Application of Kudryashov method for the Ito equations

Size: px
Start display at page:

Download "Application of Kudryashov method for the Ito equations"

Transcription

1 Avilble t Appl. Appl. Mth. ISSN: Vol. 12, Issue 1 June 2017, pp Applictions nd Applied Mthemtics: An Interntionl Journl AAM Appliction of Kudryshov method for the Ito equtions Mozhgn Akbri Deprtment of Pure Mthemtics Fculty of Mthemticl Sciences University of Guiln P.O. Box Rsht, Irn m kbri@guiln.c.ir Received: Jnury 29, 2015; Accepted: Februry 20, 2017 Abstrct In this present work, the Kudryshov method is used to construct exct solutions of the 1+1- dimensionl nd the 1+2-dimensionl form of the generlized Ito integro-differentil eqution. The Kudryshov method is powerful method for obtining exct solutions of nonliner evolution equtions. This method cn be pplied to non-integrble equtions s well s integrble ones. Keywords: Kudryshov Method; The 1+1-dimensionl Form of the Generlized Ito Integro-differentil Eqution; The 1+2-dimensionl Form of the Generlized Ito Integro-differentil Eqution MSC 2010 No.: 34K30, 35R09, 35R10, 47G20 1. Introduction The study of nonliner evolution equtions NLEE hs been going on for the pst few decdes, see Ebdi et l. 2012, Ceser nd Gomez 2010, Li nd Zeng 2007, Li nd Zho 2009, Liu 2000, nd Wzwz During this time, there hs been mesurble progress tht hs been mde. There re lots of equtions tht hve been integrted. There re vrious methods of integrbility tht hve been developed so fr. In ddition to NLEEs, there hs been growing 136

2 AAM: Intern. J., Vol. 12, Issue 1 June interest in the nonliner integro-differentil evolution equtions. Some of these commonly studied integro-differentil evolution equtions re the Ito eqution, the generlized shllow wter wve eqution nd mny others. There re vrious nlyticl methods of solving these NLEEs tht hs lso been developed in the pst couple of decdes. Some of these methods re the expfunction method see He nd Wu 2006, Aminikhh et l. 2009, the F-expnsion method see Abdou 2007, Wng nd Li 2005, Ren nd Zhng 2006, the Jcobi elliptic function expnsion method see Di nd Zhng 2006, Fn nd Zhng 2002, Liu et l. 2001, the modified simplest eqution method see Zyed 2011, Vitnov et l. 2010, Vitnov 2011, Jwd et l. 2010, Akbri 2013, the first integrl method see Rsln 2008, Abbsbndy nd Shirzdi 2010, Feng 2002, Feng nd Wng 2003, the functionl vrible method see Zerrk et l. 2010, Zerrk nd Oumne 2010, Cevikel et l. 2012, nd mny others. In this pper, we propose Kudryshov method to construct exct trvelling wve solutions for nonliner evolution equtions see Kudryshov 2004, Kudryshov 1990, Rybov First, we reduce the nonliner evolution equtions to ODEs by trvelling wve vrible trnsformtion. Secondly, we suppose the solution cn be expressed in polynomil in vrible, where it stisfies the Riccti eqution. At the end, the degree of the polynomil cn be determined by the homogeneous blnce method, nd the coefficients cn be obtined by solving set of lgebric equtions. In this work, by using the Kudryshov method, we im to investigte the 1+1-dimensionl nd the 1+2-dimensionl form of the generlized Ito integro-differentil eqution. This pper is orgnized s follows: In Section 2, we describe briefly the Kudryshov method. In Sections 3 nd 4, we pply the proposed method to solve the 1+1-dimensionl nd the 1+2- dimensionl form of the generlized Ito integro-differentil eqution. In Section 5, the conclusion will be presented. 2. Modifiction of truncted expnsion method We consider generl nonliner prtil differentil eqution PDE in the form P u, u t, u x, u tt, u xt, u xx,... = 0. 1 Using trveling wve ux, t = Uξ, ξ = kx ωt crries eqution 1 into the following ODE: P U, ωu, ku, k 2 U,... = 0. 2 The min steps of the modifiction of the truncted expnsion method re the following: Step 1. Determintion of the dominnt term with highest order of singulrity. To find dominnt terms, we substitute U = ξ p, 3 to ll terms of eqution 2. Then we compre degrees of ll terms of eqution 2 nd choose two or more with the lowest degree. The mximum vlue of p is the pole of eqution 2 nd we denote it s N. This method cn be pplied when N is integer. If the vlue N is non-integer, one cn trnsform the eqution studied.

3 138 Mozhgn Akbri Step 2. We look for exct solution of eqution 2 in the form Uξ = N i Q i ξ, 4 i=0 where i i = 0, 1,..., N re constnts to be determined lter, such tht N 0 while Qξ hs the form 1 Qξ = 1 + d expξ, 5 which is solution to the Riccti eqution where d is rbitrry constnt. Q ξ = Q 2 ξ Qξ, Step 3. We cn clculte the necessry number of derivtives of the function U. It is esy to do using Mple or Mthemtic pckge. Using the cse N = 1 we hve some derivtives of the function Uξ in the form U = Q, U ξ = 1 Q + 1 Q 2, U ξξ = 1 Q 3 1 Q Q 3, 6 U ξξξ = 1 Q Q 2 12Q Q 4. Step 4. We substitute expressions given by equtions 4-6 in eqution 2. Then we collect ll terms with the sme powers of function Qξ nd equte the expressions to zero. As result we obtin lgebric system of equtions. Solving this system we get the vlues of unknown prmeters. 3. New exct trvelling wve solution of the 1+1-dimensionl form of the generlized Ito integro-differentil eqution The 1+1-dimensionl form of the generlized Ito integro-differentil eqution tht is going to be studied in this section is given by q tt + q xxxt + 2q x q t + qq xt + q xx x q t dx = 0, 7 Here, in 7, q is the dependent vrible while x nd t re the independent vribles. The coefficient is constnt. Eqution 7 cn reduced to v ttx + v xxxxt + 2v xx v xt + v x v xxt + v xxx v t = 0, 8 using the potentil q = v x. Eqution 8 is converted to the ODE c 2 eu ce 4 u v + 2ce 3 u u ce 3 u u ce 3 u u = 0. 9

4 AAM: Intern. J., Vol. 12, Issue 1 June Equivlently, cu e 3 u v e 2 u 2 = 0, 10 by the wve vribles v = uξ, ξ = ex ct, where primes denote the derivtives with respect to ξ, nd e, c re rel constnts to be determined lter. Eqution 10 is then integrted twice. This converts it to cu e 3 u e 2 u 2 = The pole order of eqution 11 is N = 1. So we look for the solution of eqution 11 in the uξ = Q. 12 Substituting eqution 12 into eqution 11, we obtin the system of lgebric equtions in the Q 1 : c 1 + e 3 1 = 0, Q 2 : c 1 7e 3 1 e = 0, Q 3 : 12e e = 0, Q 4 : 6e 3 1 e = 0. Solving the lgebric equtions bove, this yields: 1 = 6e, c = e3. 13 From 12 nd 13, we obtin the following trvelling wve solution of eqution 11, uξ = 0 6e where 0 nd d re rbitrry constnts. Then the exct solution to eqution 7 is written s qx, t = 6e2 d d expξ expex e 3 t 1 + d expex e 3 t 2, New exct trvelling wve solution of the 1+2-dimensionl form of the generlized Ito integro-differentil eqution The 1+2-dimensionl form of the generlized Ito integro-differentil eqution to be studied in this section is given by q tt + q xxxt + 2q x q t + qq xt + q xx x q t dx + bq yt + dq xt = 0, 15 Here, in 15, q is the dependent vrible while x, y, nd t re the independent vribles. The coefficient, b, nd d re constnts. Eqution 15 cn reduced to v ttx + v xxxxt + 2v xx v xt + v x v xxt + v xxx v t + bv xyt + dv xxt = 0, 16

