Modification Adomian Decomposition Method for solving Seventh OrderIntegro-Differential Equations

Size: px
Start display at page:

Download "Modification Adomian Decomposition Method for solving Seventh OrderIntegro-Differential Equations"

Transcription

1 IOSR Journl of Mthemtics (IOSR-JM) e-issn: , p-issn: X. Volume, Issue 5 Ver. V (Sep-Oct. 24), PP Modifiction Adomin Decomposition Method for solving Seventh OrderIntegro-Differentil Equtions Smher M. Yssien Deprtment of MthemticsCollege of Eduction for Sciences pure Bghdd University,Irq Abstrct: In this pper, method bsed on modified domin decomposition method for solving Seventh order integro-differentil equtions (MADM). The distinctive feture of the method is tht it cn be used to find the nlytic solution without trnsformtion of boundry vlue problems. To test the efficiency of the method presented two emples re solved by proposed method. Keyword: Adomin decomposition method; boundry-vlue problems; integro-differentil eqution I. Introduction An nlyticl method clled the Adomin decomposition method (ADM) proposed by Adomin [] ims to solve frontier nonliner physicl problems. It hs been pplied to wide clss of deterministic nd stochstic problems, liner nd nonliner, in physics, biology nd chemicl rections etc. For nonliner models, the method hs shown relible results in supplying nlyticl pproimtions tht converge rpidly [2].The Adomin decomposition method (ADM) [3,4] hs been efficiently used to solve liner nd nonliner problems such s differentil equtions nd integrl equtions.the methodprovides the solution s n infinite series in which ech term cn be esily determined. The rpid convergence of the series obtined by this method is horoughly discussed bycherruult et l. [5]. Recently, Wzwz [6] proposed relible modified techniqueof ADM tht ccelertes the rpid convergence of decomposition series solution. The modified decomposition needs only slight vrition from the stndrd decompositionmethod. Although the modified decomposition method my provide the ect solution by using two itertions only nd sometimes without using the so-clled Adomin polynomils, its effectiveness is bsed on the ssumption tht the function fcn be divided into two prts, nd thus the success of themodifiedmethod depends on the proper choice of f nd f2.the ADM[7,8,9] is well-known systemtic method for solving liner nd nonliner equtions, including ordinry differentil equtions,prtil differentil equtions, integrl equtions nd integro-differentil equtions. The method permits us to solve both nonlinerinitil vlue problems nd boundry vlue problems. The method is well known, nd severl dvnced progresses re conducted inthis regrd. II. Description of the Modifiction Adomin decomposition method Since the beginning of the 98s, theadomin decompositionmethod hs been pplied to wide clss of integrl equtions.to illustrte the procedure, consider the following Volterrintegrl equtions of the second kind given by L(y ()) =()+λ K(, t) (R (y (t)) + N(y (t))) dt, λ =, () where the kernel K(, t) nd the function f() re given relvlued functions, λis prmeter, R(y()) nd N(y()) re liner nd nonliner opertors of y()[],the differentil opertor L(y ())is the highest order derivtive in the eqution, respectively, Then, we ssume tht L is invertible byusing the given conditions nd pplying the inverse opertor L - to both sides of (),we get the following eqution: y () =ψ +L - f()+l - (λ K(, t) (R (y (t)) + N(y (t))) dt),λ =, (2) where the functionψ is rising from integrting the source term from pplying the given conditions which re prescribed. And so on the Adomin decomposition method dmits the decomposition of y into n infinite series of components [] y()= n= yn()(3) Moreover, the Adomin decomposition method identifies the nonlinertermn(y()) by the decomposition series 72 Pge

2 Modifiction Adomin Decomposition Method for solving Seventh Order Integro-Differentil Equtions N(y)= n= An()(4) WhereAnis the so-clled Adomin polynomils, whichcn be evluted by the following formul [2, 3]: An= d n n! dλ N n n i= λ i y i, n =,, 2,....(5) Substituting (3) nd (4) into both sides of (2) gives n= yn()= ψ + L - f()+ L - (λ K, t [R n= y n t + n= A n (t)]dt), (6) The vrious components y n of the solution y cn be esily determined by using the recursive reltion Y =ψ + L - f(), Y k+= L - (λ K, t [R n= y k t + n= A k (t)]dt),fork. (7) Consequently, the first few components cn be written s Y = + L - f(), Y = L - ( K, t [R n= y t + n= A (t)]dt), (8) Y 2= L - (λ K, t [R n= y t + n= A (t)]dt), where the Adomin polynomil cn be evluted by (4),Hving determined the components Y n, n, the solution y in series form follows immeditely. As stted before, the series my be summed to provide the solution in closed form. We cn pply modifiction by ssuming tht the function F cn be written s F= ψ + L - f(), (9) The components Y n re determined by using the following reltion: Y = F,() Y k+= L - ( K, t [R n= y k t + n= A k (t)]dt), for k () From the bove equtions, we observe tht the component Y is identified by thefunction F. the modified Adomin decomposition method will minimize the volume of clcultions, we split the function F into two prts, F nd F. Let the function be s follows: F = F + F (2) Under this ssumption, we hve slight vrition for components Y nd Y, where F ssigned to Y nd F is combined with the other terms in () to ssign Y. The modified recursive lgorithm is s follows: y = F + L (λ K, t y K+ = L ( λ K, t y = F, R R n= y t + n= A t dt), n= y k t + n= A k t dt), (3) for k. However, the nonliner term F(y) cn be epressed by infinite series of the so-clled Adomin polynomils A n given in the form F(y) = n= A n (y,y, y 2,, y n ) (4) 73 Pge

3 Modifiction Adomin Decomposition Method for solving Seventh Order Integro-Differentil Equtions There re severl rules tht re needed to follow for Adomin polynomils of nonliner opertor F(y): A = F(y ), A 2 = y 2 F'(y ) + 2! y2 F''(y ), nd so on; see [], then substituting (5) into (4) gives A = y F'(y ), (5) F(y) = A + A + A 2 + (6) To illustrte the pplicbility nd effectiveness of the method, we presented two numericl emples. III. Appliction for Liner nd Nonlinerintegro-differentil equtions Emple[4]:- Consider the following linerintegro-differentil eqution: y (vii) () = 2-8e + y t dt, (7) withthe boundry conditions: y() =, y'() =, y''() = -, y'''() = -2, (8) y() =, y'() = -e, y''() = -2e. theectsolution is y() = (-)e. Eqution (8) cn be rewritten in opertor form s follows: Ly() = 2-8e + y t dt, (9) Operting with sevenfold integrl opertor L on (9) nd using the boundry conditions t =, we obtin the following eqution: Then, determine the constnts y 4 = A, y 5 = B, y 6 = C. y() = 2! 2 2 3! 3 + A 4! 4 + B 5! 5 + C 6! 6 +L - (2-8e )+L - ( y t dt) (2) Substituting the decomposition series (3) for y() into (2) yields n= yn()= 2! 2 2 3! 3 + A 4! 4 + B 5! 5 + C 6! 6 +L - (2-8e ) +L - ( y t dt) (2) Then, we split the terms into two prts which re ssigned to y () nd y () tht re notincluded under L in (2). We cn obtin the following recursive reltion: t y () =( 2 2 ), y ()= 2 3! 3 + A 4! 4 + B 5! 5 + C 6! 6 +L - (2-8e )+L - ( y t dt) (22) To determine the constnts A,Bnd C, we use the boundry conditions in (8) t = on the two-term pproimnt φ 2, where t t φ 2= k= yk,(23) 74 Pge

