O QP P. Limit Theorems. p and to see if it will be less than a pre-assigned number,. p n

Size: px
Start display at page:

Download "O QP P. Limit Theorems. p and to see if it will be less than a pre-assigned number,. p n"

Transcription

1 Limit Trms W ft av t d fr apprximatis w gts vry larg. Fr xampl, smtims fidig t prbability distributis f radm variabls lad t utractabl matmatical prblms. W ca s tat t distributi fr crtai fuctis f a radm variabl ca asily b apprximatd fr larg valus f, v tug t xact distributi s difficult t btai. Cvrgc i Prbability Supps a ci as prbability f cmig up ads a sigl tss, ad if w tss it tims w wdr abut t fracti f ads tat sws up. Ituitivly, w wuld xpct tat t largr is, t cls t p t fracti bcms. Tis is t always s. Tis lads t t qusti "wat apps t t radm diffrc btw a stimat ad its targt valu?" Lt X b t umbr f ads bsrvd i tsss. T, E[X] = p ad Var[X] = p(-p). O way t masur t clsss f x/ t p is t xami x p ad t s if it will b lss ta a pr-assigd umbr,. L NM O QP P Tis P x x p p suld b cls t uity fr larg if ur ituiti is crrct. Dfiiti: T squc f radm variabls, x, x, x3,..x, is said t "Cvrg i Prbability" t t cstat c if fr vry psitiv umbr, lim P[ x c ] = Trm Lt X, X,. X b idpdt ad idtically distributd radm variabl wit E[X I ] = µ ad Var[X i ] = s < i. i i= Furtr, lt X = X lim P[ X µ ] = 0 lim P[ X µ < ] =. T fr ay psitiv ral umbr Tat is, X cvrgs i prbability t µ.. Tis is calld t "Wak law f larg umbrs" Atr trm usig t abv ccpts is Trm Supps X cvrgs i prbability tµ ad Y cvrgs t µ. T: () X ad Y cvrg i prbability t µ ad µ. () X Y cvrgs i prbability t µ µ (3) X /Y cvrgs i prbability t µ /µ ; µ 0 (4) X cvrgs i prbability t µ prvidd tat P[X 0]=

2 Exampl; Exampl: Supps X, X,. X ar idpdt ad idtically distributd radm variabls wit E[X i ] = µ, E[X i ] = µ ', E[X 3 i ] = µ ' 3, E[X 4 i ] = µ ' 4, wit all fiit Lt S ' b t sampl variac, c, ' S = ( Xi X ) i= Sw S ' cvrgs i prbability t Var(X i ) Sluti: ' S = ( Xi X ) i= X = ( Xi X Xi + X ) = Xi Xi + X Wr i= i= i= i= = Xi i= X = i= X X i ' Lkig at trms i S, X i is t avrag f idpdt ad idtically i= distributd radm variabls f t frm X wit E[ X ] = µ ', ad Var[ X ] = µ ' ( µ ' ) X. i i i X i i= Sic Var( X i ) is fiit, t 4 cvrgs i prbability t µ (Try tlls us tat X cvrgs i prbability t µ). Sic X i ad X cvrg i i= prbability t ' ' ' ' µ, ad µ it fllws tat S = Xi X cvrgs i prbability t µ µ = Var( Xi ) i= Tis sws tat fr larg sampls. T sampl variac suld b cls t ppulati variac wit ig prbability. If w ar ccrd wit wat apps t t prbability distributi f crtai typs f radm variabls as w d t fllwig dfiiti. Dfiiti: If w lt Y b a radm variabl wit a distributi fucti, F (x) ad w lt Y b a radm variabl wit distributi fucti F(y), t if lim F ( y) F( y) at vry pit y fr wic F(y) is ctiuus t Y is said t "cvrg i distributi t Y. F(y) is calld t limitig distributi fucti f y.

3 Lt X, X, X b idpdt radm variabls, uifrmly distributd vr t itrval (0, θ ) fr a psitiv θ. Als. Lt y = max(x,x, X ) Fid t limitig distributi f Y. Sluti: F ( y) = P( X y) = X i R S T 0 y θ Frm rdrd statistics w kw y 0 0 < y < θ y θ G( y) = P[ Y y] = F ( y), wr F X (y) is t distributi fucti fr ac X. R T 0 y T lim G( y) = Slim( ) θ X y 0 0 < y > θ y θ Tus, Y cvrgs i distributi t a radm variabl tat as a prbability f at t pit θ ad zr lswr. It is ft asir t fid limitig distributis wrkig wit mmt gratig fuctis. Trm: Lt Y ad Y b radm variabls wit mmt gratig fucti M (t) ad M(t), rspctivly. If lim M = M fr a ll ral t, t Y cvrgs i distributi t Y. Exampl; ` A xprimtr wats t cut t umbr f bactria/small vlum f watr. T sampl siz is t vlum f watr i wr cut is mad. Fr purpss f apprximati, t prbability distributi f cuts w tik f t vlum, ad c t avrag cut pr vlum, as quatitis gttig larg. Lt X dt t bactria cut pr cc f watr, ad assum tat X as a Piss prbability dsity fucti, wit ma valu f. W wat t apprximat t prbability distributi f X fr larg valus f.. W X d tis by swig ;Y = cvrgs i distributi t a stadard rmal radm variabl as. Spcifically, if t allwabl plluti i a watr supply is a cut f 0/cc apprximat t prbability tat X will b at mst 0, assumig = 00. Sluti: W tak t limit f t MGF f Y as ad us ur trm. t ( ) M = ad c, t MGF fr Y is M X X t t t t / = M X( ) = xp[ ( )]

4 3 / t t T trm ( ) =... 3/ Ad up addig xpts, 3 t t t M Y = xp[ t + ( ] / t t = xp[ ] / 6 W s tat t first trm is fr f ad t trs av raisd t sm pwr i t dmiatr.. Trfr, lim M Y = t Tis is t MGF fr a stadard rmal fucti. W wat F HG P( X ) = P X 0 0. X W av sw tat Y = is apprximatly a stadard rmal radm variabl fr larg valus f. S, fr. = 00 F 0 00I P Y P Y HG K J = ( ) = T rmal apprximati t Piss prbability wrks rasably wll fr gratr ta 5 I K J Piss Prcss Additial Tpics i Prbability Lt us csidr t applicati f Prbability try t mdlig radm pm tat cag wit tim. Tis is t s-calld STOCHASTIC PROCESS. Tus, a tim paramtr is itrducd (wr "tim" is usd i a vry gral ss) ad t radm variabl, Y(t), is rgardd as a fucti f tim. Exampls ar dlss, but Y(t) culd rprst t siz f a bilgical ppulati at tim t; t cst f pratig a cmplx idustrial systm fr t tim uits; t umbr f custmrs waitig t b srvd at a cck-ut cutr t tim uits aftr pig.

5 A stcastic prcss, Y(t), is said t av "idpdt" icrmts if, fr ay st f tim pits, t 0 <t < <t, t radm variabl [Y(t i )-Y( ti- )] ad [Y(t j )-Y(t j- )] ar idpdt fr i j. T prcss as "statiary" idpdt icrmts if, i additi, t radm variabls [Y(t + )-Y(t + )] ad [Y(t )-Y(t )] av idtical distributis fr ay >0. I makig a matmatical mdl fr a ral wrld pm it is always cssary t mak crtai simplifyig assumptis s as t rdr t matmatics tractabl. O t tr ad, w cat mak t may simplifyig assumptis fr t ur cclusis wuld t b applicabl. O assumpti usually mad is t assum tat crtai radm variabls ar xptially distributd. T ras fr tis ids tat t xptial distributi is bt rlativly asy t wrk wit ad is ft gd apprximati t t actual distributi. T prprty f t xptial distributi tat maks it asy t aalyz is tat it ds t dtrirat wit tim. I.. if liftim f a itm is xptially distributd, t a itm wic as b usd fr t (ay umbr) urs is as gd as a w itm is, rgardlss t t amut f tim rmaiig util failur. Tis is als rfrrd t as t xptial distributi NOT avig a mmry, r mmrylss. T xptial distributi is t ly distributi tat psssss tis prprty. A ctiuus radm variabl is said t av a xptial distributi wit paramtr, >0, if x R x 0 f ( x) = S 0 x < 0 r T zx x F(x) = dx = R S T 0 x x 0 x < 0 T; tx E[ X ] = MGF = E[ ] = t < t E[ X ] = Var[ X ] = A radm variabl is mmrylss if P[X>s+t X>t] = P[X>s} s,t 0. Tis ca als b writt as P[X > s + t, X > t] = p[ X > s] P[ X > t] P[X > s + t] = P[X > s]p[x > t]

