APPROXIMATE LIMIT CYCLES FOR THE RAYLEIGH MODEL

Size: px
Start display at page:

Download "APPROXIMATE LIMIT CYCLES FOR THE RAYLEIGH MODEL"

Transcription

1 ROMAI J, 4, 228, 73 8 APPROXIMATE LIMIT CYCLES FOR THE RAYLEIGH MODEL Adelin Georgescu, Petre Băzăvn, Mihel Sterpu Acdemy of Romnin Scientists, Buchrest Deprtment of Mthemtics nd Computer Science, University of Criov Deprtment of Mthemtics nd Computer Science, University of Criov delingeorgescu@yhoocom, bzvn@yhoocom, mihels@centrlucvro Abstrct By using symptotic methods the pproximte limit cycle of the periodiclly forced Ryleigh oscilltor is deduced for g, where g is the mplitude of the forcing The limiting limit cycle s g is lso constructed The theoreticl results gree with the numericl ones deduced by mens of one of the uthors P B method Keywords: Ryleigh eqution, limit cycle, symptotic pproximtion 2 MSC: 34C5, 4A6 THE RAYLEIGH MODEL By the Ryleigh model we men the Cuchy problem x = x, x = y, for the generlized Ryleigh eqution x + 3 x 3 ẋ +x = g sin ωt 2 where x : R R, x = x t, is the unknown stte function, t is the time,,, g nd ω re positive prmeters nd the dot over quntities stnds for the differentition with respect to time The generlized Ryleigh eqution without forcing g = reds ẍ + 3ẋ3 ẋ + x = 3 For = =, the eqution 3 becomes the eqution introduced by Ryleigh in 883 to study the oscilltions of the violin chords The dynm- 73

2 74 Adelin Georgescu, Petre Băzăvn, Mihel Sterpu ics generted by it is closed to the dynmics generted by the Vn der Pol eqution ẍ + x 2 ẋ + x = 4 Indeed, by differentiting the originl Ryleigh eqution with respect to time nd by using the nottion ẋ = y, we obtin just the Vn der Pol eqution In its form 2 the Ryleigh eqution ws introduced in 979 by Diener in order to study the duck French cnrd phenomenon [6], [7] Subsequently, it ws found tht, for certin vlues of the prmeters, the dynmics generted by 2 cn be very complicted, presenting cscdes of bifurctions nd chotic regions In ddition, the model, 2, s well s the vn der Pol model, ws pplied to electronics nd physiology in series of ppers, eg [], [2], [5], [8], [], [2], [3], [5], [6], [7] Especilly it ws investigted numericlly nd theoreticlly the existence nd uniqueness of limit cycles corresponding to periodic oscilltions, the ttrctors the most importnt for pplictions In this pper, by using symptotic methods, [9], [], we extended the studies from [5], [6] concerning the construction of pproximte limit cycles for the Ryleigh model with or without forcing hrmonics s suggested in [4] We neglected the higher The eqution 2 ws trnsformed into the following system of two nonutonomous ordinry differentil equtions ODEs ẋ = y, ẏ = x + 5 y 3 y3 + g sin ωt, or to the following system of three utonomous ODEs in R 3 ẋ = y, ẏ = x + y 3 y3 + g sin z, ż = ω 6 First we used the first order symptotic pproximtion of 5 s g to derive the so-clled verged system ssocited with 5 x= y, y= x + y 3 y3, 7

3 Approximte limit cycles for the Ryleigh model 75 which coincides with the system 5 without forcing With system 7 two-dimensionl dynmicl system is ssocited while the dynmics generted by 5 or 6 is three-dimensionl In [6], it is proved tht the system 7 without forcing possesses limit cycle pssing through the point, 3 In Section 2 we derive n symptotic pproximtion of the limit cycle of 5 nd in Section 3 we give comprtive grphicl representtions of the exct or pproximte limit cycle 2 APPROXIMATE LIMIT CYCLE The unique limit cycle of 7 pssing through, 3 represents n pproximte limit cycle for 5 cycles of the form Another pproximtion corresponds to limit x t = γt + αt cos ωt + βt sin ωt, [ ] yt = γt + [ αt + ωβt] cos ωt + βt ωαt sin ωt Introducing 8 into 5, neglecting the higher hrmonics eg cos 2 ωt = cos 2ωt+ 2 2 nd the derivtives α nd β nd using the nottion γ = δ, we obtin γ= δ, δ + 3 δ3 + δ [ 2 A ] + γ =, ω2 β ωα + α + ωβ [ 4 A + γ2 ] + α =, ω2 α + ωβ + β ωα [ 4 A + γ2 ] + β g =, where A = α + ωβ 2 + β ωα 2 The equilibri of 9 correspond to periodic solutions of period 2π ω of 5, hence to the limit cycles of the ssocited dynmicl system These equilibri stisfy the lgebric system δ =, γ =, ω 2 α + ω [ 4 ω2 α 2 + β 2 ] β =, ω [ 4 ω2 α 2 + β 2 ] α + ω 2 β = g, 8 9

4 76 Adelin Georgescu, Petre Băzăvn, Mihel Sterpu which hs the solution α, β, γ, δ = α, β,, Since γ =, γ =, 8 becomes x t = α cos ωt + β sin ωt, y t = βω cos ωt αω sin ωt, where, with the nottion r 2 = α 2 +β 2, from we deduced α = ωg ω2 r 2, β = g ω 2, = ω ω 2 [ 4 ω2 r 2] 2 nd r is rel solution of eqution [ r 2 ω ω 2 4 ] 2 ω2 r 2 = g 2, 2 4 or, equivlently, r 2 = g 2 3 ie The eqution 2 ws deduced from = Cse g = In this cse 2 implies From we hve ω 2 r 2 = 4, ω 2 = 4 ω =, r = 2 5 α = x, β = y ω, 6 nd this reltion holds lso for the cse g > In ddition, we hve x 2 + y2 ω 2 = r 2 7 The simplest pproximte form for the ellipse corresponds to β = nd, hence, α = r = 2 nd it is x t = 2 cos t, y t = 2 sin t, 8 This is the only pproximte limit cycle considered in [6] It psses through the point 2, However, we do not know priori if this point belongs or not to the pproximte limit cycle In fct, the ellipse through 2, is only one mong the infinity of ellipses of the form x t = x cos t + y ω sin t, y t = y cos t ωx sin 9 t,