4 Modifiction Adomin Decomposition Method for solving Seventh Order Integro-Differentil Equtions The coefficients A,BndC, were obtined by using Mtlb with boundry conditions t = in (8) given A= , B = , C = (24) Then we get the series solution s follows: Y()=8 8e ( 2 3) + 9. Emple 2 [4] :- Consider the followingnonliner integro-differentil eqution: withthe boundry conditions: y (vii) () = + e y 2 t dt, (25) y() =, y'() =, y''() =, y'''() =, (26) y() = e, y'() = e, y''() = e. the ect solution is y() =e. Eqution (25) cn be rewritten in opertor form s follows: Ly() =+ e y 2 t dt,, (27) Operting with sevenfold integrl opertor L on (27) nd using the boundry conditions t =, we obtin the following eqution: y()=++ 2! 2 + 3! 3 + A 4! 4 + B 5! 5+ C 6! 6 +L - ( e y 2 t dt) (28) Then, determine the constnts y 4 = A, y 5 = B, y 6 = C. Substituting the decomposition series (3) for y()nd the series of polynomils (4) into (28) yields n= yn()=++ 2! 2 + 3! 3 + A 4! 4 + B 5! 5+ C 6! 6 +L - ( e n= A n ()dt) (29) Then, we split the terms into two prts which re ssigned to y () nd y () tht re notincluded under L in (29). We cn obtin the following recursive reltion: y () =, y () =+ 2! 2 + 3! 3 + A 4! 4 + B 5! 5+ C 6! 6 +L - ( e n= A ()dt) (3) y k+= - L - (y k ), for k. To determine the constnts A,Bnd C, we use the boundry conditions in (26) t = on the two-term pproimnt φ 2, where φ 2= k= yk,(3) The coefficients A,Bnd C, re obtined by using Mtlb which gives : A= , B= , C= Then we get the series solution s follows: Y()=3 2 7e - e Pge

5 y-is Modifiction Adomin Decomposition Method for solving Seventh Order Integro-Differentil Equtions The pproimte solutions of two numericl emples obtined with the help of MADM, in Tble - 2 respectively. From the numericl results, it is cler tht the MADM is more efficient nd ccurte. The grphicl comprison of ect nd pproimte solutions is shown in Figure -2 respectively. IV. Conclusions The objective of this pper is to present simple method to solve liner nd nonliner seventh order integro-differentil equtions without discretiztion, trnsformtion, lineriztion.modified domin decomposition methodgve good greements nd relible for results. Also this method is useful for finding n ccurte pproimtion of the ect solution. Tble : Comprison of numericl results for Emple Ect solution MADM Error MADM E E E E E E E E E E-5 Tble 2: Comprison of numericl results for Emple 2 Ect solution MADM Error MADM E E E E E E E E The solution t Y2 Approimte series Ect is Figure : Comprison between the ect nd MADM solution of emple Pge

6 y-is Modifiction Adomin Decomposition Method for solving Seventh Order Integro-Differentil Equtions Approimte series Ect The solution t Y is Figure 2: Comprison between the ect nd MADM solution of emple References []. G. Adomin, Solving Frontier Problems of Physics: The Decompositions Method, Kluwer, Boston,(994). [2]. W. Chen nd Z. Lu, An lgorithm for Adomin decomposition method.appl Mth Comput, 59 (24) [3]. G. Adomin, A review of the decomposition method nd some recent results for nonlinerequtions, Mthemticl nd Computer Modelling, vol. 3, no. 7, pp. 7 43, 99. [4]. G. Adomin, Solving Frontier Problems of Physics: The Decomposition Method, vol. 6 of Fundmentl Theories of Physics, Kluwer Acdemic, Dordrecht,TheNetherlnds, 994. [5]. Y. Cherruult, G. Sccomndi, nd B. Some, New results for convergence of Adomin s method pplied to integrl equtions, Mthemticl nd ComputerModelling, vol. 6, no. 2, pp , 992. [6]. A.-M.Wzwz, A relible modifiction of Adomin decomposition method, AppliedMthemtics nd Computtion, vol. 2, no., pp , 999. [7]. w. Abdul-Mjid, R. Rndolph nd D. Jun-Sheng, A study on the systems of thevolterr integrl forms of the Lne Emden equtions by the Adomindecomposition method, MOS subject clssifiction: 34A34; 35C5; 37C, Published online 2 Mrch 23 in Wiley Online Librry. [8]. Wzwz AM. Prtil Differentil Equtions nd SolitryWves Theory. HEP nd Springer: Beijing nd Berlin, 29. [9]. Rch R. A new definition of the Adominpolynomils.Kybernetes 28; 37: []. B. Roberto, A New Modifiction of Adomin Decomposition Method for Volterr Integrl Equtions of the Second Kind, Deprtment of Mthemtics, Fculty of Science, Ningbo University, Ningbo, Zhejing 352, Chin, Volume 23,Article ID 7955, 7 pges []. H.Wleed, Solving nth-order Integro-Differentil Equtions Using thecombined Lplce Trnsform-Adomin Decomposition Method, Deprtment ofmthemtics, College of Computer Science nd Mthemtics, University of Mosul, Mosul, Irq,Applied Mthemtics, 23, 4, [2]. A.-M. Wzwz, A new lgorithm for clculting Adomin polynomils for nonliner opertors, AppliedMthemtics nd Computtion, vol., no., pp. 33 5, 2. [3]. E. Bbolin nd Sh. Jvdi, New method for clculting Adomin polynomils, AppliedMthemtics nd Computtion, vol. 53, no., pp , 24. [4]. N. S. Jfr nd G. A. Fhimeh, Vritionl itertion method for solving Seventh order integro-differentil equtions, Deprtmn of Applied Mthemtics, School of Mthemticl Sciences, Ferdowsi University of Mshhd, Irn.-2 Mrch Pge

A Modified ADM for Solving Systems of Linear Fredholm Integral Equations of the Second Kind

A Modified ADM for Solving Systems of Linear Fredholm Integral Equations of the Second Kind Applied Mthemticl Sciences, Vol. 6, 2012, no. 26, 1267-1273 A Modified ADM for Solving Systems of Liner Fredholm Integrl Equtions of the Second Kind A. R. Vhidi nd T. Dmercheli Deprtment of Mthemtics,

More information

Solutions of Klein - Gordan equations, using Finite Fourier Sine Transform

Solutions of Klein - Gordan equations, using Finite Fourier Sine Transform IOSR Journl of Mthemtics (IOSR-JM) e-issn: 2278-5728, p-issn: 2319-765X. Volume 13, Issue 6 Ver. IV (Nov. - Dec. 2017), PP 19-24 www.iosrjournls.org Solutions of Klein - Gordn equtions, using Finite Fourier

