is simply the set of all ordered n-tuples of real numbers x = ( x 1 Chatr Fiv Mor Dimsios 51 Th Sac R W ar ow rard to mov o to sacs of dimsio gratr tha thr Ths sacs ar a straightforward gralizatio of our Euclida sac of thr dimsios Lt b a ositiv itgr Th -dimsioal Euclida

More information

COMPUTER GENERATED HOLOGRAMS Optical Sciences 627 W.J. Dallas (Monday, April 04, 2005, 8:35 AM) PART I: CHAPTER TWO COMB MATH.

COMPUTER GENERATED HOLOGRAMS Optical Sciences 627 W.J. Dallas (Monday, April 04, 2005, 8:35 AM) PART I: CHAPTER TWO COMB MATH. C:\Dallas\0_Courss\03A_OpSci_67\0 Cgh_Book\0_athmaticalPrliminaris\0_0 Combath.doc of 8 COPUTER GENERATED HOLOGRAS Optical Scincs 67 W.J. Dallas (onday, April 04, 005, 8:35 A) PART I: CHAPTER TWO COB ATH

More information

10. The Discrete-Time Fourier Transform (DTFT)

10. The Discrete-Time Fourier Transform (DTFT) Th Discrt-Tim Fourir Transform (DTFT Dfinition of th discrt-tim Fourir transform Th Fourir rprsntation of signals plays an important rol in both continuous and discrt signal procssing In this sction w

More information

Problem Set #2 Due: Friday April 20, 2018 at 5 PM.

Problem Set #2 Due: Friday April 20, 2018 at 5 PM. 1 EE102B Spring 2018 Signal Procssing and Linar Systms II Goldsmith Problm St #2 Du: Friday April 20, 2018 at 5 PM. 1. Non-idal sampling and rcovry of idal sampls by discrt-tim filtring 30 pts) Considr

More information

ENGG 1203 Tutorial. Difference Equations. Find the Pole(s) Finding Equations and Poles

ENGG 1203 Tutorial. Difference Equations. Find the Pole(s) Finding Equations and Poles ENGG 03 Tutoial Systms ad Cotol 9 Apil Laig Obctivs Z tasfom Complx pols Fdbac cotol systms Ac: MIT OCW 60, 6003 Diffc Equatios Cosid th systm pstd by th followig diffc quatio y[ ] x[ ] (5y[ ] 3y[ ]) wh

More information

Modern Physics. Unit 5: Schrödinger s Equation and the Hydrogen Atom Lecture 5.6: Energy Eigenvalues of Schrödinger s Equation for the Hydrogen Atom

Modern Physics. Unit 5: Schrödinger s Equation and the Hydrogen Atom Lecture 5.6: Energy Eigenvalues of Schrödinger s Equation for the Hydrogen Atom Mdrn Physics Unit 5: Schrödingr s Equatin and th Hydrgn Atm Lctur 5.6: Enrgy Eignvalus f Schrödingr s Equatin fr th Hydrgn Atm Rn Rifnbrgr Prfssr f Physics Purdu Univrsity 1 Th allwd nrgis E cm frm th

More information

Module 5: IIR and FIR Filter Design Prof. Eliathamby Ambikairajah Dr. Tharmarajah Thiruvaran School of Electrical Engineering & Telecommunications

Module 5: IIR and FIR Filter Design Prof. Eliathamby Ambikairajah Dr. Tharmarajah Thiruvaran School of Electrical Engineering & Telecommunications Modul 5: IIR ad FIR Filtr Dsig Prof. Eliathamby Ambiairaah Dr. Tharmaraah Thiruvara School of Elctrical Egirig & Tlcommuicatios Th Uivrsity of w South Wals Australia IIR filtrs Evry rcursiv digital filtr

More information

Study of Energy Eigenvalues of Three Dimensional. Quantum Wires with Variable Cross Section

Study of Energy Eigenvalues of Three Dimensional. Quantum Wires with Variable Cross Section Adv. Studies Ther. Phys. Vl. 3 009. 5 3-0 Study f Eergy Eigevalues f Three Dimesial Quatum Wires with Variale Crss Secti M.. Sltai Erde Msa Departmet f physics Islamic Aad Uiversity Share-ey rach Ira alrevahidi@yah.cm

More information

ECE351: Signals and Systems I. Thinh Nguyen

ECE351: Signals and Systems I. Thinh Nguyen ECE35: Sigals ad Sysms I Thih Nguy FudamalsofSigalsadSysms x Fudamals of Sigals ad Sysms co. Fudamals of Sigals ad Sysms co. x x] Classificaio of sigals Classificaio of sigals co. x] x x] =xt s =x

More information

Blackbody Radiation. All bodies at a temperature T emit and absorb thermal electromagnetic radiation. How is blackbody radiation absorbed and emitted?

