Digital Signal Processing

Size: px
Start display at page:

Download "Digital Signal Processing"

Transcription

1 Digital Sigal Procssig Brli C 4 Rfrcs:.. V. Oppi ad R. W. Scafr, Discrt-ti Sigal Procssig, uag t. al., Spo Laguag Procssig, Captrs 5, 6. J. R. Dllr t. al., Discrt-Ti Procssig of Spc Sigals, Captrs J. W. Pico, Sigal odlig tciqus i spc rcogitio, procdigs of t IEEE, Sptbr 99, pp. 5-47

2 Digital Sigal Procssig Digital Sigal Discrt-ti sigal wit discrt aplitud [] Digital Sigal Procssig Maipulat digital sigals i a digital coputr 4 SP- Brli C

3 Two Mai pproacs to Digital Sigal Procssig Filtrig Sigal i [] Filtr plify or attuat so frqucy copots of [ ] Sigal out y [ ] Paratr Etractio Sigal i [] Paratr Etractio.g.:. Spctru Estiatio. Paratrs for Rcogitio Paratr out c c c c c c c c c L L L 4 SP- Brli C

4 [ ] ( φ ) Siusoid Sigals : aplitud ( 振幅 ) : agular frqucy ( 角頻率 ), : pas ( 相角 ) φ f : oralidfrqucy f f T Priod, rprstd by ubr of sapls [] [ ] ( ) (,,... ) E.g., spc sigals ca b dcoposd as sus of siusoids [] T 5 sapls 4 SP- Brli C 4

5 [ ] Siusoid Sigals (cot.) is priodic wit a priod of (sapls) [ ] [ ] ( ) ( φ ) ( ) φ (,,... ) Eapls (siusoid sigals) [] ( ) is priodic wit priod 8 / 4 [] ( / 8) is priodic wit priod 6 [] ( ) is ot priodic 4 SP- Brli C 5

6 4 SP- Brli C 6 Siusoid Sigals (cot.) [ ] ( ) ( ) 8 itgrs positiv ar ad ) ( / [ ] ( ) ( ) ( ) 6 ubrs positiv ar ad / [ ] ( ) ( ) ( ) ( ) ( ) t ist! dos' itgrs positiv ar ad Q

7 Siusoid Sigals (cot.) Copl Epotial Sigal Us Eulr s rlatio to prss copl ubrs y φ ( φ si φ ) y y y y ( is a ral ubr ) Iagiary part I φ y si φ R ral part 4 SP- Brli C 7

8 Siusoid Sigals (cot.) Siusoid Sigal ral part [] ( φ ) R R { ( φ ) } { φ } 4 SP- Brli C 8

9 Siusoid Sigals (cot.) Su of two copl potial sigals wit sa frqucy ( φ ) ( φ ) ( ) φ φ φ ( φ ) W oly t ral part is idrd T su of siusoids of t sa frqucy is aotr siusoid of t sa frqucy ( φ ) ( φ ) ( φ ), ad ar ral ubrs 4 SP- Brli C 9

10 4 SP- Brli C Siusoid Sigals (cot.) Trigootric Idtitis si si ta φ φ φ φ φ ( ) ( ) ( ) ( ) si si si si φ φ φ φ φ φ φ φ φ φ

11 So Digital Sigals 4 SP- Brli C

12 4 SP- Brli C So Digital Sigals y sigal squc ca b rprstd as a su of sift ad scald uit ipuls squcs (sigals) [ ] [] [] [ ] δ scal/wigtd Ti-siftd uit ipuls squc [] [] [ ] [] [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] () [ ] ( ) [ ] ( ) [] () [ ] ( ) [ ] () [ ] δ δ δ δ δ δ δ δ δ δ δ δ δ δ,,...,,,,...,

13 Digital Systs digital syst T is a syst tat, giv a iput sigal [], grats a output sigal y[] [ ] T { [ ] } y [] { } T y[ ] 4 SP- Brli C

14 Liar Proprtis of Digital Systs Liar cobiatio of iputs aps to liar cobiatio of outputs { a [ ] b [ ] } at { [ ] } bt { [ ] } T Ti-ivariat (Ti-sift) ti sift of i t iput by sapls giv a sift i t output by sapls y ± T ±, [ ] { [ ]} ti sift [ ] (if > ) rigt sift [ ] (if > ) lft sift sapls sapls 4 SP- Brli C 4

15 Proprtis of Digital Systs (cot.) Liar ti-ivariat (LTI) T syst output ca b prssd as a covolutio ( 迴旋積分 ) of t iput [] ad t ipuls rspos [] T syst ca b caractrid by t syst s ipuls rspos [], wic also is a sigal squc If t iput [] is ipuls δ [], t output is [] δ [ ] [ ] Digital Syst 4 SP- Brli C 5

16 Proprtis of Digital Systs (cot.) Liar ti-ivariat (LTI) Eplaatio: Ipuls rspos T δ [ ] [ ] Ti ivariat δ δ Digital Syst [ ] [ ] δ [ ] T [] [ ] T [ ] [ ] { } { [] } T [] δ [ ] scal [] T { δ [ ]} [][ ] [] [] Ti-siftd uit ipuls squc liar Ti-ivariat covolutio 4 SP- Brli C 6

17 Proprtis of Digital Systs (cot.) Liar ti-ivariat (LTI) Covolutio Eapl δ[] [ ] δ [ ] δ LgtL [ ] δ LTI [ ]? LTI [] [ ] [ ] [ ] LgtM - LgtLM Su up y[] SP- Brli C 7

18 Proprtis of Digital Systs (cot.) Liar ti-ivariat (LTI) Covolutio: Graliatio Rflct [] about t origi ( [-]) Slid([-] [-] or [-(-)] ), ultiply it wit [] Su up [ ] y [] [][ ] [ ] [ ( )] [ ] Rflct Multiply [ ] slid Su up 4 SP- Brli C 8

19 [ ] - y [ ] [ ] [ ] Rflct [ ] y[ ], - [ ] - - [ ] [ ] [ ] [ 4] Covolutio - - y - y - - y y [ ], [ ], [ ], [ ], 4 [][ ] Su up - y[ ] 4-4 SP- Brli C 9

20 Proprtis of Digital Systs (cot.) Liar ti-ivariat (LTI) Coutatio Covolutio is coutativ ad distributiv [] [ ] [ ] [ ] [ ]* [ ]* [ ] [] * [] * [] Distributio [ ] [ ] [ ] [ ] [ ]* ( [ ] [ ]) [] * [] [] * [] ipuls rspos as fiit duratio» Fiit-Ipuls Rspos (FIR) ipuls rspos as ifiit duratio» Ifiit-Ipuls Rspos (IIR) y [ ] [ ]* [ ] [] * [] [][ ] [][ ] 4 SP- Brli C

21 4 SP- Brli C Proprtis of Digital Systs (cot.) Prov covolutio is coutativ [] [ ] [ ] [ ] [ ] [ ] [ ] ( ) [] [] y * lt *

22 4 SP- Brli C Proprtis of Digital Systs (cot.) Liar ti-varyig Syst E.g., is a aplitud odulator [] [ ] y [] [ ] [] [ ] [] [] [ ] [ ] [ ] ( )? But suppos y y y y

23 Proprtis of Digital Systs (cot.) Boudd Iput ad Boudd Output (BIBO): stabl y [ ] B < [] B < LTI syst is BIBO if oly if [] is absolutly suabl y [ ] 4 SP- Brli C

24 Proprtis of Digital Systs (cot.) Causality syst is casual if for vry coic of, t output squc valu at idig dpds o oly t iput squc valu for y [ ] K M α y [ ] [ ] β [ ] β y[ ] - β α - - β α - - β M α - y ocausal FIR ca b ad causal by addig sufficit log dlay 4 SP- Brli C 4

25 Discrt-Ti Fourir Trasfor (DTFT) Frqucy Rspos ( ) Dfid as t discrt-ti Fourir Trasfor of ( ) is cotiuous ad is priodic wit priod [ ] proportioal to two tis of t saplig frqucy ( ) is a copl fuctio of ( ) ( ) ( ) r i ( ) ( ) agitud pas 4 SP- Brli C 5