More information

Adomian Decomposition Method with Green s. Function for Solving Twelfth-Order Boundary. Value Problems

Adomian Decomposition Method with Green s. Function for Solving Twelfth-Order Boundary. Value Problems Applied Mthemticl Sciences, Vol. 9, 25, no. 8, 353-368 HIKARI Ltd, www.m-hikri.com http://dx.doi.org/.2988/ms.25.486 Adomin Decomposition Method with Green s Function for Solving Twelfth-Order Boundry

More information

An iterative method for solving nonlinear functional equations

An iterative method for solving nonlinear functional equations J. Mth. Anl. Appl. 316 (26) 753 763 www.elsevier.com/locte/jm An itertive method for solving nonliner functionl equtions Vrsh Dftrdr-Gejji, Hossein Jfri Deprtment of Mthemtics, University of Pune, Gneshkhind,

More information

On the Decomposition Method for System of Linear Fredholm Integral Equations of the Second Kind

On the Decomposition Method for System of Linear Fredholm Integral Equations of the Second Kind Applied Mthemticl Sciences, Vol. 2, 28, no. 2, 57-62 On the Decomposition Method for System of Liner Fredholm Integrl Equtions of the Second Kind A. R. Vhidi 1 nd M. Mokhtri Deprtment of Mthemtics, Shhr-e-Rey

More information

Numerical Solutions for Quadratic Integro-Differential Equations of Fractional Orders

Numerical Solutions for Quadratic Integro-Differential Equations of Fractional Orders Open Journl of Applied Sciences, 7, 7, 57-7 http://www.scirp.org/journl/ojpps ISSN Online: 65-395 ISSN Print: 65-397 Numericl Solutions for Qudrtic Integro-Differentil Equtions of Frctionl Orders Ftheh

More information

Fredholm Integral Equations of the First Kind Solved by Using the Homotopy Perturbation Method

Fredholm Integral Equations of the First Kind Solved by Using the Homotopy Perturbation Method Int. Journl of Mth. Anlysis, Vol. 5, 211, no. 19, 935-94 Fredholm Integrl Equtions of the First Kind Solved by Using the Homotopy Perturbtion Method Seyyed Mhmood Mirzei Deprtment of Mthemtics, Fculty

More information

Research Article Numerical Treatment of Singularly Perturbed Two-Point Boundary Value Problems by Using Differential Transformation Method

Research Article Numerical Treatment of Singularly Perturbed Two-Point Boundary Value Problems by Using Differential Transformation Method Discrete Dynmics in Nture nd Society Volume 202, Article ID 57943, 0 pges doi:0.55/202/57943 Reserch Article Numericl Tretment of Singulrly Perturbed Two-Point Boundry Vlue Problems by Using Differentil

More information

Research Article Analytical Solution of the Fractional Fredholm Integrodifferential Equation Using the Fractional Residual Power Series Method

Research Article Analytical Solution of the Fractional Fredholm Integrodifferential Equation Using the Fractional Residual Power Series Method Hindwi Compleity Volume 7, Article ID 457589, 6 pges https://doi.org/.55/7/457589 Reserch Article Anlyticl Solution of the Frctionl Fredholm Integrodifferentil Eqution Using the Frctionl Residul Power

More information

New Expansion and Infinite Series

New Expansion and Infinite Series Interntionl Mthemticl Forum, Vol. 9, 204, no. 22, 06-073 HIKARI Ltd, www.m-hikri.com http://dx.doi.org/0.2988/imf.204.4502 New Expnsion nd Infinite Series Diyun Zhng College of Computer Nnjing University

More information

An improvement to the homotopy perturbation method for solving integro-differential equations

An improvement to the homotopy perturbation method for solving integro-differential equations Avilble online t http://ijimsrbiucir Int J Industril Mthemtics (ISSN 28-5621) Vol 4, No 4, Yer 212 Article ID IJIM-241, 12 pges Reserch Article An improvement to the homotopy perturbtion method for solving

More information

Application Chebyshev Polynomials for Determining the Eigenvalues of Sturm-Liouville Problem

Application Chebyshev Polynomials for Determining the Eigenvalues of Sturm-Liouville Problem Applied nd Computtionl Mthemtics 5; 4(5): 369-373 Pulished online Septemer, 5 (http://www.sciencepulishinggroup.com//cm) doi:.648/.cm.545.6 ISSN: 38-565 (Print); ISSN: 38-563 (Online) Appliction Cheyshev

More information

Exact solutions for nonlinear partial fractional differential equations

Exact solutions for nonlinear partial fractional differential equations Chin. Phys. B Vol., No. (0) 004 Exct solutions for nonliner prtil frctionl differentil equtions Khled A. epreel )b) nd Sleh Omrn b)c) ) Mthemtics Deprtment, Fculty of Science, Zgzig University, Egypt b)

More information

Research Article On Existence and Uniqueness of Solutions of a Nonlinear Integral Equation

Research Article On Existence and Uniqueness of Solutions of a Nonlinear Integral Equation Journl of Applied Mthemtics Volume 2011, Article ID 743923, 7 pges doi:10.1155/2011/743923 Reserch Article On Existence nd Uniqueness of Solutions of Nonliner Integrl Eqution M. Eshghi Gordji, 1 H. Bghni,

More information

Math& 152 Section Integration by Parts

Math& 152 Section Integration by Parts Mth& 5 Section 7. - Integrtion by Prts Integrtion by prts is rule tht trnsforms the integrl of the product of two functions into other (idelly simpler) integrls. Recll from Clculus I tht given two differentible

More information

New implementation of reproducing kernel Hilbert space method for solving a class of functional integral equations

New implementation of reproducing kernel Hilbert space method for solving a class of functional integral equations 014 (014) 1-7 Avilble online t www.ispcs.com/cn Volume 014, Yer 014 Article ID cn-0005, 7 Pges doi:10.5899/014/cn-0005 Reserch Article ew implementtion of reproducing kernel Hilbert spce method for solving

More information

Arithmetic Mean Derivative Based Midpoint Rule

Arithmetic Mean Derivative Based Midpoint Rule Applied Mthemticl Sciences, Vol. 1, 018, no. 13, 65-633 HIKARI Ltd www.m-hikri.com https://doi.org/10.1988/ms.018.858 Arithmetic Men Derivtive Bsed Midpoint Rule Rike Mrjulis 1, M. Imrn, Symsudhuh Numericl

More information

A Numerical Method for Solving Nonlinear Integral Equations

A Numerical Method for Solving Nonlinear Integral Equations Interntionl Mthemticl Forum, 4, 29, no. 17, 85-817 A Numericl Method for Solving Nonliner Integrl Equtions F. Awwdeh nd A. Adwi Deprtment of Mthemtics, Hshemite University, Jordn wwdeh@hu.edu.jo, dwi@hu.edu.jo