5 Approximte limit cycles for the Ryleigh model 77 where x nd y stisfy 7 From this set we must choose the pproximte limit cycle The philosophy under our choice is: the pproximte limit cycle from the cse g = is tht which is equl to the limit cycle from the cse g > s g Cse g > In order to deduce the limiting limit cycle s g we must derive symptotic expnsions for α, β, r, ω nd s g The min ide, suggested by 4, is ω 2 + g + g 2 +, ω 2 r 2 4 4rg 2 + 4rg 2 2 +, s g 2 The expnsion 2 shows tht ω = O s g nd 2 2 implies tht r = O s g too From 2 we hve s g ω 2 + g + g 2 +, g +, ω 2 r r 2 g + ω g g +, g 2 [ g + + g r 4 + 2r2 r2 g] + g 2 [ 2 + r4 + g r 4 + 2r2 r2 + 2 ] + [ + g r 2 ] + 2 Introducing 2 into 2 nd tking into ccount 2 it follows tht, up to terms of order g, we hve 4 ω + r 2 2 g g 2, ie 4 + rg 2 [ g g r 4 + g r 4 + 2r2 r 2 ] g 2 or, equivlently, r [ g 2 + r 4 r 2 + r 4 + 2r2 r 2 ] After the mtching, from 22 we obtin r 4 =, r 4 r 2 + r 4 + 2r2 r = 24 On the other hnd, tking into ccount 23, 24 nd the bove quoted expnsions for α nd β we hve, up to terms in g, s g, α 2 + r4 + r 2 g 2 + rg 2 [ + g r 2 ] 25

6 78 Adelin Georgescu, Petre Băzăvn, Mihel Sterpu [ 4 r 2 + g r 4 ] 2 r2 + r 2, β 2 + r4 4 [ + g [ + g + g r 2 ] ] + r Tking into ccount the initil conditions 6, then 25 nd 26 yield x = 4 r2 27 r 4 r r2 =, 28 y ω + r 2 2 The unique solution of 23, 24, 28 nd 3 reds 2 = 2 4 +, =, r 2 = = 4, 29 = 3 2 +, r2 = 8 +, 3 Numericl computtions reveled tht the pproprite route for is = 2 + Then α = 2 / +, β = 2 +, nd to the pproximte limit cycle for g x t = 2 / + cos g / 4 t + [ y t = 2 [ g g + This ellipse psses through the point this ellipse tends to the ellipse ω ] cos g / / 4 + g sin 4 + ] sin g / 4 + x t = 2 / + cos t t+ t g / 4 + t, , g As g 2 + sin t, y t = 2 + cos t sin t, 34

7 Approximte limit cycles for the Ryleigh model 79 Fig The pproximte limit cycle of 5 Cse g = : =, = 4; b = 3, = 2; c = 3, = 3 Cse g > : d = 3, = 3, ω = 985, g = 2; e = 3, = 3, ω = 99, g = ; f = 3, = 3, ω = 992, g = 5 which psses through the point x, y = 2 /, As expected, the ellipse 34 is of the form 9, where the initil point is 35, nd it is the pproximte limit cycle of 5 s g 3 NUMERICAL RESULTS In fig we give comprtive numericl results on the pproximte limit cycle of 5 In figs -c we represent the orbit through, 3 of 7 blck color nd the orbit 34 They show the good pproximtion relized In figs d-e we give numericl results on the pproximte limit cycle 33 for vrious vlues of the prmeters nd g The numericl method used ws tht from [4], [3] References [] Brnes, B, Grimshw, R, Anlyticl nd numericl studies of the Bonhoeffer vn der Pol system, Aust Mth Soc Series B, ,

8 8 Adelin Georgescu, Petre Băzăvn, Mihel Sterpu [2] Brnes, B, Grimshw, R, Numericl studies of the periodiclly forced Bonhoeffer vn der Pol oscilltor, Int J Bifurction nd Chos, 7, 2 997, [3] Băzăvn, P : The dynmicl system generted by vrible step-size lgorithm for Runge-Kutt methods, Int J Chos Theory Appl, 4, 4 999, 2-28 [4] Băzăvn, P, A vrible step-size lgorithm for Runge-Kutt methods, Rom J Inf Sch Tech, 3, 22, 5-2 [5] Băzăvn, P, Numericl study of the succession of ttrctors in the periodiclly forced Ryleigh system, Annls of the University of Criov, Mth Comp Sci Ser, 33 26, [6] Diener, M, Nessie et les cnrds, IRMA, Strsbourg, 979 [7] Diener, M, Quelques exmples de bifurctions et les cnrds, IRMA, Strsbourg, 979, [8] Flherty, J E, Hoppenstedt, F C, Frequency entrinemment of forced vn der Pol oscilltor, Studies Appl Mth, , 5-5 [9] Georgescu, A, Aproximţii simptotice, Ed Tehnică, Bucureşti, 989 [] Georgescu, A, Asymptotic tretment of differentil equtions, Chpmn & Hll, London, 995 [] Jordn, D W, Smith, P, Nonliner ordinry differentil equtions, Clrendon, Oxford, 989 [2] Mettin, R, Prlitz, U, Luterborn, W, Bifurction structure of the driven vn der Pol oscilltor, Int J Bifurction nd Chos, 3, 6 993, [3] Rjsekr, S, Lkshmnn, M, Period-doubling bifurctions, chos, phse-locking nd the devils stircse in the Bonhoeffer vn der Pol oscilltor, Physic D, , [4] Reithmeier, E, Periodic solutions of nonliner dynmicl systems, Springer Berlin, 99 [5] Sterpu, M, Băzăvn, P, Study on Ryleigh eqution, Bul St Univ Piteşti, Seri Mtemtică-Informtică, 3 999, [6] Sterpu, M, Georgescu, A, Băzăvn, P, Dynmics generted by the generlized Ryleigh eqution II Periodic solutions, Mthemticl Reports, 252, 32, [7] Wng, W, Bifurctions nd Chos of the Bonhoeffer vn der Pol model, J Phys A: Mth Gen, , L627-L632