26 4 SP- Brli C 6 Discrt-Ti Fourir Trasfor (cot.) Rprstatio of Squcs by Fourir Trasfor sufficit coditio for t istc of Fourir trasfor [] < [ ] ( ) ( ) [ ] d δ,, si ) ( ) ( ) ( ( ) [] [] ( ) [ ] [ ] [ ] [ ] [ ] d d d δ Fourir trasfor is ivrtibl: ) ( ( ) [] [] ( ) d absolutly suabl DTFT Ivrs DTFT

27 4 SP- Brli C 7 Discrt-Ti Fourir Trasfor (cot.) Covolutio Proprty ( ) [] [] [][ ] ( ) [ ] [ ] [] [ ] ( ) ( ) [] ( ) ( ) Y y ] [ ' ] [ ] [ ' ' ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) Y Y Y ' ' '

28 4 SP- Brli C 8 Discrt-Ti Fourir Trasfor (cot.) Parsval s Tor Dfi t autocorrlatio of sigal [] ( ) d powr spctru [ ] [] ( ) ] [ ] [ ] [ ] [ ] [ ] [ * * l l R l ( ) ( ) ( ) ( ) * S [] ( ) ( ) d d S R [ ] [ ] [ ] [ ] ( ) d R * St T total rgy of a sigal ca b giv i itr t ti or frqucy doai. ( l) l l y y * cougat copl : *

29 Discrt-Ti Fourir Trasfor (DTFT) LTI syst wit ipuls rspos Wat is t output for y [ ] si ( φ ) ( φ ) [] [] [] ( φ ) [] * [] y ( ( ) φ ) [] ( φ ) [] ( φ ) ( ) ( φ ) ( ) ( ) [ ] y [ ] [ ] ( φ ) Syst s frqucy rspos ( ) > aplify ( ) < attuat ( φ ) ( ) ( ) [ ] ( ) ( φ ) ( ) ( ) si ( φ ) ( ) [] ( ) ( φ ) ( ) y [ ] y 4 SP- Brli C 9

30 Discrt-Ti Fourir Trasfor (cot.) 4 SP- Brli C

31 Z-Trasfor -trasfor is a graliatio of (Discrt-Ti) Fourir trasfor [ ] ( ) [ ] -trasfor of is dfid as [ ] ( ) [ ] ( ) r Wr, a copl-variabl For Fourir trasfor I copl pla ( ) ( ) R -trasfor valuatd o t uit circl ( ) uit circl 4 SP- Brli C

32 Z-Trasfor (cot.) Fourir trasfor vs. -trasfor Fourir trasfor usd to plot t frqucy rspos of a filtr -trasfor usd to aaly or gral filtr caractristics,.g. stability I copl pla R ROC (Rgio of Covrg) Is t st of for wic -trasfor ists (covrgs) R R [] < absolutly suabl I gral, ROC is a rig-sapd rgio ad t Fourir trasfor ists if ROC icluds t uit circl ( ) 4 SP- Brli C

33 Z-Trasfor (cot.) LTI syst is dfid to b causal, if its ipuls rspos is a causal sigal, i.. [] for < Siilarly, ati-causal ca b dfid as y [ ] [ ]* [ ] [] * [] [][ ] Rigt-sidd squc [][ ] [] for > Lft-sidd squc LTI syst is dfid to b stabl, if for vry boudd iput it producs a boudd output cssary coditio: [ ] < Tat is Fourir trasfor ists, ad trfor -trasfor iclud t uit circl i its rgio of covrg 4 SP- Brli C

34 Rigt-Sidd Squc t uit cycl E.g., t potial sigal. Z-Trasfor (cot.) [] a u[], wr u[] a ( ) ( ) a a ROC is > I a R a If a < for for < Fourir tr asfor of [] ists if a < av a pol at a (Pol: -trasfor gos to ifiity) 4 SP- Brli C 4

35 Z-Trasfor (cot.) Lft-Sidd Squc E.g. [] a u[ ] (,-,-,...,- ). ( ) a u[ ] t uit cycl I a If a < a ROC is < a R ( ) a w a a a <, t a a [] dos' t ist, bcaus [] potially as a Fourir trasfor of will go 4 SP- Brli C 5

36 4 SP- Brli C 6 Z-Trasfor (cot.) Two-Sidd Squc E.g. [] [] [ ]. u u [] [ ],, < > u u R I t uit cycl [ ] uit circl t t iclud dos' bcaus t ist, dos' Fourir tr asfor of ROC ad is > < ROC ( )

37 Fiit-lgt Squc E.g [] a, Z-Trasfor (cot.), otrs ( ) ( ) ( a ) a a a - a a a a... a ROC 4 is tir - pla cpt t uit cycl I ( ) a,,.., 4 If 8 R 7 pols at ro pol ad ro at is caclld a 4 SP- Brli C 7

38 Z-Trasfor (cot.) Proprtis of -trasfor []. If is rigt-sidd squc, i.. [ ], ad if ROC is t trior of so circl, t all fiit for wic > r will b i ROC If,ROC will iclud causal squc is rigt-sidd wit ROC is t trior of circl icludig []. If is lft-sidd squc, i.. [],, t ROC is t itrior of so circl, < If,ROC will iclud []. If is two-sidd squc, t ROC is a rig 4. T ROC ca t cotai ay pols 4 SP- Brli C 8

39 Suary of t Fourir ad -trasfors 4 SP- Brli C 9

40 LTI Systs i t Frqucy Doai Eapl : copl potial squc Syst ipuls rspos y [ ] [] [] [] [] [ ] - [] ( ) - Trfor, a copl potial iput to a LTI syst rsults i t sa copl potial at t output, but odifid by ( ) T copl potial is a igfuctio of a LTI syst, ad is t associatd igvalu T ( ) scalar { [ ] } ( ) [ ] ( ) ( ) : t t It is oft syst Fourir tr syst y [ ] [ ]* [ ] [] * [] [][ ] ipuls rfrrd frqucy asfor to rspos. as of t rspos. [][ ] 4 SP- Brli C 4

41 4 SP- Brli C 4 [] ( ) ( ) ( ) ( ) [ ] ( ) ( ) ( ) ( ) [ ] ( ) ( ) [ ] ) ( ) ( ) ( ) ( * y φ φ φ φ φ φ φ LTI Systs i t Frqucy Doai (cot.) Eapl : siusoidal squc Syst ipuls rspos [ ] ( ) φ w [] ( ) φ φ φ [ ] ( ) θ θ θ θ θ θ θ θ θ i i si si ( ) ( ) ( ) ( ) ( ) * * ( ) ( ) ( ) si si si * si * y y agitud rspos pas rspos

42 LTI Systs i t Frqucy Doai (cot.) Eapl : su of siusoidal squcs y K [] ( φ ) K [] ( ) [ ( )] φ agitud rspos siilar prssio is obtaid for a iput istig of a su of copl potials pas rspos 4 SP- Brli C 4

43 LTI Systs i t Frqucy Doai (cot.) Eapl 4: Covolutio Tor [] δ [ P ] [] a u[], a < DTFT DTFT [ ] [ ] ( ) ( ) ( ) δ P a ( ) Y P ( ) ( ) ( ) a P a δ P P as a oro valu w P 4 SP- Brli C 4

44 4 SP- Brli C 44 LTI Systs i t Frqucy Doai (cot.) Eapl 5: Widowig Tor [][] ( ) ( ) W w [] [ ] P δ [] otrwis,,...,, w aig widow ( ) ( ) ( ) ( ) ( ) ( ) P W P P W P P W P P P W W Y δ δ δ as a oro valu w P

45 Diffrc Equatio Raliatio for a Digital Filtr T rlatio btw t output ad iput of a digital filtr ca b prssd by M [ ] β y[ ] y α y β Y [ ] [ ] [ ] liarity ad dlay proprtis M ( ) α Y ( ) β ( ) ratioal trasfr fuctio ( ) Y M ( ) ( ) α dlay proprty β [ ] ( ) [ ] ( ) β M Causal: Rigtsidd, t ROC outsid t outost pol Stabl: T ROC icluds t uit circl Causal ad Stabl: all pols ust fall isid t uit circl (ot icludig ros) β β α α α SP- Brli C 45