6 Ts quatis stat tat if t lctric cmpt (sic) is pratig at tim t, t t distributi f t rmaiig tim it survivs is t sam as rigial liftim distributi i.. T cmpt dis t rmmbr tat it as alrady b i us fr a tim t.\ Exampl: Supps tat t amut f tim spds i a bak is xptially distributd, wit a ma f t miuts, ( = /0). (a) Wat is t prbability tat a custmr will spd mr ta 5 miuts i t bak? (b) Wat is t prbability tat a custmr will spd mr ta 5 miuts giv tat still is i t bak aftr 0 miuts? Sluti: (a) Lt X = amut f tim i t bak. P[X>5]=-F(5) = -+ t/0. > = 5 / P[ X 5] 3 = = 0. 0 (b) Sic t prprty f mmrylss applis, giv tat spds 0 miuts i t bak, w d ly 5 miuts mr. > = 5 / P[ X 5] = =. 604 Furtr prprtis f t xptial distributi ar: () If X, X,. X ar idpdt ad idtically distributd radm variabls wit a ma valu f /, t t ( t) f X X X t.. ( ) = (Gamma distributi) ( )! () P( X < X ) = + A Stcastic prcss {N(t), t 0} is a cutig prcss if N(t) rprsts t ttal umbr f vts tat av ccurrd up t tim t. Fr xampl, a) Numbr f ppl trig a str prir t tim t. b) Ttal umbr f ppl br by tim t. c) Numbr f gals sccr playrs scr by tim t. S, t b a cutig prcss, i) N(t) 0 ii) N(t) is itgr valud iii) Fr s < t, t N(s) < N(t) iv) Fr s<t, N(t) - N(s) quals umbr f vts tat av ccurrd i t itrval (s,t)

7 A cutig prcss as idpdt icrmt if t umbr f vts tat ccur i disjit itrvals ar idpdt. I.. Evts ccurrd by tim 0 (tat is, N(0)) must b idpdt f vts ccurs btw 0 ad 5 [N(5) - N(0)]. A cutig prcss as statiary icrmts if t distributi f t umbr f vts wic ccur i ay itrval f tim dpds ly t lgt f t tim itrval, ad t t spcific tim. i.. [N(t +s) - N(t +s)] as t sam distributi as [N(t ) - N(t )], fr all t < t, s >0. O f t mst imprtat cutig Prcsss is t Piss Prcss. Dfiiti: T cutig prcss {N(t),t 0} is said t b a Piss prcss avig t rat, >0, if ) N(0) = 0 ) Prcss as idpdt icrmts 3) T umbr f vts i ay itrval, t, is Piss distributd, wit ma t. Tat is, fr all s,t 0 - t ( t) P[N(t + s) - N(s) = } = = 0,,,3,4..! Nt: Frm 3), a Piss prcss as statiary icrmts ad E[N(t)]=t -- wic xplais wy is calld t rat f t prcss I rdr t dtrmi if a arbitrary cutig prcss is actually. a Piss prcss w must sw tat ), ) ad 3) ar satisfid. Cditi ) is simply tat t cutig bgis at t=0. Cditi ) ca b dirctly vrifid by kwldg f t prcss. Hwvr, 3) is t clar as t w w culd dtrmi t cditi as satisfid. S. T lp dtrmi tis, a quivalt dfiiti is usful. As a prlud, lt us dfi t ccpt f a fucti, f( ) big (). Dfiiti: T fucti is said t b () if f lim ( ) = 0 Fr xampl, f() () f = x is () sic lim = lim = () f = x is t () sic lim = lim = (3) If f( ) is () ad g( ) is () t f( ) + g( ) is (), sic f() + g() f() g() lim = lim + lim = 0+ 0 = 0 0 0

8 cf() (4) If f( ) is () t s is g( ) = cf( ), sic lim = c lim f() = c 0 = 0 0 Frm 3) ad 4) it fllws tat ay fiit liar cmbiati f fuctis, ac f wic is ()m is als (). I rdr fr t fucti f( ) t b () it is cssary tat f()/ g t zr as gs t zr. But if gs t zr, t ly way fr f() t g t zr is fr f() t g t zr fastr ta ds. Tat is, fr small, f() must b small cmpard t. w ar w i a psiti t giv a altrativ dfiiti f a Piss prcss. Dfiiti: T cutig prcss {N(t),t 0} is said t b a Piss prcss avig rat, > 0, if i.) N(0) =0 ii.) Prcss as statiary ad idpdt icrmts iii.) P{N()=}= + () iv.) P{N() =() Examiig ts cditi, iii) stats t prbability f ccurrc i small tim itrval,, is prprtial t. Cditi iv) stats, prbability fmr ta ccurrc i gs t zr fastr ta itslf. Ts tw axims imply P{N(t+) - N(t)]=0}=--()= P[N()=0]= - - () T tw dfiitis ar ttally quivalt. Lt us dfi P ( t ) = P ( N ( t ) = ), ad w will driv a diffrtial quati fr P (t) as fllws: P ( t + ) = P{ N ( t + ) = 0} = P{ N = 0, N ( t + ) N = 0} = P{ N = 0} P{ N ( t + ) N = 0} = P [ + ( )] ( t + ) t) ( ) Hc, P P( = P + Lttig 0, i t limit w gt P' (t)=-p (t), r P ' =, wic, by itgrati, implis P l P = t + c r P = k Sic P ( 0) = P{ N ( 0) = 0} = (crtai vt frm i)) w arriv at P = t t

9 Similarly, fr >0 P ( t + ) = P[ N( t + ) = ] = P{ N =,[ N ( t + ) N = 0]} = P{ N =,[ N ( t + ) N = 0]} + P{ N =,[ ( t + ) N = ]} + ki= P{ N = k,[ N ( t + ) N = k]} Hwvr, frm iv) abv, t last trm is (); P ( t + ) = P P + P P ( ) + ( ) But, S, P ( ) = P{ N ( ) = 0} = + ( ) P ( ) = P{ N( ) = } = + ( ) P ( t + ) = ( ) P + P + ( ) Tus, P ( t + ) P = P + P + Lttig 0 yilds ' P = P + P r quivaltly, t ' t [ P + P ] = P t Usig P =, ( ) d t t t ( P ) = = dt r P ( t ) = ( t + c ) t Sic w av frm I), N(0)=0, t N=0 givs P =0, ad c=0 P ( t ) = t t Usig matmatical iducti, assumig t sluti fr =, t d t t ( P ) = P dt t t = ( )( t ) P = M t ( t) P =! Sic P ( 0) = 0 = t t t

10 Exampl: Supps tat i a crtai ara plats ar radmly disprsd wit a ma dsity f 0/squar yard. If a bilgist radmly lcats 00 -squar yard samplig quadrats t ara, w may f tm ca b xpctd t ctai plats? Sluti: Assumig t plat cuts/uit ara t av a Piss distributi wit a ma f 0/sq. yd., t prbability f plats i a squar yard ara is: =0 ad P[N(t=)=0]= t ( t) = = = 0! If t 00 quadrats ar radmly lcatd, t xpctd umbr f quadras ctaiig zr plats is 40 00P[ Y( ) = 0] = 00 = 4. 5x0-6 Exampl: Custmrs arriv at a bak at a Piss rat. Supps tw custmrs arrivd durig t first ur. Wat is t prbability tat (a) bt arrivd durig t first 0 miuts (b) at last arrivd durig t first 0 miuts. Sluti: Lt s= fracti f r. (i.. s=/ mas 30 miuts) Giv = /r -,a rat f ccurrc Piss wit =, t=s Piss wit =, t=-s (a) P[ arrivalsi itrval (0, s) arrivalsi itrval (0,)] = P[ i (0, s),0 i (s,) P[ i (0,) Piss wit =, t= L = ( ) N M = s = 9! OL QP NM s ( s) ( s) ( [ s])! 0! ad w s = 3 0 O QP (0 miuts)