New Expansion and Infinite Series

New Expansion and Infinite Series Interntionl Mthemticl Forum, Vol. 9, 204, no. 22, 06-073 HIKARI Ltd, www.m-hikri.com http://dx.doi.org/0.2988/imf.204.4502 New Expnsion nd Infinite Series Diyun Zhng College of Computer Nnjing University

More information

Ordinary differential equations

Ordinary differential equations Ordinry differentil equtions Introduction to Synthetic Biology E Nvrro A Montgud P Fernndez de Cordob JF Urchueguí Overview Introduction-Modelling Bsic concepts to understnd n ODE. Description nd properties

More information

Linear and Non-linear Feedback Control Strategies for a 4D Hyperchaotic System

Linear and Non-linear Feedback Control Strategies for a 4D Hyperchaotic System Pure nd Applied Mthemtics Journl 017; 6(1): 5-13 http://www.sciencepublishinggroup.com/j/pmj doi: 10.11648/j.pmj.0170601.1 ISSN: 36-9790 (Print); ISSN: 36-981 (Online) Liner nd Non-liner Feedbck Control

More information

Fredholm Integral Equations of the First Kind Solved by Using the Homotopy Perturbation Method

Fredholm Integral Equations of the First Kind Solved by Using the Homotopy Perturbation Method Int. Journl of Mth. Anlysis, Vol. 5, 211, no. 19, 935-94 Fredholm Integrl Equtions of the First Kind Solved by Using the Homotopy Perturbtion Method Seyyed Mhmood Mirzei Deprtment of Mthemtics, Fculty

More information

Application of Kudryashov method for the Ito equations

Application of Kudryashov method for the Ito equations Avilble t http://pvmu.edu/m Appl. Appl. Mth. ISSN: 1932-9466 Vol. 12, Issue 1 June 2017, pp. 136 142 Applictions nd Applied Mthemtics: An Interntionl Journl AAM Appliction of Kudryshov method for the Ito

More information

ASYMPTOTIC BEHAVIOR OF INTERMEDIATE POINTS IN CERTAIN MEAN VALUE THEOREMS. II

ASYMPTOTIC BEHAVIOR OF INTERMEDIATE POINTS IN CERTAIN MEAN VALUE THEOREMS. II STUDIA UNIV. BABEŞ BOLYAI, MATHEMATICA, Volume LV, Number 3, September 2010 ASYMPTOTIC BEHAVIOR OF INTERMEDIATE POINTS IN CERTAIN MEAN VALUE THEOREMS. II TIBERIU TRIF Dedicted to Professor Grigore Ştefn

More information

The Solution of Volterra Integral Equation of the Second Kind by Using the Elzaki Transform

The Solution of Volterra Integral Equation of the Second Kind by Using the Elzaki Transform Applied Mthemticl Sciences, Vol. 8, 214, no. 11, 525-53 HIKARI Ltd, www.m-hikri.com http://dx.doi.org/1.12988/ms.214.312715 The Solution of Volterr Integrl Eqution of the Second Kind by Using the Elzki

More information

Physics 116C Solution of inhomogeneous ordinary differential equations using Green s functions

Physics 116C Solution of inhomogeneous ordinary differential equations using Green s functions Physics 6C Solution of inhomogeneous ordinry differentil equtions using Green s functions Peter Young November 5, 29 Homogeneous Equtions We hve studied, especilly in long HW problem, second order liner

More information

Improper Integrals, and Differential Equations

Improper Integrals, and Differential Equations Improper Integrls, nd Differentil Equtions October 22, 204 5.3 Improper Integrls Previously, we discussed how integrls correspond to res. More specificlly, we sid tht for function f(x), the region creted

More information

Application of Exp-Function Method to. a Huxley Equation with Variable Coefficient *

Application of Exp-Function Method to. a Huxley Equation with Variable Coefficient * Interntionl Mthemticl Forum, 4, 9, no., 7-3 Appliction of Exp-Function Method to Huxley Eqution with Vrible Coefficient * Li Yo, Lin Wng nd Xin-Wei Zhou. Deprtment of Mthemtics, Kunming College Kunming,Yunnn,

More information

The Periodically Forced Harmonic Oscillator

The Periodically Forced Harmonic Oscillator The Periodiclly Forced Hrmonic Oscilltor S. F. Ellermeyer Kennesw Stte University July 15, 003 Abstrct We study the differentil eqution dt + pdy + qy = A cos (t θ) dt which models periodiclly forced hrmonic

More information

Jim Lambers MAT 169 Fall Semester Lecture 4 Notes

Jim Lambers MAT 169 Fall Semester Lecture 4 Notes Jim Lmbers MAT 169 Fll Semester 2009-10 Lecture 4 Notes These notes correspond to Section 8.2 in the text. Series Wht is Series? An infinte series, usully referred to simply s series, is n sum of ll of

More information

63. Representation of functions as power series Consider a power series. ( 1) n x 2n for all 1 < x < 1

63. Representation of functions as power series Consider a power series. ( 1) n x 2n for all 1 < x < 1 3 9. SEQUENCES AND SERIES 63. Representtion of functions s power series Consider power series x 2 + x 4 x 6 + x 8 + = ( ) n x 2n It is geometric series with q = x 2 nd therefore it converges for ll q =

