A Note on a Three-Dimensional Bäcklund Transformation

Size: px
Start display at page:

Download "A Note on a Three-Dimensional Bäcklund Transformation"

Transcription

1 Interntionl Journl of Applied Science nd Engineering 006., : 5-0 A ote on Three-Dimensionl Bäcklund Trnsformtion Xuncheng Hung * nd Edwrd H. C. Chng Yngzhou Poltechnic Universit-903 Ho Yue Yun, Moon PrkYngzhou, Jingsu 50 Chin tionl Tipei College of Business3 Section, Chi-n Rod, Tipei, Tiwn, R.O.C. Abstrct: The Bäcklund trnsformtion (BT) for three-dimensionl nonliner wve eqution nd its nonliner superposition formul re studied in this note. We prove tht the three dimensionl Bäcklund trnsformtion obtined b Leibbrndt, et l. cn be decomposed into three two-dimensionl BTs. Some results on the -dimensionl Liouville eqution re lso discussed in the rticle. Kewords: Bäcklund trnsformtion; Liouville eqution; superposition formul. Introduction For the pst decdes the stud of nonliner wve equtions hs ttrcted lot of ttentions from scientists nd mthemticins. Some powerful tools such s the singulr perturbtion, the inverse scttering trnsform, the Bäcklund trnsformtion (BT), etc., re developed in solving these equtions. It is interesting to note tht the Bäcklund trnsformtion ws first introduced in pseudo-sphericl surfce but now is ver useful in nonliner equtions. Liouville eqution in three dimensions tkes the form: = ep, = + +, () z with the following conditions: d dr, 0, r ( + + z ) + () In two-dimensionl spce, this eqution is reduced to ( ) χ ep( χ) + = k (3) with some boundr condition on χ, χ is sclr field, nd, k re rel constnts. Eqution (3) ws first obtined b Liouville, nd ws studied lter b mn well-known mthemticins tht include Picrd, Poincre nd Bierberbch, etc. The eqution hs significnt pplictions in electro-sttistics, hdrodnmics, cosmolog, isotherml gs spheres nd monopole theor. A Bäcklund trnsformtion for eqution () nd its nonliner superposition formul ws proposed b Leibbrndt, et l. [3,]. In this note, we prove tht the three-dimensionl Bäcklund trnsformtion of [3,] cn be decomposed into three two-dimensionl BTs. We lso discuss some results for the -dimensionl Liouville eqution. Since the theor of Bäcklund trnsformtions is still ver ctive [6,8], thus this discussion hs, ob- * Corresponding uthor; e-mil: h3@hoo.com Accepted for Publiction: September 9, Chong Universit of Technolog, ISS Int. J. Appl. Sci. Eng., 006., 5

2 Xuncheng Hung nd Edwrd H. C. Chng viousl, some interests.. Decomposition of Bäcklund trnsformtion for the Liouville eqution The Bäcklund trnsformtion derived b Leibbrnt et l. for the Liouville eqution in three sptil dimensions is + iβ Ki ( β ) = ep epiθ 3 z () K I + i( σ + σ ) (5) σ ep( iλσ ) (6), 0 0 i 0 σ =, σ =, σ3 = 0 i 0 0 re Puli mtrices nd I the identit mtri, θ, λ (0 θ π, 0 λ π ) re the prmeters of the BT, nd β re rel functions stisfing Eqution () nd the Lplce Eqution: = = + + (7) β 0, z respectivel. ote tht ep( iλσ ) = Icosλ+ iσ σ sin λ isin λ icos λ isin λ icos λ ep θ = I cosθ + sinθ icos λ sin λ icos λ isin λ (8) (9) We cn prove tht the Bäcklund trnsformtion of () tkes the following form: Ki ( β ) = ( A+ ib) ep (0) A= Icosθ () sinθ sin λ sinθcosλ B = sinθ cosλ sinθsin λ () This mtri eqution implies the four Equtions: ( + iz)( iβ ) = ( cosθ + isinθsin λ) ep (3) ( iz)( iβ ) = ( cosθ isinθsin λ) ep (3b) i ( iβ ) = isinθ cosλ ep (3c) i ( iβ ) = isinθ cosλ ep or, their equivlent forms: ( iβ ) = cosθep (3d) () ( iβ ) = sinθcosλep (b) z ( iβ ) = sinθsinλep (c) If we compre the rel nd imginr prts of the equtions in (), nd use the integrl conditions, we cn show tht equtions (,b) re Bäcklund trnsformtion for the two- dimensionl Liouville eqution in the light-cone coordinte sstem: = sinθcosθcos λep (5) nd the wve eqution β = 0. Similrl, equtions (,c) re BT for z = sinθcosθsin λep (6) nd the wve eqution β z = 0 ; nd equtions (b,c) re BT for z sin θsin λcos λep = (7) 6 Int. J. Appl. Sci. Eng., 006.,

3 A ote on Three-Dimensionl Bäcklund Trnsformtion nd β z = 0 We would like to point out tht: ). The equtions (5), (6), nd (7) cn be written, with some coordinte trnsformtions, s the stndrd form s in (3). ). From () we hve cos θ ep = (8) sin θcos λep = (8b) zz = sin θsin λep (8c) nd thus + + = ep (9) zz which is the originl three-dimensionl Liouville eqution. Similrl, we hve β + β + βzz = 0 (0) which is Lplce eqution (7). Therefore, we cn see tht the three sets of BTs for two-dimensionl Liouville equtions lso stisf the conditions for the three-dimensionl Liouville eqution (). In Bäcklund trnsformtion (), since the prmeters θ, λ (0 θ π, 0 λ π ) re rel, ll the trigonometric functions in () re rel. Therefore, we hve shown tht the Bäcklund trnsformtion () for the three-dimensionl Liouville eqution () is ble to be decomposed into three sets of BTs for two-dimensionl Liouville equtions. Similr results cn be obtined for the Liouville eqution in sptil dimensions. 3. Some results of Liouville equtions in sptil dimensions We write () into the following: () ( iβ ) = ep () ( iβ ) = ep () (b) (3) ( iβ ) = 3 ep (c) = ( θλ, ) ( =,,3) re the prmeters of the trnsformtion, which stisf + + = () 3 It is es to see tht, =,,3 re rel due to the rnges of θ, λ. Consider the trnsformtion in -dimensionl spce + iβ () ( iβ ) = ep (,,... ) =, =,,3,...,, stisf =. = Obviousl, nd β in (3) stisf the -dimensionl Liouville eqution ( ) = ep () = nd the -dimensionl Lplce eqution ( ) β = 0 (5) = Let ε = (,... ), nd etend it to stndrd orthogonl bsis of the -dimensionl spce R : { ε, ε... ε }. Consider the mtri A with the low vectors of ε ( =... ), nd the coordinte trnsformtion: () () ( ) T () () ( )... = A... (6) We hve ( ) ep, () iβ = (7) ( iβ ) = 0, ( =,3,..., ) (8) ( ) This mens tht under the new coordintes, nd β re onl relted to (), which stisf the regulr esil solvble two-dimensionl T Int. J. Appl. Sci. Eng., 006., 7