5 140 Mozhgn Akbri by using the potentil q = v x. Eqution 16 is converted to the ODE c 2 eu ce 4 u v + 2ce 3 u u ce 3 u u ce 3 u u cbefu cde 2 u = Equivlently, c bf deu e 3 u v e 2 u 2 = 0, 18 by the wve vribles v = uξ, ξ = ex + fy ct, where primes denote the derivtives with respect to ξ, nd e, f, nd c re rel constnts to be determined lter. The eqution 18 is then integrted twice. This converts it to c bf deu e 3 u e 2 u 2 = The pole order of eqution 19 is N = 1. So we look for solution of eqution 19 in the uξ = Q. 20 Substituting eqution 20 into eqution 19, we obtin the system of lgebric equtions in the Q 1 : c bf de 1 + e 3 1 = 0, Q 2 : c bf de 1 7e 3 1 e = 0, Q 3 : 12e e = 0, Q 4 : 6e 3 1 e = 0. Solving the lgebric equtions bove, this yields 1 = 6e, c = e3. 21 From 20 nd 21, we obtin the following trvelling wve solution of eqution 19 uξ = 0 6e where 0 nd d re rbitrry constnts. Then the exct solution to eqution 15 is written s qx, y, t = 6e2 d d expξ expex bf + de + e 3 t 1 + d expex bf + de + e 3 t 2, Conclusion Modifiction of the truncted expnsion method is pplied successfully for solving the Ito eqution, which is nonliner integro-differentil evolution eqution. Compred to the methods used before, one cn see tht this method is direct, concise nd effective. Moreover, the method cn lso be pplied to mny other nonliner evolution equtions.

6 AAM: Intern. J., Vol. 12, Issue 1 June Acknowledgments The uthor is very grteful to the referees for their vluble suggestions nd opinions. The uthor is thnkful to the Editor-in-Chief Professor Alikbr Montzer Hghighi for useful comments nd suggestions towrds the improvement of this pper. REFERENCES Abbsbndy, S. nd Shirzdi, A The first integrl method for modified Benjmin-Bon- Mhony eqution, Commun. Nonliner Sci. Numer. Simul., Vol. 15, pp Abdou, M. A The extended F-expnsion method nd its ppliction for clss of nonliner evolution equtions, Chos Solitons Frctls, Vol. 31, pp Akbri, M Exct solutions of the coupled Higgs eqution nd the Mccri system using the modifed simplest eqution method, Inf. Sci. Lett., Vol. 2, pp Aminikhh, H., Moosei, H. nd Hjipour, M Exct solutions for nonliner prtil differentil equtions vi Exp-function method, Numer. Methods Prtil Differ. Eqution, Vol. 26, No. 6, pp Ceser, A. nd Gomez, S New trveling wves solutions to generlized Kup-Kuperschmidt nd Ito equtions, Applied Mthemtics nd Computtion, Vol. 216, No. 1, pp Cevikel, A. C., Bekir, A., Akr. M. nd Sn, S A procedure to construct exct solutions of nonliner evolution equtions, Prmn-Journl of Physics, Vol. 79, No. 3, pp Di, C. Q. nd Zhng, J. F Jcobin elliptic function method for nonliner differentildifference equtions, Chos Solitons Frctls, Vol. 27, pp Ebdi, G., Kr, A. H., Petkovic, M. D., Yildirim, A. nd Bisws, A Solitons nd conserved quntities of the Ito eqution, Proceedings of the Romnin Acdemy, Vol. 13, No. 3, pp Fn, E. nd Zhng, J Applictions of the Jcobi elliptic function method to specil-type nonliner equtions, Phys. Lett. A, Vol. 305, pp Feng, Z. S The first integrl method to syudy the Burgers-KdV eqution, J. Phys. A. Mth. Gen., Vol. 35, pp Feng, Z. S. nd Wng, X. H The first integrl method to the two-dimensionl Burgers- KdV eqution, Phys. Lett. A, Vol. 308, pp He, J.H. nd Wu, X. H Exp-function method for nonliner wve equtions, Chos Solitons Frctls, Vol. 30, pp Jwd, A. J. M., Petkovic, M. D. nd Bisws, A Modified simple eqution method for nonliner evolution equtions. Appl Mth Comput., Vol. 217, pp Kudryshov, N. A Anlyticl theory of nonliner differentil equtions, Moscow Izhevsk: Institute of Computer Investigtions, pp Kudryshov, N. A Exct solutions of the generlized Kurmoto-Sivshinsky eqution, Phys. Lett. A, Vol. 147, pp Li, C. nd Zeng, Y Soliton solutions to higher order Ito eqution: Pfffin technique, Physics Letters A, Vol. 363, pp. 1-4.

7 142 Mozhgn Akbri Li, D. L. nd Zho, J. X New exct solutions to the 2+1-dimensionl Ito eqution; Extended homoclinic test technique, Applied Mthemtics nd Computtion, Vol. 215, No. 5, pp Liu, Q. P Hmiltonin structures for Ito s eqution, Physics Letters A, Vol. 277, No. 1, pp Liu, S., Fu, Z. nd Zho, Q Jcobi elliptic function expnsion method nd periodic wve solutions of nonliner wve equtions, Phys. Lett. A, Vol. 289, pp Rsln, K. R The first integrl method for solving some importnt nonliner prtil differentil equtions, Nonliner Dyn., Vol. 53, No. 4, pp Ren, Y.J. nd Zhng, H. Q A generlized F-expnsion method to find bundnt fmilies of Jcobi elliptic function solutions of the 2+1-dimensionl NizhnikNovikovVeselov eqution, Chos Solitons Frctls, Vol. 27, pp Rybov, P. N Exct solutions of the Kudryshov-Sinelshchikov eqution, Appl. Mth. Comput, Vol. 217, pp Vitnov, N. K., Dimitrov, Z. I.nd Knt, H Modified method of simplest eqution nd its ppliction to nonliner PDEs, Appl Mth Comput, Vol. 216, pp Vitnov, N. K Modified method of simplest eqution: powerful tool for obtining exct nd pproximte trveling-wve solutions of nonliner PDEs, Commun Nonliner Sci Numer Simult, Vol. 16, pp Wng, M. L. nd Li. X. Z Applictions of F-expnsion to periodic wve solutions for new Hmiltonin mplitude eqution, Chos, Solitons nd Frctls, Vol. 24, pp Wzwz, A. M Multiple-soliton solutions for the generlized 1+1-dimensionl nd the generlized 2+1-dimensionl Ito equtions, Applied Mthemtics nd Computtion, Vol. 202, No. 2, pp Zyed. M. E. E A note on the modified simple eqution method pplied to Shrm- Tsso-Olver eqution, Appl Mth Comput, Vol. 218, pp Zerrk, A., Oumne, S. nd Attf, A On the functionl vrible method for finding exct solutions to clss of wve equtions, Appl. Mth. Comput., Vol. 217, pp Zerrk, A. nd Oumne, S Appliction of the functionl vrible method to clss of nonliner wve equtions, World Journl of Modelling nd Simultion, Vol. 6, No. 2, pp