46 Diffrc Equatio Raliatio for a Digital Filtr (cot.) 4 SP- Brli C 46

47 Magitud-Pas Rlatiosip Miiu pas syst: T -trasfor of a syst ipuls rspos squc ( a ratioal trasfr fuctio) as all ros as wll as pols isid t uit cycl Pols ad ros calld iiu pas copots Maiu pas: all ros (or pols) outsid t uit cycl ll-pass syst: Cosist a cascad of factor of t for -a * a ± Caractrid by a frqucy rspos wit uit (or flat) agitud for all frqucis Pols ad ros occur at cougat rciprocal locatios -a * a 4 SP- Brli C 47

48 Magitud-Pas Rlatiosip (cot.) y digital filtr ca b rprstd by t cascad of a iiu-pas syst ad a all-pass syst ( ) ( ) ( ) ( ) i Suppos tat as oly o ro ( a < ) a* outsid t uit circl. ca b prssd as : ( ) * ( ) ( )( a ) ( ) ()( ) ( ( ( ) * a a a ) wr : ( )( a ) * ( a ) is a ( a ) is also a all - pass iiu filtr. is a ap iiu pas filtr. pas filtr) 4 SP- Brli C 48

49 FIR Filtrs FIR (Fiit Ipuls Rspos) T ipuls rspos of a FIR filtr as fiit duratio av o doiator i t ratioal fuctio o fdbac i t diffrc quatio y [] M β [ r ] [] ( ) r β, Y r, M ( ) ( ) otrwis M β [ ] Ca b ipltd wit sipl a trai of dlay, ultipl, ad add opratios β β β M ( ) y[ ] 4 SP- Brli C 49

50 First-Ordr FIR Filtrs spcial cas of FIR filtrs y[] [ ] α [ ] ( ) θ ( ) α ( si ) ( α ) ( α si ) α si ( ) arcta α α α < α ( ) α : pr-pasis filtr log ( ) 4 SP- Brli C 5

51 Discrt Fourir Trasfor (DFT) T Fourir trasfor of a discrt-ti squc is a cotiuous fuctio of frqucy W d to sapl t Fourir trasfor fily oug to b abl to rcovr t squc For a squc of fiit lgt, saplig yilds t w trasfor rfrrd to as discrt Fourir trasfor (DFT) ( ) [] [] ( ),, DFT, alysis Ivrs DFT, Sytsis 4 SP- Brli C 5

52 4 SP- Brli C 5 Discrt Fourir Trasfor (cot.) [ ] [ ] ( ) ( ) ( )( ) [] [] [ ] [] [] [ ], M M L M L M M L L

53 4 SP- Brli C 5 Discrt Fourir Trasfor (cot.) Ortogoality of Copl Epotials ( ) otrwis, if, -r r [] [] [] [] ( ) [] ( ) [] [] [] r r r r r [ ] [ ] [] r r

54 Discrt Fourir Trasfor (DFT) Parsval s tor [] ( ) Ergy dsity 4 SP- Brli C 54

55 alog Sigal to Digital Sigal alog Sigal Discrt-ti Sigal or Digital Sigal [] ( T ), T :saplig priod a t T Digital Sigal: Discrt-ti sigal wit discrt aplitud F s T saplig rat saplig priod5μs >saplig rat8 4 SP- Brli C 55

56 Cotiuous-Ti Sigal a () t s alog Sigal to Digital Sigal (cot.) () t δ ( t T ) Cotiuous-Ti to Discrt-Ti Covrsio Saplig switc a s s ( t ) Ipuls Trai To Squc ˆ [ ] ( ( T)) ()() t s t () t δ ( t T ) a a ( T ) δ ( t T ) []( δ t T ) Priodic Ipuls Trai ( t) ca b uiquly spcifid by [ ] Discrt-Ti Sigal a [ ] Digital Sigal a ( t ) Discrt-ti sigal wit discrt aplitud s () t δ ( t T) δ ( t ) δ () t dt, t -T -T T T T 4T 5T 6T 7T 8T 4 SP- Brli C 56

57 alog Sigal to Digital Sigal (cot.) cotiuous sigal sapld at diffrt priods a () t ( t ) a T a s ( t) ()() t s t () t δ ( t T ) a a ( T ) δ ( t T ) []( δ t T ) 4 SP- Brli C 57

58 alog Sigal to Digital Sigal (cot.) Spctra a ( Ω) S T ( Ω ) δ ( Ω Ω ) s Ω Ω T s F s (saplig frqucy) s s T ( Ω ) ( Ω ) S ( Ω ) ( Ω ) ( ( Ω Ω )) ig frqucy copots got supriposd o low frqucy copots a a aliasig distortio s T Ω < Ω s / R s ( Ω) a ( Ω) RΩ ( Ω) p ( Ω) s Ω a otrwis Low-pass filtr ( Ω) ca' t b rcovrd fro ( Ω) p Ω Ω < ( Ω Ω ) Q s Ω s > Ω s > Ω Ω T > Ω s T ( Ω Ω ) Q Ω s s < Ω 4 SP- Brli C 58 < Ω

59 alog Sigal to Digital Sigal (cot.) To avoid aliasig (ovrlappig, fold ovr) T saplig frqucy sould b gratr ta two tis of frqucy of t sigal to b sapld Ω > (yquist) saplig tor To rtruct t origial cotiuous sigal Filtrd wit a low pass filtr wit bad liit Covolvd i ti doai ( t ) sic Ω t s s Ω Ω a s () t ( T ) ( t T ) a a ( T ) sic Ω ( t T ) s 4 SP- Brli C 59

Digital Signal Processing, Fall 2006

Digital Signal Processing, Fall 2006 Digital Sigal Procssig, Fall 6 Lctur 9: Th Discrt Fourir Trasfor Zhg-Hua Ta Dpartt of Elctroic Systs Aalborg Uivrsity, Dar zt@o.aau.d Digital Sigal Procssig, I, Zhg-Hua Ta, 6 Cours at a glac MM Discrt-ti

More information

Discrete Fourier Transform. Discrete Fourier Transform. Discrete Fourier Transform. Discrete Fourier Transform. Discrete Fourier Transform

Discrete Fourier Transform. Discrete Fourier Transform. Discrete Fourier Transform. Discrete Fourier Transform. Discrete Fourier Transform Discrt Fourir Trasform Dfiitio - T simplst rlatio btw a lt- squc x dfid for ω ad its DTFT X ( ) is ω obtaid by uiformly sampli X ( ) o t ω-axis btw ω < at ω From t dfiitio of t DTFT w tus av X X( ω ) ω

More information

DTFT Properties. Example - Determine the DTFT Y ( e ) of n. Let. We can therefore write. From Table 3.1, the DTFT of x[n] is given by 1

DTFT Properties. Example - Determine the DTFT Y ( e ) of n. Let. We can therefore write. From Table 3.1, the DTFT of x[n] is given by 1 DTFT Proprtis Exampl - Dtrmi th DTFT Y of y α µ, α < Lt x α µ, α < W ca thrfor writ y x x From Tabl 3., th DTFT of x is giv by ω X ω α ω Copyright, S. K. Mitra Copyright, S. K. Mitra DTFT Proprtis DTFT

More information

Frequency Response & Digital Filters

Frequency Response & Digital Filters Frquy Rspos & Digital Filtrs S Wogsa Dpt. of Cotrol Systms ad Istrumtatio Egirig, KUTT Today s goals Frquy rspos aalysis of digital filtrs LTI Digital Filtrs Digital filtr rprstatios ad struturs Idal filtrs

More information

Problem Value Score Earned No/Wrong Rec -3 Total

Problem Value Score Earned No/Wrong Rec -3 Total GEORGIA INSTITUTE OF TECHNOLOGY SCHOOL of ELECTRICAL & COMPUTER ENGINEERING ECE6 Fall Quiz # Writt Eam Novmr, NAME: Solutio Kys GT Usram: LAST FIRST.g., gtiit Rcitatio Sctio: Circl t dat & tim w your Rcitatio

More information

EC1305 SIGNALS & SYSTEMS

EC1305 SIGNALS & SYSTEMS EC35 SIGNALS & SYSTES DEPT/ YEAR/ SE: IT/ III/ V PREPARED BY: s. S. TENOZI/ Lcturr/ECE SYLLABUS UNIT I CLASSIFICATION OF SIGNALS AND SYSTES Cotiuous Tim Sigals (CT Sigals Discrt Tim Sigals (DT Sigals Stp