More information

1.1. Linear Constant Coefficient Equations. Remark: A differential equation is an equation

1.1. Linear Constant Coefficient Equations. Remark: A differential equation is an equation 1 1.1. Liner Constnt Coefficient Equtions Section Objective(s): Overview of Differentil Equtions. Liner Differentil Equtions. Solving Liner Differentil Equtions. The Initil Vlue Problem. 1.1.1. Overview

More information

Solutions of Klein - Gordan equations, using Finite Fourier Sine Transform

Solutions of Klein - Gordan equations, using Finite Fourier Sine Transform IOSR Journl of Mthemtics (IOSR-JM) e-issn: 2278-5728, p-issn: 2319-765X. Volume 13, Issue 6 Ver. IV (Nov. - Dec. 2017), PP 19-24 www.iosrjournls.org Solutions of Klein - Gordn equtions, using Finite Fourier

More information

The Active Universe. 1 Active Motion

The Active Universe. 1 Active Motion The Active Universe Alexnder Glück, Helmuth Hüffel, Sš Ilijić, Gerld Kelnhofer Fculty of Physics, University of Vienn helmuth.hueffel@univie.c.t Deprtment of Physics, FER, University of Zgreb ss.ilijic@fer.hr

More information

SOLUTION OF QUADRATIC NONLINEAR PROBLEMS WITH MULTIPLE SCALES LINDSTEDT-POINCARE METHOD. Mehmet Pakdemirli and Gözde Sarı

SOLUTION OF QUADRATIC NONLINEAR PROBLEMS WITH MULTIPLE SCALES LINDSTEDT-POINCARE METHOD. Mehmet Pakdemirli and Gözde Sarı Mthemticl nd Computtionl Applictions, Vol., No., pp. 37-5, 5 http://dx.doi.org/.99/mc-5- SOLUTION OF QUADRATIC NONLINEAR PROBLEMS WITH MULTIPLE SCALES LINDSTEDT-POINCARE METHOD Mehmet Pkdemirli nd Gözde

More information

An iterative method for solving nonlinear functional equations

An iterative method for solving nonlinear functional equations J. Mth. Anl. Appl. 316 (26) 753 763 www.elsevier.com/locte/jm An itertive method for solving nonliner functionl equtions Vrsh Dftrdr-Gejji, Hossein Jfri Deprtment of Mthemtics, University of Pune, Gneshkhind,

More information

WHEN IS A FUNCTION NOT FLAT? 1. Introduction. {e 1 0, x = 0. f(x) =

WHEN IS A FUNCTION NOT FLAT? 1. Introduction. {e 1 0, x = 0. f(x) = WHEN IS A FUNCTION NOT FLAT? YIFEI PAN AND MEI WANG Abstrct. In this pper we prove unique continution property for vector vlued functions of one vrible stisfying certin differentil inequlity. Key words:

More information

1.2. Linear Variable Coefficient Equations. y + b "! = a y + b " Remark: The case b = 0 and a non-constant can be solved with the same idea as above.

1.2. Linear Variable Coefficient Equations. y + b ! = a y + b  Remark: The case b = 0 and a non-constant can be solved with the same idea as above. 1 12 Liner Vrible Coefficient Equtions Section Objective(s): Review: Constnt Coefficient Equtions Solving Vrible Coefficient Equtions The Integrting Fctor Method The Bernoulli Eqution 121 Review: Constnt

More information

Creating A New Planck s Formula of Spectral Density of Black-body Radiation by Means of AF(A) Diagram

Creating A New Planck s Formula of Spectral Density of Black-body Radiation by Means of AF(A) Diagram nd Jogj Interntionl Physics Conference Enhncing Network nd Collortion Developing Reserch nd Eduction in Physics nd Nucler Energy Septemer 6-9, 007, Yogykrt-Indonesi Creting A New Plnck s Formul of Spectrl

More information

Some estimates on the Hermite-Hadamard inequality through quasi-convex functions

Some estimates on the Hermite-Hadamard inequality through quasi-convex functions Annls of University of Criov, Mth. Comp. Sci. Ser. Volume 3, 7, Pges 8 87 ISSN: 13-693 Some estimtes on the Hermite-Hdmrd inequlity through qusi-convex functions Dniel Alexndru Ion Abstrct. In this pper

More information

BIFURCATIONS IN ONE-DIMENSIONAL DISCRETE SYSTEMS

BIFURCATIONS IN ONE-DIMENSIONAL DISCRETE SYSTEMS BIFRCATIONS IN ONE-DIMENSIONAL DISCRETE SYSTEMS FRANCESCA AICARDI In this lesson we will study the simplest dynmicl systems. We will see, however, tht even in this cse the scenrio of different possible

More information

Travelling Profile Solutions For Nonlinear Degenerate Parabolic Equation And Contour Enhancement In Image Processing

Travelling Profile Solutions For Nonlinear Degenerate Parabolic Equation And Contour Enhancement In Image Processing Applied Mthemtics E-Notes 8(8) - c IN 67-5 Avilble free t mirror sites of http://www.mth.nthu.edu.tw/ men/ Trvelling Profile olutions For Nonliner Degenerte Prbolic Eqution And Contour Enhncement In Imge

More information

Asymptotic behavior of intermediate points in certain mean value theorems. III

Asymptotic behavior of intermediate points in certain mean value theorems. III Stud. Univ. Bbeş-Bolyi Mth. 59(2014), No. 3, 279 288 Asymptotic behvior of intermedite points in certin men vlue theorems. III Tiberiu Trif Abstrct. The pper is devoted to the study of the symptotic behvior