11 Exampl: (b) At last i first 0 miuts = at last i first s= /3 P[At last i first /3 ] = - P[Bt i last s=/3 (40 miuts)] Sic mmry, P[arrivals i last 40 miuts] is t sam as P[arrivals i first 40 miuts]. Hc, P[at last arrival i first 0 miuts]= -s = (-(/3) ) = 5/9 Cars crss a crtai pit i t igway i accrdac wit a Piss prcss wit rat = 3 pr miut. If Al blidly rus acrss t igway, t wat is t prbability tat will b ijurd if t amut f tim tat it taks im t crss t rad is s scds (assum tat if is t igway w t car passs, t will b ijurd)? D it fr s=,5,0,0. Sluti; = 3, ad s= scds t igway. t P t! ( ) = s = 0! Hc, s/ 0 s/ 0 s/ 0 s/ 0 = s/ 0 ( / ) (fr s = ) =.90 (fr s = 5) =.779 (fr s = 0) =.607 (fr s = 0) =.368 Summary f Piss Prcsss Ctral t t dvlpmt is t ccpt f (). Rcall tat a fucti is said t b () if f ( ) / 0. Tat is, f is )) if, fr small valus f, f() is small v i rlati lim 0 = t. Supps w tat "vts" ar ccurrig at radm tim pits ad lt N)t) dt t umbr f vts tat ccur i t tim itrval [0,t]. T stcastic prcss {N(t),t 0} is a=said t b a Piss prcss avig t=rat, >0 if (i) N(0)=0.

12 (ii) T umbr f vts tat ccur i disjit tim itrvals ar idpdt (iii) T distributi f t umbr f vts tat ccur i a giv itrval dpds ly t lgt f tat itrval ad t its lcati. (iv) P { N( ) = } = t = ( ) (v) P { N( ) } = ( ). Tus, cditi (I) stats tat t prcss bgis at tim 0. Cditi (ii), t idpdt icrmt assumpti, stats fr istac, tat t umbr f vts by tim t ]tat is, N(T(] is idpdt f r umbr f vys tat ccur btw t ad t+s [tat is, N(t+s) - N(t)]. Cditi (iii), t statiary icrmt assumpti, stats tat, t prbabiltiy distributi f N(t+s) - N(t) is t sam fr all valus f t. W av dvlpd t Piss distributi by a limitig vrsi f t bimial distributi. W w ca btai t=is sam rsult by a diffrt mtd. Lmma. Fr a Piss prcss wit rat t P{ N( t) = 0}= Prf: Lt P = P{ N( t) = 0}. W driv a diffrtial quati fr P (t) i t fllwig mar. P ( t + ) R S T = P{ N ( t + ) = 0} = P{ N = 0, N ( t + ) N = 0} = P{ N = 0} P{ N ( t + ) N = 0} = P [ + ( ) Wr t fial tw quatis fllw frm Assumpti (ii) plus t fact tat Assumptis (iii) ad (iv) imply tat P{N()=0}=-+(). Hc P ( t + ) P ( ) = P + ' ' PO 9t0 Nw, lttig 0, w btai P = P, r quivaltly =, wic P implis by itgrati, tat lg P (t) = -t +c, r P (t)=k -t. Sic P (0)=P{N(0)=0}=, w arriv at P{ N( t) = 0}= Fr a Piss prcss, lt us dt by T t tim f t first vt. Furtr, fr >, lt T dt t lapsd tim btw t (-)st ad t t vt. T squc f itrarrival tims. Fr istac, if T = 5 ad t

13 T =0, t t first vt f t Piss prcss wuld av ccurrd at tim 5 ad t scd at tim 5. W w dtrmi t distributi f t T. T d s, w first t tat t vbt{t>t} taks plac if ad ly if vts f t Piss P{ T t P N t t > } = { ( ) = 0} prcss ccur i t itrval [0,t]. ad tus, Hc T as a xptial distributi wit a ma f. Nw Hwvr P{ T > t} = P{ T > t T } P{ T > t T = s} = P{ vts i (s,s + t) T = s} 0 = P{ 0 vts i(s,s + t)} = t wr t last tw quatis fllwd frm idpdt ad statiary icrmts. Trfr, frm t abv w cclud tat T is als a xptial radm variabl wit ma /, ad furtrmr, tat T is idpdt f T. Usig tis argumt rpatdly, w ca cclud: " T, T, ar idpdt xptial radm variabls ac wit ma /" Atr quatity f itrst is S, t arrival tim f t t vt, als calld t waitig tim util t t vt. It is asily s tat S = T ad c frm prpsiti statd abv, ad t rsults btaid arlir, it fllws tat S as a gamma distributi wit paramtrs ad. Tat is, t prbability dsity f S is giv by x f ( x S x ) ( ) = ( )! W ar w rady t prv tat N(t) is a Piss radm variabl wit ma t. Trm: Fr a Piss prcss wit rat, i= i P{ N = } =! t Prf: Nt tat t t vt f t Piss prcss will ccur bfr r at tim t if, ad ly if t umbr f vts tat ccur by tim t is a last. tat is

14 N S t ad s P{ N = } = P{ N } P{ N + } = P{ S t} P{ S t} z t x t t ( ) t ( x) = dx dx 0 ( )! 0 ( )! z z But itrgrati by parts frmula udv = uv vdu yilds, wit u x =, dv = [( γ x) / ( )!] dx, z + zt t 0 t t ( x) t ( t) dx = + 0 ( )!! Wic cmplts t prf. z ( x) d ( )!

Limit Theorems. Convergence in Probability. Let X be the number of heads observed in n tosses. Then, E[X] = np and Var[X] = np(1-p).

Limit Theorems. Convergence in Probability. Let X be the number of heads observed in n tosses. Then, E[X] = np and Var[X] = np(1-p). Limit Theorems Covergece i Probability Let X be the umber of heads observed i tosses. The, E[X] = p ad Var[X] = p(-p). L O This P x p NM QP P x p should be close to uity for large if our ituitio is correct.

More information

Continuous-Time Fourier Transform. Transform. Transform. Transform. Transform. Transform. Definition The CTFT of a continuoustime

Continuous-Time Fourier Transform. Transform. Transform. Transform. Transform. Transform. Definition The CTFT of a continuoustime Ctiuus-Tim Furir Dfiiti Th CTFT f a ctiuustim sigal x a (t is giv by Xa ( jω xa( t jωt Oft rfrrd t as th Furir spctrum r simply th spctrum f th ctiuus-tim sigal dt Ctiuus-Tim Furir Dfiiti Th ivrs CTFT

More information

Bohr type models of the atom give a totally incorrect picture of the atom and are of only historical significance.

Bohr type models of the atom give a totally incorrect picture of the atom and are of only historical significance. VISUAL PHYSICS ONLIN BOHR MODL OF TH ATOM Bhr typ mdls f th atm giv a ttally icrrct pictur f th atm ad ar f ly histrical sigificac. Fig.. Bhr s platary mdl f th atm. Hwvr, th Bhr mdls wr a imprtat stp

More information

Topic 5:Discrete-Time Fourier Transform (DTFT)

Topic 5:Discrete-Time Fourier Transform (DTFT) ELEC64: Sigals Ad Systms Tpic 5:Discrt-Tim Furir Trasfrm DTFT Aishy Amr Ccrdia Uivrsity Elctrical ad Cmputr Egirig Itrducti DT Furir Trasfrm Sufficit cditi fr th DTFT DT Furir Trasfrm f Pridic Sigals DTFT

More information

Probability & Statistics,

Probability & Statistics, Probability & Statistics, BITS Pilai K K Birla Goa Campus Dr. Jajati Kshari Sahoo Dpartmt of Mathmatics BITS Pilai, K K Birla Goa Campus Poisso Distributio Poisso Distributio: A radom variabl X is said

More information

H2 Mathematics Arithmetic & Geometric Series ( )

H2 Mathematics Arithmetic & Geometric Series ( ) H Mathmatics Arithmtic & Gomtric Sris (08 09) Basic Mastry Qustios Arithmtic Progrssio ad Sris. Th rth trm of a squc is 4r 7. (i) Stat th first four trms ad th 0th trm. (ii) Show that th squc is a arithmtic