More information

15/03/1439. Lectures on Signals & systems Engineering

15/03/1439. Lectures on Signals & systems Engineering Lcturs o Sigals & syms Egirig Dsigd ad Prd by Dr. Ayma Elshawy Elsfy Dpt. of Syms & Computr Eg. Al-Azhar Uivrsity Email : aymalshawy@yahoo.com A sigal ca b rprd as a liar combiatio of basic sigals. Th

More information

Lectures 9 IIR Systems: First Order System

Lectures 9 IIR Systems: First Order System EE3054 Sigals ad Systms Lcturs 9 IIR Systms: First Ordr Systm Yao Wag Polytchic Uivrsity Som slids icludd ar xtractd from lctur prstatios prpard by McCllla ad Schafr Lics Ifo for SPFirst Slids This work

More information

2D DSP Basics: Systems Stability, 2D Sampling

2D DSP Basics: Systems Stability, 2D Sampling - Digital Iage Processig ad Copressio D DSP Basics: Systes Stability D Saplig Stability ty Syste is stable if a bouded iput always results i a bouded output BIBO For LSI syste a sufficiet coditio for stability:

More information

PURE MATHEMATICS A-LEVEL PAPER 1

PURE MATHEMATICS A-LEVEL PAPER 1 -AL P MATH PAPER HONG KONG EXAMINATIONS AUTHORITY HONG KONG ADVANCED LEVEL EXAMINATION PURE MATHEMATICS A-LEVEL PAPER 8 am am ( hours) This papr must b aswrd i Eglish This papr cosists of Sctio A ad Sctio

More information

Discrete Fourier Transform. Nuno Vasconcelos UCSD

Discrete Fourier Transform. Nuno Vasconcelos UCSD Discrt Fourir Trasform uo Vascoclos UCSD Liar Shift Ivariat (LSI) systms o of th most importat cocpts i liar systms thory is that of a LSI systm Dfiitio: a systm T that maps [ ito y[ is LSI if ad oly if

More information

Discrete Fourier Transform (DFT)

Discrete Fourier Transform (DFT) Discrt Fourir Trasorm DFT Major: All Egirig Majors Authors: Duc guy http://umricalmthods.g.us.du umrical Mthods or STEM udrgraduats 8/3/29 http://umricalmthods.g.us.du Discrt Fourir Trasorm Rcalld th xpotial

More information

Part B: Transform Methods. Professor E. Ambikairajah UNSW, Australia

Part B: Transform Methods. Professor E. Ambikairajah UNSW, Australia Part B: Trasform Mthods Chaptr 3: Discrt-Tim Fourir Trasform (DTFT) 3. Discrt Tim Fourir Trasform (DTFT) 3. Proprtis of DTFT 3.3 Discrt Fourir Trasform (DFT) 3.4 Paddig with Zros ad frqucy Rsolutio 3.5

More information

SIGNALS AND LINEAR SYSTEMS UNIT-1 SIGNALS

SIGNALS AND LINEAR SYSTEMS UNIT-1 SIGNALS SIGNALS AND LINEAR SYSTEMS UNIT- SIGNALS. Dfi a sigal. A sigal is a fuctio of o or mor idpdt variabls which cotais som iformatio. Eg: Radio sigal, TV sigal, Tlpho sigal, tc.. Dfi systm. A systm is a st

More information

Systems in Transform Domain Frequency Response Transfer Function Introduction to Filters

Systems in Transform Domain Frequency Response Transfer Function Introduction to Filters LTI Discrt-Tim Systms i Trasform Domai Frqucy Rspos Trasfr Fuctio Itroductio to Filtrs Taia Stathai 811b t.stathai@imprial.ac.u Frqucy Rspos of a LTI Discrt-Tim Systm Th wll ow covolutio sum dscriptio

More information

8(4 m0) ( θ ) ( ) Solutions for HW 8. Chapter 25. Conceptual Questions

8(4 m0) ( θ ) ( ) Solutions for HW 8. Chapter 25. Conceptual Questions Solutios for HW 8 Captr 5 Cocptual Qustios 5.. θ dcrass. As t crystal is coprssd, t spacig d btw t plas of atos dcrass. For t first ordr diffractio =. T Bragg coditio is = d so as d dcrass, ust icras for

More information

DFT: Discrete Fourier Transform

DFT: Discrete Fourier Transform : Discrt Fourir Trasform Cogruc (Itgr modulo m) I this sctio, all lttrs stad for itgrs. gcd m, = th gratst commo divisor of ad m Lt d = gcd(,m) All th liar combiatios r s m of ad m ar multils of d. a b

More information

The z-transform. Dept. of Electronics Eng. -1- DH26029 Signals and Systems

The z-transform. Dept. of Electronics Eng. -1- DH26029 Signals and Systems 0 Th -Trsform Dpt. of Elctroics Eg. -- DH609 Sigls d Systms 0. Th -Trsform Lplc trsform - for cotios tim sigl/systm -trsform - for discrt tim sigl/systm 0. Th -trsform For ipt y H H h with ω rl i.. DTFT

More information

Chapter 6: DFT/FFT Transforms and Applications 6.1 DFT and its Inverse

Chapter 6: DFT/FFT Transforms and Applications 6.1 DFT and its Inverse 6. Chaptr 6: DFT/FFT Trasforms ad Applicatios 6. DFT ad its Ivrs DFT: It is a trasformatio that maps a -poit Discrt-tim DT) sigal ] ito a fuctio of th compl discrt harmoics. That is, giv,,,, ]; L, a -poit

More information

M2.The Z-Transform and its Properties

M2.The Z-Transform and its Properties M2.The Z-Trasform ad its Properties Readig Material: Page 94-126 of chapter 3 3/22/2011 I. Discrete-Time Sigals ad Systems 1 What did we talk about i MM1? MM1 - Discrete-Time Sigal ad System 3/22/2011

More information

1985 AP Calculus BC: Section I

1985 AP Calculus BC: Section I 985 AP Calculus BC: Sctio I 9 Miuts No Calculator Nots: () I this amiatio, l dots th atural logarithm of (that is, logarithm to th bas ). () Ulss othrwis spcifid, th domai of a fuctio f is assumd to b

More information

Chapter Taylor Theorem Revisited

Chapter Taylor Theorem Revisited Captr 0.07 Taylor Torm Rvisitd Atr radig tis captr, you sould b abl to. udrstad t basics o Taylor s torm,. writ trascdtal ad trigoomtric uctios as Taylor s polyomial,. us Taylor s torm to id t valus o

More information

UNIT 2: MATHEMATICAL ENVIRONMENT

UNIT 2: MATHEMATICAL ENVIRONMENT UNIT : MATHEMATICAL ENVIRONMENT. Itroductio This uit itroducs som basic mathmatical cocpts ad rlats thm to th otatio usd i th cours. Wh ou hav workd through this uit ou should: apprciat that a mathmatical

More information

Chapter 4 - The Fourier Series

Chapter 4 - The Fourier Series M. J. Robrts - 8/8/4 Chaptr 4 - Th Fourir Sris Slctd Solutios (I this solutio maual, th symbol,, is usd for priodic covolutio bcaus th prfrrd symbol which appars i th txt is ot i th fot slctio of th word

More information

The z-transform. 7.1 Introduction. 7.2 The z-transform Derivation of the z-transform: x[n] = z n LTI system, h[n] z = re j

The z-transform. 7.1 Introduction. 7.2 The z-transform Derivation of the z-transform: x[n] = z n LTI system, h[n] z = re j The -Trasform 7. Itroductio Geeralie the complex siusoidal represetatio offered by DTFT to a represetatio of complex expoetial sigals. Obtai more geeral characteristics for discrete-time LTI systems. 7.