4 Xuncheng Hung nd Edwrd H. C. Chng Liouville nd wve equtions: = ep, (9) () () β = (30) 0. () () For the Liouville eqution with time vrible t, we hve similr result. For emple, consider ( t ) = ep, = + +z, (3) nd its Bäcklund trnsformtion Ki ( β ) = ep epiθ (3) K I + i( σ + σ ) + σ, (33) 3 z t [ i ] nd β stisfies the equtions σ ep ( λσ )ep( τσ ), ( < τ <+ ) (3) ( t ) β 0, = = + + (35) z It cn be proved tht the Bäcklund trnsformtion (3) with time vrible t hs similr structure with the one of () without time t.. onliner superposition formul of solutions In references [3,], the following nonliner superposition formul of solutions for Liouville eqution of higher dimensions hve been used: () () β β0 tn = R tnh, (36) θ, λ () θ, λ, (), 0, θ λ θ λ 0 iβ iβ iβ iβ (38) We will show tht the bove superposition formul is trivil. According to (), we cn chnge (38) into iβ iβ iβ iβ (39) () () 0, 0, θ, λ, It follows tht, to the rnge of θ nd ( =,,3) depend on re rel due λ. We hve () ( ) () 0 ( iβ0 ) = ep () ( ) () 0 ( iβ0 ) = ep () ( ) () iβ + ( iβ) = ep () ( ) () iβ + ( iβ) = ep, ( =,,3) From (0,c) nd (0b,d), we obtin = ( ) ( iβ0 iβ) () () 0 iβ + ep + ep nd = ( ) ( iβ0 iβ) () () 0 iβ + ep + ep Also, (0) (0b) (0c) (0d) () () ) R =± ( +ℵ ) /( ℵ, ℵ <, ℵ cosθ cosθ + sinθ sinθ cos( λ λ ), (), (37) (), β 0 nd β re the rel solutions of equtions () nd (7), respectivel. These solutions re connecting b the Bäcklund trnsformtion (). Assume tht the BT () is permutble, we hve () () () () 0 iβ + 0 sinh cosh () () sinh () () () () 0 iβ + 0 = sinh cosh () () sinh (3) 8 Int. J. Appl. Sci. Eng., 006.,

5 A ote on Three-Dimensionl Bäcklund Trnsformtion or equivlentl, () () () () 0 iβ + 0 sinh ep () () () () 0 iβ + 0 = sinh ep. () Eliminting the nonzero fctor () () + 0 ep, nd epnding the hperbolic sine functions ields tht () () iβ0 iβ ( + )sinh cosh () () iβ 0 iβ = ( )cosh sinh ; tht is, () () + β0 β tnh tnh i = Since tht tnh( iχ) = itn χ, we hve () () + β0 β tnh i tnh = (5) (6) (7) ow we check the formul (7) crefull. () () Since,, β0, β nd, re ll rel, the right hnd side of (7) is pure imginr while the left hnd side is rel. Thus, both vnish, or β = β 0. In other words, it is impossible to obtin new solution from the solution iβ0,, () () b the formul (7). Therefore, the formuls (37) nd (38) (the Bcklund trnsformtion in the references [3,]) re trivil, b which no new solutions will be produced. Topics relting to the Bäcklund trnsformtion nd nonliner superposition formuls for nonliner wve Equtions re ver ctive. And, in literture, there re some further discussion bsed on the formuls (37) nd (38) (see [5-8,,], for instnce). Therefore, the discussion in this note is, of course, necessr. References [ ] Ockendon, J. R. (Ed.) 003. Applied Prtil Differentil Equtions - Oford Tets in Applied nd Engineering Mthemtics, Oford Universit Press, Oford. [ ] Gesztes, F., Holden H., Bollobs B., Fulton W., Ktok A., Kirwn F., nd Srnk P Soliton Equtions nd their Algebro-Geometric Solutions: Vol., (+)-Dimensionl Continuous Models Cmbridge Studies in Advnced Mthemtics, Cmbridge Universit Press. [ 3] Leibbrndt, G., Wng S. S., nd Zmni. 98. Bäcklund generted solutions of Liouville s Eqution nd their grphicl representtions in three sptil dimensions, Journl of Mthemticl Phsics, 3, 9: [ ] Leibbrndt, G onliner superposition for Liouville s eqution in three sptil dimensions, Letters in Mthemticl Phsics, : [ 5] Hung, X. C Another method of deriving uto-bäcklund trnsformtions for nonliner evolution equtions, Journl of Phsics A-Mthemticl nd Generl, 6: [ 6] Hung, X. C A one-prmeter Bäcklund trnsformtion for the Eucliden Liouville nd wve equtions, Phsic Script, 7: 3-3. [ 7] Tu, M. H. 00. On the Bäcklund trnsformtion for the Mol Korteweg-de Vries hierrch, Journl of Phsics A-Mthemticl nd Generl, 3: [ 8] Bi, C. L. 00. Bäcklund trnsformtion nd multiple soliton solutions for the (3+)-dimensionl izhnik ovikov Veselov eqution, Chinese Phsics., 3: -. [ 9] Hu, X. B. nd Springel, J. 00. A Bäcklund trnsformtion nd nonliner superposition formul for the Int. J. Appl. Sci. Eng., 006., 9

6 Xuncheng Hung nd Edwrd H. C. Chng Lotk-Volterr hierrch, AZLAM Journl. : -8. [0] Rourke, D. E. 00. Elementr Bäcklund trnsformtions for discrete Ablowitz Ldik eigenvlue problem, Journl of Phsics A-Mthemticl nd Generl, 37,7: [] Tu, G. Z. nd Hung, X. C From ewton s lw to generlized Hmiltonin sstem (I) Some results on liner skew-smmetric opertor, Journl of Yngzhou Poltechnic Universit, 9, :36-6. [] Hung, X. C. nd Tu, G. Z A new hierrch of integrble sstem of +-dimensions From ewton s lw to generlized Hmiltonin sstem (II), Interntionl Journl of Mthemtics nd Mthemticl Sciences. (to be published) 0 Int. J. Appl. Sci. Eng., 006.,

Application of Exp-Function Method to. a Huxley Equation with Variable Coefficient *

Application of Exp-Function Method to. a Huxley Equation with Variable Coefficient * Interntionl Mthemticl Forum, 4, 9, no., 7-3 Appliction of Exp-Function Method to Huxley Eqution with Vrible Coefficient * Li Yo, Lin Wng nd Xin-Wei Zhou. Deprtment of Mthemtics, Kunming College Kunming,Yunnn,