Application of Exp-Function Method to. a Huxley Equation with Variable Coefficient *

Application of Exp-Function Method to. a Huxley Equation with Variable Coefficient * Interntionl Mthemticl Forum, 4, 9, no., 7-3 Appliction of Exp-Function Method to Huxley Eqution with Vrible Coefficient * Li Yo, Lin Wng nd Xin-Wei Zhou. Deprtment of Mthemtics, Kunming College Kunming,Yunnn,

More information

New exact travelling wave solutions of bidirectional wave equations

New exact travelling wave solutions of bidirectional wave equations Shirz University of Technology From the SelectedWorks of Hbiboll Ltifizdeh June, 0 New exct trvelling wve solutions of bidirectionl wve equtions Hbiboll Ltifizdeh, Shirz University of Technology Avilble

More information

Exact solutions for nonlinear partial fractional differential equations

Exact solutions for nonlinear partial fractional differential equations Chin. Phys. B Vol., No. (0) 004 Exct solutions for nonliner prtil frctionl differentil equtions Khled A. epreel )b) nd Sleh Omrn b)c) ) Mthemtics Deprtment, Fculty of Science, Zgzig University, Egypt b)

More information

LIE SYMMETRY GROUP OF (2+1)-DIMENSIONAL JAULENT-MIODEK EQUATION

LIE SYMMETRY GROUP OF (2+1)-DIMENSIONAL JAULENT-MIODEK EQUATION M, H.-C., et l.: Lie Symmetry Group of (+1)-Dimensionl Julent-Miodek THERMAL SCIENCE, Yer 01, ol. 18, No. 5, pp. 157-155 157 LIE SYMMETRY GROUP OF (+1)-DIMENSIONAL JAULENT-MIODEK EQUATION by Hong-Ci MA

More information

SOLITONS AND CONSERVED QUANTITIES OF THE ITO EQUATION

SOLITONS AND CONSERVED QUANTITIES OF THE ITO EQUATION THE PUBLISHING HOUSE PROCEEDINGS OF THE ROMANIAN ACADEMY, Series A, OF THE ROMANIAN ACADEMY Volume 3, Number 3/, pp. 5 4 SOLITONS AND CONSERVED QUANTITIES OF THE ITO EQUATION Ghodrt EBADI, A. H. KARA,

More information

Solutions of Klein - Gordan equations, using Finite Fourier Sine Transform

Solutions of Klein - Gordan equations, using Finite Fourier Sine Transform IOSR Journl of Mthemtics (IOSR-JM) e-issn: 2278-5728, p-issn: 2319-765X. Volume 13, Issue 6 Ver. IV (Nov. - Dec. 2017), PP 19-24 www.iosrjournls.org Solutions of Klein - Gordn equtions, using Finite Fourier

More information

Fredholm Integral Equations of the First Kind Solved by Using the Homotopy Perturbation Method

Fredholm Integral Equations of the First Kind Solved by Using the Homotopy Perturbation Method Int. Journl of Mth. Anlysis, Vol. 5, 211, no. 19, 935-94 Fredholm Integrl Equtions of the First Kind Solved by Using the Homotopy Perturbtion Method Seyyed Mhmood Mirzei Deprtment of Mthemtics, Fculty

More information

An improvement to the homotopy perturbation method for solving integro-differential equations

An improvement to the homotopy perturbation method for solving integro-differential equations Avilble online t http://ijimsrbiucir Int J Industril Mthemtics (ISSN 28-5621) Vol 4, No 4, Yer 212 Article ID IJIM-241, 12 pges Reserch Article An improvement to the homotopy perturbtion method for solving

More information

Solving the (3+1)-dimensional potential YTSF equation with Exp-function method

Solving the (3+1)-dimensional potential YTSF equation with Exp-function method Journl of Physics: Conference Series Solving the (3+-dimensionl potentil YTSF eqution with Exp-function method To cite this rticle: Y-P Wng 8 J. Phys.: Conf. Ser. 96 86 View the rticle online for updtes

More information

New Expansion and Infinite Series

New Expansion and Infinite Series Interntionl Mthemticl Forum, Vol. 9, 204, no. 22, 06-073 HIKARI Ltd, www.m-hikri.com http://dx.doi.org/0.2988/imf.204.4502 New Expnsion nd Infinite Series Diyun Zhng College of Computer Nnjing University

More information

APPROXIMATE LIMIT CYCLES FOR THE RAYLEIGH MODEL

APPROXIMATE LIMIT CYCLES FOR THE RAYLEIGH MODEL ROMAI J, 4, 228, 73 8 APPROXIMATE LIMIT CYCLES FOR THE RAYLEIGH MODEL Adelin Georgescu, Petre Băzăvn, Mihel Sterpu Acdemy of Romnin Scientists, Buchrest Deprtment of Mthemtics nd Computer Science, University

More information

A Modified ADM for Solving Systems of Linear Fredholm Integral Equations of the Second Kind

A Modified ADM for Solving Systems of Linear Fredholm Integral Equations of the Second Kind Applied Mthemticl Sciences, Vol. 6, 2012, no. 26, 1267-1273 A Modified ADM for Solving Systems of Liner Fredholm Integrl Equtions of the Second Kind A. R. Vhidi nd T. Dmercheli Deprtment of Mthemtics,

More information

Explicit Jacobi elliptic exact solutions for nonlinear partial fractional differential equations

Explicit Jacobi elliptic exact solutions for nonlinear partial fractional differential equations Gepreel Advnces in Difference Equtions 20, 20:286 R E S E A R C H Open Access Explicit Jcobi elliptic exct solutions for nonliner prtil frctionl differentil equtions Khled A Gepreel * * Correspondence:

More information

An iterative method for solving nonlinear functional equations

An iterative method for solving nonlinear functional equations J. Mth. Anl. Appl. 316 (26) 753 763 www.elsevier.com/locte/jm An itertive method for solving nonliner functionl equtions Vrsh Dftrdr-Gejji, Hossein Jfri Deprtment of Mthemtics, University of Pune, Gneshkhind,

More information

On the Decomposition Method for System of Linear Fredholm Integral Equations of the Second Kind

On the Decomposition Method for System of Linear Fredholm Integral Equations of the Second Kind Applied Mthemticl Sciences, Vol. 2, 28, no. 2, 57-62 On the Decomposition Method for System of Liner Fredholm Integrl Equtions of the Second Kind A. R. Vhidi 1 nd M. Mokhtri Deprtment of Mthemtics, Shhr-e-Rey

More information

A Modified Homotopy Perturbation Method for Solving Linear and Nonlinear Integral Equations. 1 Introduction

A Modified Homotopy Perturbation Method for Solving Linear and Nonlinear Integral Equations. 1 Introduction ISSN 1749-3889 (print), 1749-3897 (online) Interntionl Journl of Nonliner Science Vol.13(212) No.3,pp.38-316 A Modified Homotopy Perturbtion Method for Solving Liner nd Nonliner Integrl Equtions N. Aghzdeh,

More information

Adomian Decomposition Method with Green s. Function for Solving Twelfth-Order Boundary. Value Problems

Adomian Decomposition Method with Green s. Function for Solving Twelfth-Order Boundary. Value Problems Applied Mthemticl Sciences, Vol. 9, 25, no. 8, 353-368 HIKARI Ltd, www.m-hikri.com http://dx.doi.org/.2988/ms.25.486 Adomin Decomposition Method with Green s Function for Solving Twelfth-Order Boundry

More information

SCIFED. Publishers. Keywords Antibodies; Richards Equation; Soil Moisture;

SCIFED. Publishers. Keywords Antibodies; Richards Equation; Soil Moisture; Reserch Article SCIFED Publishers Bin Zho,, 7, : SciFed Journl of Applied Microbiology Open Access Bio mthemticl Modeling on the Assocition between Presence of Antibodies nd Soil Wter Physicochemicl Properties

More information

1.2. Linear Variable Coefficient Equations. y + b "! = a y + b " Remark: The case b = 0 and a non-constant can be solved with the same idea as above.