More information

VI. FIR digital filters

VI. FIR digital filters www.jtuworld.com www.jtuworld.com Digital Sigal Procssig 6 Dcmbr 24, 29 VI. FIR digital filtrs (No chag i 27 syllabus). 27 Syllabus: Charactristics of FIR digital filtrs, Frqucy rspos, Dsig of FIR digital

More information

10. The Discrete-Time Fourier Transform (DTFT)

10. The Discrete-Time Fourier Transform (DTFT) Th Discrt-Tim Fourir Transform (DTFT Dfinition of th discrt-tim Fourir transform Th Fourir rprsntation of signals plays an important rol in both continuous and discrt signal procssing In this sction w

More information

Chapter 10 z Transform

Chapter 10 z Transform Chapter 0 Trasfor 熊红凯特聘教授 http://i.sjtu.edu.c 电子工程系上海交通大学 07 DT Fourier trasfor eables us to do a lot of thigs, e.g. Aale frequec respose of LTI sstes Modulatio Wh do we eed et aother trasfor? Oe view

More information

Continuous-Time Fourier Transform. Transform. Transform. Transform. Transform. Transform. Definition The CTFT of a continuoustime

Continuous-Time Fourier Transform. Transform. Transform. Transform. Transform. Transform. Definition The CTFT of a continuoustime Ctiuus-Tim Furir Dfiiti Th CTFT f a ctiuustim sigal x a (t is giv by Xa ( jω xa( t jωt Oft rfrrd t as th Furir spctrum r simply th spctrum f th ctiuus-tim sigal dt Ctiuus-Tim Furir Dfiiti Th ivrs CTFT

More information

Chapter 7 z-transform

Chapter 7 z-transform Chapter 7 -Trasform Itroductio Trasform Uilateral Trasform Properties Uilateral Trasform Iversio of Uilateral Trasform Determiig the Frequecy Respose from Poles ad Zeros Itroductio Role i Discrete-Time

More information

ELEC9721: Digital Signal Processing Theory and Applications

ELEC9721: Digital Signal Processing Theory and Applications ELEC97: Digital Sigal Pocssig Thoy ad Applicatios Tutoial ad solutios Not: som of th solutios may hav som typos. Q a Show that oth digital filts giv low hav th sam magitud spos: i [] [ ] m m i i i x c

More information

from definition we note that for sequences which are zero for n < 0, X[z] involves only negative powers of z.

from definition we note that for sequences which are zero for n < 0, X[z] involves only negative powers of z. We ote that for the past four examples we have expressed the -trasform both as a ratio of polyomials i ad as a ratio of polyomials i -. The questio is how does oe kow which oe to use? [] X ] from defiitio

More information

Generalizing the DTFT. The z Transform. Complex Exponential Excitation. The Transfer Function. Systems Described by Difference Equations

Generalizing the DTFT. The z Transform. Complex Exponential Excitation. The Transfer Function. Systems Described by Difference Equations Geeraliig the DTFT The Trasform M. J. Roberts - All Rights Reserved. Edited by Dr. Robert Akl 1 The forward DTFT is defied by X e jω = x e jω i which = Ω is discrete-time radia frequecy, a real variable.

More information

7. Differentiation of Trigonometric Function

7. Differentiation of Trigonometric Function 7. Diffrtiatio of Trigootric Fctio RADIAN MEASURE. Lt s ot th lgth of arc AB itrcpt y th ctral agl AOB o a circl of rais r a lt S ot th ara of th sctor AOB. (If s is /60 of th circfrc, AOB = 0 ; if s =

More information

Derivation of a Predictor of Combination #1 and the MSE for a Predictor of a Position in Two Stage Sampling with Response Error.

Derivation of a Predictor of Combination #1 and the MSE for a Predictor of a Position in Two Stage Sampling with Response Error. Drivatio of a Prdictor of Cobiatio # ad th SE for a Prdictor of a Positio i Two Stag Saplig with Rspos Error troductio Ed Stak W driv th prdictor ad its SE of a prdictor for a rado fuctio corrspodig to

More information

[ ] Review. For a discrete-time periodic signal xn with period N, the Fourier series representation is

[ ] Review. For a discrete-time periodic signal xn with period N, the Fourier series representation is Discrt-tim ourir Trsform Rviw or discrt-tim priodic sigl x with priod, th ourir sris rprsttio is x + < > < > x, Rviw or discrt-tim LTI systm with priodic iput sigl, y H ( ) < > < > x H r rfrrd to s th

More information

Solutions. Number of Problems: 4. None. Use only the prepared sheets for your solutions. Additional paper is available from the supervisors.

Solutions. Number of Problems: 4. None. Use only the prepared sheets for your solutions. Additional paper is available from the supervisors. Quiz November 4th, 23 Sigals & Systems (5-575-) P. Reist & Prof. R. D Adrea Solutios Exam Duratio: 4 miutes Number of Problems: 4 Permitted aids: Noe. Use oly the prepared sheets for your solutios. Additioal

More information

The Z-Transform. Content and Figures are from Discrete-Time Signal Processing, 2e by Oppenheim, Shafer, and Buck, Prentice Hall Inc.

The Z-Transform. Content and Figures are from Discrete-Time Signal Processing, 2e by Oppenheim, Shafer, and Buck, Prentice Hall Inc. The Z-Trasform Cotet ad Figures are from Discrete-Time Sigal Processig, e by Oppeheim, Shafer, ad Buck, 999- Pretice Hall Ic. The -Trasform Couterpart of the Laplace trasform for discrete-time sigals Geeraliatio

More information

Analog and Digital Signals. Introduction to Digital Signal Processing. Discrete-time Sinusoids. Analog and Digital Signals

Analog and Digital Signals. Introduction to Digital Signal Processing. Discrete-time Sinusoids. Analog and Digital Signals Itroductio to Digital Sigal Processig Chapter : Itroductio Aalog ad Digital Sigals aalog = cotiuous-time cotiuous amplitude digital = discrete-time discrete amplitude cotiuous amplitude discrete amplitude

More information

DIGITAL SIGNAL PROCESSING LECTURE 3

DIGITAL SIGNAL PROCESSING LECTURE 3 DIGITAL SIGNAL PROCESSING LECTURE 3 Fall 2 2K8-5 th Semester Tahir Muhammad tmuhammad_7@yahoo.com Cotet ad Figures are from Discrete-Time Sigal Processig, 2e by Oppeheim, Shafer, ad Buc, 999-2 Pretice

More information

Response of LTI Systems to Complex Exponentials

Response of LTI Systems to Complex Exponentials 3 Fourir sris coiuous-im Rspos of LI Sysms o Complx Expoials Ouli Cosidr a LI sysm wih h ui impuls rspos Suppos h ipu sigal is a complx xpoial s x s is a complx umbr, xz zis a complx umbr h or h h w will

More information

ADVANCED DIGITAL SIGNAL PROCESSING

ADVANCED DIGITAL SIGNAL PROCESSING ADVANCED DIGITAL SIGNAL PROCESSING PROF. S. C. CHAN (email : sccha@eee.hku.hk, Rm. CYC-702) DISCRETE-TIME SIGNALS AND SYSTEMS MULTI-DIMENSIONAL SIGNALS AND SYSTEMS RANDOM PROCESSES AND APPLICATIONS ADAPTIVE

More information

ECE 6560 Chapter 2: The Resampling Process

ECE 6560 Chapter 2: The Resampling Process Capter 2: e Resaplig Process Dr. Bradley J. Bazui Wester iciga Uiversity College of Egieerig ad Applied Scieces Departet of Electrical ad Coputer Egieerig 1903 W. iciga Ave. Kalaazoo I, 49008-5329 Capter

More information

ENGG 1203 Tutorial. Difference Equations. Find the Pole(s) Finding Equations and Poles

ENGG 1203 Tutorial. Difference Equations. Find the Pole(s) Finding Equations and Poles ENGG 03 Tutoial Systms ad Cotol 9 Apil Laig Obctivs Z tasfom Complx pols Fdbac cotol systms Ac: MIT OCW 60, 6003 Diffc Equatios Cosid th systm pstd by th followig diffc quatio y[ ] x[ ] (5y[ ] 3y[ ]) wh

More information

Chapter 7: The z-transform. Chih-Wei Liu

Chapter 7: The z-transform. Chih-Wei Liu Chapter 7: The -Trasform Chih-Wei Liu Outlie Itroductio The -Trasform Properties of the Regio of Covergece Properties of the -Trasform Iversio of the -Trasform The Trasfer Fuctio Causality ad Stability

More information

Definition of z-transform.