More information

M344 - ADVANCED ENGINEERING MATHEMATICS

M344 - ADVANCED ENGINEERING MATHEMATICS M3 - ADVANCED ENGINEERING MATHEMATICS Lecture 18: Lplce s Eqution, Anltic nd Numericl Solution Our emple of n elliptic prtil differentil eqution is Lplce s eqution, lso clled the Diffusion Eqution. If

More information

AQA Further Pure 2. Hyperbolic Functions. Section 2: The inverse hyperbolic functions

AQA Further Pure 2. Hyperbolic Functions. Section 2: The inverse hyperbolic functions Hperbolic Functions Section : The inverse hperbolic functions Notes nd Emples These notes contin subsections on The inverse hperbolic functions Integrtion using the inverse hperbolic functions Logrithmic

More information

Some Methods in the Calculus of Variations

Some Methods in the Calculus of Variations CHAPTER 6 Some Methods in the Clculus of Vritions 6-. If we use the vried function ( α, ) α sin( ) + () Then d α cos ( ) () d Thus, the totl length of the pth is d S + d d α cos ( ) + α cos ( ) d Setting

More information

New Expansion and Infinite Series

New Expansion and Infinite Series Interntionl Mthemticl Forum, Vol. 9, 204, no. 22, 06-073 HIKARI Ltd, www.m-hikri.com http://dx.doi.org/0.2988/imf.204.4502 New Expnsion nd Infinite Series Diyun Zhng College of Computer Nnjing University

More information

Chapter 3. Vector Spaces

Chapter 3. Vector Spaces 3.4 Liner Trnsformtions 1 Chpter 3. Vector Spces 3.4 Liner Trnsformtions Note. We hve lredy studied liner trnsformtions from R n into R m. Now we look t liner trnsformtions from one generl vector spce

More information

Research Article On Existence and Uniqueness of Solutions of a Nonlinear Integral Equation

Research Article On Existence and Uniqueness of Solutions of a Nonlinear Integral Equation Journl of Applied Mthemtics Volume 2011, Article ID 743923, 7 pges doi:10.1155/2011/743923 Reserch Article On Existence nd Uniqueness of Solutions of Nonliner Integrl Eqution M. Eshghi Gordji, 1 H. Bghni,

More information

HOMEWORK SOLUTIONS MATH 1910 Sections 7.9, 8.1 Fall 2016

HOMEWORK SOLUTIONS MATH 1910 Sections 7.9, 8.1 Fall 2016 HOMEWORK SOLUTIONS MATH 9 Sections 7.9, 8. Fll 6 Problem 7.9.33 Show tht for ny constnts M,, nd, the function yt) = )) t ) M + tnh stisfies the logistic eqution: y SOLUTION. Let Then nd Finlly, y = y M

More information

Partial Differential Equations

Partial Differential Equations Prtil Differentil Equtions Notes by Robert Piché, Tmpere University of Technology reen s Functions. reen s Function for One-Dimensionl Eqution The reen s function provides complete solution to boundry

More information

21.6 Green Functions for First Order Equations

21.6 Green Functions for First Order Equations 21.6 Green Functions for First Order Equtions Consider the first order inhomogeneous eqution subject to homogeneous initil condition, B[y] y() = 0. The Green function G( ξ) is defined s the solution to

More information

WHEN IS A FUNCTION NOT FLAT? 1. Introduction. {e 1 0, x = 0. f(x) =

WHEN IS A FUNCTION NOT FLAT? 1. Introduction. {e 1 0, x = 0. f(x) = WHEN IS A FUNCTION NOT FLAT? YIFEI PAN AND MEI WANG Abstrct. In this pper we prove unique continution property for vector vlued functions of one vrible stisfying certin differentil inequlity. Key words:

More information

Summary: Method of Separation of Variables

Summary: Method of Separation of Variables Physics 246 Electricity nd Mgnetism I, Fll 26, Lecture 22 1 Summry: Method of Seprtion of Vribles 1. Seprtion of Vribles in Crtesin Coordintes 2. Fourier Series Suggested Reding: Griffiths: Chpter 3, Section

More information

Solutions of Klein - Gordan equations, using Finite Fourier Sine Transform

Solutions of Klein - Gordan equations, using Finite Fourier Sine Transform IOSR Journl of Mthemtics (IOSR-JM) e-issn: 2278-5728, p-issn: 2319-765X. Volume 13, Issue 6 Ver. IV (Nov. - Dec. 2017), PP 19-24 www.iosrjournls.org Solutions of Klein - Gordn equtions, using Finite Fourier

More information

Fredholm Integral Equations of the First Kind Solved by Using the Homotopy Perturbation Method

Fredholm Integral Equations of the First Kind Solved by Using the Homotopy Perturbation Method Int. Journl of Mth. Anlysis, Vol. 5, 211, no. 19, 935-94 Fredholm Integrl Equtions of the First Kind Solved by Using the Homotopy Perturbtion Method Seyyed Mhmood Mirzei Deprtment of Mthemtics, Fculty

More information

CS434a/541a: Pattern Recognition Prof. Olga Veksler. Lecture 2

CS434a/541a: Pattern Recognition Prof. Olga Veksler. Lecture 2 CS434/54: Pttern Recognition Prof. Olg Veksler Lecture Outline Review of Liner Algebr vectors nd mtrices products nd norms vector spces nd liner trnsformtions eigenvlues nd eigenvectors Introduction to

More information

CET MATHEMATICS 2013

CET MATHEMATICS 2013 CET MATHEMATICS VERSION CODE: C. If sin is the cute ngle between the curves + nd + 8 t (, ), then () () () Ans: () Slope of first curve m ; slope of second curve m - therefore ngle is o A sin o (). The

More information

Section 6.1 INTRO to LAPLACE TRANSFORMS

Section 6.1 INTRO to LAPLACE TRANSFORMS Section 6. INTRO to LAPLACE TRANSFORMS Key terms: Improper Integrl; diverge, converge A A f(t)dt lim f(t)dt Piecewise Continuous Function; jump discontinuity Function of Exponentil Order Lplce Trnsform

More information

Multiple Integrals. Review of Single Integrals. Planar Area. Volume of Solid of Revolution

Multiple Integrals. Review of Single Integrals. Planar Area. Volume of Solid of Revolution Multiple Integrls eview of Single Integrls eding Trim 7.1 eview Appliction of Integrls: Are 7. eview Appliction of Integrls: olumes 7.3 eview Appliction of Integrls: Lengths of Curves Assignment web pge

More information

Multiple Integrals. Review of Single Integrals. Planar Area. Volume of Solid of Revolution