More information

Chapter Taylor Theorem Revisited

Chapter Taylor Theorem Revisited Captr 0.07 Taylor Torm Rvisitd Atr radig tis captr, you sould b abl to. udrstad t basics o Taylor s torm,. writ trascdtal ad trigoomtric uctios as Taylor s polyomial,. us Taylor s torm to id t valus o

More information

International Journal of Mathematical Archive-7(5), 2016, Available online through ISSN

International Journal of Mathematical Archive-7(5), 2016, Available online through   ISSN Itratial Jural f athmatial Arhiv-7(5), 06, 60-70 Availabl li thrugh wwwimaif ISSN 9 5046 IDEALS IN ALOST SEILATTICE G NANAJI RAO, TEREFE GETACHEW BEYENE*,Dpartmt f athmatis, Adhra Uivrsity, Visakhpataam,

More information

Some Families of Higher Order Three-Step Iterative Techniques. where is a real number and y (5)

Some Families of Higher Order Three-Step Iterative Techniques. where is a real number and y (5) Lif Scic Jural 03;0s http://www.lifscicsit.cm Sm Familis f Highr Orr Thr-Stp Itrativ Tchiqus Nair Ahma Mir Sahr Akmal Kha Naila Rafiq Nusrut Yasmi. Dpartmt f Basic Scics Riphah Itratial Uivrsit Islamaba

More information

Chapter (8) Estimation and Confedence Intervals Examples

Chapter (8) Estimation and Confedence Intervals Examples Chaptr (8) Estimatio ad Cofdc Itrvals Exampls Typs of stimatio: i. Poit stimatio: Exampl (1): Cosidr th sampl obsrvatios, 17,3,5,1,18,6,16,10 8 X i i1 17 3 5 118 6 16 10 116 X 14.5 8 8 8 14.5 is a poit

More information

Discrete Fourier Transform. Discrete Fourier Transform. Discrete Fourier Transform. Discrete Fourier Transform. Discrete Fourier Transform

Discrete Fourier Transform. Discrete Fourier Transform. Discrete Fourier Transform. Discrete Fourier Transform. Discrete Fourier Transform Discrt Fourir Trasform Dfiitio - T simplst rlatio btw a lt- squc x dfid for ω ad its DTFT X ( ) is ω obtaid by uiformly sampli X ( ) o t ω-axis btw ω < at ω From t dfiitio of t DTFT w tus av X X( ω ) ω

More information

DTFT Properties. Example - Determine the DTFT Y ( e ) of n. Let. We can therefore write. From Table 3.1, the DTFT of x[n] is given by 1

DTFT Properties. Example - Determine the DTFT Y ( e ) of n. Let. We can therefore write. From Table 3.1, the DTFT of x[n] is given by 1 DTFT Proprtis Exampl - Dtrmi th DTFT Y of y α µ, α < Lt x α µ, α < W ca thrfor writ y x x From Tabl 3., th DTFT of x is giv by ω X ω α ω Copyright, S. K. Mitra Copyright, S. K. Mitra DTFT Proprtis DTFT

More information

6. Negative Feedback in Single- Transistor Circuits

6. Negative Feedback in Single- Transistor Circuits Lctur 8: Intrductin t lctrnic analg circuit 36--366 6. Ngativ Fdback in Singl- Tranitr ircuit ugn Paprn, 2008 Our aim i t tudy t ffct f ngativ fdback n t mall-ignal gain and t mall-ignal input and utput

More information

1985 AP Calculus BC: Section I

1985 AP Calculus BC: Section I 985 AP Calculus BC: Sctio I 9 Miuts No Calculator Nots: () I this amiatio, l dots th atural logarithm of (that is, logarithm to th bas ). () Ulss othrwis spcifid, th domai of a fuctio f is assumd to b

More information

A Simple Proof that e is Irrational

A Simple Proof that e is Irrational Two of th most bautiful ad sigificat umbrs i mathmatics ar π ad. π (approximatly qual to 3.459) rprsts th ratio of th circumfrc of a circl to its diamtr. (approximatly qual to.788) is th bas of th atural

More information

APPENDIX: STATISTICAL TOOLS

APPENDIX: STATISTICAL TOOLS I. Nots o radom samplig Why do you d to sampl radomly? APPENDI: STATISTICAL TOOLS I ordr to masur som valu o a populatio of orgaisms, you usually caot masur all orgaisms, so you sampl a subst of th populatio.

More information

PREPARATORY MATHEMATICS FOR ENGINEERS

PREPARATORY MATHEMATICS FOR ENGINEERS CIVE 690 This qusti ppr csists f 6 pritd pgs, ch f which is idtifid by th Cd Numbr CIVE690 FORMULA SHEET ATTACHED UNIVERSITY OF LEEDS Jury 008 Emiti fr th dgr f BEg/ MEg Civil Egirig PREPARATORY MATHEMATICS

More information

MONTGOMERY COLLEGE Department of Mathematics Rockville Campus. 6x dx a. b. cos 2x dx ( ) 7. arctan x dx e. cos 2x dx. 2 cos3x dx

MONTGOMERY COLLEGE Department of Mathematics Rockville Campus. 6x dx a. b. cos 2x dx ( ) 7. arctan x dx e. cos 2x dx. 2 cos3x dx MONTGOMERY COLLEGE Dpartmt of Mathmatics Rockvill Campus MATH 8 - REVIEW PROBLEMS. Stat whthr ach of th followig ca b itgratd by partial fractios (PF), itgratio by parts (PI), u-substitutio (U), or o of

More information

Problem Value Score Earned No/Wrong Rec -3 Total

Problem Value Score Earned No/Wrong Rec -3 Total GEORGIA INSTITUTE OF TECHNOLOGY SCHOOL of ELECTRICAL & COMPUTER ENGINEERING ECE6 Fall Quiz # Writt Eam Novmr, NAME: Solutio Kys GT Usram: LAST FIRST.g., gtiit Rcitatio Sctio: Circl t dat & tim w your Rcitatio

More information

ENGI 4421 Central Limit Theorem Page Central Limit Theorem [Navidi, section 4.11; Devore sections ]

ENGI 4421 Central Limit Theorem Page Central Limit Theorem [Navidi, section 4.11; Devore sections ] ENGI 441 Cetral Limit Therem Page 11-01 Cetral Limit Therem [Navidi, secti 4.11; Devre sectis 5.3-5.4] If X i is t rmally distributed, but E X i, V X i ad is large (apprximately 30 r mre), the, t a gd

More information

Option 3. b) xe dx = and therefore the series is convergent. 12 a) Divergent b) Convergent Proof 15 For. p = 1 1so the series diverges.

Option 3. b) xe dx = and therefore the series is convergent. 12 a) Divergent b) Convergent Proof 15 For. p = 1 1so the series diverges. Optio Chaptr Ercis. Covrgs to Covrgs to Covrgs to Divrgs Covrgs to Covrgs to Divrgs 8 Divrgs Covrgs to Covrgs to Divrgs Covrgs to Covrgs to Covrgs to Covrgs to 8 Proof Covrgs to π l 8 l a b Divrgt π Divrgt

More information

Chapter 3.1: Polynomial Functions

Chapter 3.1: Polynomial Functions Ntes 3.1: Ply Fucs Chapter 3.1: Plymial Fuctis I Algebra I ad Algebra II, yu ecutered sme very famus plymial fuctis. I this secti, yu will meet may ther members f the plymial family, what sets them apart

More information

10. Joint Moments and Joint Characteristic Functions

10. Joint Moments and Joint Characteristic Functions 0 Joit Momts ad Joit Charactristic Fctios Followig sctio 6 i this sctio w shall itrodc varios paramtrs to compactly rprst th iformatio cotaid i th joit pdf of two rvs Giv two rvs ad ad a fctio g x y dfi

More information

8(4 m0) ( θ ) ( ) Solutions for HW 8. Chapter 25. Conceptual Questions

8(4 m0) ( θ ) ( ) Solutions for HW 8. Chapter 25. Conceptual Questions Solutios for HW 8 Captr 5 Cocptual Qustios 5.. θ dcrass. As t crystal is coprssd, t spacig d btw t plas of atos dcrass. For t first ordr diffractio =. T Bragg coditio is = d so as d dcrass, ust icras for

More information

Worksheet: Taylor Series, Lagrange Error Bound ilearnmath.net

Worksheet: Taylor Series, Lagrange Error Bound ilearnmath.net Taylor s Thorm & Lagrag Error Bouds Actual Error This is th ral amout o rror, ot th rror boud (worst cas scario). It is th dirc btw th actual () ad th polyomial. Stps:. Plug -valu ito () to gt a valu.