More information

221B Lecture Notes WKB Method

221B Lecture Notes WKB Method Clssicl Limit B Lecture Notes WKB Method Hmilton Jcobi Eqution We strt from the Schrödinger eqution for single prticle in potentil i h t ψ x, t = [ ] h m + V x ψ x, t. We cn rewrite this eqution by using

More information

NUMERICAL EVALUATION OF H-FUNCTION BY CONTINUED FRACTIONS ABSTRACT INTRODUCTION

NUMERICAL EVALUATION OF H-FUNCTION BY CONTINUED FRACTIONS ABSTRACT INTRODUCTION NMERICAL EVALATION OF H-FNCTION BY CONTINED FRACTIONS B.S. Rn & H.S. Dhmi Deptt. Of Mthemtics niversity of Kumun S.S.J. Cmpus, Almor (ttrnchl INDIA- 6360 ABSTRACT In the present pper n ttempt hs been mde

More information

On the Decomposition Method for System of Linear Fredholm Integral Equations of the Second Kind

On the Decomposition Method for System of Linear Fredholm Integral Equations of the Second Kind Applied Mthemticl Sciences, Vol. 2, 28, no. 2, 57-62 On the Decomposition Method for System of Liner Fredholm Integrl Equtions of the Second Kind A. R. Vhidi 1 nd M. Mokhtri Deprtment of Mthemtics, Shhr-e-Rey

More information

INTERNATIONAL CENTRE FOR THEORETICAL PHYSICS THE ALGEBRAIC APPROACH TO THE SCATTERING PROBLEM ABSTRACT

INTERNATIONAL CENTRE FOR THEORETICAL PHYSICS THE ALGEBRAIC APPROACH TO THE SCATTERING PROBLEM ABSTRACT IC/69/7 INTERNAL REPORT (Limited distribution) INTERNATIONAL ATOMIC ENERGY AGENCY INTERNATIONAL CENTRE FOR THEORETICAL PHYSICS THE ALGEBRAIC APPROACH TO THE SCATTERING PROBLEM Lot. IXARQ * Institute of

More information

DISTRIBUTION OF SUB AND SUPER HARMONIC SOLUTION OF MATHIEU EQUATION WITHIN STABLE ZONES

DISTRIBUTION OF SUB AND SUPER HARMONIC SOLUTION OF MATHIEU EQUATION WITHIN STABLE ZONES Fifth ASME Interntionl Conference on Multibody Systems, Nonliner Dynmics nd Control Symposium on Dynmics nd Control of Time-Vrying nd Time-Dely Systems nd Structures September 2-2, 05, Long Bech, Cliforni,

More information

221A Lecture Notes WKB Method

221A Lecture Notes WKB Method A Lecture Notes WKB Method Hmilton Jcobi Eqution We strt from the Schrödinger eqution for single prticle in potentil i h t ψ x, t = [ ] h m + V x ψ x, t. We cn rewrite this eqution by using ψ x, t = e

More information

STABILITY AND BIFURCATION ANALYSIS OF A PIPE CONVEYING PULSATING FLUID WITH COMBINATION PARAMETRIC AND INTERNAL RESONANCES

STABILITY AND BIFURCATION ANALYSIS OF A PIPE CONVEYING PULSATING FLUID WITH COMBINATION PARAMETRIC AND INTERNAL RESONANCES Mthemticl nd Computtionl Applictions Vol. 0 No. pp. 00-6 05 http://dx.doi.org/0.909/mc-05-07 STABILITY AND BIFURCATION ANALYSIS OF A PIPE CONVEYING PULSATING FLUID WITH COMBINATION PARAMETRIC AND INTERNAL

More information

THE INTERVAL LATTICE BOLTZMANN METHOD FOR TRANSIENT HEAT TRANSFER IN A SILICON THIN FILM

THE INTERVAL LATTICE BOLTZMANN METHOD FOR TRANSIENT HEAT TRANSFER IN A SILICON THIN FILM ROMAI J., v.9, no.2(2013), 173 179 THE INTERVAL LATTICE BOLTZMANN METHOD FOR TRANSIENT HEAT TRANSFER IN A SILICON THIN FILM Alicj Piseck-Belkhyt, Ann Korczk Institute of Computtionl Mechnics nd Engineering,

More information

dt. However, we might also be curious about dy

dt. However, we might also be curious about dy Section 0. The Clculus of Prmetric Curves Even though curve defined prmetricly my not be function, we cn still consider concepts such s rtes of chnge. However, the concepts will need specil tretment. For

More information

CLOSED EXPRESSIONS FOR COEFFICIENTS IN WEIGHTED NEWTON-COTES QUADRATURES

CLOSED EXPRESSIONS FOR COEFFICIENTS IN WEIGHTED NEWTON-COTES QUADRATURES Filomt 27:4 (2013) 649 658 DOI 10.2298/FIL1304649M Published by Fculty of Sciences nd Mthemtics University of Niš Serbi Avilble t: http://www.pmf.ni.c.rs/filomt CLOSED EXPRESSIONS FOR COEFFICIENTS IN WEIGHTED

More information

Dedicated to Professor D. D. Stancu on his 75th birthday Mathematical Subject Classification: 25A24, 65D30

Dedicated to Professor D. D. Stancu on his 75th birthday Mathematical Subject Classification: 25A24, 65D30 Generl Mthemtics Vol. 10, No. 1 2 (2002), 51 64 About some properties of intermedite point in certin men-vlue formuls Dumitru Acu, Petrică Dicu Dedicted to Professor D. D. Stncu on his 75th birthdy. Abstrct

More information

Variational Techniques for Sturm-Liouville Eigenvalue Problems

Variational Techniques for Sturm-Liouville Eigenvalue Problems Vritionl Techniques for Sturm-Liouville Eigenvlue Problems Vlerie Cormni Deprtment of Mthemtics nd Sttistics University of Nebrsk, Lincoln Lincoln, NE 68588 Emil: vcormni@mth.unl.edu Rolf Ryhm Deprtment