Multiple Integrals. Review of Single Integrals. Planar Area. Volume of Solid of Revolution Multiple Integrls eview of Single Integrls eding Trim 7.1 eview Appliction of Integrls: Are 7. eview Appliction of Integrls: Volumes 7.3 eview Appliction of Integrls: Lengths of Curves Assignment web pge

More information

Consequently, the temperature must be the same at each point in the cross section at x. Let:

Consequently, the temperature must be the same at each point in the cross section at x. Let: HW 2 Comments: L1-3. Derive the het eqution for n inhomogeneous rod where the therml coefficients used in the derivtion of the het eqution for homogeneous rod now become functions of position x in the

More information

1.9 C 2 inner variations

1.9 C 2 inner variations 46 CHAPTER 1. INDIRECT METHODS 1.9 C 2 inner vritions So fr, we hve restricted ttention to liner vritions. These re vritions of the form vx; ǫ = ux + ǫφx where φ is in some liner perturbtion clss P, for

More information

ax bx c (2) x a x a x a 1! 2!! gives a useful way of approximating a function near to some specific point x a, giving a power-series expansion in x

ax bx c (2) x a x a x a 1! 2!! gives a useful way of approximating a function near to some specific point x a, giving a power-series expansion in x Elementr mthemticl epressions Qurtic equtions b b b The solutions to the generl qurtic eqution re (1) b c () b b 4c (3) Tlor n Mclurin series (power-series epnsion) The Tlor series n n f f f n 1!! n! f

More information

arxiv: v1 [math.gm] 30 Dec 2015

arxiv: v1 [math.gm] 30 Dec 2015 A NEW FRACTIONAL DERIVATIVE WITHOUT SINGULAR KERNEL: APPLICATION TO THE MODELLING OF THE STEADY HEAT FLOW rxiv:161.1623v1 [mth.gm] 3 Dec 215 by Xio-Jun YANG, H. M. SRIVASTAVA b,c, J. A. Tenreiro MACHADO

More information

Method of stationary phase

Method of stationary phase Physics 4 Spring 16 Method of sttionry phse Lecture notes by M. G. Rozmn Lst modified: April 13, 16 There is n immedite generliztion of the Lplce integrls f t)e φt) dt 1) which we obtin by llowing the

More information

Eigen Values and Eigen Vectors of a given matrix

Eigen Values and Eigen Vectors of a given matrix Engineering Mthemtics 0 SUBJECT NAME SUBJECT CODE MATERIAL NAME MATERIAL CODE : Engineering Mthemtics I : 80/MA : Prolem Mteril : JM08AM00 (Scn the ove QR code for the direct downlod of this mteril) Nme

More information

1.2. Linear Variable Coefficient Equations. y + b "! = a y + b " Remark: The case b = 0 and a non-constant can be solved with the same idea as above.

1.2. Linear Variable Coefficient Equations. y + b ! = a y + b  Remark: The case b = 0 and a non-constant can be solved with the same idea as above. 1 12 Liner Vrible Coefficient Equtions Section Objective(s): Review: Constnt Coefficient Equtions Solving Vrible Coefficient Equtions The Integrting Fctor Method The Bernoulli Eqution 121 Review: Constnt

More information

Algebra Of Matrices & Determinants

Algebra Of Matrices & Determinants lgebr Of Mtrices & Determinnts Importnt erms Definitions & Formule 0 Mtrix - bsic introduction: mtrix hving m rows nd n columns is clled mtrix of order m n (red s m b n mtrix) nd mtrix of order lso in

More information

MATH34032: Green s Functions, Integral Equations and the Calculus of Variations 1

MATH34032: Green s Functions, Integral Equations and the Calculus of Variations 1 MATH34032: Green s Functions, Integrl Equtions nd the Clculus of Vritions 1 Section 1 Function spces nd opertors Here we gives some brief detils nd definitions, prticulrly relting to opertors. For further

More information

Exact solutions for nonlinear partial fractional differential equations

Exact solutions for nonlinear partial fractional differential equations Chin. Phys. B Vol., No. (0) 004 Exct solutions for nonliner prtil frctionl differentil equtions Khled A. epreel )b) nd Sleh Omrn b)c) ) Mthemtics Deprtment, Fculty of Science, Zgzig University, Egypt b)

More information

Variational Techniques for Sturm-Liouville Eigenvalue Problems

Variational Techniques for Sturm-Liouville Eigenvalue Problems Vritionl Techniques for Sturm-Liouville Eigenvlue Problems Vlerie Cormni Deprtment of Mthemtics nd Sttistics University of Nebrsk, Lincoln Lincoln, NE 68588 Emil: vcormni@mth.unl.edu Rolf Ryhm Deprtment

More information

Chapter 1 VECTOR ALGEBRA

Chapter 1 VECTOR ALGEBRA Chpter 1 VECTOR LGEBR INTRODUCTION: Electromgnetics (EM) m be regrded s the stud of the interctions between electric chrges t rest nd in motion. Electromgnetics is brnch of phsics or electricl engineering

More information

LINEAR ALGEBRA APPLIED

LINEAR ALGEBRA APPLIED 5.5 Applictions of Inner Product Spces 5.5 Applictions of Inner Product Spces 7 Find the cross product of two vectors in R. Find the liner or qudrtic lest squres pproimtion of function. Find the nth-order

More information

Conservation Law. Chapter Goal. 5.2 Theory

Conservation Law. Chapter Goal. 5.2 Theory Chpter 5 Conservtion Lw 5.1 Gol Our long term gol is to understnd how mny mthemticl models re derived. We study how certin quntity chnges with time in given region (sptil domin). We first derive the very

More information

Travelling Profile Solutions For Nonlinear Degenerate Parabolic Equation And Contour Enhancement In Image Processing

Travelling Profile Solutions For Nonlinear Degenerate Parabolic Equation And Contour Enhancement In Image Processing Applied Mthemtics E-Notes 8(8) - c IN 67-5 Avilble free t mirror sites of http://www.mth.nthu.edu.tw/ men/ Trvelling Profile olutions For Nonliner Degenerte Prbolic Eqution And Contour Enhncement In Imge

More information

On the Generalized Weighted Quasi-Arithmetic Integral Mean 1

On the Generalized Weighted Quasi-Arithmetic Integral Mean 1 Int. Journl of Mth. Anlysis, Vol. 7, 2013, no. 41, 2039-2048 HIKARI Ltd, www.m-hikri.com http://dx.doi.org/10.12988/ijm.2013.3499 On the Generlized Weighted Qusi-Arithmetic Integrl Men 1 Hui Sun School

More information

The Algebra (al-jabr) of Matrices

The Algebra (al-jabr) of Matrices Section : Mtri lgebr nd Clculus Wshkewicz College of Engineering he lgebr (l-jbr) of Mtrices lgebr s brnch of mthemtics is much broder thn elementry lgebr ll of us studied in our high school dys. In sense