Definition of z-transform. - Trasforms Frequecy domai represetatios of discretetime sigals ad LTI discrete-time systems are made possible with the use of DTFT. However ot all discrete-time sigals e.g. uit step sequece are guarateed

More information

Chapter 3 Fourier Series Representation of Periodic Signals

Chapter 3 Fourier Series Representation of Periodic Signals Chptr Fourir Sris Rprsttio of Priodic Sigls If ritrry sigl x(t or x[] is xprssd s lir comitio of som sic sigls th rspos of LI systm coms th sum of th idividul rsposs of thos sic sigls Such sic sigl must:

More information

MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Electrical Engineering and Computer Science. BACKGROUND EXAM September 30, 2004.

MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Electrical Engineering and Computer Science. BACKGROUND EXAM September 30, 2004. MASSACHUSETTS INSTITUTE OF TECHNOLOGY Departmet of Electrical Egieerig ad Computer Sciece 6.34 Discrete Time Sigal Processig Fall 24 BACKGROUND EXAM September 3, 24. Full Name: Note: This exam is closed

More information

z 1+ 3 z = Π n =1 z f() z = n e - z = ( 1-z) e z e n z z 1- n = ( 1-z/2) 1+ 2n z e 2n e n -1 ( 1-z )/2 e 2n-1 1-2n -1 1 () z

z 1+ 3 z = Π n =1 z f() z = n e - z = ( 1-z) e z e n z z 1- n = ( 1-z/2) 1+ 2n z e 2n e n -1 ( 1-z )/2 e 2n-1 1-2n -1 1 () z Sris Expasio of Rciprocal of Gamma Fuctio. Fuctios with Itgrs as Roots Fuctio f with gativ itgrs as roots ca b dscribd as follows. f() Howvr, this ifiit product divrgs. That is, such a fuctio caot xist

More information

(s)h(s) = K( s + 8 ) = 5 and one finite zero is located at z 1

(s)h(s) = K( s + 8 ) = 5 and one finite zero is located at z 1 ROOT LOCUS TECHNIQUE 93 should be desiged differetly to eet differet specificatios depedig o its area of applicatio. We have observed i Sectio 6.4 of Chapter 6, how the variatio of a sigle paraeter like

More information

MONTGOMERY COLLEGE Department of Mathematics Rockville Campus. 6x dx a. b. cos 2x dx ( ) 7. arctan x dx e. cos 2x dx. 2 cos3x dx

MONTGOMERY COLLEGE Department of Mathematics Rockville Campus. 6x dx a. b. cos 2x dx ( ) 7. arctan x dx e. cos 2x dx. 2 cos3x dx MONTGOMERY COLLEGE Dpartmt of Mathmatics Rockvill Campus MATH 8 - REVIEW PROBLEMS. Stat whthr ach of th followig ca b itgratd by partial fractios (PF), itgratio by parts (PI), u-substitutio (U), or o of

More information

Motivation. We talk today for a more flexible approach for modeling the conditional probabilities.

Motivation. We talk today for a more flexible approach for modeling the conditional probabilities. Baysia Ntworks Motivatio Th coditioal idpdc assuptio ad by aïv Bays classifirs ay s too rigid spcially for classificatio probls i which th attributs ar sowhat corrlatd. W talk today for a or flibl approach

More information

(looks like a time sequence) i function of ˆ ω (looks like a transform) 2. Interpretations of X ( e ) DFT View OLA implementation

(looks like a time sequence) i function of ˆ ω (looks like a transform) 2. Interpretations of X ( e ) DFT View OLA implementation viw of STFT Digital Spch Procssig Lctur Short-Tim Fourir Aalysis Mthods - Filtr Ba Dsig j j ˆ m ˆ. X x[ m] w[ ˆ m] ˆ i fuctio of ˆ loos li a tim squc i fuctio of ˆ loos li a trasform j ˆ X dfid for ˆ 3,,,...;

More information

Mathematical Preliminaries for Transforms, Subbands, and Wavelets

Mathematical Preliminaries for Transforms, Subbands, and Wavelets Mahmaical Prlimiaris for rasforms, Subbads, ad Wavls C.M. Liu Prcpual Sigal Procssig Lab Collg of Compur Scic Naioal Chiao-ug Uivrsiy hp://www.csi.cu.du.w/~cmliu/courss/comprssio/ Offic: EC538 (03)5731877

More information

Fast recursive filters for simulating nonlinear dynamic systems

Fast recursive filters for simulating nonlinear dynamic systems Fast rcursiv filtrs for siulatig oliar dyaic systs J. H. va Hatr j..va.atr@rug.l Ntrlads Istitut for Nuroscic, Royal Ntrlads Acady of Arts ad Scics, Astrda, ad Istitut for Matatics ad Coputig Scic, Uivrsity

More information

Review Exercises. 1. Evaluate using the definition of the definite integral as a Riemann Sum. Does the answer represent an area? 2

Review Exercises. 1. Evaluate using the definition of the definite integral as a Riemann Sum. Does the answer represent an area? 2 MATHEMATIS --RE Itgral alculus Marti Huard Witr 9 Rviw Erciss. Evaluat usig th dfiitio of th dfiit itgral as a Rima Sum. Dos th aswr rprst a ara? a ( d b ( d c ( ( d d ( d. Fid f ( usig th Fudamtal Thorm

More information

DIGITAL SIGNAL PROCESSING BEG 433 EC

DIGITAL SIGNAL PROCESSING BEG 433 EC Dowloadd from www.ayaram.com. DIGITAL SIGAL PROCESSIG BEG EC.Yar: IV Smstr: II Tachig Schdul Examiatio Schm Hours/W Thory Tutorial Practical Itral Assssmt Fial - / Thory Practical* Thory Practical** 5

More information

If we integrate the given modulating signal, m(t), we arrive at the following FM signal:

If we integrate the given modulating signal, m(t), we arrive at the following FM signal: Part b If w intgrat th givn odulating signal, (, w arriv at th following signal: ( Acos( πf t + β sin( πf W can us anothr trigonotric idntity hr. ( Acos( β sin( πf cos( πf Asin( β sin( πf sin( πf Now,

More information

Law of large numbers

Law of large numbers Law of larg umbrs Saya Mukhrj W rvisit th law of larg umbrs ad study i som dtail two typs of law of larg umbrs ( 0 = lim S ) p ε ε > 0, Wak law of larrg umbrs [ ] S = ω : lim = p, Strog law of larg umbrs

More information

Slide 1. Slide 2. Slide 3 DIGITAL SIGNAL PROCESSING CLASSIFICATION OF SIGNALS

Slide 1. Slide 2. Slide 3 DIGITAL SIGNAL PROCESSING CLASSIFICATION OF SIGNALS Slid DIGITAL SIGAL PROCESSIG UIT I DISCRETE TIME SIGALS AD SYSTEM Slid Rviw of discrt-tim signals & systms Signal:- A signal is dfind as any physical quantity that varis with tim, spac or any othr indpndnt

More information

Time : 1 hr. Test Paper 08 Date 04/01/15 Batch - R Marks : 120

Time : 1 hr. Test Paper 08 Date 04/01/15 Batch - R Marks : 120 Tim : hr. Tst Papr 8 D 4//5 Bch - R Marks : SINGLE CORRECT CHOICE TYPE [4, ]. If th compl umbr z sisfis th coditio z 3, th th last valu of z is qual to : z (A) 5/3 (B) 8/3 (C) /3 (D) o of ths 5 4. Th itgral,

More information

The Application of Eigenvectors for the Construction of Minimum-Energy Wavelet Frames Based on FMRA

The Application of Eigenvectors for the Construction of Minimum-Energy Wavelet Frames Based on FMRA Applid ad Coputatioal Mathatics 0; 7(3: 6-66 http://www.scicpublishiggroup.co/j/ac doi: 0.6/j.ac.00703. ISS: 3-5605 (Prit; ISS: 3-563 (Oli Th Applicatio of Eigvctors for th Costructio of Miiu-Ergy Wavlt

More information

Discrete Fourier Series and Transforms

Discrete Fourier Series and Transforms Lctur 4 Outi: Discrt Fourir Sris ad Trasforms Aoucmts: H 4 postd, du Tus May 8 at 4:3pm. o at Hs as soutios wi b avaiab immdiaty. Midtrm dtais o t pag H 5 wi b postd Fri May, du foowig Fri (as usua) Rviw

More information

Option 3. b) xe dx = and therefore the series is convergent. 12 a) Divergent b) Convergent Proof 15 For. p = 1 1so the series diverges.