1.2. Linear Variable Coefficient Equations. y + b ! = a y + b  Remark: The case b = 0 and a non-constant can be solved with the same idea as above. 1 12 Liner Vrible Coefficient Equtions Section Objective(s): Review: Constnt Coefficient Equtions Solving Vrible Coefficient Equtions The Integrting Fctor Method The Bernoulli Eqution 121 Review: Constnt

More information

A Bernstein polynomial approach for solution of nonlinear integral equations

A Bernstein polynomial approach for solution of nonlinear integral equations Avilble online t wwwisr-publictionscom/jns J Nonliner Sci Appl, 10 (2017), 4638 4647 Reserch Article Journl Homepge: wwwtjnscom - wwwisr-publictionscom/jns A Bernstein polynomil pproch for solution of

More information

POSITIVE SOLUTIONS FOR SINGULAR THREE-POINT BOUNDARY-VALUE PROBLEMS

POSITIVE SOLUTIONS FOR SINGULAR THREE-POINT BOUNDARY-VALUE PROBLEMS Electronic Journl of Differentil Equtions, Vol. 27(27), No. 156, pp. 1 8. ISSN: 172-6691. URL: http://ejde.mth.txstte.edu or http://ejde.mth.unt.edu ftp ejde.mth.txstte.edu (login: ftp) POSITIVE SOLUTIONS

More information

Fractional Riccati Equation Rational Expansion Method For Fractional Differential Equations

Fractional Riccati Equation Rational Expansion Method For Fractional Differential Equations Appl. Mth. Inf. Sci. 7 No. 4 1575-1584 (2013) 1575 Applied Mthemtics & Informtion Sciences An Interntionl Journl http://dx.doi.org/10.12785/mis/070443 Frctionl Riccti Eqution Rtionl Expnsion Method For

More information

Czechoslovak Mathematical Journal, 55 (130) (2005), , Abbotsford. 1. Introduction

Czechoslovak Mathematical Journal, 55 (130) (2005), , Abbotsford. 1. Introduction Czechoslovk Mthemticl Journl, 55 (130) (2005), 933 940 ESTIMATES OF THE REMAINDER IN TAYLOR S THEOREM USING THE HENSTOCK-KURZWEIL INTEGRAL, Abbotsford (Received Jnury 22, 2003) Abstrct. When rel-vlued

More information

Discrete Least-squares Approximations

Discrete Least-squares Approximations Discrete Lest-squres Approximtions Given set of dt points (x, y ), (x, y ),, (x m, y m ), norml nd useful prctice in mny pplictions in sttistics, engineering nd other pplied sciences is to construct curve

More information

Solution to Fredholm Fuzzy Integral Equations with Degenerate Kernel

Solution to Fredholm Fuzzy Integral Equations with Degenerate Kernel Int. J. Contemp. Mth. Sciences, Vol. 6, 2011, no. 11, 535-543 Solution to Fredholm Fuzzy Integrl Equtions with Degenerte Kernel M. M. Shmivnd, A. Shhsvrn nd S. M. Tri Fculty of Science, Islmic Azd University

More information

KRASNOSEL SKII TYPE FIXED POINT THEOREM FOR NONLINEAR EXPANSION

KRASNOSEL SKII TYPE FIXED POINT THEOREM FOR NONLINEAR EXPANSION Fixed Point Theory, 13(2012), No. 1, 285-291 http://www.mth.ubbcluj.ro/ nodecj/sfptcj.html KRASNOSEL SKII TYPE FIXED POINT THEOREM FOR NONLINEAR EXPANSION FULI WANG AND FENG WANG School of Mthemtics nd

More information

Travelling Profile Solutions For Nonlinear Degenerate Parabolic Equation And Contour Enhancement In Image Processing

Travelling Profile Solutions For Nonlinear Degenerate Parabolic Equation And Contour Enhancement In Image Processing Applied Mthemtics E-Notes 8(8) - c IN 67-5 Avilble free t mirror sites of http://www.mth.nthu.edu.tw/ men/ Trvelling Profile olutions For Nonliner Degenerte Prbolic Eqution And Contour Enhncement In Imge

More information

Research Article On Compact and Noncompact Structures for the Improved Boussinesq Water Equations

Research Article On Compact and Noncompact Structures for the Improved Boussinesq Water Equations Mthemticl Problems in Engineering Volume 2013 Article ID 540836 6 pges http://dx.doi.org/10.1155/2013/540836 Reserch Article On Compct nd Noncompct Structures for the Improved Boussinesq Wter Equtions

More information

Arithmetic Mean Derivative Based Midpoint Rule

Arithmetic Mean Derivative Based Midpoint Rule Applied Mthemticl Sciences, Vol. 1, 018, no. 13, 65-633 HIKARI Ltd www.m-hikri.com https://doi.org/10.1988/ms.018.858 Arithmetic Men Derivtive Bsed Midpoint Rule Rike Mrjulis 1, M. Imrn, Symsudhuh Numericl

More information

New implementation of reproducing kernel Hilbert space method for solving a class of functional integral equations

New implementation of reproducing kernel Hilbert space method for solving a class of functional integral equations 014 (014) 1-7 Avilble online t www.ispcs.com/cn Volume 014, Yer 014 Article ID cn-0005, 7 Pges doi:10.5899/014/cn-0005 Reserch Article ew implementtion of reproducing kernel Hilbert spce method for solving

More information

1.1. Linear Constant Coefficient Equations. Remark: A differential equation is an equation

1.1. Linear Constant Coefficient Equations. Remark: A differential equation is an equation 1 1.1. Liner Constnt Coefficient Equtions Section Objective(s): Overview of Differentil Equtions. Liner Differentil Equtions. Solving Liner Differentil Equtions. The Initil Vlue Problem. 1.1.1. Overview

More information

MAC-solutions of the nonexistent solutions of mathematical physics

MAC-solutions of the nonexistent solutions of mathematical physics Proceedings of the 4th WSEAS Interntionl Conference on Finite Differences - Finite Elements - Finite Volumes - Boundry Elements MAC-solutions of the nonexistent solutions of mthemticl physics IGO NEYGEBAUE

More information

ASYMPTOTIC BEHAVIOR OF INTERMEDIATE POINTS IN CERTAIN MEAN VALUE THEOREMS. II

ASYMPTOTIC BEHAVIOR OF INTERMEDIATE POINTS IN CERTAIN MEAN VALUE THEOREMS. II STUDIA UNIV. BABEŞ BOLYAI, MATHEMATICA, Volume LV, Number 3, September 2010 ASYMPTOTIC BEHAVIOR OF INTERMEDIATE POINTS IN CERTAIN MEAN VALUE THEOREMS. II TIBERIU TRIF Dedicted to Professor Grigore Ştefn

More information

Orthogonal Polynomials and Least-Squares Approximations to Functions

Orthogonal Polynomials and Least-Squares Approximations to Functions Chpter Orthogonl Polynomils nd Lest-Squres Approximtions to Functions **4/5/3 ET. Discrete Lest-Squres Approximtions Given set of dt points (x,y ), (x,y ),..., (x m,y m ), norml nd useful prctice in mny

More information

1 2-D Second Order Equations: Separation of Variables

1 2-D Second Order Equations: Separation of Variables Chpter 12 PDEs in Rectngles 1 2-D Second Order Equtions: Seprtion of Vribles 1. A second order liner prtil differentil eqution in two vribles x nd y is A 2 u x + B 2 u 2 x y + C 2 u y + D u 2 x + E u +

More information

Keywords : Generalized Ostrowski s inequality, generalized midpoint inequality, Taylor s formula.