More information

Linearity, linear operators, and self adjoint eigenvalue problems

Linearity, linear operators, and self adjoint eigenvalue problems Linerity, liner opertors, nd self djoint eigenvlue problems 1 Elements of liner lgebr The study of liner prtil differentil equtions utilizes, unsurprisingly, mny concepts from liner lgebr nd liner ordinry

More information

REGULARITY OF NONLOCAL MINIMAL CONES IN DIMENSION 2

REGULARITY OF NONLOCAL MINIMAL CONES IN DIMENSION 2 EGULAITY OF NONLOCAL MINIMAL CONES IN DIMENSION 2 OVIDIU SAVIN AND ENICO VALDINOCI Abstrct. We show tht the only nonlocl s-miniml cones in 2 re the trivil ones for ll s 0, 1). As consequence we obtin tht

More information

1 2-D Second Order Equations: Separation of Variables

1 2-D Second Order Equations: Separation of Variables Chpter 12 PDEs in Rectngles 1 2-D Second Order Equtions: Seprtion of Vribles 1. A second order liner prtil differentil eqution in two vribles x nd y is A 2 u x + B 2 u 2 x y + C 2 u y + D u 2 x + E u +

More information

MAC-solutions of the nonexistent solutions of mathematical physics

MAC-solutions of the nonexistent solutions of mathematical physics Proceedings of the 4th WSEAS Interntionl Conference on Finite Differences - Finite Elements - Finite Volumes - Boundry Elements MAC-solutions of the nonexistent solutions of mthemticl physics IGO NEYGEBAUE

More information

QUA DR ATIC EQUATION

QUA DR ATIC EQUATION J-Mthemtics. INTRODUCTION : QUA DR ATIC QUATION The lgebric epression of the form + b + c, 0 is clled qudrtic epression, becuse the highest order term in it is of second degree. Qudrtic eqution mens, +

More information

LECTURE 1. Introduction. 1. Rough Classiæcation of Partial Diæerential Equations

LECTURE 1. Introduction. 1. Rough Classiæcation of Partial Diæerential Equations LECTURE 1 Introduction 1. Rough Clssiction of Prtil Dierentil Equtions A prtil dierentil eqution is eqution relting function of n vribles x 1 ;::: ;x n, its prtil derivtives, nd the coordintes x =èx 1

More information

Chapter 8: Methods of Integration

Chapter 8: Methods of Integration Chpter 8: Methods of Integrtion Bsic Integrls 8. Note: We hve the following list of Bsic Integrls p p+ + c, for p sec tn + c p + ln + c sec tn sec + c e e + c tn ln sec + c ln + c sec ln sec + tn + c ln

More information

1 Part II: Numerical Integration

1 Part II: Numerical Integration Mth 4 Lb 1 Prt II: Numericl Integrtion This section includes severl techniques for getting pproimte numericl vlues for definite integrls without using ntiderivtives. Mthemticll, ect nswers re preferble

More information

( β ) touches the x-axis if = 1

( β ) touches the x-axis if = 1 Generl Certificte of Eduction (dv. Level) Emintion, ugust Comined Mthemtics I - Prt B Model nswers. () Let f k k, where k is rel constnt. i. Epress f in the form( ) Find the turning point of f without

More information

New exact travelling wave solutions of bidirectional wave equations

New exact travelling wave solutions of bidirectional wave equations Shirz University of Technology From the SelectedWorks of Hbiboll Ltifizdeh June, 0 New exct trvelling wve solutions of bidirectionl wve equtions Hbiboll Ltifizdeh, Shirz University of Technology Avilble

More information

Improper Integrals with Infinite Limits of Integration

Improper Integrals with Infinite Limits of Integration 6_88.qd // : PM Pge 578 578 CHAPTER 8 Integrtion Techniques, L Hôpitl s Rule, nd Improper Integrls Section 8.8 f() = d The unounded region hs n re of. Figure 8.7 Improper Integrls Evlute n improper integrl

More information

Chapter 14. Matrix Representations of Linear Transformations

Chapter 14. Matrix Representations of Linear Transformations Chpter 4 Mtrix Representtions of Liner Trnsformtions When considering the Het Stte Evolution, we found tht we could describe this process using multipliction by mtrix. This ws nice becuse computers cn

More information

GENERALIZED ABSTRACTED MEAN VALUES

GENERALIZED ABSTRACTED MEAN VALUES GENERALIZED ABSTRACTED MEAN VALUES FENG QI Abstrct. In this rticle, the uthor introduces the generlized bstrcted men vlues which etend the concepts of most mens with two vribles, nd reserches their bsic

More information

Ordinary differential equations

Ordinary differential equations Ordinry differentil equtions Introduction to Synthetic Biology E Nvrro A Montgud P Fernndez de Cordob JF Urchueguí Overview Introduction-Modelling Bsic concepts to understnd n ODE. Description nd properties

More information

The Existence of the Moments of the Cauchy Distribution under a Simple Transformation of Dividing with a Constant

The Existence of the Moments of the Cauchy Distribution under a Simple Transformation of Dividing with a Constant Theoreticl Mthemtics & Applictions, vol., no., 0, 7-5 ISSN: 79-9687 (print), 79-9709 (online) Interntionl Scientific Press, 0 The Eistence of the Moments of the Cuch Distriution under Simple Trnsformtion

More information

Math Fall 2006 Sample problems for the final exam: Solutions

Math Fall 2006 Sample problems for the final exam: Solutions Mth 42-5 Fll 26 Smple problems for the finl exm: Solutions Any problem my be ltered or replced by different one! Some possibly useful informtion Prsevl s equlity for the complex form of the Fourier series

More information

The Solution of Volterra Integral Equation of the Second Kind by Using the Elzaki Transform

The Solution of Volterra Integral Equation of the Second Kind by Using the Elzaki Transform Applied Mthemticl Sciences, Vol. 8, 214, no. 11, 525-53 HIKARI Ltd, www.m-hikri.com http://dx.doi.org/1.12988/ms.214.312715 The Solution of Volterr Integrl Eqution of the Second Kind by Using the Elzki

More information

1.1. Linear Constant Coefficient Equations. Remark: A differential equation is an equation

1.1. Linear Constant Coefficient Equations. Remark: A differential equation is an equation 1 1.1. Liner Constnt Coefficient Equtions Section Objective(s): Overview of Differentil Equtions. Liner Differentil Equtions. Solving Liner Differentil Equtions. The Initil Vlue Problem. 1.1.1. Overview

More information

Application of Kudryashov method for the Ito equations

Application of Kudryashov method for the Ito equations Avilble t http://pvmu.edu/m Appl. Appl. Mth. ISSN: 1932-9466 Vol. 12, Issue 1 June 2017, pp. 136 142 Applictions nd Applied Mthemtics: An Interntionl Journl AAM Appliction of Kudryshov method for the Ito

More information

Math Theory of Partial Differential Equations Lecture 2-9: Sturm-Liouville eigenvalue problems (continued).