More information

A Bernstein polynomial approach for solution of nonlinear integral equations

A Bernstein polynomial approach for solution of nonlinear integral equations Avilble online t wwwisr-publictionscom/jns J Nonliner Sci Appl, 10 (2017), 4638 4647 Reserch Article Journl Homepge: wwwtjnscom - wwwisr-publictionscom/jns A Bernstein polynomil pproch for solution of

More information

Chapter 6 Notes, Larson/Hostetler 3e

Chapter 6 Notes, Larson/Hostetler 3e Contents 6. Antiderivtives nd the Rules of Integrtion.......................... 6. Are nd the Definite Integrl.................................. 6.. Are............................................ 6. Reimnn

More information

Quadrature Rules for Evaluation of Hyper Singular Integrals

Quadrature Rules for Evaluation of Hyper Singular Integrals Applied Mthemticl Sciences, Vol., 01, no. 117, 539-55 HIKARI Ltd, www.m-hikri.com http://d.doi.org/10.19/ms.01.75 Qudrture Rules or Evlution o Hyper Singulr Integrls Prsnt Kumr Mohnty Deprtment o Mthemtics

More information

On the Formalization of the Solution. of Fredholm Integral Equations. with Degenerate Kernel

On the Formalization of the Solution. of Fredholm Integral Equations. with Degenerate Kernel Interntionl Mthemticl Forum, 3, 28, no. 14, 695-71 On the Formliztion of the Solution of Fredholm Integrl Equtions with Degenerte Kernel N. Tghizdeh Deprtment of Mthemtics, Fculty of Science University

More information

Jordan Journal of Mathematics and Statistics (JJMS) 11(1), 2018, pp 1-12

Jordan Journal of Mathematics and Statistics (JJMS) 11(1), 2018, pp 1-12 Jordn Journl of Mthemtics nd Sttistics (JJMS) 11(1), 218, pp 1-12 HOMOTOPY REGULARIZATION METHOD TO SOLVE THE SINGULAR VOLTERRA INTEGRAL EQUATIONS OF THE FIRST KIND MOHAMMAD ALI FARIBORZI ARAGHI (1) AND

More information

Reducing Initial Value Problem and Boundary Value Problem to Volterra and Fredholm Integral Equation and Solution of Initial Value Problem

Reducing Initial Value Problem and Boundary Value Problem to Volterra and Fredholm Integral Equation and Solution of Initial Value Problem Reducing Initil Vlue Prolem nd Boundry Vlue Prolem to Volterr nd Fredholm Integrl Eqution nd Solution of Initil Vlue Prolem Hee Khudhur Kdhim M.Sc Applied Mthemtics Student, Ntionlity of Irq Deprtment

More information

MAC-solutions of the nonexistent solutions of mathematical physics

MAC-solutions of the nonexistent solutions of mathematical physics Proceedings of the 4th WSEAS Interntionl Conference on Finite Differences - Finite Elements - Finite Volumes - Boundry Elements MAC-solutions of the nonexistent solutions of mthemticl physics IGO NEYGEBAUE

More information

POSITIVE SOLUTIONS FOR SINGULAR THREE-POINT BOUNDARY-VALUE PROBLEMS

POSITIVE SOLUTIONS FOR SINGULAR THREE-POINT BOUNDARY-VALUE PROBLEMS Electronic Journl of Differentil Equtions, Vol. 27(27), No. 156, pp. 1 8. ISSN: 172-6691. URL: http://ejde.mth.txstte.edu or http://ejde.mth.unt.edu ftp ejde.mth.txstte.edu (login: ftp) POSITIVE SOLUTIONS

More information

Application of Exp-Function Method to. a Huxley Equation with Variable Coefficient *

Application of Exp-Function Method to. a Huxley Equation with Variable Coefficient * Interntionl Mthemticl Forum, 4, 9, no., 7-3 Appliction of Exp-Function Method to Huxley Eqution with Vrible Coefficient * Li Yo, Lin Wng nd Xin-Wei Zhou. Deprtment of Mthemtics, Kunming College Kunming,Yunnn,

More information

The Islamic University of Gaza Faculty of Engineering Civil Engineering Department. Numerical Analysis ECIV Chapter 11

The Islamic University of Gaza Faculty of Engineering Civil Engineering Department. Numerical Analysis ECIV Chapter 11 The Islmic University of Gz Fculty of Engineering Civil Engineering Deprtment Numericl Anlysis ECIV 6 Chpter Specil Mtrices nd Guss-Siedel Associte Prof Mzen Abultyef Civil Engineering Deprtment, The Islmic

More information

Calculus 2: Integration. Differentiation. Integration

Calculus 2: Integration. Differentiation. Integration Clculus 2: Integrtion The reverse process to differentition is known s integrtion. Differentition f() f () Integrtion As it is the opposite of finding the derivtive, the function obtined b integrtion is

More information

A Nonclassical Collocation Method For Solving Two-Point Boundary Value Problems Over Infinite Intervals

A Nonclassical Collocation Method For Solving Two-Point Boundary Value Problems Over Infinite Intervals Austrlin Journl of Bsic nd Applied Sciences 59: 45-5 ISS 99-878 A onclssicl Colloction Method For Solving o-oint Boundry Vlue roblems Over Infinite Intervls M Mlei nd M vssoli Kni Deprtment of Mthemtics

More information

Math 1431 Section M TH 4:00 PM 6:00 PM Susan Wheeler Office Hours: Wed 6:00 7:00 PM Online ***NOTE LABS ARE MON AND WED

Math 1431 Section M TH 4:00 PM 6:00 PM Susan Wheeler Office Hours: Wed 6:00 7:00 PM Online ***NOTE LABS ARE MON AND WED Mth 43 Section 4839 M TH 4: PM 6: PM Susn Wheeler swheeler@mth.uh.edu Office Hours: Wed 6: 7: PM Online ***NOTE LABS ARE MON AND WED t :3 PM to 3: pm ONLINE Approimting the re under curve given the type

More information

Composite Mendeleev s Quadratures for Solving a Linear Fredholm Integral Equation of The Second Kind

Composite Mendeleev s Quadratures for Solving a Linear Fredholm Integral Equation of The Second Kind Globl Journl of Pure nd Applied Mthemtics. ISSN 0973-1768 Volume 12, Number (2016), pp. 393 398 Reserch Indi Publictions http://www.ripubliction.com/gjpm.htm Composite Mendeleev s Qudrtures for Solving

More information

INEQUALITIES FOR TWO SPECIFIC CLASSES OF FUNCTIONS USING CHEBYSHEV FUNCTIONAL. Mohammad Masjed-Jamei

INEQUALITIES FOR TWO SPECIFIC CLASSES OF FUNCTIONS USING CHEBYSHEV FUNCTIONAL. Mohammad Masjed-Jamei Fculty of Sciences nd Mthemtics University of Niš Seri Aville t: http://www.pmf.ni.c.rs/filomt Filomt 25:4 20) 53 63 DOI: 0.2298/FIL0453M INEQUALITIES FOR TWO SPECIFIC CLASSES OF FUNCTIONS USING CHEBYSHEV