More information

A Bernstein polynomial approach for solution of nonlinear integral equations

A Bernstein polynomial approach for solution of nonlinear integral equations Avilble online t wwwisr-publictionscom/jns J Nonliner Sci Appl, 10 (2017), 4638 4647 Reserch Article Journl Homepge: wwwtjnscom - wwwisr-publictionscom/jns A Bernstein polynomil pproch for solution of

More information

Review of Calculus, cont d

Review of Calculus, cont d Jim Lmbers MAT 460 Fll Semester 2009-10 Lecture 3 Notes These notes correspond to Section 1.1 in the text. Review of Clculus, cont d Riemnn Sums nd the Definite Integrl There re mny cses in which some

More information

arxiv:gr-qc/ v1 14 Mar 2000

arxiv:gr-qc/ v1 14 Mar 2000 The binry blck-hole dynmics t the third post-newtonin order in the orbitl motion Piotr Jrnowski Institute of Theoreticl Physics, University of Bi lystok, Lipow 1, 15-2 Bi lystok, Polnd Gerhrd Schäfer Theoretisch-Physiklisches

More information

The Riemann-Lebesgue Lemma

The Riemann-Lebesgue Lemma Physics 215 Winter 218 The Riemnn-Lebesgue Lemm The Riemnn Lebesgue Lemm is one of the most importnt results of Fourier nlysis nd symptotic nlysis. It hs mny physics pplictions, especilly in studies of

More information

Chaos in drive systems

Chaos in drive systems Applied nd Computtionl Mechnics 1 (2007) 121-126 Chos in drive systems Ctird Krtochvíl, Mrtin Houfek, Josef Koláčný b, Romn Kříž b, Lubomír Houfek,*, Jiří Krejs Institute of Thermomechnics, brnch Brno,

More information

THE EXISTENCE-UNIQUENESS THEOREM FOR FIRST-ORDER DIFFERENTIAL EQUATIONS.

THE EXISTENCE-UNIQUENESS THEOREM FOR FIRST-ORDER DIFFERENTIAL EQUATIONS. THE EXISTENCE-UNIQUENESS THEOREM FOR FIRST-ORDER DIFFERENTIAL EQUATIONS RADON ROSBOROUGH https://intuitiveexplntionscom/picrd-lindelof-theorem/ This document is proof of the existence-uniqueness theorem

More information

Arithmetic Mean Derivative Based Midpoint Rule

Arithmetic Mean Derivative Based Midpoint Rule Applied Mthemticl Sciences, Vol. 1, 018, no. 13, 65-633 HIKARI Ltd www.m-hikri.com https://doi.org/10.1988/ms.018.858 Arithmetic Men Derivtive Bsed Midpoint Rule Rike Mrjulis 1, M. Imrn, Symsudhuh Numericl

More information

Research Article Numerical Treatment of Singularly Perturbed Two-Point Boundary Value Problems by Using Differential Transformation Method

Research Article Numerical Treatment of Singularly Perturbed Two-Point Boundary Value Problems by Using Differential Transformation Method Discrete Dynmics in Nture nd Society Volume 202, Article ID 57943, 0 pges doi:0.55/202/57943 Reserch Article Numericl Tretment of Singulrly Perturbed Two-Point Boundry Vlue Problems by Using Differentil

More information

Analytical Based Truncation Principle of Higher- Order Solution for a x 1/3 Force Nonlinear Oscillator

Analytical Based Truncation Principle of Higher- Order Solution for a x 1/3 Force Nonlinear Oscillator World Acdemy of Science, Engineering nd Technology Interntionl Journl of Mthemticl, Computtionl, Sttisticl, Nturl nd Physicl Engineering Vol:7, No:, Anlyticl Bsed Trunction Principle of Higher- Order Solution

More information

Numerical Integration. Newton Cotes Formulas. Quadrature. Newton Cotes Formulas. To approximate the integral b

Numerical Integration. Newton Cotes Formulas. Quadrature. Newton Cotes Formulas. To approximate the integral b Numericl Integrtion Newton Cotes Formuls Given function f : R R nd two rel numbers, b R, < b, we clculte (pproximtely) the integrl I(f,, b) = f (x) dx K. Frischmuth (IfM UR) Numerics for CSE 08/09 8 /

More information

COEXISTENCE OF POINT, PERIODIC AND STRANGE ATTRACTORS

COEXISTENCE OF POINT, PERIODIC AND STRANGE ATTRACTORS Interntionl Journl of Bifurction nd Chos, Vol., No. 5 () 59 (5 pges) c World Scientific Publishing Compn DOI:./S8759 COEISTENCE OF POINT, PERIODIC AND STRANGE ATTRACTORS JULIEN CLINTON SPROTT Deprtment

More information

Quadrature Rules for Evaluation of Hyper Singular Integrals

Quadrature Rules for Evaluation of Hyper Singular Integrals Applied Mthemticl Sciences, Vol., 01, no. 117, 539-55 HIKARI Ltd, www.m-hikri.com http://d.doi.org/10.19/ms.01.75 Qudrture Rules or Evlution o Hyper Singulr Integrls Prsnt Kumr Mohnty Deprtment o Mthemtics

More information

1 The Lagrange interpolation formula

1 The Lagrange interpolation formula Notes on Qudrture 1 The Lgrnge interpoltion formul We briefly recll the Lgrnge interpoltion formul. The strting point is collection of N + 1 rel points (x 0, y 0 ), (x 1, y 1 ),..., (x N, y N ), with x

More information

A Modified ADM for Solving Systems of Linear Fredholm Integral Equations of the Second Kind

A Modified ADM for Solving Systems of Linear Fredholm Integral Equations of the Second Kind Applied Mthemticl Sciences, Vol. 6, 2012, no. 26, 1267-1273 A Modified ADM for Solving Systems of Liner Fredholm Integrl Equtions of the Second Kind A. R. Vhidi nd T. Dmercheli Deprtment of Mthemtics,