Math Theory of Partial Differential Equations Lecture 2-9: Sturm-Liouville eigenvalue problems (continued). Mth 412-501 Theory of Prtil Differentil Equtions Lecture 2-9: Sturm-Liouville eigenvlue problems (continued). Regulr Sturm-Liouville eigenvlue problem: d ( p dφ ) + qφ + λσφ = 0 ( < x < b), dx dx β 1 φ()

More information

Sturm-Liouville Eigenvalue problem: Let p(x) > 0, q(x) 0, r(x) 0 in I = (a, b). Here we assume b > a. Let X C 2 1

Sturm-Liouville Eigenvalue problem: Let p(x) > 0, q(x) 0, r(x) 0 in I = (a, b). Here we assume b > a. Let X C 2 1 Ch.4. INTEGRAL EQUATIONS AND GREEN S FUNCTIONS Ronld B Guenther nd John W Lee, Prtil Differentil Equtions of Mthemticl Physics nd Integrl Equtions. Hildebrnd, Methods of Applied Mthemtics, second edition

More information

The Frullani integrals. Notes by G.J.O. Jameson

The Frullani integrals. Notes by G.J.O. Jameson The Frullni integrls Notes b G.J.O. Jmeson We consider integrls of the form I f (, b) f() f(b) where f is continuous function (rel or comple) on (, ) nd, b >. If f() tends to non-zero limit t, then the

More information

NORMALS. a y a y. Therefore, the slope of the normal is. a y1. b x1. b x. a b. x y a b. x y

NORMALS. a y a y. Therefore, the slope of the normal is. a y1. b x1. b x. a b. x y a b. x y LOCUS 50 Section - 4 NORMALS Consider n ellipse. We need to find the eqution of the norml to this ellipse t given point P on it. In generl, we lso need to find wht condition must e stisfied if m c is to

More information

Chapter 4 Contravariance, Covariance, and Spacetime Diagrams

Chapter 4 Contravariance, Covariance, and Spacetime Diagrams Chpter 4 Contrvrince, Covrince, nd Spcetime Digrms 4. The Components of Vector in Skewed Coordintes We hve seen in Chpter 3; figure 3.9, tht in order to show inertil motion tht is consistent with the Lorentz

More information

50. Use symmetry to evaluate xx D is the region bounded by the square with vertices 5, Prove Property 11. y y CAS

50. Use symmetry to evaluate xx D is the region bounded by the square with vertices 5, Prove Property 11. y y CAS 68 CHAPTE MULTIPLE INTEGALS 46. e da, 49. Evlute tn 3 4 da, where,. [Hint: Eploit the fct tht is the disk with center the origin nd rdius is smmetric with respect to both es.] 5. Use smmetr to evlute 3

More information

LYAPUNOV-TYPE INEQUALITIES FOR NONLINEAR SYSTEMS INVOLVING THE (p 1, p 2,..., p n )-LAPLACIAN

LYAPUNOV-TYPE INEQUALITIES FOR NONLINEAR SYSTEMS INVOLVING THE (p 1, p 2,..., p n )-LAPLACIAN Electronic Journl of Differentil Equtions, Vol. 203 (203), No. 28, pp. 0. ISSN: 072-669. URL: http://ejde.mth.txstte.edu or http://ejde.mth.unt.edu ftp ejde.mth.txstte.edu LYAPUNOV-TYPE INEQUALITIES FOR

More information

10.5. ; 43. The points of intersection of the cardioid r 1 sin and. ; Graph the curve and find its length. CONIC SECTIONS

10.5. ; 43. The points of intersection of the cardioid r 1 sin and. ; Graph the curve and find its length. CONIC SECTIONS 654 CHAPTER 1 PARAETRIC EQUATIONS AND POLAR COORDINATES ; 43. The points of intersection of the crdioid r 1 sin nd the spirl loop r,, cn t be found ectl. Use grphing device to find the pproimte vlues of

More information

Math 520 Final Exam Topic Outline Sections 1 3 (Xiao/Dumas/Liaw) Spring 2008

Math 520 Final Exam Topic Outline Sections 1 3 (Xiao/Dumas/Liaw) Spring 2008 Mth 520 Finl Exm Topic Outline Sections 1 3 (Xio/Dums/Liw) Spring 2008 The finl exm will be held on Tuesdy, My 13, 2-5pm in 117 McMilln Wht will be covered The finl exm will cover the mteril from ll of

More information

SUPERSTABILITY OF DIFFERENTIAL EQUATIONS WITH BOUNDARY CONDITIONS

SUPERSTABILITY OF DIFFERENTIAL EQUATIONS WITH BOUNDARY CONDITIONS Electronic Journl of Differentil Equtions, Vol. 01 (01), No. 15, pp. 1. ISSN: 107-6691. URL: http://ejde.mth.txstte.edu or http://ejde.mth.unt.edu ftp ejde.mth.txstte.edu SUPERSTABILITY OF DIFFERENTIAL

More information

SECTION 9-4 Translation of Axes

SECTION 9-4 Translation of Axes 9-4 Trnsltion of Aes 639 Rdiotelescope For the receiving ntenn shown in the figure, the common focus F is locted 120 feet bove the verte of the prbol, nd focus F (for the hperbol) is 20 feet bove the verte.

More information

Czechoslovak Mathematical Journal, 55 (130) (2005), , Abbotsford. 1. Introduction

Czechoslovak Mathematical Journal, 55 (130) (2005), , Abbotsford. 1. Introduction Czechoslovk Mthemticl Journl, 55 (130) (2005), 933 940 ESTIMATES OF THE REMAINDER IN TAYLOR S THEOREM USING THE HENSTOCK-KURZWEIL INTEGRAL, Abbotsford (Received Jnury 22, 2003) Abstrct. When rel-vlued

More information

Numerical Linear Algebra Assignment 008

Numerical Linear Algebra Assignment 008 Numericl Liner Algebr Assignment 008 Nguyen Qun B Hong Students t Fculty of Mth nd Computer Science, Ho Chi Minh University of Science, Vietnm emil. nguyenqunbhong@gmil.com blog. http://hongnguyenqunb.wordpress.com

More information

The margin is too narrow to contain a truly remarkable proof.