More information

Physics 116C Solution of inhomogeneous ordinary differential equations using Green s functions

Physics 116C Solution of inhomogeneous ordinary differential equations using Green s functions Physics 6C Solution of inhomogeneous ordinry differentil equtions using Green s functions Peter Young November 5, 29 Homogeneous Equtions We hve studied, especilly in long HW problem, second order liner

More information

Method of stationary phase

Method of stationary phase Physics 4 Spring 16 Method of sttionry phse Lecture notes by M. G. Rozmn Lst modified: April 13, 16 There is n immedite generliztion of the Lplce integrls f t)e φt) dt 1) which we obtin by llowing the

More information

arxiv: v1 [math.na] 23 Apr 2018

arxiv: v1 [math.na] 23 Apr 2018 rxiv:804.0857v mth.na] 23 Apr 208 Solving generlized Abel s integrl equtions of the first nd second kinds vi Tylor-colloction method Eis Zrei, nd Smd Noeighdm b, Deprtment of Mthemtics, Hmedn Brnch, Islmic

More information

Analytical Approximate Solution of Carleman s Equation by Using Maclaurin Series

Analytical Approximate Solution of Carleman s Equation by Using Maclaurin Series Interntionl Mthemticl Forum, 5, 2010, no. 60, 2985-2993 Anlyticl Approximte Solution of Crlemn s Eqution by Using Mclurin Series M. Yghobifr 1 Institute for Mthemticl Reserch University Putr Mlysi Serdng

More information

Section 6.1 INTRO to LAPLACE TRANSFORMS

Section 6.1 INTRO to LAPLACE TRANSFORMS Section 6. INTRO to LAPLACE TRANSFORMS Key terms: Improper Integrl; diverge, converge A A f(t)dt lim f(t)dt Piecewise Continuous Function; jump discontinuity Function of Exponentil Order Lplce Trnsform

More information

FUZZY HOMOTOPY CONTINUATION METHOD FOR SOLVING FUZZY NONLINEAR EQUATIONS

FUZZY HOMOTOPY CONTINUATION METHOD FOR SOLVING FUZZY NONLINEAR EQUATIONS VOL NO 6 AUGUST 6 ISSN 89-668 6-6 Asin Reserch Publishing Networ (ARPN) All rights reserved wwwrpnjournlscom FUZZY HOMOTOPY CONTINUATION METHOD FOR SOLVING FUZZY NONLINEAR EQUATIONS Muhmmd Zini Ahmd Nor

More information

Harmonic Mean Derivative - Based Closed Newton Cotes Quadrature

Harmonic Mean Derivative - Based Closed Newton Cotes Quadrature IOSR Journl of Mthemtics (IOSR-JM) e-issn: - p-issn: 9-X. Volume Issue Ver. IV (My. - Jun. 0) PP - www.iosrjournls.org Hrmonic Men Derivtive - Bsed Closed Newton Cotes Qudrture T. Rmchndrn D.Udykumr nd

More information

1 Part II: Numerical Integration

1 Part II: Numerical Integration Mth 4 Lb 1 Prt II: Numericl Integrtion This section includes severl techniques for getting pproimte numericl vlues for definite integrls without using ntiderivtives. Mthemticll, ect nswers re preferble

More information

Instructor: Marios M. Fyrillas HOMEWORK ASSIGNMENT ON INTERPOLATION

Instructor: Marios M. Fyrillas HOMEWORK ASSIGNMENT ON INTERPOLATION AMAT 34 Numericl Methods Instructor: Mrios M. Fyrills Emil: m.fyrills@fit.c.cy Office Tel.: 34559/6 Et. 3 HOMEWORK ASSIGNMENT ON INTERPOATION QUESTION Using interpoltion by colloction-polynomil fit method

More information

Journal of Inequalities in Pure and Applied Mathematics

Journal of Inequalities in Pure and Applied Mathematics Journl of Inequlities in Pure nd Applied Mthemtics GENERALIZATIONS OF THE TRAPEZOID INEQUALITIES BASED ON A NEW MEAN VALUE THEOREM FOR THE REMAINDER IN TAYLOR S FORMULA volume 7, issue 3, rticle 90, 006.

More information

CLOSED EXPRESSIONS FOR COEFFICIENTS IN WEIGHTED NEWTON-COTES QUADRATURES

CLOSED EXPRESSIONS FOR COEFFICIENTS IN WEIGHTED NEWTON-COTES QUADRATURES Filomt 27:4 (2013) 649 658 DOI 10.2298/FIL1304649M Published by Fculty of Sciences nd Mthemtics University of Niš Serbi Avilble t: http://www.pmf.ni.c.rs/filomt CLOSED EXPRESSIONS FOR COEFFICIENTS IN WEIGHTED

More information

Section 6.1 INTRO to LAPLACE TRANSFORMS

Section 6.1 INTRO to LAPLACE TRANSFORMS Section 6. INTRO to LAPLACE TRANSFORMS Key terms: Improper Integrl; diverge, converge A A f(t)dt lim f(t)dt Piecewise Continuous Function; jump discontinuity Function of Exponentil Order Lplce Trnsform

More information

LYAPUNOV-TYPE INEQUALITIES FOR NONLINEAR SYSTEMS INVOLVING THE (p 1, p 2,..., p n )-LAPLACIAN

LYAPUNOV-TYPE INEQUALITIES FOR NONLINEAR SYSTEMS INVOLVING THE (p 1, p 2,..., p n )-LAPLACIAN Electronic Journl of Differentil Equtions, Vol. 203 (203), No. 28, pp. 0. ISSN: 072-669. URL: http://ejde.mth.txstte.edu or http://ejde.mth.unt.edu ftp ejde.mth.txstte.edu LYAPUNOV-TYPE INEQUALITIES FOR

More information

Modified midpoint method for solving system of linear Fredholm integral equations of the second kind

Modified midpoint method for solving system of linear Fredholm integral equations of the second kind Americn Journl of Applied Mtemtics 04; (5: 55-6 Publised online eptember 30, 04 (ttp://www.sciencepublisinggroup.com/j/jm doi: 0.648/j.jm.04005. IN: 330-0043 (Print; IN: 330-006X (Online Modified midpoint

More information

1.9 C 2 inner variations

1.9 C 2 inner variations 46 CHAPTER 1. INDIRECT METHODS 1.9 C 2 inner vritions So fr, we hve restricted ttention to liner vritions. These re vritions of the form vx; ǫ = ux + ǫφx where φ is in some liner perturbtion clss P, for

More information

Math 1B, lecture 4: Error bounds for numerical methods

Math 1B, lecture 4: Error bounds for numerical methods Mth B, lecture 4: Error bounds for numericl methods Nthn Pflueger 4 September 0 Introduction The five numericl methods descried in the previous lecture ll operte by the sme principle: they pproximte the

More information

1.2. Linear Variable Coefficient Equations. y + b "! = a y + b " Remark: The case b = 0 and a non-constant can be solved with the same idea as above.