More information

(4.1) D r v(t) ω(t, v(t))

(4.1) D r v(t) ω(t, v(t)) 1.4. Differentil inequlities. Let D r denote the right hnd derivtive of function. If ω(t, u) is sclr function of the sclrs t, u in some open connected set Ω, we sy tht function v(t), t < b, is solution

More information

New exact travelling wave solutions of bidirectional wave equations

New exact travelling wave solutions of bidirectional wave equations Shirz University of Technology From the SelectedWorks of Hbiboll Ltifizdeh June, 0 New exct trvelling wve solutions of bidirectionl wve equtions Hbiboll Ltifizdeh, Shirz University of Technology Avilble

More information

Exact solutions for nonlinear partial fractional differential equations

Exact solutions for nonlinear partial fractional differential equations Chin. Phys. B Vol., No. (0) 004 Exct solutions for nonliner prtil frctionl differentil equtions Khled A. epreel )b) nd Sleh Omrn b)c) ) Mthemtics Deprtment, Fculty of Science, Zgzig University, Egypt b)

More information

ODE: Existence and Uniqueness of a Solution

ODE: Existence and Uniqueness of a Solution Mth 22 Fll 213 Jerry Kzdn ODE: Existence nd Uniqueness of Solution The Fundmentl Theorem of Clculus tells us how to solve the ordinry differentil eqution (ODE) du = f(t) dt with initil condition u() =

More information

A basic logarithmic inequality, and the logarithmic mean

A basic logarithmic inequality, and the logarithmic mean Notes on Number Theory nd Discrete Mthemtics ISSN 30 532 Vol. 2, 205, No., 3 35 A bsic logrithmic inequlity, nd the logrithmic men József Sándor Deprtment of Mthemtics, Bbeş-Bolyi University Str. Koglnicenu

More information

PERFORMANCE ANALYSIS OF HARMONICALLY FORCED NONLINEAR SYSTEMS

PERFORMANCE ANALYSIS OF HARMONICALLY FORCED NONLINEAR SYSTEMS PERFORMANCE ANALYSIS OF HARMONICALLY FORCED NONLINEAR SYSTEMS A.Yu. Pogromsky R.A. vn den Berg J.E. Rood Deprtment of Mechnicl Engineering, Eindhoven University of Technology, P.O. Box 513, 56 MB, Eindhoven,

More information

Chapter 4 Contravariance, Covariance, and Spacetime Diagrams

Chapter 4 Contravariance, Covariance, and Spacetime Diagrams Chpter 4 Contrvrince, Covrince, nd Spcetime Digrms 4. The Components of Vector in Skewed Coordintes We hve seen in Chpter 3; figure 3.9, tht in order to show inertil motion tht is consistent with the Lorentz

More information

POSITIVE SOLUTIONS FOR SINGULAR THREE-POINT BOUNDARY-VALUE PROBLEMS

POSITIVE SOLUTIONS FOR SINGULAR THREE-POINT BOUNDARY-VALUE PROBLEMS Electronic Journl of Differentil Equtions, Vol. 27(27), No. 156, pp. 1 8. ISSN: 172-6691. URL: http://ejde.mth.txstte.edu or http://ejde.mth.unt.edu ftp ejde.mth.txstte.edu (login: ftp) POSITIVE SOLUTIONS

More information

arxiv:math/ v1 [math.ds] 23 Aug 2006

arxiv:math/ v1 [math.ds] 23 Aug 2006 rxiv:mth/0608568v1 [mth.ds] Aug 006 Anlysis of D chotic system Gheorghe Tign, Dumitru Opriş Astrct A D nonliner chotic system, clled the T system, is nlyzed in this pper. Horseshoe chos is investigted

More information

LIE SYMMETRY GROUP OF (2+1)-DIMENSIONAL JAULENT-MIODEK EQUATION

LIE SYMMETRY GROUP OF (2+1)-DIMENSIONAL JAULENT-MIODEK EQUATION M, H.-C., et l.: Lie Symmetry Group of (+1)-Dimensionl Julent-Miodek THERMAL SCIENCE, Yer 01, ol. 18, No. 5, pp. 157-155 157 LIE SYMMETRY GROUP OF (+1)-DIMENSIONAL JAULENT-MIODEK EQUATION by Hong-Ci MA

More information

State space systems analysis (continued) Stability. A. Definitions A system is said to be Asymptotically Stable (AS) when it satisfies

State space systems analysis (continued) Stability. A. Definitions A system is said to be Asymptotically Stable (AS) when it satisfies Stte spce systems nlysis (continued) Stbility A. Definitions A system is sid to be Asymptoticlly Stble (AS) when it stisfies ut () = 0, t > 0 lim xt () 0. t A system is AS if nd only if the impulse response

More information

AN INEQUALITY OF OSTROWSKI TYPE AND ITS APPLICATIONS FOR SIMPSON S RULE AND SPECIAL MEANS. I. Fedotov and S. S. Dragomir

AN INEQUALITY OF OSTROWSKI TYPE AND ITS APPLICATIONS FOR SIMPSON S RULE AND SPECIAL MEANS. I. Fedotov and S. S. Dragomir RGMIA Reserch Report Collection, Vol., No., 999 http://sci.vu.edu.u/ rgmi AN INEQUALITY OF OSTROWSKI TYPE AND ITS APPLICATIONS FOR SIMPSON S RULE AND SPECIAL MEANS I. Fedotov nd S. S. Drgomir Astrct. An

More information

2000 Mathematical Subject Classification: 65D32

2000 Mathematical Subject Classification: 65D32 Generl Mthemtics Vol. 11 No. 4 (200 5 44 On the Tricomi s qudrture formul Dumitru Acu Dedicted to Professor Gheorghe Micul on his 60 th birthdy Abstrct In this pper we obtin new results concerning the