Keywords : Generalized Ostrowski s inequality, generalized midpoint inequality, Taylor s formula. Generliztions of the Ostrowski s inequlity K. S. Anstsiou Aristides I. Kechriniotis B. A. Kotsos Technologicl Eductionl Institute T.E.I.) of Lmi 3rd Km. O.N.R. Lmi-Athens Lmi 3500 Greece Abstrct Using

More information

Modification Adomian Decomposition Method for solving Seventh OrderIntegro-Differential Equations

Modification Adomian Decomposition Method for solving Seventh OrderIntegro-Differential Equations IOSR Journl of Mthemtics (IOSR-JM) e-issn: 2278-5728, p-issn: 239-765X. Volume, Issue 5 Ver. V (Sep-Oct. 24), PP 72-77 www.iosrjournls.org Modifiction Adomin Decomposition Method for solving Seventh OrderIntegro-Differentil

More information

Research Article On Existence and Uniqueness of Solutions of a Nonlinear Integral Equation

Research Article On Existence and Uniqueness of Solutions of a Nonlinear Integral Equation Journl of Applied Mthemtics Volume 2011, Article ID 743923, 7 pges doi:10.1155/2011/743923 Reserch Article On Existence nd Uniqueness of Solutions of Nonliner Integrl Eqution M. Eshghi Gordji, 1 H. Bghni,

More information

FUNCTIONS OF α-slow INCREASE

FUNCTIONS OF α-slow INCREASE Bulletin of Mthemticl Anlysis nd Applictions ISSN: 1821-1291, URL: http://www.bmth.org Volume 4 Issue 1 (2012), Pges 226-230. FUNCTIONS OF α-slow INCREASE (COMMUNICATED BY HÜSEYIN BOR) YILUN SHANG Abstrct.

More information

Linear and Non-linear Feedback Control Strategies for a 4D Hyperchaotic System

Linear and Non-linear Feedback Control Strategies for a 4D Hyperchaotic System Pure nd Applied Mthemtics Journl 017; 6(1): 5-13 http://www.sciencepublishinggroup.com/j/pmj doi: 10.11648/j.pmj.0170601.1 ISSN: 36-9790 (Print); ISSN: 36-981 (Online) Liner nd Non-liner Feedbck Control

More information

Multiple Positive Solutions for the System of Higher Order Two-Point Boundary Value Problems on Time Scales

Multiple Positive Solutions for the System of Higher Order Two-Point Boundary Value Problems on Time Scales Electronic Journl of Qulittive Theory of Differentil Equtions 2009, No. 32, -3; http://www.mth.u-szeged.hu/ejqtde/ Multiple Positive Solutions for the System of Higher Order Two-Point Boundry Vlue Problems

More information

1.9 C 2 inner variations

1.9 C 2 inner variations 46 CHAPTER 1. INDIRECT METHODS 1.9 C 2 inner vritions So fr, we hve restricted ttention to liner vritions. These re vritions of the form vx; ǫ = ux + ǫφx where φ is in some liner perturbtion clss P, for

More information

Variational problems of some second order Lagrangians given by Pfaff forms

Variational problems of some second order Lagrangians given by Pfaff forms Vritionl problems of some second order Lgrngins given by Pfff forms P. Popescu M. Popescu Abstrct. In this pper we study the dynmics of some second order Lgrngins tht come from Pfff forms i.e. differentil

More information

WHEN IS A FUNCTION NOT FLAT? 1. Introduction. {e 1 0, x = 0. f(x) =

WHEN IS A FUNCTION NOT FLAT? 1. Introduction. {e 1 0, x = 0. f(x) = WHEN IS A FUNCTION NOT FLAT? YIFEI PAN AND MEI WANG Abstrct. In this pper we prove unique continution property for vector vlued functions of one vrible stisfying certin differentil inequlity. Key words:

More information

Conservation Law. Chapter Goal. 5.2 Theory

Conservation Law. Chapter Goal. 5.2 Theory Chpter 5 Conservtion Lw 5.1 Gol Our long term gol is to understnd how mny mthemticl models re derived. We study how certin quntity chnges with time in given region (sptil domin). We first derive the very

More information

Numerical Solutions for Quadratic Integro-Differential Equations of Fractional Orders

Numerical Solutions for Quadratic Integro-Differential Equations of Fractional Orders Open Journl of Applied Sciences, 7, 7, 57-7 http://www.scirp.org/journl/ojpps ISSN Online: 65-395 ISSN Print: 65-397 Numericl Solutions for Qudrtic Integro-Differentil Equtions of Frctionl Orders Ftheh

More information

New Integral Inequalities for n-time Differentiable Functions with Applications for pdfs

New Integral Inequalities for n-time Differentiable Functions with Applications for pdfs Applied Mthemticl Sciences, Vol. 2, 2008, no. 8, 353-362 New Integrl Inequlities for n-time Differentible Functions with Applictions for pdfs Aristides I. Kechriniotis Technologicl Eductionl Institute

More information

INTERNATIONAL CENTRE FOR THEORETICAL PHYSICS THE ALGEBRAIC APPROACH TO THE SCATTERING PROBLEM ABSTRACT

INTERNATIONAL CENTRE FOR THEORETICAL PHYSICS THE ALGEBRAIC APPROACH TO THE SCATTERING PROBLEM ABSTRACT IC/69/7 INTERNAL REPORT (Limited distribution) INTERNATIONAL ATOMIC ENERGY AGENCY INTERNATIONAL CENTRE FOR THEORETICAL PHYSICS THE ALGEBRAIC APPROACH TO THE SCATTERING PROBLEM Lot. IXARQ * Institute of

More information

Consequently, the temperature must be the same at each point in the cross section at x. Let:

Consequently, the temperature must be the same at each point in the cross section at x. Let: HW 2 Comments: L1-3. Derive the het eqution for n inhomogeneous rod where the therml coefficients used in the derivtion of the het eqution for homogeneous rod now become functions of position x in the

More information

Math 5440 Problem Set 3 Solutions

Math 5440 Problem Set 3 Solutions Mth 544 Mth 544 Problem Set 3 Solutions Aron Fogelson Fll, 25 1: Logn, 1.5 # 2) Repet the derivtion for the eqution of motion of vibrting string when, in ddition, the verticl motion is retrded by dmping

More information

Extended tan-cot method for the solitons solutions to the (3+1)-dimensional Kadomtsev-Petviashvili equation