1.2. Linear Variable Coefficient Equations. y + b ! = a y + b  Remark: The case b = 0 and a non-constant can be solved with the same idea as above. 1 12 Liner Vrible Coefficient Equtions Section Objective(s): Review: Constnt Coefficient Equtions Solving Vrible Coefficient Equtions The Integrting Fctor Method The Bernoulli Eqution 121 Review: Constnt

More information

Orthogonal Polynomials

Orthogonal Polynomials Mth 4401 Gussin Qudrture Pge 1 Orthogonl Polynomils Orthogonl polynomils rise from series solutions to differentil equtions, lthough they cn be rrived t in vriety of different mnners. Orthogonl polynomils

More information

Euler-Maclaurin Summation Formula 1

Euler-Maclaurin Summation Formula 1 Jnury 9, Euler-Mclurin Summtion Formul Suppose tht f nd its derivtive re continuous functions on the closed intervl [, b]. Let ψ(x) {x}, where {x} x [x] is the frctionl prt of x. Lemm : If < b nd, b Z,

More information

Calculus of variations with fractional derivatives and fractional integrals

Calculus of variations with fractional derivatives and fractional integrals Anis do CNMAC v.2 ISSN 1984-820X Clculus of vritions with frctionl derivtives nd frctionl integrls Ricrdo Almeid, Delfim F. M. Torres Deprtment of Mthemtics, University of Aveiro 3810-193 Aveiro, Portugl

More information

arxiv: v1 [math.gm] 30 Dec 2015

arxiv: v1 [math.gm] 30 Dec 2015 A NEW FRACTIONAL DERIVATIVE WITHOUT SINGULAR KERNEL: APPLICATION TO THE MODELLING OF THE STEADY HEAT FLOW rxiv:161.1623v1 [mth.gm] 3 Dec 215 by Xio-Jun YANG, H. M. SRIVASTAVA b,c, J. A. Tenreiro MACHADO

More information

Application of Kudryashov method for the Ito equations

Application of Kudryashov method for the Ito equations Avilble t http://pvmu.edu/m Appl. Appl. Mth. ISSN: 1932-9466 Vol. 12, Issue 1 June 2017, pp. 136 142 Applictions nd Applied Mthemtics: An Interntionl Journl AAM Appliction of Kudryshov method for the Ito

More information

Chapter 8.2: The Integral

Chapter 8.2: The Integral Chpter 8.: The Integrl You cn think of Clculus s doule-wide triler. In one width of it lives differentil clculus. In the other hlf lives wht is clled integrl clculus. We hve lredy eplored few rooms in

More information

Lecture 6: Singular Integrals, Open Quadrature rules, and Gauss Quadrature

Lecture 6: Singular Integrals, Open Quadrature rules, and Gauss Quadrature Lecture notes on Vritionl nd Approximte Methods in Applied Mthemtics - A Peirce UBC Lecture 6: Singulr Integrls, Open Qudrture rules, nd Guss Qudrture (Compiled 6 August 7) In this lecture we discuss the

More information

On the Continuous Dependence of Solutions of Boundary Value Problems for Delay Differential Equations

On the Continuous Dependence of Solutions of Boundary Value Problems for Delay Differential Equations Journl of Computtions & Modelling, vol.3, no.4, 2013, 1-10 ISSN: 1792-7625 (print), 1792-8850 (online) Scienpress Ltd, 2013 On the Continuous Dependence of Solutions of Boundry Vlue Problems for Dely Differentil

More information

Realistic Method for Solving Fully Intuitionistic Fuzzy. Transportation Problems

Realistic Method for Solving Fully Intuitionistic Fuzzy. Transportation Problems Applied Mthemticl Sciences, Vol 8, 201, no 11, 6-69 HKAR Ltd, wwwm-hikricom http://dxdoiorg/10988/ms20176 Relistic Method for Solving Fully ntuitionistic Fuzzy Trnsporttion Problems P Pndin Deprtment of

More information

Math 113 Exam 2 Practice

Math 113 Exam 2 Practice Mth Em Prctice Februry, 8 Em will cover sections 6.5, 7.-7.5 nd 7.8. This sheet hs three sections. The first section will remind you bout techniques nd formuls tht you should know. The second gives number

More information

AN INTEGRAL INEQUALITY FOR CONVEX FUNCTIONS AND APPLICATIONS IN NUMERICAL INTEGRATION

AN INTEGRAL INEQUALITY FOR CONVEX FUNCTIONS AND APPLICATIONS IN NUMERICAL INTEGRATION Applied Mthemtics E-Notes, 5(005), 53-60 c ISSN 1607-510 Avilble free t mirror sites of http://www.mth.nthu.edu.tw/ men/ AN INTEGRAL INEQUALITY FOR CONVEX FUNCTIONS AND APPLICATIONS IN NUMERICAL INTEGRATION

More information

A Computational Method for Solving Linear Volterra Integral Equations

A Computational Method for Solving Linear Volterra Integral Equations Applied Mthemticl Sciences, Vol. 6, 01, no. 17, 807-814 A Computtionl Method for Solving Liner Volterr Integrl Equtions Frshid Mirzee Deprtment of Mthemtics, Fculty of Science Mlyer University, Mlyer,

More information

Czechoslovak Mathematical Journal, 55 (130) (2005), , Abbotsford. 1. Introduction

Czechoslovak Mathematical Journal, 55 (130) (2005), , Abbotsford. 1. Introduction Czechoslovk Mthemticl Journl, 55 (130) (2005), 933 940 ESTIMATES OF THE REMAINDER IN TAYLOR S THEOREM USING THE HENSTOCK-KURZWEIL INTEGRAL, Abbotsford (Received Jnury 22, 2003) Abstrct. When rel-vlued

More information

A Brief Note on Quasi Static Thermal Stresses In A Thin Rectangular Plate With Internal Heat Generation

A Brief Note on Quasi Static Thermal Stresses In A Thin Rectangular Plate With Internal Heat Generation Americn Journl of Engineering Reserch (AJER) 13 Americn Journl of Engineering Reserch (AJER) e-issn : 3-847 p-issn : 3-936 Volume-, Issue-1, pp-388-393 www.jer.org Reserch Pper Open Access A Brief Note

More information

Fundamental Theorem of Calculus

Fundamental Theorem of Calculus Fundmentl Theorem of Clculus Recll tht if f is nonnegtive nd continuous on [, ], then the re under its grph etween nd is the definite integrl A= f() d Now, for in the intervl [, ], let A() e the re under

More information

x = b a n x 2 e x dx. cdx = c(b a), where c is any constant. a b

x = b a n x 2 e x dx. cdx = c(b a), where c is any constant. a b CHAPTER 5. INTEGRALS 61 where nd x = b n x i = 1 (x i 1 + x i ) = midpoint of [x i 1, x i ]. Problem 168 (Exercise 1, pge 377). Use the Midpoint Rule with the n = 4 to pproximte 5 1 x e x dx. Some quick

More information

Songklanakarin Journal of Science and Technology SJST R1 Thongchan. A Modified Hyperbolic Secant Distribution

Songklanakarin Journal of Science and Technology SJST R1 Thongchan. A Modified Hyperbolic Secant Distribution A Modified Hyperbolic Secnt Distribution Journl: Songklnkrin Journl of Science nd Technology Mnuscript ID SJST-0-0.R Mnuscript Type: Originl Article Dte Submitted by the Author: 0-Mr-0 Complete List of

More information

and that at t = 0 the object is at position 5. Find the position of the object at t = 2.

and that at t = 0 the object is at position 5. Find the position of the object at t = 2. 7.2 The Fundmentl Theorem of Clculus 49 re mny, mny problems tht pper much different on the surfce but tht turn out to be the sme s these problems, in the sense tht when we try to pproimte solutions we

More information

The Basic Functional 2 1

The Basic Functional 2 1 2 The Bsic Functionl 2 1 Chpter 2: THE BASIC FUNCTIONAL TABLE OF CONTENTS Pge 2.1 Introduction..................... 2 3 2.2 The First Vrition.................. 2 3 2.3 The Euler Eqution..................