More information

SAFE OPERATION OF TUBULAR (PFR) ADIABATIC REACTORS. FIGURE 1: Temperature as a function of space time in an adiabatic PFR with exothermic reaction.

SAFE OPERATION OF TUBULAR (PFR) ADIABATIC REACTORS. FIGURE 1: Temperature as a function of space time in an adiabatic PFR with exothermic reaction. he 47 Lctu Fall 5 SFE OPERION OF UBULR (PFR DIBI REORS I a xthmic acti th tmatu will ctiu t is as mvs alg a lug flw act util all f th limitig actat is xhaust. Schmatically th aiabatic tmatu is as a fucti

More information

Lectur 22. RF and Microwave Circuit Design Γ-Plane and Smith Chart Analysis. ECE 303 Fall 2005 Farhan Rana Cornell University

Lectur 22. RF and Microwave Circuit Design Γ-Plane and Smith Chart Analysis. ECE 303 Fall 2005 Farhan Rana Cornell University ctur RF ad Micrwav Circuit Dig -Pla ad Smith Chart Aalyi I thi lctur yu will lar: -pla ad Smith Chart Stub tuig Quartr-Wav trafrmr ECE 33 Fall 5 Farha Raa Crll Uivrity V V Impdac Trafrmati i Tramii i ω

More information

Law of large numbers

Law of large numbers Law of larg umbrs Saya Mukhrj W rvisit th law of larg umbrs ad study i som dtail two typs of law of larg umbrs ( 0 = lim S ) p ε ε > 0, Wak law of larrg umbrs [ ] S = ω : lim = p, Strog law of larg umbrs

More information

Quantum Mechanics for Scientists and Engineers. David Miller

Quantum Mechanics for Scientists and Engineers. David Miller Quatum Mechaics fr Scietists ad Egieers David Miller Time-depedet perturbati thery Time-depedet perturbati thery Time-depedet perturbati basics Time-depedet perturbati thery Fr time-depedet prblems csider

More information

Chapter 2 Infinite Series Page 1 of 11. Chapter 2 : Infinite Series

Chapter 2 Infinite Series Page 1 of 11. Chapter 2 : Infinite Series Chatr Ifiit Sris Pag of Sctio F Itgral Tst Chatr : Ifiit Sris By th d of this sctio you will b abl to valuat imror itgrals tst a sris for covrgc by alyig th itgral tst aly th itgral tst to rov th -sris

More information

ln x = n e = 20 (nearest integer)

ln x = n e = 20 (nearest integer) H JC Prlim Solutios 6 a + b y a + b / / dy a b 3/ d dy a b at, d Giv quatio of ormal at is y dy ad y wh. d a b () (,) is o th curv a+ b () y.9958 Qustio Solvig () ad (), w hav a, b. Qustio d.77 d d d.77

More information

Review Exercises. 1. Evaluate using the definition of the definite integral as a Riemann Sum. Does the answer represent an area? 2

Review Exercises. 1. Evaluate using the definition of the definite integral as a Riemann Sum. Does the answer represent an area? 2 MATHEMATIS --RE Itgral alculus Marti Huard Witr 9 Rviw Erciss. Evaluat usig th dfiitio of th dfiit itgral as a Rima Sum. Dos th aswr rprst a ara? a ( d b ( d c ( ( d d ( d. Fid f ( usig th Fudamtal Thorm

More information

Acid Base Reactions. Acid Base Reactions. Acid Base Reactions. Chemical Reactions and Equations. Chemical Reactions and Equations

Acid Base Reactions. Acid Base Reactions. Acid Base Reactions. Chemical Reactions and Equations. Chemical Reactions and Equations Chmial Ratins and Equatins Hwitt/Lyns/Suhki/Yh Cnptual Intgratd Sin During a hmial ratin, n r mr nw mpunds ar frmd as a rsult f th rarrangmnt f atms. Chaptr 13 CHEMICAL REACTIONS Ratants Prduts Chmial

More information

ALOHA Product no.: 03007

ALOHA Product no.: 03007 EN s l d m S vrsatil, s yu! Yur styl is vry prsal as is yur MySpdy. Attach f ths trdy spdmtrs t yur bik ad shw vry wh yu rally ar. Satch up yur favrit dsig ad xprss yur idividuality mr tha vr wh ut ad

More information

Partition Functions and Ideal Gases

Partition Functions and Ideal Gases Partitio Fuctios ad Idal Gass PFIG- You v lard about partitio fuctios ad som uss ow w ll xplor tm i mor dpt usig idal moatomic diatomic ad polyatomic gass! for w start rmmbr: Q( N ( N! N Wat ar N ad? W

More information

Outline. Heat Exchangers. Heat Exchangers. Compact Heat Exchangers. Compact Heat Exchangers II. Heat Exchangers April 18, ME 375 Heat Transfer 1

Outline. Heat Exchangers. Heat Exchangers. Compact Heat Exchangers. Compact Heat Exchangers II. Heat Exchangers April 18, ME 375 Heat Transfer 1 Hat Exangr April 8, 007 Hat Exangr Larry artt Manial Engrg 375 Hat ranfr April 8, 007 Outl Bai ida f at xangr Ovrall at tranfr ffiint Lg-man tmpratur diffrn mtd Efftivn NU mtd ratial nidratin Hat Exangr

More information

Markov processes and the Kolmogorov equations

Markov processes and the Kolmogorov equations Chapter 6 Markv prcesses ad the Klmgrv equatis 6. Stchastic Differetial Equatis Csider the stchastic differetial equati: dx(t) =a(t X(t)) dt + (t X(t)) db(t): (SDE) Here a(t x) ad (t x) are give fuctis,

More information

MATH Midterm Examination Victor Matveev October 26, 2016

MATH Midterm Examination Victor Matveev October 26, 2016 MATH 33- Midterm Examiati Victr Matveev Octber 6, 6. (5pts, mi) Suppse f(x) equals si x the iterval < x < (=), ad is a eve peridic extesi f this fucti t the rest f the real lie. Fid the csie series fr

More information

. This is made to keep the kinetic energy at outlet a minimum.

. This is made to keep the kinetic energy at outlet a minimum. Runnr Francis Turbin Th shap th blads a Francis runnr is cmplx. Th xact shap dpnds n its spciic spd. It is bvius rm th quatin spciic spd (Eq.5.8) that highr spciic spd mans lwr had. This rquirs that th

More information

PURE MATHEMATICS A-LEVEL PAPER 1

PURE MATHEMATICS A-LEVEL PAPER 1 -AL P MATH PAPER HONG KONG EXAMINATIONS AUTHORITY HONG KONG ADVANCED LEVEL EXAMINATION PURE MATHEMATICS A-LEVEL PAPER 8 am am ( hours) This papr must b aswrd i Eglish This papr cosists of Sctio A ad Sctio

More information

Modern Physics. Unit 5: Schrödinger s Equation and the Hydrogen Atom Lecture 5.6: Energy Eigenvalues of Schrödinger s Equation for the Hydrogen Atom

Modern Physics. Unit 5: Schrödinger s Equation and the Hydrogen Atom Lecture 5.6: Energy Eigenvalues of Schrödinger s Equation for the Hydrogen Atom Mdrn Physics Unit 5: Schrödingr s Equatin and th Hydrgn Atm Lctur 5.6: Enrgy Eignvalus f Schrödingr s Equatin fr th Hydrgn Atm Rn Rifnbrgr Prfssr f Physics Purdu Univrsity 1 Th allwd nrgis E cm frm th

More information

07 - SEQUENCES AND SERIES Page 1 ( Answers at he end of all questions ) b, z = n

07 - SEQUENCES AND SERIES Page 1 ( Answers at he end of all questions ) b, z = n 07 - SEQUENCES AND SERIES Pag ( Aswrs at h d of all qustios ) ( ) If = a, y = b, z = c, whr a, b, c ar i A.P. ad = 0 = 0 = 0 l a l

More information

LECTURE 5 Guassian Wave Packet

LECTURE 5 Guassian Wave Packet LECTURE 5 Guassian Wav Pact 1.5 Eampl f a guassian shap fr dscribing a wav pact Elctrn Pact ψ Guassian Assumptin Apprimatin ψ As w hav sn in QM th wav functin is ftn rprsntd as a Furir transfrm r sris.