Extended tan-cot method for the solitons solutions to the (3+1)-dimensional Kadomtsev-Petviashvili equation Interntionl Jornl of Mthemticl Anlysis nd Applictions ; (): 9-9 Plished online Mrch, (http://www.scit.org/jornl/ijm) Extended tn-cot method for the solitons soltions to the (+)-dimensionl Kdomtsev-Petvishvili

More information

LYAPUNOV-TYPE INEQUALITIES FOR NONLINEAR SYSTEMS INVOLVING THE (p 1, p 2,..., p n )-LAPLACIAN

LYAPUNOV-TYPE INEQUALITIES FOR NONLINEAR SYSTEMS INVOLVING THE (p 1, p 2,..., p n )-LAPLACIAN Electronic Journl of Differentil Equtions, Vol. 203 (203), No. 28, pp. 0. ISSN: 072-669. URL: http://ejde.mth.txstte.edu or http://ejde.mth.unt.edu ftp ejde.mth.txstte.edu LYAPUNOV-TYPE INEQUALITIES FOR

More information

ON THE GENERALIZED SUPERSTABILITY OF nth ORDER LINEAR DIFFERENTIAL EQUATIONS WITH INITIAL CONDITIONS

ON THE GENERALIZED SUPERSTABILITY OF nth ORDER LINEAR DIFFERENTIAL EQUATIONS WITH INITIAL CONDITIONS PUBLICATIONS DE L INSTITUT MATHÉMATIQUE Nouvelle série, tome 9811 015, 43 49 DOI: 10.98/PIM15019019H ON THE GENERALIZED SUPERSTABILITY OF nth ORDER LINEAR DIFFERENTIAL EQUATIONS WITH INITIAL CONDITIONS

More information

Math 5440 Problem Set 3 Solutions

Math 5440 Problem Set 3 Solutions Mth 544 Mth 544 Problem Set 3 Solutions Aron Fogelson Fll, 213 1: (Logn, 1.5 # 2) Repet the derivtion for the eqution of motion of vibrting string when, in ddition, the verticl motion is retrded by dmping

More information

A General Dynamic Inequality of Opial Type

A General Dynamic Inequality of Opial Type Appl Mth Inf Sci No 3-5 (26) Applied Mthemtics & Informtion Sciences An Interntionl Journl http://dxdoiorg/2785/mis/bos7-mis A Generl Dynmic Inequlity of Opil Type Rvi Agrwl Mrtin Bohner 2 Donl O Regn

More information

The Solution of Volterra Integral Equation of the Second Kind by Using the Elzaki Transform

The Solution of Volterra Integral Equation of the Second Kind by Using the Elzaki Transform Applied Mthemticl Sciences, Vol. 8, 214, no. 11, 525-53 HIKARI Ltd, www.m-hikri.com http://dx.doi.org/1.12988/ms.214.312715 The Solution of Volterr Integrl Eqution of the Second Kind by Using the Elzki

More information

Review of Calculus, cont d

Review of Calculus, cont d Jim Lmbers MAT 460 Fll Semester 2009-10 Lecture 3 Notes These notes correspond to Section 1.1 in the text. Review of Clculus, cont d Riemnn Sums nd the Definite Integrl There re mny cses in which some

More information

A Numerical Method for Solving Nonlinear Integral Equations

A Numerical Method for Solving Nonlinear Integral Equations Interntionl Mthemticl Forum, 4, 29, no. 17, 85-817 A Numericl Method for Solving Nonliner Integrl Equtions F. Awwdeh nd A. Adwi Deprtment of Mthemtics, Hshemite University, Jordn wwdeh@hu.edu.jo, dwi@hu.edu.jo

More information

Ordinary differential equations

Ordinary differential equations Ordinry differentil equtions Introduction to Synthetic Biology E Nvrro A Montgud P Fernndez de Cordob JF Urchueguí Overview Introduction-Modelling Bsic concepts to understnd n ODE. Description nd properties

More information

LYAPUNOV-TYPE INEQUALITIES FOR THIRD-ORDER LINEAR DIFFERENTIAL EQUATIONS

LYAPUNOV-TYPE INEQUALITIES FOR THIRD-ORDER LINEAR DIFFERENTIAL EQUATIONS Electronic Journl of Differentil Equtions, Vol. 2017 (2017), No. 139, pp. 1 14. ISSN: 1072-6691. URL: http://ejde.mth.txstte.edu or http://ejde.mth.unt.edu LYAPUNOV-TYPE INEQUALITIES FOR THIRD-ORDER LINEAR

More information

Some estimates on the Hermite-Hadamard inequality through quasi-convex functions

Some estimates on the Hermite-Hadamard inequality through quasi-convex functions Annls of University of Criov, Mth. Comp. Sci. Ser. Volume 3, 7, Pges 8 87 ISSN: 13-693 Some estimtes on the Hermite-Hdmrd inequlity through qusi-convex functions Dniel Alexndru Ion Abstrct. In this pper

More information

AN INEQUALITY OF OSTROWSKI TYPE AND ITS APPLICATIONS FOR SIMPSON S RULE AND SPECIAL MEANS. I. Fedotov and S. S. Dragomir

AN INEQUALITY OF OSTROWSKI TYPE AND ITS APPLICATIONS FOR SIMPSON S RULE AND SPECIAL MEANS. I. Fedotov and S. S. Dragomir RGMIA Reserch Report Collection, Vol., No., 999 http://sci.vu.edu.u/ rgmi AN INEQUALITY OF OSTROWSKI TYPE AND ITS APPLICATIONS FOR SIMPSON S RULE AND SPECIAL MEANS I. Fedotov nd S. S. Drgomir Astrct. An

More information

AN INTEGRAL INEQUALITY FOR CONVEX FUNCTIONS AND APPLICATIONS IN NUMERICAL INTEGRATION

AN INTEGRAL INEQUALITY FOR CONVEX FUNCTIONS AND APPLICATIONS IN NUMERICAL INTEGRATION Applied Mthemtics E-Notes, 5(005), 53-60 c ISSN 1607-510 Avilble free t mirror sites of http://www.mth.nthu.edu.tw/ men/ AN INTEGRAL INEQUALITY FOR CONVEX FUNCTIONS AND APPLICATIONS IN NUMERICAL INTEGRATION

More information

A Generalized Inequality of Ostrowski Type for Twice Differentiable Bounded Mappings and Applications

A Generalized Inequality of Ostrowski Type for Twice Differentiable Bounded Mappings and Applications Applied Mthemticl Sciences, Vol. 8, 04, no. 38, 889-90 HIKARI Ltd, www.m-hikri.com http://dx.doi.org/0.988/ms.04.4 A Generlized Inequlity of Ostrowski Type for Twice Differentile Bounded Mppings nd Applictions

More information

SUPERSTABILITY OF DIFFERENTIAL EQUATIONS WITH BOUNDARY CONDITIONS

SUPERSTABILITY OF DIFFERENTIAL EQUATIONS WITH BOUNDARY CONDITIONS Electronic Journl of Differentil Equtions, Vol. 01 (01), No. 15, pp. 1. ISSN: 107-6691. URL: http://ejde.mth.txstte.edu or http://ejde.mth.unt.edu ftp ejde.mth.txstte.edu SUPERSTABILITY OF DIFFERENTIAL

More information

Analytical Approximate Solution of Carleman s Equation by Using Maclaurin Series

Analytical Approximate Solution of Carleman s Equation by Using Maclaurin Series Interntionl Mthemticl Forum, 5, 2010, no. 60, 2985-2993 Anlyticl Approximte Solution of Crlemn s Eqution by Using Mclurin Series M. Yghobifr 1 Institute for Mthemticl Reserch University Putr Mlysi Serdng

More information

Generalizations of the Basic Functional

Generalizations of the Basic Functional 3 Generliztions of the Bsic Functionl 3 1 Chpter 3: GENERALIZATIONS OF THE BASIC FUNCTIONAL TABLE OF CONTENTS Pge 3.1 Functionls with Higher Order Derivtives.......... 3 3 3.2 Severl Dependent Vribles...............