Blackbody Radiation. All bodies at a temperature T emit and absorb thermal electromagnetic radiation. How is blackbody radiation absorbed and emitted? All bodis at a tmpratur T mit ad absorb thrmal lctromagtic radiatio Blackbody radiatio I thrmal quilibrium, th powr mittd quals th powr absorbd How is blackbody radiatio absorbd ad mittd? 1 2 A blackbody

More information

8(4 m0) ( θ ) ( ) Solutions for HW 8. Chapter 25. Conceptual Questions

8(4 m0) ( θ ) ( ) Solutions for HW 8. Chapter 25. Conceptual Questions Solutios for HW 8 Captr 5 Cocptual Qustios 5.. θ dcrass. As t crystal is coprssd, t spacig d btw t plas of atos dcrass. For t first ordr diffractio =. T Bragg coditio is = d so as d dcrass, ust icras for

More information

On a problem of J. de Graaf connected with algebras of unbounded operators de Bruijn, N.G.

On a problem of J. de Graaf connected with algebras of unbounded operators de Bruijn, N.G. O a problm of J. d Graaf coctd with algbras of uboudd oprators d Bruij, N.G. Publishd: 01/01/1984 Documt Vrsio Publishr s PDF, also kow as Vrsio of Rcord (icluds fial pag, issu ad volum umbrs) Plas chck

More information

DISCRETE TIME FOURIER TRANSFORM (DTFT)

DISCRETE TIME FOURIER TRANSFORM (DTFT) DISCRETE TIME FOURIER TRANSFORM (DTFT) Th dicrt-tim Fourir Tranform x x n xn n n Th Invr dicrt-tim Fourir Tranform (IDTFT) x n Not: ( ) i a complx valud continuou function = π f [rad/c] f i th digital

More information

Session : Plasmas in Equilibrium

Session : Plasmas in Equilibrium Sssio : Plasmas i Equilibrium Ioizatio ad Coductio i a High-prssur Plasma A ormal gas at T < 3000 K is a good lctrical isulator, bcaus thr ar almost o fr lctros i it. For prssurs > 0.1 atm, collisio amog

More information

Periodic Structures. Filter Design by the Image Parameter Method

Periodic Structures. Filter Design by the Image Parameter Method Prioic Structurs a Filtr sig y th mag Paramtr Mtho ECE53: Microwav Circuit sig Pozar Chaptr 8, Sctios 8. & 8. Josh Ottos /4/ Microwav Filtrs (Chaptr Eight) microwav filtr is a two-port twork us to cotrol

More information

are specified , are linearly independent Otherwise, they are linearly dependent, and one is expressed by a linear combination of the others

are specified , are linearly independent Otherwise, they are linearly dependent, and one is expressed by a linear combination of the others Chater 3. Higher Order Liear ODEs Kreyszig by YHLee;4; 3-3. Hmgeeus Liear ODEs The stadard frm f the th rder liear ODE ( ) ( ) = : hmgeeus if r( ) = y y y y r Hmgeeus Liear ODE: Suersiti Pricile, Geeral

More information

Lecture 27: The 180º Hybrid.

Lecture 27: The 180º Hybrid. Whits, EE 48/58 Lctur 7 Pag f 0 Lctur 7: Th 80º Hybrid. Th scnd rciprcal dirctinal cuplr w will discuss is th 80º hybrid. As th nam implis, th utputs frm such a dvic can b 80º ut f phas. Thr ar tw primary

More information

Fourier Transforms and the Wave Equation. Key Mathematics: More Fourier transform theory, especially as applied to solving the wave equation.

Fourier Transforms and the Wave Equation. Key Mathematics: More Fourier transform theory, especially as applied to solving the wave equation. Lur 7 Fourir Transforms and th Wav Euation Ovrviw and Motivation: W first discuss a fw faturs of th Fourir transform (FT), and thn w solv th initial-valu problm for th wav uation using th Fourir transform

More information

Restricted Factorial And A Remark On The Reduced Residue Classes

Restricted Factorial And A Remark On The Reduced Residue Classes Applid Mathmatics E-Nots, 162016, 244-250 c ISSN 1607-2510 Availabl fr at mirror sits of http://www.math.thu.du.tw/ am/ Rstrictd Factorial Ad A Rmark O Th Rducd Rsidu Classs Mhdi Hassai Rcivd 26 March

More information