The margin is too narrow to contain a truly remarkable proof. The mrgin is too nrrow to contin trul remrkble proof. Pierre de Fermt B For HP & KP Abstrct. The im of this pper is to tr for Fermt s lost proof. Introduction In bout 637 Pierre de Fermt, French mthemticin,

More information

DYNAMICAL SYSTEMS SUPPLEMENT 2007 pp Natalija Sergejeva. Department of Mathematics and Natural Sciences Parades 1 LV-5400 Daugavpils, Latvia

DYNAMICAL SYSTEMS SUPPLEMENT 2007 pp Natalija Sergejeva. Department of Mathematics and Natural Sciences Parades 1 LV-5400 Daugavpils, Latvia DISCRETE AND CONTINUOUS Website: www.aimsciences.org DYNAMICAL SYSTEMS SUPPLEMENT 2007 pp. 920 926 ON THE UNUSUAL FUČÍK SPECTRUM Ntlij Sergejev Deprtment of Mthemtics nd Nturl Sciences Prdes 1 LV-5400

More information

Jackson 2.26 Homework Problem Solution Dr. Christopher S. Baird University of Massachusetts Lowell

Jackson 2.26 Homework Problem Solution Dr. Christopher S. Baird University of Massachusetts Lowell Jckson 2.26 Homework Problem Solution Dr. Christopher S. Bird University of Msschusetts Lowell PROBLEM: The two-dimensionl region, ρ, φ β, is bounded by conducting surfces t φ =, ρ =, nd φ = β held t zero

More information

1. Extend QR downwards to meet the x-axis at U(6, 0). y

1. Extend QR downwards to meet the x-axis at U(6, 0). y In the digrm, two stright lines re to be drwn through so tht the lines divide the figure OPQRST into pieces of equl re Find the sum of the slopes of the lines R(6, ) S(, ) T(, 0) Determine ll liner functions

More information

LIE SYMMETRY GROUP OF (2+1)-DIMENSIONAL JAULENT-MIODEK EQUATION

LIE SYMMETRY GROUP OF (2+1)-DIMENSIONAL JAULENT-MIODEK EQUATION M, H.-C., et l.: Lie Symmetry Group of (+1)-Dimensionl Julent-Miodek THERMAL SCIENCE, Yer 01, ol. 18, No. 5, pp. 157-155 157 LIE SYMMETRY GROUP OF (+1)-DIMENSIONAL JAULENT-MIODEK EQUATION by Hong-Ci MA

More information

Lecture 8 Wrap-up Part1, Matlab

Lecture 8 Wrap-up Part1, Matlab Lecture 8 Wrp-up Prt1, Mtlb Homework Polic Plese stple our homework (ou will lose 10% credit if not stpled or secured) Submit ll problems in order. This mens to plce ever item relting to problem 3 (our

More information

Note 16. Stokes theorem Differential Geometry, 2005

Note 16. Stokes theorem Differential Geometry, 2005 Note 16. Stokes theorem ifferentil Geometry, 2005 Stokes theorem is the centrl result in the theory of integrtion on mnifolds. It gives the reltion between exterior differentition (see Note 14) nd integrtion

More information

POSITIVE SOLUTIONS FOR SINGULAR THREE-POINT BOUNDARY-VALUE PROBLEMS

POSITIVE SOLUTIONS FOR SINGULAR THREE-POINT BOUNDARY-VALUE PROBLEMS Electronic Journl of Differentil Equtions, Vol. 27(27), No. 156, pp. 1 8. ISSN: 172-6691. URL: http://ejde.mth.txstte.edu or http://ejde.mth.unt.edu ftp ejde.mth.txstte.edu (login: ftp) POSITIVE SOLUTIONS

More information

On some Hardy-Sobolev s type variable exponent inequality and its application

On some Hardy-Sobolev s type variable exponent inequality and its application Trnsctions of NAS of Azerbijn Issue Mthemtics 37 4 2 27. Series of Phsicl-Technicl nd Mthemticl Sciences On some Hrd-Sobolev s tpe vrible exponent inequlit nd its ppliction Frmn I. Mmedov Sli M. Mmmdli

More information

Research Article On New Inequalities via Riemann-Liouville Fractional Integration

Research Article On New Inequalities via Riemann-Liouville Fractional Integration Abstrct nd Applied Anlysis Volume 202, Article ID 428983, 0 pges doi:0.55/202/428983 Reserch Article On New Inequlities vi Riemnn-Liouville Frctionl Integrtion Mehmet Zeki Sriky nd Hsn Ogunmez 2 Deprtment

More information

FUZZY HOMOTOPY CONTINUATION METHOD FOR SOLVING FUZZY NONLINEAR EQUATIONS

FUZZY HOMOTOPY CONTINUATION METHOD FOR SOLVING FUZZY NONLINEAR EQUATIONS VOL NO 6 AUGUST 6 ISSN 89-668 6-6 Asin Reserch Publishing Networ (ARPN) All rights reserved wwwrpnjournlscom FUZZY HOMOTOPY CONTINUATION METHOD FOR SOLVING FUZZY NONLINEAR EQUATIONS Muhmmd Zini Ahmd Nor

More information

Classical Mechanics. From Molecular to Con/nuum Physics I WS 11/12 Emiliano Ippoli/ October, 2011

Classical Mechanics. From Molecular to Con/nuum Physics I WS 11/12 Emiliano Ippoli/ October, 2011 Clssicl Mechnics From Moleculr to Con/nuum Physics I WS 11/12 Emilino Ippoli/ October, 2011 Wednesdy, October 12, 2011 Review Mthemtics... Physics Bsic thermodynmics Temperture, idel gs, kinetic gs theory,

More information

A HELLY THEOREM FOR FUNCTIONS WITH VALUES IN METRIC SPACES. 1. Introduction

A HELLY THEOREM FOR FUNCTIONS WITH VALUES IN METRIC SPACES. 1. Introduction Ttr Mt. Mth. Publ. 44 (29), 159 168 DOI: 1.2478/v1127-9-56-z t m Mthemticl Publictions A HELLY THEOREM FOR FUNCTIONS WITH VALUES IN METRIC SPACES Miloslv Duchoň Peter Mličký ABSTRACT. We present Helly

More information

University of Washington Department of Chemistry Chemistry 453 Winter Quarter 2010 Homework Assignment 4; Due at 5p.m. on 2/01/10

University of Washington Department of Chemistry Chemistry 453 Winter Quarter 2010 Homework Assignment 4; Due at 5p.m. on 2/01/10 University of Wshington Deprtment of Chemistry Chemistry 45 Winter Qurter Homework Assignment 4; Due t 5p.m. on // We lerned tht the Hmiltonin for the quntized hrmonic oscilltor is ˆ d κ H. You cn obtin

More information

1 1D heat and wave equations on a finite interval

1 1D heat and wave equations on a finite interval 1 1D het nd wve equtions on finite intervl In this section we consider generl method of seprtion of vribles nd its pplictions to solving het eqution nd wve eqution on finite intervl ( 1, 2. Since by trnsltion