More information

CLOSED EXPRESSIONS FOR COEFFICIENTS IN WEIGHTED NEWTON-COTES QUADRATURES

CLOSED EXPRESSIONS FOR COEFFICIENTS IN WEIGHTED NEWTON-COTES QUADRATURES Filomt 27:4 (2013) 649 658 DOI 10.2298/FIL1304649M Published by Fculty of Sciences nd Mthemtics University of Niš Serbi Avilble t: http://www.pmf.ni.c.rs/filomt CLOSED EXPRESSIONS FOR COEFFICIENTS IN WEIGHTED

More information

DYNAMICAL SYSTEMS SUPPLEMENT 2007 pp Natalija Sergejeva. Department of Mathematics and Natural Sciences Parades 1 LV-5400 Daugavpils, Latvia

DYNAMICAL SYSTEMS SUPPLEMENT 2007 pp Natalija Sergejeva. Department of Mathematics and Natural Sciences Parades 1 LV-5400 Daugavpils, Latvia DISCRETE AND CONTINUOUS Website: www.aimsciences.org DYNAMICAL SYSTEMS SUPPLEMENT 2007 pp. 920 926 ON THE UNUSUAL FUČÍK SPECTRUM Ntlij Sergejev Deprtment of Mthemtics nd Nturl Sciences Prdes 1 LV-5400

More information

Research Article Numerical Treatment of Singularly Perturbed Two-Point Boundary Value Problems by Using Differential Transformation Method

Research Article Numerical Treatment of Singularly Perturbed Two-Point Boundary Value Problems by Using Differential Transformation Method Discrete Dynmics in Nture nd Society Volume 202, Article ID 57943, 0 pges doi:0.55/202/57943 Reserch Article Numericl Tretment of Singulrly Perturbed Two-Point Boundry Vlue Problems by Using Differentil

More information

Three solutions to a p(x)-laplacian problem in weighted-variable-exponent Sobolev space

Three solutions to a p(x)-laplacian problem in weighted-variable-exponent Sobolev space DOI: 0.2478/uom-203-0033 An. Şt. Univ. Ovidius Constnţ Vol. 2(2),203, 95 205 Three solutions to p(x)-lplcin problem in weighted-vrible-exponent Sobolev spce Wen-Wu Pn, Ghsem Alizdeh Afrouzi nd Lin Li Abstrct

More information

Euler-Maclaurin Summation Formula 1

Euler-Maclaurin Summation Formula 1 Jnury 9, Euler-Mclurin Summtion Formul Suppose tht f nd its derivtive re continuous functions on the closed intervl [, b]. Let ψ(x) {x}, where {x} x [x] is the frctionl prt of x. Lemm : If < b nd, b Z,

More information

Green s function. Green s function. Green s function. Green s function. Green s function. Green s functions. Classical case (recall)

Green s function. Green s function. Green s function. Green s function. Green s function. Green s functions. Classical case (recall) Green s functions 3. G(t, τ) nd its derivtives G (k) t (t, τ), (k =,..., n 2) re continuous in the squre t, τ t with respect to both vribles, George Green (4 July 793 3 My 84) In 828 Green privtely published

More information

On Some Classes of Breather Lattice Solutions to the sinh-gordon Equation

On Some Classes of Breather Lattice Solutions to the sinh-gordon Equation On Soe Clsses of Brether Lttice Solutions to the sinh-gordon Eqution Zunto Fu,b nd Shiuo Liu School of Physics & Lbortory for Severe Stor nd Flood Disster, Peing University, Beijing, 0087, Chin b Stte

More information

THE EXISTENCE-UNIQUENESS THEOREM FOR FIRST-ORDER DIFFERENTIAL EQUATIONS.

THE EXISTENCE-UNIQUENESS THEOREM FOR FIRST-ORDER DIFFERENTIAL EQUATIONS. THE EXISTENCE-UNIQUENESS THEOREM FOR FIRST-ORDER DIFFERENTIAL EQUATIONS RADON ROSBOROUGH https://intuitiveexplntionscom/picrd-lindelof-theorem/ This document is proof of the existence-uniqueness theorem

More information

Euler, Ioachimescu and the trapezium rule. G.J.O. Jameson (Math. Gazette 96 (2012), )

Euler, Ioachimescu and the trapezium rule. G.J.O. Jameson (Math. Gazette 96 (2012), ) Euler, Iochimescu nd the trpezium rule G.J.O. Jmeson (Mth. Gzette 96 (0), 36 4) The following results were estblished in recent Gzette rticle [, Theorems, 3, 4]. Given > 0 nd 0 < s

More information

Remark on boundary value problems arising in Ginzburg-Landau theory

Remark on boundary value problems arising in Ginzburg-Landau theory Remrk on boundry vlue problems rising in Ginzburg-Lndu theory ANITA KIRICHUKA Dugvpils University Vienibs Street 13, LV-541 Dugvpils LATVIA nit.kiricuk@du.lv FELIX SADYRBAEV University of Ltvi Institute

More information

Research Article Improved (G /G)-Expansion Method for the Space and Time Fractional Foam Drainage and KdV Equations

Research Article Improved (G /G)-Expansion Method for the Space and Time Fractional Foam Drainage and KdV Equations Abstrct nd Applied Anlysis Volume 213, Article ID 414353, 7 pges http://dx.doi.org/1.1155/213/414353 Reserch Article Improved (G /G)-Expnsion Method for the Spce nd Time Frctionl Fom Dringe nd KdV Equtions

More information

The Hadamard s inequality for quasi-convex functions via fractional integrals

The Hadamard s inequality for quasi-convex functions via fractional integrals Annls of the University of Criov, Mthemtics nd Computer Science Series Volume (), 3, Pges 67 73 ISSN: 5-563 The Hdmrd s ineulity for usi-convex functions vi frctionl integrls M E Özdemir nd Çetin Yildiz

More information

The Wave Equation I. MA 436 Kurt Bryan

The Wave Equation I. MA 436 Kurt Bryan 1 Introduction The Wve Eqution I MA 436 Kurt Bryn Consider string stretching long the x xis, of indeterminte (or even infinite!) length. We wnt to derive n eqution which models the motion of the string

More information

Definite integral. Mathematics FRDIS MENDELU

Definite integral. Mathematics FRDIS MENDELU Definite integrl Mthemtics FRDIS MENDELU Simon Fišnrová Brno 1 Motivtion - re under curve Suppose, for simplicity, tht y = f(x) is nonnegtive nd continuous function defined on [, b]. Wht is the re of the

More information

Numerical Analysis: Trapezoidal and Simpson s Rule

Numerical Analysis: Trapezoidal and Simpson s Rule nd Simpson s Mthemticl question we re interested in numericlly nswering How to we evlute I = f (x) dx? Clculus tells us tht if F(x) is the ntiderivtive of function f (x) on the intervl [, b], then I =

More information

THIELE CENTRE. Linear stochastic differential equations with anticipating initial conditions

THIELE CENTRE. Linear stochastic differential equations with anticipating initial conditions THIELE CENTRE for pplied mthemtics in nturl science Liner stochstic differentil equtions with nticipting initil conditions Nrjess Khlif, Hui-Hsiung Kuo, Hbib Ouerdine nd Benedykt Szozd Reserch Report No.