Option 3. b) xe dx = and therefore the series is convergent. 12 a) Divergent b) Convergent Proof 15 For. p = 1 1so the series diverges. Optio Chaptr Ercis. Covrgs to Covrgs to Covrgs to Divrgs Covrgs to Covrgs to Divrgs 8 Divrgs Covrgs to Covrgs to Divrgs Covrgs to Covrgs to Covrgs to Covrgs to 8 Proof Covrgs to π l 8 l a b Divrgt π Divrgt

More information

Chapter 2 Infinite Series Page 1 of 11. Chapter 2 : Infinite Series

Chapter 2 Infinite Series Page 1 of 11. Chapter 2 : Infinite Series Chatr Ifiit Sris Pag of Sctio F Itgral Tst Chatr : Ifiit Sris By th d of this sctio you will b abl to valuat imror itgrals tst a sris for covrgc by alyig th itgral tst aly th itgral tst to rov th -sris

More information

Discrete-Time Systems, LTI Systems, and Discrete-Time Convolution

Discrete-Time Systems, LTI Systems, and Discrete-Time Convolution EEL5: Discrete-Time Sigals ad Systems. Itroductio I this set of otes, we begi our mathematical treatmet of discrete-time s. As show i Figure, a discrete-time operates or trasforms some iput sequece x [

More information

Calculus & analytic geometry

Calculus & analytic geometry Calculus & aalytic gomtry B Sc MATHEMATICS Admissio owards IV SEMESTER CORE COURSE UNIVERSITY OF CALICUT SCHOOL OF DISTANCE EDUCATION CALICUT UNIVERSITYPO, MALAPPURAM, KERALA, INDIA 67 65 5 School of Distac

More information

Ch3 Discrete Time Fourier Transform

Ch3 Discrete Time Fourier Transform Ch3 Discrete Time Fourier Trasform 3. Show that the DTFT of [] is give by ( k). e k 3. Determie the DTFT of the two sided sigal y [ ],. 3.3 Determie the DTFT of the causal sequece x[ ] A cos( 0 ) [ ],

More information

NET/JRF, GATE, IIT JAM, JEST, TIFR

NET/JRF, GATE, IIT JAM, JEST, TIFR Istitut for NET/JRF, GATE, IIT JAM, JEST, TIFR ad GRE i PHYSICAL SCIENCES Mathmatical Physics JEST-6 Q. Giv th coditio φ, th solutio of th quatio ψ φ φ is giv by k. kφ kφ lφ kφ lφ (a) ψ (b) ψ kφ (c) ψ

More information

Chapter 9 Computation of the Discrete. Fourier Transform

Chapter 9 Computation of the Discrete. Fourier Transform Chapter 9 Coputatio of the Discrete Fourier Trasfor Itroductio Efficiet Coputatio of the Discrete Fourier Trasfor Goertzel Algorith Deciatio-I-Tie FFT Algoriths Deciatio-I-Frequecy FFT Algoriths Ipleetatio

More information

CIVE322 BASIC HYDROLOGY Hydrologic Science and Engineering Civil and Environmental Engineering Department Fort Collins, CO (970)

CIVE322 BASIC HYDROLOGY Hydrologic Science and Engineering Civil and Environmental Engineering Department Fort Collins, CO (970) CVE322 BASC HYDROLOGY Hydrologic Scic ad Egirig Civil ad Evirotal Egirig Dpartt Fort Collis, CO 80523-1372 (970 491-7621 MDERM EXAM 1 NO. 1 Moday, Octobr 3, 2016 8:00-8:50 AM Haod Auditoriu You ay ot cosult

More information

ASSERTION AND REASON

ASSERTION AND REASON ASSERTION AND REASON Som qustios (Assrtio Rso typ) r giv low. Ech qustio cotis Sttmt (Assrtio) d Sttmt (Rso). Ech qustio hs choics (A), (B), (C) d (D) out of which ONLY ONE is corrct. So slct th corrct

More information

DIOPHANTINE APPROXIMATION WITH FOUR SQUARES AND ONE K-TH POWER OF PRIMES

DIOPHANTINE APPROXIMATION WITH FOUR SQUARES AND ONE K-TH POWER OF PRIMES oural of atatical Scics: Advacs ad Alicatios Volu 6 Nubr 00 Pas -6 DOPHANNE APPROAON WH FOUR SQUARES AND ONE -H POWER OF PRES Dartt of atatics ad foratio Scic Ha Uivrsit of Ecooics ad Law Zzou 000 P. R.

More information

Wavelet Transform Theory. Prof. Mark Fowler Department of Electrical Engineering State University of New York at Binghamton

Wavelet Transform Theory. Prof. Mark Fowler Department of Electrical Engineering State University of New York at Binghamton Wavelet Trasfor Theory Prof. Mark Fowler Departet of Electrical Egieerig State Uiversity of New York at Bighato What is a Wavelet Trasfor? Decopositio of a sigal ito costituet parts Note that there are

More information

Fractional Sampling using the Asynchronous Shah with application to LINEAR PHASE FIR FILTER DESIGN

Fractional Sampling using the Asynchronous Shah with application to LINEAR PHASE FIR FILTER DESIGN Jo Dattorro, Summr 998 Fractioal Samplig usig th sychroous Shah with applicatio to LIER PSE FIR FILER DESIG bstract W ivstigat th fudamtal procss of samplig usig a impuls trai, calld th shah fuctio [Bracwll],

More information

EEO 401 Digital Signal Processing Prof. Mark Fowler

EEO 401 Digital Signal Processing Prof. Mark Fowler EEO 40 Digital Sigal Processig Prof. Mark Fowler Note Set #3 Covolutio & Impulse Respose Review Readig Assigmet: Sect. 2.3 of Proakis & Maolakis / Covolutio for LTI D-T systems We are tryig to fid y(t)

More information

ELEG 4603/5173L Digital Signal Processing Ch. 1 Discrete-Time Signals and Systems

ELEG 4603/5173L Digital Signal Processing Ch. 1 Discrete-Time Signals and Systems Departmet of Electrical Egieerig Uiversity of Arasas ELEG 4603/5173L Digital Sigal Processig Ch. 1 Discrete-Time Sigals ad Systems Dr. Jigxia Wu wuj@uar.edu OUTLINE 2 Classificatios of discrete-time sigals

More information

EE Midterm Test 1 - Solutions

EE Midterm Test 1 - Solutions EE35 - Midterm Test - Solutios Total Poits: 5+ 6 Bous Poits Time: hour. ( poits) Cosider the parallel itercoectio of the two causal systems, System ad System 2, show below. System x[] + y[] System 2 The

More information

Linear time invariant systems

Linear time invariant systems Liear time ivariat systems Alejadro Ribeiro Dept. of Electrical ad Systems Egieerig Uiversity of Pesylvaia aribeiro@seas.upe.edu http://www.seas.upe.edu/users/~aribeiro/ February 25, 2016 Sigal ad Iformatio

More information

Analysis of a Finite Quantum Well

Analysis of a Finite Quantum Well alysis of a Fiit Quatu Wll Ira Ka Dpt. of lctrical ad lctroic girig Jssor Scic & Tcology Uivrsity (JSTU) Jssor-748, Baglads ika94@uottawa.ca Or ikr_c@yaoo.co Joural of lctrical girig T Istitutio of girs,

More information

SOME IDENTITIES FOR THE GENERALIZED POLY-GENOCCHI POLYNOMIALS WITH THE PARAMETERS A, B AND C

SOME IDENTITIES FOR THE GENERALIZED POLY-GENOCCHI POLYNOMIALS WITH THE PARAMETERS A, B AND C Joural of Mathatical Aalysis ISSN: 2217-3412, URL: www.ilirias.co/ja Volu 8 Issu 1 2017, Pags 156-163 SOME IDENTITIES FOR THE GENERALIZED POLY-GENOCCHI POLYNOMIALS WITH THE PARAMETERS A, B AND C BURAK

More information

A Simple Proof that e is Irrational

A Simple Proof that e is Irrational Two of th most bautiful ad sigificat umbrs i mathmatics ar π ad. π (approximatly qual to 3.459) rprsts th ratio of th circumfrc of a circl to its diamtr. (approximatly qual to.788) is th bas of th atural

More information

READING ASSIGNMENTS. Signal Processing First LECTURE OBJECTIVES TIME & FREQUENCY. This Lecture: Lecture 13 Digital Filtering of Analog Signals