More information

Research Article Numerical Treatment of Singularly Perturbed Two-Point Boundary Value Problems by Using Differential Transformation Method

Research Article Numerical Treatment of Singularly Perturbed Two-Point Boundary Value Problems by Using Differential Transformation Method Discrete Dynmics in Nture nd Society Volume 202, Article ID 57943, 0 pges doi:0.55/202/57943 Reserch Article Numericl Tretment of Singulrly Perturbed Two-Point Boundry Vlue Problems by Using Differentil

More information

5.7 Improper Integrals

5.7 Improper Integrals 458 pplictions of definite integrls 5.7 Improper Integrls In Section 5.4, we computed the work required to lift pylod of mss m from the surfce of moon of mss nd rdius R to height H bove the surfce of the

More information

(b) Let S 1 : f(x, y, z) = (x a) 2 + (y b) 2 + (z c) 2 = 1, this is a level set in 3D, hence

(b) Let S 1 : f(x, y, z) = (x a) 2 + (y b) 2 + (z c) 2 = 1, this is a level set in 3D, hence Problem ( points) Find the vector eqution of the line tht joins points on the two lines L : r ( + t) i t j ( + t) k L : r t i + (t ) j ( + t) k nd is perpendiculr to both those lines. Find the set of ll

More information

3 Mathematics of the Poisson Equation

3 Mathematics of the Poisson Equation 3 Mthemtics of the Poisson Eqution 3. Green functions nd the Poisson eqution () The Dirichlet Green function stisfies the Poisson eqution with delt-function chrge 2 G D (r, r o ) = δ 3 (r r o ) (3.) nd

More information

( ) ( ) Chapter 5 Diffraction condition. ρ j

( ) ( ) Chapter 5 Diffraction condition. ρ j Grdute School of Engineering Ngo Institute of Technolog Crstl Structure Anlsis Tkshi Id (Advnced Cermics Reserch Center) Updted Nov. 3 3 Chpter 5 Diffrction condition In Chp. 4 it hs been shown tht the

More information

Section - 2 MORE PROPERTIES

Section - 2 MORE PROPERTIES LOCUS Section - MORE PROPERTES n section -, we delt with some sic properties tht definite integrls stisf. This section continues with the development of some more properties tht re not so trivil, nd, when

More information

A Bernstein polynomial approach for solution of nonlinear integral equations

A Bernstein polynomial approach for solution of nonlinear integral equations Avilble online t wwwisr-publictionscom/jns J Nonliner Sci Appl, 10 (2017), 4638 4647 Reserch Article Journl Homepge: wwwtjnscom - wwwisr-publictionscom/jns A Bernstein polynomil pproch for solution of

More information

Physics 116C Solution of inhomogeneous ordinary differential equations using Green s functions

Physics 116C Solution of inhomogeneous ordinary differential equations using Green s functions Physics 6C Solution of inhomogeneous ordinry differentil equtions using Green s functions Peter Young November 5, 29 Homogeneous Equtions We hve studied, especilly in long HW problem, second order liner

More information

ENGI 9420 Lecture Notes 7 - Fourier Series Page 7.01

ENGI 9420 Lecture Notes 7 - Fourier Series Page 7.01 ENGI 940 ecture Notes 7 - Fourier Series Pge 7.0 7. Fourier Series nd Fourier Trnsforms Fourier series hve multiple purposes, including the provision of series solutions to some liner prtil differentil

More information

6.2 CONCEPTS FOR ADVANCED MATHEMATICS, C2 (4752) AS

6.2 CONCEPTS FOR ADVANCED MATHEMATICS, C2 (4752) AS 6. CONCEPTS FOR ADVANCED MATHEMATICS, C (475) AS Objectives To introduce students to number of topics which re fundmentl to the dvnced study of mthemtics. Assessment Emintion (7 mrks) 1 hour 30 minutes.

More information

Some circular summation formulas for theta functions

Some circular summation formulas for theta functions Ci et l. Boundr Vlue Prolems 013, 013:59 R E S E A R C H Open Access Some circulr summtion formuls for thet functions Yi Ci, Si Chen nd Qiu-Ming Luo * * Correspondence: luomth007@163.com Deprtment of Mthemtics,

More information

Some Fixed Point and Common Fixed Point Theorems in 2-Banach Spaces

Some Fixed Point and Common Fixed Point Theorems in 2-Banach Spaces Americn Journl of Engineering eserch (AJE) e-issn : -7 p-issn : -9 Volume- Issue-5 pp--7 www.jer.us eserch Pper Open Access Some Fied Point nd Common Fied Point heorems in -Bnch Spces A.S.Sluj Alkesh Kumr

More information

ES.182A Topic 32 Notes Jeremy Orloff

ES.182A Topic 32 Notes Jeremy Orloff ES.8A Topic 3 Notes Jerem Orloff 3 Polr coordintes nd double integrls 3. Polr Coordintes (, ) = (r cos(θ), r sin(θ)) r θ Stndrd,, r, θ tringle Polr coordintes re just stndrd trigonometric reltions. In

More information

DETERMINANTS. All Mathematical truths are relative and conditional. C.P. STEINMETZ

DETERMINANTS. All Mathematical truths are relative and conditional. C.P. STEINMETZ DETERMINANTS Chpter 4 All Mthemticl truths re reltive nd conditionl. C.P. STEINMETZ 4. Introduction In the previous chpter, we hve studied bout mtrices nd lgebr of mtrices. We hve lso lernt tht sstem of

More information

Chapter 2. Vectors. 2.1 Vectors Scalars and Vectors

Chapter 2. Vectors. 2.1 Vectors Scalars and Vectors Chpter 2 Vectors 2.1 Vectors 2.1.1 Sclrs nd Vectors A vector is quntity hving both mgnitude nd direction. Emples of vector quntities re velocity, force nd position. One cn represent vector in n-dimensionl

More information

The discriminant of a quadratic function, including the conditions for real and repeated roots. Completing the square. ax 2 + bx + c = a x+

The discriminant of a quadratic function, including the conditions for real and repeated roots. Completing the square. ax 2 + bx + c = a x+ .1 Understnd nd use the lws of indices for ll rtionl eponents.. Use nd mnipulte surds, including rtionlising the denomintor..3 Work with qudrtic nd their grphs. The discriminnt of qudrtic function, including

More information

Probability Distributions for Gradient Directions in Uncertain 3D Scalar Fields

Probability Distributions for Gradient Directions in Uncertain 3D Scalar Fields Technicl Report 7.8. Technische Universität München Probbility Distributions for Grdient Directions in Uncertin 3D Sclr Fields Tobis Pfffelmoser, Mihel Mihi, nd Rüdiger Westermnn Computer Grphics nd Visuliztion

More information