More information

A Computational Method for Solving Linear Volterra Integral Equations

A Computational Method for Solving Linear Volterra Integral Equations Applied Mthemticl Sciences, Vol. 6, 01, no. 17, 807-814 A Computtionl Method for Solving Liner Volterr Integrl Equtions Frshid Mirzee Deprtment of Mthemtics, Fculty of Science Mlyer University, Mlyer,

More information

Set Integral Equations in Metric Spaces

Set Integral Equations in Metric Spaces Mthemtic Morvic Vol. 13-1 2009, 95 102 Set Integrl Equtions in Metric Spces Ion Tişe Abstrct. Let P cp,cvr n be the fmily of ll nonempty compct, convex subsets of R n. We consider the following set integrl

More information

On the Continuous Dependence of Solutions of Boundary Value Problems for Delay Differential Equations

On the Continuous Dependence of Solutions of Boundary Value Problems for Delay Differential Equations Journl of Computtions & Modelling, vol.3, no.4, 2013, 1-10 ISSN: 1792-7625 (print), 1792-8850 (online) Scienpress Ltd, 2013 On the Continuous Dependence of Solutions of Boundry Vlue Problems for Dely Differentil

More information

Lecture 6: Singular Integrals, Open Quadrature rules, and Gauss Quadrature

Lecture 6: Singular Integrals, Open Quadrature rules, and Gauss Quadrature Lecture notes on Vritionl nd Approximte Methods in Applied Mthemtics - A Peirce UBC Lecture 6: Singulr Integrls, Open Qudrture rules, nd Guss Qudrture (Compiled 6 August 7) In this lecture we discuss the

More information

Definite integral. Mathematics FRDIS MENDELU. Simona Fišnarová (Mendel University) Definite integral MENDELU 1 / 30

Definite integral. Mathematics FRDIS MENDELU. Simona Fišnarová (Mendel University) Definite integral MENDELU 1 / 30 Definite integrl Mthemtics FRDIS MENDELU Simon Fišnrová (Mendel University) Definite integrl MENDELU / Motivtion - re under curve Suppose, for simplicity, tht y = f(x) is nonnegtive nd continuous function

More information

Calculus II: Integrations and Series

Calculus II: Integrations and Series Clculus II: Integrtions nd Series August 7, 200 Integrls Suppose we hve generl function y = f(x) For simplicity, let f(x) > 0 nd f(x) continuous Denote F (x) = re under the grph of f in the intervl [,x]

More information

Lecture 19: Continuous Least Squares Approximation

Lecture 19: Continuous Least Squares Approximation Lecture 19: Continuous Lest Squres Approximtion 33 Continuous lest squres pproximtion We begn 31 with the problem of pproximting some f C[, b] with polynomil p P n t the discrete points x, x 1,, x m for

More information

Geometrically Convex Function and Estimation of Remainder Terms in Taylor Series Expansion of some Functions

Geometrically Convex Function and Estimation of Remainder Terms in Taylor Series Expansion of some Functions Geometriclly Convex Function nd Estimtion of Reminder Terms in Tylor Series Expnsion of some Functions Xioming Zhng Ningguo Zheng December 21 25 Abstrct In this pper two integrl inequlities of geometriclly

More information

4. Calculus of Variations

4. Calculus of Variations 4. Clculus of Vritions Introduction - Typicl Problems The clculus of vritions generlises the theory of mxim nd minim. Exmple (): Shortest distnce between two points. On given surfce (e.g. plne), nd the

More information

Composite Mendeleev s Quadratures for Solving a Linear Fredholm Integral Equation of The Second Kind

Composite Mendeleev s Quadratures for Solving a Linear Fredholm Integral Equation of The Second Kind Globl Journl of Pure nd Applied Mthemtics. ISSN 0973-1768 Volume 12, Number (2016), pp. 393 398 Reserch Indi Publictions http://www.ripubliction.com/gjpm.htm Composite Mendeleev s Qudrtures for Solving

More information

Positive Solutions of Operator Equations on Half-Line

Positive Solutions of Operator Equations on Half-Line Int. Journl of Mth. Anlysis, Vol. 3, 29, no. 5, 211-22 Positive Solutions of Opertor Equtions on Hlf-Line Bohe Wng 1 School of Mthemtics Shndong Administrtion Institute Jinn, 2514, P.R. Chin sdusuh@163.com

More information

ODE: Existence and Uniqueness of a Solution

ODE: Existence and Uniqueness of a Solution Mth 22 Fll 213 Jerry Kzdn ODE: Existence nd Uniqueness of Solution The Fundmentl Theorem of Clculus tells us how to solve the ordinry differentil eqution (ODE) du = f(t) dt with initil condition u() =

More information

Numerical quadrature based on interpolating functions: A MATLAB implementation

Numerical quadrature based on interpolating functions: A MATLAB implementation SEMINAR REPORT Numericl qudrture bsed on interpolting functions: A MATLAB implementtion by Venkt Ayylsomyjul A seminr report submitted in prtil fulfillment for the degree of Mster of Science (M.Sc) in

More information

SOLUTION OF QUADRATIC NONLINEAR PROBLEMS WITH MULTIPLE SCALES LINDSTEDT-POINCARE METHOD. Mehmet Pakdemirli and Gözde Sarı

SOLUTION OF QUADRATIC NONLINEAR PROBLEMS WITH MULTIPLE SCALES LINDSTEDT-POINCARE METHOD. Mehmet Pakdemirli and Gözde Sarı Mthemticl nd Computtionl Applictions, Vol., No., pp. 37-5, 5 http://dx.doi.org/.99/mc-5- SOLUTION OF QUADRATIC NONLINEAR PROBLEMS WITH MULTIPLE SCALES LINDSTEDT-POINCARE METHOD Mehmet Pkdemirli nd Gözde

More information

different methods (left endpoint, right endpoint, midpoint, trapezoid, Simpson s).

different methods (left endpoint, right endpoint, midpoint, trapezoid, Simpson s). Mth 1A with Professor Stnkov Worksheet, Discussion #41; Wednesdy, 12/6/217 GSI nme: Roy Zho Problems 1. Write the integrl 3 dx s limit of Riemnn sums. Write it using 2 intervls using the 1 x different

More information

New Integral Inequalities of the Type of Hermite-Hadamard Through Quasi Convexity

New Integral Inequalities of the Type of Hermite-Hadamard Through Quasi Convexity Punjb University Journl of Mthemtics (ISSN 116-56) Vol. 45 (13) pp. 33-38 New Integrl Inequlities of the Type of Hermite-Hdmrd Through Qusi Convexity S. Hussin Deprtment of Mthemtics, College of Science,

More information

Research Article Mixed Initial-Boundary Value Problem for Telegraph Equation in Domain with Variable Borders

Research Article Mixed Initial-Boundary Value Problem for Telegraph Equation in Domain with Variable Borders Advnces in Mthemticl Physics Volume 212, Article ID 83112, 17 pges doi:1.1155/212/83112 Reserch Article Mixed Initil-Boundry Vlue Problem for Telegrph Eqution in Domin with Vrible Borders V. A. Ostpenko

More information