More information

Solutions. Definitions pertaining to solutions

Solutions. Definitions pertaining to solutions Slutis Defiitis pertaiig t slutis Slute is the substace that is disslved. It is usually preset i the smaller amut. Slvet is the substace that des the disslvig. It is usually preset i the larger amut. Slubility

More information

ENGI 4421 Central Limit Theorem Page Central Limit Theorem [Navidi, section 4.11; Devore sections ]

ENGI 4421 Central Limit Theorem Page Central Limit Theorem [Navidi, section 4.11; Devore sections ] ENGI 441 Cetral Limit Therem Page 11-01 Cetral Limit Therem [Navidi, secti 4.11; Devre sectis 5.3-5.4] If X i is t rmally distributed, but E X i, V X i ad is large (apprximately 30 r mre), the, t a gd

More information

Chapter 33 Gauss s Law

Chapter 33 Gauss s Law Chaptr 33 Gauss s Law 33 Gauss s Law Whn askd t find th lctric flux thrugh a clsd surfac du t a spcifid nn-trivial charg distributin, flks all t ftn try th immnsly cmplicatd apprach f finding th lctric

More information

GUC (Dr. Hany Hammad) 4/20/2016

GUC (Dr. Hany Hammad) 4/20/2016 GU (r. Hay Hamma) 4/0/06 Lctur # 0 Filtr sig y Th srti Lss Mth sig Stps Lw-pass prttyp sig. () Scalig a cvrsi. () mplmtati. Usig Stus. Usig High-Lw mpac Sctis. Thry f priic structurs. mag impacs a Trasfr

More information

Discrete Fourier Transform (DFT)

Discrete Fourier Transform (DFT) Discrt Fourir Trasorm DFT Major: All Egirig Majors Authors: Duc guy http://umricalmthods.g.us.du umrical Mthods or STEM udrgraduats 8/3/29 http://umricalmthods.g.us.du Discrt Fourir Trasorm Rcalld th xpotial

More information

The Matrix Exponential

The Matrix Exponential Th Matrix Exponntial (with xrciss) by Dan Klain Vrsion 28928 Corrctions and commnts ar wlcom Th Matrix Exponntial For ach n n complx matrix A, dfin th xponntial of A to b th matrix () A A k I + A + k!

More information

Math 34A. Final Review

Math 34A. Final Review Math A Final Rviw 1) Us th graph of y10 to find approimat valus: a) 50 0. b) y (0.65) solution for part a) first writ an quation: 50 0. now tak th logarithm of both sids: log() log(50 0. ) pand th right

More information

Session : Plasmas in Equilibrium

Session : Plasmas in Equilibrium Sssio : Plasmas i Equilibrium Ioizatio ad Coductio i a High-prssur Plasma A ormal gas at T < 3000 K is a good lctrical isulator, bcaus thr ar almost o fr lctros i it. For prssurs > 0.1 atm, collisio amog

More information

European Business Confidence Survey December 2012 Positive expectations for 2013

European Business Confidence Survey December 2012 Positive expectations for 2013 Dcmbr 2012 Erpa Bsiss Cfic rv Dcmbr 2012 Psitiv xpctatis fr 2013 Lasrp a Ivigrs EMEA hav rctl cmplt thir latst Erpa Bsiss Cfic rv. Th fiigs sggst a psitiv start t 2013 a a mr ptimistic tlk cmpar t that

More information

Another Explanation of the Cosmological Redshift. April 6, 2010.

Another Explanation of the Cosmological Redshift. April 6, 2010. Anthr Explanatin f th Csmlgical Rdshift April 6, 010. Jsé Francisc García Juliá C/ Dr. Marc Mrncian, 65, 5. 4605 Valncia (Spain) E-mail: js.garcia@dival.s h lss f nrgy f th phtn with th tim by missin f

More information

Digital Signal Processing, Fall 2006

Digital Signal Processing, Fall 2006 Digital Sigal Procssig, Fall 6 Lctur 9: Th Discrt Fourir Trasfor Zhg-Hua Ta Dpartt of Elctroic Systs Aalborg Uivrsity, Dar zt@o.aau.d Digital Sigal Procssig, I, Zhg-Hua Ta, 6 Cours at a glac MM Discrt-ti

More information

A Study on Estimation of Lifetime Distribution with Covariates Under Misspecification

A Study on Estimation of Lifetime Distribution with Covariates Under Misspecification Prceedigs f the Wrld Cgress Egieerig ad Cmputer Sciece 2015 Vl II, Octber 21-23, 2015, Sa Fracisc, USA A Study Estimati f Lifetime Distributi with Cvariates Uder Misspecificati Masahir Ykyama, Member,

More information

z 1+ 3 z = Π n =1 z f() z = n e - z = ( 1-z) e z e n z z 1- n = ( 1-z/2) 1+ 2n z e 2n e n -1 ( 1-z )/2 e 2n-1 1-2n -1 1 () z

z 1+ 3 z = Π n =1 z f() z = n e - z = ( 1-z) e z e n z z 1- n = ( 1-z/2) 1+ 2n z e 2n e n -1 ( 1-z )/2 e 2n-1 1-2n -1 1 () z Sris Expasio of Rciprocal of Gamma Fuctio. Fuctios with Itgrs as Roots Fuctio f with gativ itgrs as roots ca b dscribd as follows. f() Howvr, this ifiit product divrgs. That is, such a fuctio caot xist

More information

Derivation of a Predictor of Combination #1 and the MSE for a Predictor of a Position in Two Stage Sampling with Response Error.

Derivation of a Predictor of Combination #1 and the MSE for a Predictor of a Position in Two Stage Sampling with Response Error. Drivatio of a Prdictor of Cobiatio # ad th SE for a Prdictor of a Positio i Two Stag Saplig with Rspos Error troductio Ed Stak W driv th prdictor ad its SE of a prdictor for a rado fuctio corrspodig to

More information

Even/Odd Mode Analysis of the Wilkinson Divider

Even/Odd Mode Analysis of the Wilkinson Divider //9 Wilkinn Dividr Evn and Odd Md Analyi.dc / Evn/Odd Md Analyi f th Wilkinn Dividr Cnidr a matchd Wilkinn pwr dividr, with a urc at prt : Prt Prt Prt T implify thi chmatic, w rmv th grund plan, which

More information

, the random variable. and a sample size over the y-values 0:1:10.

, the random variable. and a sample size over the y-values 0:1:10. Lecture 3 (4//9) 000 HW PROBLEM 3(5pts) The estimatr i (c) f PROBLEM, p 000, where { } ~ iid bimial(,, is 000 e f the mst ppular statistics It is the estimatr f the ppulati prprti I PROBLEM we used simulatis

More information

Topic 5: Discrete-Time Fourier Transform (DTFT)

Topic 5: Discrete-Time Fourier Transform (DTFT) ELEC36: Signals And Systms Tpic 5: Discrt-Tim Furir Transfrm (DTFT) Dr. Aishy Amr Cncrdia Univrsity Elctrical and Cmputr Enginring DT Furir Transfrm Ovrviw f Furir mthds DT Furir Transfrm f Pridic Signals

More information

The Matrix Exponential

The Matrix Exponential Th Matrix Exponntial (with xrciss) by D. Klain Vrsion 207.0.05 Corrctions and commnts ar wlcom. Th Matrix Exponntial For ach n n complx matrix A, dfin th xponntial of A to b th matrix A A k I + A + k!

More information

They must have different numbers of electrons orbiting their nuclei. They must have the same number of neutrons in their nuclei.