READING ASSIGNMENTS. Signal Processing First LECTURE OBJECTIVES TIME & FREQUENCY. This Lecture: Lecture 13 Digital Filtering of Analog Signals Sigal Procssig First Lctur Digital Filtrig of Aalog Sigals READING ASSIGNENTS This Lctur: Chaptr 6, Sctios 6-6, 6-7 & 6-8 Othr Radig: Rcitatio: Chaptr 6 FREQUENCY RESPONSE EXAPLES Nt Lctur: Chaptr 7 /6/,

More information

Partition Functions and Ideal Gases

Partition Functions and Ideal Gases Partitio Fuctios ad Idal Gass PFIG- You v lard about partitio fuctios ad som uss ow w ll xplor tm i mor dpt usig idal moatomic diatomic ad polyatomic gass! for w start rmmbr: Q( N ( N! N Wat ar N ad? W

More information

Digital Signal Processing

Digital Signal Processing Digital Sigal Processig Z-trasform dftwave -Trasform Backgroud-Defiitio - Fourier trasform j ω j ω e x e extracts the essece of x but is limited i the sese that it ca hadle stable systems oly. jω e coverges

More information

Signal Processing in Mechatronics. Lecture 3, Convolution, Fourier Series and Fourier Transform

Signal Processing in Mechatronics. Lecture 3, Convolution, Fourier Series and Fourier Transform Sigal Processig i Mechatroics Summer semester, 1 Lecture 3, Covolutio, Fourier Series ad Fourier rasform Dr. Zhu K.P. AIS, UM 1 1. Covolutio Covolutio Descriptio of LI Systems he mai premise is that the

More information

Lecture 2 Linear and Time Invariant Systems

Lecture 2 Linear and Time Invariant Systems EE3054 Sigals ad Systems Lecture 2 Liear ad Time Ivariat Systems Yao Wag Polytechic Uiversity Most of the slides icluded are extracted from lecture presetatios prepared by McClella ad Schafer Licese Ifo

More information

Discrete-Time Signals and Systems. Discrete-Time Signals and Systems. Signal Symmetry. Elementary Discrete-Time Signals.

Discrete-Time Signals and Systems. Discrete-Time Signals and Systems. Signal Symmetry. Elementary Discrete-Time Signals. Discrete-ime Sigals ad Systems Discrete-ime Sigals ad Systems Dr. Deepa Kudur Uiversity of oroto Referece: Sectios. -.5 of Joh G. Proakis ad Dimitris G. Maolakis, Digital Sigal Processig: Priciples, Algorithms,

More information

+ x. x 2x. 12. dx. 24. dx + 1)

+ x. x 2x. 12. dx. 24. dx + 1) INTEGRATION of FUNCTION of ONE VARIABLE INDEFINITE INTEGRAL Fidig th idfiit itgrals Rductio to basic itgrals, usig th rul f ( ) f ( ) d =... ( ). ( )d. d. d ( ). d. d. d 7. d 8. d 9. d. d. d. d 9. d 9.

More information

Chp6. pn Junction Diode: I-V Characteristics I

Chp6. pn Junction Diode: I-V Characteristics I 147 C6. uctio Diod: I-V Caractristics I 6.1. THE IDEAL DIODE EQUATION 6.1.1. Qualitativ Drivatio 148 Figur rfrc: Smicoductor Dvic Fudamtals Robrt F. Pirrt, Addiso-Wsly Publicig Comay 149 Figur 6.1 juctio

More information

Scattering Parameters. Scattering Parameters

Scattering Parameters. Scattering Parameters Motivatio cattrig Paramtrs Difficult to implmt op ad short circuit coditios i high frqucis masurmts du to parasitic s ad Cs Pottial stability problms for activ dvics wh masurd i oopratig coditios Difficult

More information

ELEG3503 Introduction to Digital Signal Processing

ELEG3503 Introduction to Digital Signal Processing ELEG3503 Itroductio to Digital Sigal Processig 1 Itroductio 2 Basics of Sigals ad Systems 3 Fourier aalysis 4 Samplig 5 Liear time-ivariat (LTI) systems 6 z-trasform 7 System Aalysis 8 System Realizatio

More information

Lecture 2: Discrete-Time Signals & Systems. Reza Mohammadkhani, Digital Signal Processing, 2015 University of Kurdistan eng.uok.ac.

Lecture 2: Discrete-Time Signals & Systems. Reza Mohammadkhani, Digital Signal Processing, 2015 University of Kurdistan eng.uok.ac. Lctur 2: Discrt-Tim Signals & Systms Rza Mohammadkhani, Digital Signal Procssing, 2015 Univrsity of Kurdistan ng.uok.ac.ir/mohammadkhani 1 Signal Dfinition and Exampls 2 Signal: any physical quantity that

More information

Australian Journal of Basic and Applied Sciences, 4(9): , 2010 ISSN

Australian Journal of Basic and Applied Sciences, 4(9): , 2010 ISSN Australia Joural of Basic ad Applid Scics, 4(9): 4-43, ISSN 99-878 Th Caoical Product of th Diffrtial Equatio with O Turig Poit ad Sigular Poit A Dabbaghia, R Darzi, 3 ANaty ad 4 A Jodayr Akbarfa, Islaic

More information

Topic 5:Discrete-Time Fourier Transform (DTFT)

Topic 5:Discrete-Time Fourier Transform (DTFT) ELEC64: Sigals Ad Systms Tpic 5:Discrt-Tim Furir Trasfrm DTFT Aishy Amr Ccrdia Uivrsity Elctrical ad Cmputr Egirig Itrducti DT Furir Trasfrm Sufficit cditi fr th DTFT DT Furir Trasfrm f Pridic Sigals DTFT

More information

ENGR 7181 LECTURE NOTES WEEK 3 Dr. Amir G. Aghdam Concordia University

ENGR 7181 LECTURE NOTES WEEK 3 Dr. Amir G. Aghdam Concordia University ENGR 78 LECTURE NOTES WEEK Dr. ir G. ga Concoria Univrity DT Equivalnt Tranfr Function for SSO Syt - So far w av tui DT quivalnt tat pac ol uing tp-invariant tranforation. n t ca of SSO yt on can u t following

More information

EE123 Digital Signal Processing

EE123 Digital Signal Processing Discrete Time Sigals Samples of a CT sigal: EE123 Digital Sigal Processig x[] =X a (T ) =1, 2, x[0] x[2] x[1] X a (t) T 2T 3T t Lecture 2 Or, iheretly discrete (Examples?) 1 2 Basic Sequeces Uit Impulse

More information

ω (argument or phase)

ω (argument or phase) Imagiary uit: i ( i Complx umbr: z x+ i y Cartsia coordiats: x (ral part y (imagiary part Complx cougat: z x i y Absolut valu: r z x + y Polar coordiats: r (absolut valu or modulus ω (argumt or phas x

More information

ON THE RELATIONSHIP BETWEEN THE SPHERICAL WAVE EXPANSION AND THE PLANE WAVE EXPANSION FOR ANTENNA DIAGNOSTICS

ON THE RELATIONSHIP BETWEEN THE SPHERICAL WAVE EXPANSION AND THE PLANE WAVE EXPANSION FOR ANTENNA DIAGNOSTICS ON THE RELATIONSHIP BETWEEN THE SPHERICAL WAVE EXPANSION AND THE PLANE WAVE EXPANSION FOR ANTENNA DIAGNOSTICS Ccilia Capplli,, Aksl Frads, Olav Bribjrg TICRA, Lædrstræd 34, DK-0 Cophag K, Dark Ørstd DTU,

More information

Module 5: IIR and FIR Filter Design Prof. Eliathamby Ambikairajah Dr. Tharmarajah Thiruvaran School of Electrical Engineering & Telecommunications

Module 5: IIR and FIR Filter Design Prof. Eliathamby Ambikairajah Dr. Tharmarajah Thiruvaran School of Electrical Engineering & Telecommunications Modul 5: IIR ad FIR Filtr Dsig Prof. Eliathamby Ambiairaah Dr. Tharmaraah Thiruvara School of Elctrical Egirig & Tlcommuicatios Th Uivrsity of w South Wals Australia IIR filtrs Evry rcursiv digital filtr

More information