More information

QUADRATURE is an old-fashioned word that refers to

QUADRATURE is an old-fashioned word that refers to World Acdemy of Science Engineering nd Technology Interntionl Journl of Mthemticl nd Computtionl Sciences Vol:5 No:7 011 A New Qudrture Rule Derived from Spline Interpoltion with Error Anlysis Hdi Tghvfrd

More information

Three solutions to a p(x)-laplacian problem in weighted-variable-exponent Sobolev space

Three solutions to a p(x)-laplacian problem in weighted-variable-exponent Sobolev space DOI: 0.2478/uom-203-0033 An. Şt. Univ. Ovidius Constnţ Vol. 2(2),203, 95 205 Three solutions to p(x)-lplcin problem in weighted-vrible-exponent Sobolev spce Wen-Wu Pn, Ghsem Alizdeh Afrouzi nd Lin Li Abstrct

More information

A General Dynamic Inequality of Opial Type

A General Dynamic Inequality of Opial Type Appl Mth Inf Sci No 3-5 (26) Applied Mthemtics & Informtion Sciences An Interntionl Journl http://dxdoiorg/2785/mis/bos7-mis A Generl Dynmic Inequlity of Opil Type Rvi Agrwl Mrtin Bohner 2 Donl O Regn

More information

Jim Lambers MAT 169 Fall Semester Lecture 4 Notes

Jim Lambers MAT 169 Fall Semester Lecture 4 Notes Jim Lmbers MAT 169 Fll Semester 2009-10 Lecture 4 Notes These notes correspond to Section 8.2 in the text. Series Wht is Series? An infinte series, usully referred to simply s series, is n sum of ll of

More information

Introduction to the Calculus of Variations

Introduction to the Calculus of Variations Introduction to the Clculus of Vritions Jim Fischer Mrch 20, 1999 Abstrct This is self-contined pper which introduces fundmentl problem in the clculus of vritions, the problem of finding extreme vlues

More information

A Modified Homotopy Perturbation Method for Solving Linear and Nonlinear Integral Equations. 1 Introduction

A Modified Homotopy Perturbation Method for Solving Linear and Nonlinear Integral Equations. 1 Introduction ISSN 1749-3889 (print), 1749-3897 (online) Interntionl Journl of Nonliner Science Vol.13(212) No.3,pp.38-316 A Modified Homotopy Perturbtion Method for Solving Liner nd Nonliner Integrl Equtions N. Aghzdeh,

More information

HOMEWORK SOLUTIONS MATH 1910 Sections 7.9, 8.1 Fall 2016

HOMEWORK SOLUTIONS MATH 1910 Sections 7.9, 8.1 Fall 2016 HOMEWORK SOLUTIONS MATH 9 Sections 7.9, 8. Fll 6 Problem 7.9.33 Show tht for ny constnts M,, nd, the function yt) = )) t ) M + tnh stisfies the logistic eqution: y SOLUTION. Let Then nd Finlly, y = y M

More information

INTRODUCTION TO INTEGRATION

INTRODUCTION TO INTEGRATION INTRODUCTION TO INTEGRATION 5.1 Ares nd Distnces Assume f(x) 0 on the intervl [, b]. Let A be the re under the grph of f(x). b We will obtin n pproximtion of A in the following three steps. STEP 1: Divide

More information

A REVIEW OF CALCULUS CONCEPTS FOR JDEP 384H. Thomas Shores Department of Mathematics University of Nebraska Spring 2007

A REVIEW OF CALCULUS CONCEPTS FOR JDEP 384H. Thomas Shores Department of Mathematics University of Nebraska Spring 2007 A REVIEW OF CALCULUS CONCEPTS FOR JDEP 384H Thoms Shores Deprtment of Mthemtics University of Nebrsk Spring 2007 Contents Rtes of Chnge nd Derivtives 1 Dierentils 4 Are nd Integrls 5 Multivrite Clculus

More information

Improvement of Ostrowski Integral Type Inequalities with Application

Improvement of Ostrowski Integral Type Inequalities with Application Filomt 30:6 06), 56 DOI 098/FIL606Q Published by Fculty of Sciences nd Mthemtics, University of Niš, Serbi Avilble t: http://wwwpmfnicrs/filomt Improvement of Ostrowski Integrl Type Ineulities with Appliction

More information

WHEN IS A FUNCTION NOT FLAT? 1. Introduction. {e 1 0, x = 0. f(x) =

WHEN IS A FUNCTION NOT FLAT? 1. Introduction. {e 1 0, x = 0. f(x) = WHEN IS A FUNCTION NOT FLAT? YIFEI PAN AND MEI WANG Abstrct. In this pper we prove unique continution property for vector vlued functions of one vrible stisfying certin differentil inequlity. Key words:

More information

Mathematic Model of Green Function with Two-Dimensional Free Water Surface *

Mathematic Model of Green Function with Two-Dimensional Free Water Surface * Applied Mthemtics, 23, 4, 75-79 http://d.doi.org/.4236/m.23.48a Published Online August 23 (http://www.scirp.org/journl/m) Mthemtic Model of Green Function with Two-Dimensionl Free Wter Surfce * Sujing

More information

Math 100 Review Sheet

Math 100 Review Sheet Mth 100 Review Sheet Joseph H. Silvermn December 2010 This outline of Mth 100 is summry of the mteril covered in the course. It is designed to be study id, but it is only n outline nd should be used s

More information

u = 0 in Ω, u = f on B,

u = 0 in Ω, u = f on B, Preprint April 1991 Colordo Stte University Deprtment of Mthemtics COMPUTATION OF WEAKLY AND NEARLY SINGULAR INTEGRALS OVER TRIANGLES IN R 3 EUGENE L. ALLGOWER 1,2,4, KURT GEORG 1,3,4 nd KARL KALIK 3,5

More information

Bulletin of the Transilvania University of Braşov Vol 10(59), No Series III: Mathematics, Informatics, Physics,