They must have different numbers of electrons orbiting their nuclei. They must have the same number of neutrons in their nuclei. 37 1 How may utros ar i a uclus of th uclid l? 20 37 54 2 crtai lmt has svral isotops. Which statmt about ths isotops is corrct? Thy must hav diffrt umbrs of lctros orbitig thir ucli. Thy must hav th sam

More information

The Language of SOCIAL MEDIA. Christine Dugan

The Language of SOCIAL MEDIA. Christine Dugan Th Languag f SOCIAL MEDIA Christin Dugan Tabl f Cntnts Gt th Wrd Out...4 A Nw Kind f Languag...6 Scial Mdia Talk...12 Cnncting with Othrs...28 Changing th Dictinary...36 Glssary...42 Indx...44 Chck It

More information

Statistics 3858 : Likelihood Ratio for Exponential Distribution

Statistics 3858 : Likelihood Ratio for Exponential Distribution Statistics 3858 : Liklihood Ratio for Expotial Distributio I ths two xampl th rjctio rjctio rgio is of th form {x : 2 log (Λ(x)) > c} for a appropriat costat c. For a siz α tst, usig Thorm 9.5A w obtai

More information

Part B: Transform Methods. Professor E. Ambikairajah UNSW, Australia

Part B: Transform Methods. Professor E. Ambikairajah UNSW, Australia Part B: Trasform Mthods Chaptr 3: Discrt-Tim Fourir Trasform (DTFT) 3. Discrt Tim Fourir Trasform (DTFT) 3. Proprtis of DTFT 3.3 Discrt Fourir Trasform (DFT) 3.4 Paddig with Zros ad frqucy Rsolutio 3.5

More information

Ch. 1 Introduction to Estimation 1/15

Ch. 1 Introduction to Estimation 1/15 Ch. Itrducti t stimati /5 ample stimati Prblem: DSB R S f M f s f f f ; f, φ m tcsπf t + φ t f lectrics dds ise wt usually white BPF & mp t s t + w t st. lg. f & φ X udi mp cs π f + φ t Oscillatr w/ f

More information

Chapter Five. More Dimensions. is simply the set of all ordered n-tuples of real numbers x = ( x 1

Chapter Five. More Dimensions. is simply the set of all ordered n-tuples of real numbers x = ( x 1 Chatr Fiv Mor Dimsios 51 Th Sac R W ar ow rard to mov o to sacs of dimsio gratr tha thr Ths sacs ar a straightforward gralizatio of our Euclida sac of thr dimsios Lt b a ositiv itgr Th -dimsioal Euclida

More information

High Energy Physics. Lecture 5 The Passage of Particles through Matter

High Energy Physics. Lecture 5 The Passage of Particles through Matter High Enrgy Physics Lctur 5 Th Passag of Particls through Mattr 1 Introduction In prvious lcturs w hav sn xampls of tracks lft by chargd particls in passing through mattr. Such tracks provid som of th most

More information

Thomas J. Osler. 1. INTRODUCTION. This paper gives another proof for the remarkable simple

Thomas J. Osler. 1. INTRODUCTION. This paper gives another proof for the remarkable simple 5/24/5 A PROOF OF THE CONTINUED FRACTION EXPANSION OF / Thomas J Oslr INTRODUCTION This ar givs aothr roof for th rmarkabl siml cotiud fractio = 3 5 / Hr is ay ositiv umbr W us th otatio x= [ a; a, a2,

More information

Electrical field generated by a charged harmonic oscillator at thermodynamic equilibrium

Electrical field generated by a charged harmonic oscillator at thermodynamic equilibrium lctical fild gatd by a cagd aic scillat at tdyaic uilibiu STFANO GIODANO Dpatt f Bipysical ad lctic giig Uivsity f Ga Via Opa Pia A 65 Gva ITALY Abstact: - I tis pap w aalys t lctagtic fild gatd by a cagd

More information

DFT: Discrete Fourier Transform

DFT: Discrete Fourier Transform : Discrt Fourir Trasform Cogruc (Itgr modulo m) I this sctio, all lttrs stad for itgrs. gcd m, = th gratst commo divisor of ad m Lt d = gcd(,m) All th liar combiatios r s m of ad m ar multils of d. a b

More information

(Reference: sections in Silberberg 5 th ed.)

(Reference: sections in Silberberg 5 th ed.) ALE. Atomic Structur Nam HEM K. Marr Tam No. Sctio What is a atom? What is th structur of a atom? Th Modl th structur of a atom (Rfrc: sctios.4 -. i Silbrbrg 5 th d.) Th subatomic articls that chmists

More information

Mount Vernon Charles Station Potential Visibility Assessment. December 4, 2017 Chesapeake Conservancy Annapolis, MD 21401

Mount Vernon Charles Station Potential Visibility Assessment. December 4, 2017 Chesapeake Conservancy Annapolis, MD 21401 Mt Vr Charls tati Pttial Vility Assssmt Dcmbr, 7 Chsapak Csrvacy Aaplis, MD Mthdlgy Bst Availabl Data Lidar pit clds rprst th bst availabl lvati data i Charls ad Pric Grg s Ctis. Ths datasts ctai millis

More information

9.5 Complex variables

9.5 Complex variables 9.5 Cmpl varabls. Cnsdr th funtn u v f( ) whr ( ) ( ), f( ), fr ths funtn tw statmnts ar as fllws: Statmnt : f( ) satsf Cauh mann quatn at th rgn. Statmnt : f ( ) ds nt st Th rrt statmnt ar (A) nl (B)

More information

Lecture 26: Quadrature (90º) Hybrid.

Lecture 26: Quadrature (90º) Hybrid. Whits, EE 48/58 Lctur 26 Pag f Lctur 26: Quadratur (9º) Hybrid. Back in Lctur 23, w bgan ur discussin f dividrs and cuplrs by cnsidring imprtant gnral prprtis f thrand fur-prt ntwrks. This was fllwd by

More information

120~~60 o D 12~0 1500~30O, 15~30 150~30. ..,u 270,,,, ~"~"-4-~qno 240 2~o 300 v 240 ~70O 300

120~~60 o D 12~0 1500~30O, 15~30 150~30. ..,u 270,,,, ~~-4-~qno 240 2~o 300 v 240 ~70O 300 1 Find th plar crdinats that d nt dscrib th pint in th givn graph. (-2, 30 ) C (2,30 ) B (-2,210 ) D (-2,-150 ) Find th quatin rprsntd in th givn graph. F 0=3 H 0=2~ G r=3 J r=2 0 :.1 2 3 ~ 300 2"~ 2,

More information

- Prefixes 'mono', 'uni', 'bi' and 'du' - Why are there no asprins in the jungle? Because the parrots ate them all.

- Prefixes 'mono', 'uni', 'bi' and 'du' - Why are there no asprins in the jungle? Because the parrots ate them all. - Prfs '', '', 'b' a '' - Na: Wrsar 27 Dat: W ar tr asrs t? Bas t arrts at t a. At t btt f t a s a st f wrs. Ts wrs ar t. T wrs av b a rta (ra arss), vrta (ra w) r aa (fr rr t rr). W f a wr, raw a at r

More information

A L A BA M A L A W R E V IE W

A L A BA M A L A W R E V IE W A L A BA M A L A W R E V IE W Volume 52 Fall 2000 Number 1 B E F O R E D I S A B I L I T Y C I V I L R I G HT S : C I V I L W A R P E N S I O N S A N D TH E P O L I T I C S O F D I S A B I L I T Y I N

More information

Physics 43 HW #9 Chapter 40 Key

Physics 43 HW #9 Chapter 40 Key Pysics 43 HW #9 Captr 4 Ky Captr 4 1 Aftr many ours of dilignt rsarc, you obtain t following data on t potolctric ffct for a crtain matrial: Wavlngt of Ligt (nm) Stopping Potntial (V) 36 3 4 14 31 a) Plot

More information

EE 119 Homework 6 Solution

EE 119 Homework 6 Solution EE 9 Hmwrk 6 Slutin Prr: J Bkr TA: Xi Lu Slutin: (a) Th angular magniicatin a tlcp i m / th cal lngth th bjctiv ln i m 4 45 80cm (b) Th clar aprtur th xit pupil i 35 mm Th ditanc btwn th bjctiv ln and

More information

SIMPLE METHOD FOR THE SOLUTION OF INCOMPRESSIBLE FLOWS ON NON-STAGGERED GRIDS

SIMPLE METHOD FOR THE SOLUTION OF INCOMPRESSIBLE FLOWS ON NON-STAGGERED GRIDS SIML MTHOD FOR TH SOLUTION OF INCOMRSSIBL FLOWS ON NON-STAGGRD GRIDS I. Szai - astr Mditrraa Uivrsity, Mchaical girig Dpartmt, Mrsi 10 -Trky 1. Itrdcti Thr ar sally t kids f grid arragmts sd t slv th flid

More information

are given in the table below. t (hours)

are given in the table below. t (hours) CALCULUS WORKSHEET ON INTEGRATION WITH DATA Work th following on notbook papr. Giv dcimal answrs corrct to thr dcimal placs.. A tank contains gallons of oil at tim t = hours. Oil is bing pumpd into th

More information

CDS 101: Lecture 5.1 Reachability and State Space Feedback

CDS 101: Lecture 5.1 Reachability and State Space Feedback CDS, Lctur 5. CDS : Lctur 5. Rachability ad Stat Spac Fdback Richard M. Murray ad Hido Mabuchi 5 Octobr 4 Goals: Di rachability o a cotrol systm Giv tsts or rachability o liar systms ad apply to ampls

More information

Time : 1 hr. Test Paper 08 Date 04/01/15 Batch - R Marks : 120

Time : 1 hr. Test Paper 08 Date 04/01/15 Batch - R Marks : 120 Tim : hr. Tst Papr 8 D 4//5 Bch - R Marks : SINGLE CORRECT CHOICE TYPE [4, ]. If th compl umbr z sisfis th coditio z 3, th th last valu of z is qual to : z (A) 5/3 (B) 8/3 (C) /3 (D) o of ths 5 4. Th itgral,

More information

Review for cumulative test

Review for cumulative test Hrs Math 3 review prblems Jauary, 01 cumulative: Chapters 1- page 1 Review fr cumulative test O Mday, Jauary 7, Hrs Math 3 will have a curse-wide cumulative test cverig Chapters 1-. Yu ca expect the test

More information

INTRODUCTION TO SAMPLING DISTRIBUTIONS

INTRODUCTION TO SAMPLING DISTRIBUTIONS http://wiki.stat.ucla.du/socr/id.php/socr_courss_2008_thomso_econ261 INTRODUCTION TO SAMPLING DISTRIBUTIONS By Grac Thomso INTRODUCTION TO SAMPLING DISTRIBUTIONS Itro to Samplig 2 I this chaptr w will

More information

ELEC9721: Digital Signal Processing Theory and Applications

ELEC9721: Digital Signal Processing Theory and Applications ELEC97: Digital Sigal Pocssig Thoy ad Applicatios Tutoial ad solutios Not: som of th solutios may hav som typos. Q a Show that oth digital filts giv low hav th sam magitud spos: i [] [ ] m m i i i x c

More information

Search sequence databases 3 10/25/2016

Search sequence databases 3 10/25/2016 Sarch squnc databass 3 10/25/2016 Etrm valu distribution Ø Suppos X is a random variabl with probability dnsity function p(, w sampl a larg numbr S of indpndnt valus of X from this distribution for an

More information

Helping you learn to save. Pigby s tips and tricks

Helping you learn to save. Pigby s tips and tricks Hlpg yu lan t av Pigby tip and tick Hlpg vy littl av Pigby ha bn tachg hi find all abut ny and hw t av f what ty want. Tuffl i avg f a nw tappy bubbl d and Pi can t wait t b abl t buy nw il pat. Pigby

More information

MATHEMATICS 9740/01 Paper 1 14 Sep hours

MATHEMATICS 9740/01 Paper 1 14 Sep hours Cadidate Name: Class: JC PRELIMINARY EXAM Higher MATHEMATICS 9740/0 Paper 4 Sep 06 3 hurs Additial Materials: Cver page Aswer papers List f Frmulae (MF5) READ THESE INSTRUCTIONS FIRST Write yur full ame

More information

The Phase Probability for Some Excited Binomial States

The Phase Probability for Some Excited Binomial States Egypt. J. Sl., Vl. 5, N., 3 Th Pha Prbability fr S Excitd Biial Stat. Darwih Faculty f Educati, Suz Caal Uivrity at Al-Arih, Egypt. I thi papr, th pha prprti i Pgg-Bartt frali ar cidrd. Th pha ditributi

More information

Exponential Functions

Exponential Functions Eponntial Functions Dinition: An Eponntial Function is an unction tat as t orm a, wr a > 0. T numbr a is calld t bas. Eampl: Lt i.. at intgrs. It is clar wat t unction mans or som valus o. 0 0,,, 8,,.,.

More information

ANOVA- Analyisis of Variance

ANOVA- Analyisis of Variance ANOVA- Aalii of Variac CS 700 Comparig altrativ Comparig two altrativ u cofidc itrval Comparig mor tha two altrativ ANOVA Aali of Variac Comparig Mor Tha Two Altrativ Naïv approach Compar cofidc itrval

More information

y = 2xe x + x 2 e x at (0, 3). solution: Since y is implicitly related to x we have to use implicit differentiation: 3 6y = 0 y = 1 2 x ln(b) ln(b)

y = 2xe x + x 2 e x at (0, 3). solution: Since y is implicitly related to x we have to use implicit differentiation: 3 6y = 0 y = 1 2 x ln(b) ln(b) 4. y = y = + 5. Find th quation of th tangnt lin for th function y = ( + ) 3 whn = 0. solution: First not that whn = 0, y = (1 + 1) 3 = 8, so th lin gos through (0, 8) and thrfor its y-intrcpt is 8. y

More information

Chemical Physics II. More Stat. Thermo Kinetics Protein Folding...

Chemical Physics II. More Stat. Thermo Kinetics Protein Folding... Chmical Physics II Mor Stat. Thrmo Kintics Protin Folding... http://www.nmc.ctc.com/imags/projct/proj15thumb.jpg http://nuclarwaponarchiv.org/usa/tsts/ukgrabl2.jpg http://www.photolib.noaa.gov/corps/imags/big/corp1417.jpg

More information

Lectures 9 IIR Systems: First Order System

Lectures 9 IIR Systems: First Order System EE3054 Sigals ad Systms Lcturs 9 IIR Systms: First Ordr Systm Yao Wag Polytchic Uivrsity Som slids icludd ar xtractd from lctur prstatios prpard by McCllla ad Schafr Lics Ifo for SPFirst Slids This work

More information

BACKFILLED 6" MIN TRENCH BOTT OF CONT FTG PROVIDE SLEEVE 1" CLR AROUND PIPE - TYP BOTTOM OF TRENCH PIPE SHALL NOT EXTEND BELOW THIS LINE

BACKFILLED 6 MIN TRENCH BOTT OF CONT FTG PROVIDE SLEEVE 1 CLR AROUND PIPE - TYP BOTTOM OF TRENCH PIPE SHALL NOT EXTEND BELOW THIS LINE TT T I I. VTS T T, SPIS. 0 MSY ITS MS /" = '-0" +' - " T /" d ' - 0" I SIGTI d d w/ " M I S IS M I d 0 T d T d w/ å" 0 K W TT I IS ITPT SM SIZ x 0'-0" I T T W PSSI d /" TY I SIGTI Y ' - 0" '-0" '-0" P

More information

On the approximation of the constant of Napier

On the approximation of the constant of Napier Stud. Uiv. Babş-Bolyai Math. 560, No., 609 64 O th approximatio of th costat of Napir Adri Vrscu Abstract. Startig from som oldr idas of [] ad [6], w show w facts cocrig th approximatio of th costat of

More information

Engineering 323 Beautiful HW #13 Page 1 of 6 Brown Problem 5-12

Engineering 323 Beautiful HW #13 Page 1 of 6 Brown Problem 5-12 Enginring Bautiful HW #1 Pag 1 of 6 5.1 Two componnts of a minicomputr hav th following joint pdf for thir usful liftims X and Y: = x(1+ x and y othrwis a. What is th probability that th liftim X of th

More information

AP Statistics Notes Unit Eight: Introduction to Inference

AP Statistics Notes Unit Eight: Introduction to Inference AP Statistics Ntes Uit Eight: Itrducti t Iferece Syllabus Objectives: 4.1 The studet will estimate ppulati parameters ad margis f errrs fr meas. 4.2 The studet will discuss the prperties f pit estimatrs,

More information