Bulletin of the Transilvania University of Braşov Vol 10(59), No Series III: Mathematics, Informatics, Physics, Bulletin of the Trnsilvni University of Brşov Vol (59), No. - 27 Series III: Mthemtics, Informtics, Physics, 27-24 ON THE CONVERGENCE OF SOME MODIFIED NEWTON METHODS THROUGH COMPUTER ALGEBRA Ernest SCHEIBER

More information

ON MIXED NONLINEAR INTEGRAL EQUATIONS OF VOLTERRA-FREDHOLM TYPE WITH MODIFIED ARGUMENT

ON MIXED NONLINEAR INTEGRAL EQUATIONS OF VOLTERRA-FREDHOLM TYPE WITH MODIFIED ARGUMENT STUDIA UNIV. BABEŞ BOLYAI, MATHEMATICA, Volume LIV, Number 1, Mrch 29 ON MIXED NONLINEAR INTEGRAL EQUATIONS OF VOLTERRA-FREDHOLM TYPE WITH MODIFIED ARGUMENT Abstrct. In the present pper we consider the

More information

ON THE WEIGHTED OSTROWSKI INEQUALITY

ON THE WEIGHTED OSTROWSKI INEQUALITY ON THE WEIGHTED OSTROWSKI INEQUALITY N.S. BARNETT AND S.S. DRAGOMIR School of Computer Science nd Mthemtics Victori University, PO Bo 14428 Melbourne City, VIC 8001, Austrli. EMil: {neil.brnett, sever.drgomir}@vu.edu.u

More information

Variational Techniques for Sturm-Liouville Eigenvalue Problems

Variational Techniques for Sturm-Liouville Eigenvalue Problems Vritionl Techniques for Sturm-Liouville Eigenvlue Problems Vlerie Cormni Deprtment of Mthemtics nd Sttistics University of Nebrsk, Lincoln Lincoln, NE 68588 Emil: vcormni@mth.unl.edu Rolf Ryhm Deprtment

More information

Math 1431 Section 6.1. f x dx, find f. Question 22: If. a. 5 b. π c. π-5 d. 0 e. -5. Question 33: Choose the correct statement given that

Math 1431 Section 6.1. f x dx, find f. Question 22: If. a. 5 b. π c. π-5 d. 0 e. -5. Question 33: Choose the correct statement given that Mth 43 Section 6 Question : If f d nd f d, find f 4 d π c π- d e - Question 33: Choose the correct sttement given tht 7 f d 8 nd 7 f d3 7 c d f d3 f d f d f d e None of these Mth 43 Section 6 Are Under

More information

5.7 Improper Integrals

5.7 Improper Integrals 458 pplictions of definite integrls 5.7 Improper Integrls In Section 5.4, we computed the work required to lift pylod of mss m from the surfce of moon of mss nd rdius R to height H bove the surfce of the

More information

AQA Further Pure 2. Hyperbolic Functions. Section 2: The inverse hyperbolic functions

AQA Further Pure 2. Hyperbolic Functions. Section 2: The inverse hyperbolic functions Hperbolic Functions Section : The inverse hperbolic functions Notes nd Emples These notes contin subsections on The inverse hperbolic functions Integrtion using the inverse hperbolic functions Logrithmic

More information

Expected Value of Function of Uncertain Variables

Expected Value of Function of Uncertain Variables Journl of Uncertin Systems Vol.4, No.3, pp.8-86, 2 Online t: www.jus.org.uk Expected Vlue of Function of Uncertin Vribles Yuhn Liu, Minghu H College of Mthemtics nd Computer Sciences, Hebei University,

More information

ON BERNOULLI BOUNDARY VALUE PROBLEM

ON BERNOULLI BOUNDARY VALUE PROBLEM LE MATEMATICHE Vol. LXII (2007) Fsc. II, pp. 163 173 ON BERNOULLI BOUNDARY VALUE PROBLEM FRANCESCO A. COSTABILE - ANNAROSA SERPE We consider the boundry vlue problem: x (m) (t) = f (t,x(t)), t b, m > 1

More information

Goals: Determine how to calculate the area described by a function. Define the definite integral. Explore the relationship between the definite

Goals: Determine how to calculate the area described by a function. Define the definite integral. Explore the relationship between the definite Unit #8 : The Integrl Gols: Determine how to clculte the re described by function. Define the definite integrl. Eplore the reltionship between the definite integrl nd re. Eplore wys to estimte the definite

More information

The Hadamard s inequality for quasi-convex functions via fractional integrals

The Hadamard s inequality for quasi-convex functions via fractional integrals Annls of the University of Criov, Mthemtics nd Computer Science Series Volume (), 3, Pges 67 73 ISSN: 5-563 The Hdmrd s ineulity for usi-convex functions vi frctionl integrls M E Özdemir nd Çetin Yildiz

More information

Research Article On New Inequalities via Riemann-Liouville Fractional Integration

Research Article On New Inequalities via Riemann-Liouville Fractional Integration Abstrct nd Applied Anlysis Volume 202, Article ID 428983, 0 pges doi:0.55/202/428983 Reserch Article On New Inequlities vi Riemnn-Liouville Frctionl Integrtion Mehmet Zeki Sriky nd Hsn Ogunmez 2 Deprtment

More information

The presentation of a new type of quantum calculus

The presentation of a new type of quantum calculus DOI.55/tmj-27-22 The presenttion of new type of quntum clculus Abdolli Nemty nd Mehdi Tourni b Deprtment of Mthemtics, University of Mzndrn, Bbolsr, Irn E-mil: nmty@umz.c.ir, mehdi.tourni@gmil.com b Abstrct

More information

arxiv: v1 [math.ra] 1 Nov 2014

arxiv: v1 [math.ra] 1 Nov 2014 CLASSIFICATION OF COMPLEX CYCLIC LEIBNIZ ALGEBRAS DANIEL SCOFIELD AND S MCKAY SULLIVAN rxiv:14110170v1 [mthra] 1 Nov 2014 Abstrct Since Leibniz lgebrs were introduced by Lody s generliztion of Lie lgebrs,

More information

Some estimates on the Hermite-Hadamard inequality through quasi-convex functions

Some estimates on the Hermite-Hadamard inequality through quasi-convex functions Annls of University of Criov, Mth. Comp. Sci. Ser. Volume 3, 7, Pges 8 87 ISSN: 13-693 Some estimtes on the Hermite-Hdmrd inequlity through qusi-convex functions Dniel Alexndru Ion Abstrct. In this pper

More information

On Second Derivative-Free Zero Finding Methods

On Second Derivative-Free Zero Finding Methods 010 Americn Control Conerence Mrriott Wterront, Bltimore, MD, USA June 30-July 0, 010 FrC07.4 On Second Derivtive-Free Zero Finding Methods Mohmmed A. Hsn Deprtment o Electricl & Computer Engineering University

More information

New exact travelling wave solutions of bidirectional wave equations

New exact travelling wave solutions of bidirectional wave equations Shirz University of Technology From the SelectedWorks of Hbiboll Ltifizdeh June, 0 New exct trvelling wve solutions of bidirectionl wve equtions Hbiboll Ltifizdeh, Shirz University of Technology Avilble

More information