More information

An optimal 3-point quadrature formula of closed type and error bounds

An optimal 3-point quadrature formula of closed type and error bounds Revist Colombin de Mtemátics Volumen 8), págins 9- An optiml 3-point qudrture formul of closed type nd error bounds Un fórmul de cudrtur óptim de 3 puntos de tipo cerrdo y error de fronter Nend Ujević,

More information

FURTHER RESULTS ON THE INVESTIGATION OF SOLUTIONS OF INTEGRAL BOUNDARY VALUE PROBLEMS. 1. Introduction

FURTHER RESULTS ON THE INVESTIGATION OF SOLUTIONS OF INTEGRAL BOUNDARY VALUE PROBLEMS. 1. Introduction t m Mthemticl Publictions DOI: 10.1515/tmmp-2015-0035 Ttr Mt. Mth. Publ. 63 (2015), 247 267 FURTHER RESULTS ON THE INVESTIGATION OF SOLUTIONS OF INTEGRAL BOUNDARY VALUE PROBLEMS Miklós Rontó Yn Vrh Kteryn

More information

Discrete Least-squares Approximations

Discrete Least-squares Approximations Discrete Lest-squres Approximtions Given set of dt points (x, y ), (x, y ),, (x m, y m ), norml nd useful prctice in mny pplictions in sttistics, engineering nd other pplied sciences is to construct curve

More information

Lecture 6: Singular Integrals, Open Quadrature rules, and Gauss Quadrature

Lecture 6: Singular Integrals, Open Quadrature rules, and Gauss Quadrature Lecture notes on Vritionl nd Approximte Methods in Applied Mthemtics - A Peirce UBC Lecture 6: Singulr Integrls, Open Qudrture rules, nd Guss Qudrture (Compiled 6 August 7) In this lecture we discuss the

More information

Frobenius numbers of generalized Fibonacci semigroups

Frobenius numbers of generalized Fibonacci semigroups Frobenius numbers of generlized Fiboncci semigroups Gretchen L. Mtthews 1 Deprtment of Mthemticl Sciences, Clemson University, Clemson, SC 29634-0975, USA gmtthe@clemson.edu Received:, Accepted:, Published:

More information

Remark on boundary value problems arising in Ginzburg-Landau theory

Remark on boundary value problems arising in Ginzburg-Landau theory Remrk on boundry vlue problems rising in Ginzburg-Lndu theory ANITA KIRICHUKA Dugvpils University Vienibs Street 13, LV-541 Dugvpils LATVIA nit.kiricuk@du.lv FELIX SADYRBAEV University of Ltvi Institute

More information

Analytical Hopf Bifurcation and Stability Analysis of T System

Analytical Hopf Bifurcation and Stability Analysis of T System Commun. Theor. Phys. 55 011 609 616 Vol. 55, No. 4, April 15, 011 Anlyticl Hopf Bifurction nd Stbility Anlysis of T System Robert A. Vn Gorder nd S. Roy Choudhury Deprtment of Mthemtics University of Centrl

More information

A General Dynamic Inequality of Opial Type

A General Dynamic Inequality of Opial Type Appl Mth Inf Sci No 3-5 (26) Applied Mthemtics & Informtion Sciences An Interntionl Journl http://dxdoiorg/2785/mis/bos7-mis A Generl Dynmic Inequlity of Opil Type Rvi Agrwl Mrtin Bohner 2 Donl O Regn

More information

Bernoulli Numbers Jeff Morton

Bernoulli Numbers Jeff Morton Bernoulli Numbers Jeff Morton. We re interested in the opertor e t k d k t k, which is to sy k tk. Applying this to some function f E to get e t f d k k tk d k f f + d k k tk dk f, we note tht since f

More information

A Numerical Method for Solving Nonlinear Integral Equations

A Numerical Method for Solving Nonlinear Integral Equations Interntionl Mthemticl Forum, 4, 29, no. 17, 85-817 A Numericl Method for Solving Nonliner Integrl Equtions F. Awwdeh nd A. Adwi Deprtment of Mthemtics, Hshemite University, Jordn wwdeh@hu.edu.jo, dwi@hu.edu.jo

More information

Section 6.1 INTRO to LAPLACE TRANSFORMS

Section 6.1 INTRO to LAPLACE TRANSFORMS Section 6. INTRO to LAPLACE TRANSFORMS Key terms: Improper Integrl; diverge, converge A A f(t)dt lim f(t)dt Piecewise Continuous Function; jump discontinuity Function of Exponentil Order Lplce Trnsform

More information

LYAPUNOV-TYPE INEQUALITIES FOR THIRD-ORDER LINEAR DIFFERENTIAL EQUATIONS

LYAPUNOV-TYPE INEQUALITIES FOR THIRD-ORDER LINEAR DIFFERENTIAL EQUATIONS Electronic Journl of Differentil Equtions, Vol. 2017 (2017), No. 139, pp. 1 14. ISSN: 1072-6691. URL: http://ejde.mth.txstte.edu or http://ejde.mth.unt.edu LYAPUNOV-TYPE INEQUALITIES FOR THIRD-ORDER LINEAR

More information

Some Improvements of Hölder s Inequality on Time Scales

Some Improvements of Hölder s Inequality on Time Scales DOI: 0.55/uom-207-0037 An. Şt. Univ. Ovidius Constnţ Vol. 253,207, 83 96 Some Improvements of Hölder s Inequlity on Time Scles Cristin Dinu, Mihi Stncu nd Dniel Dănciulescu Astrct The theory nd pplictions

More information

A Computational Method for Solving Linear Volterra Integral Equations

A Computational Method for Solving Linear Volterra Integral Equations Applied Mthemticl Sciences, Vol. 6, 01, no. 17, 807-814 A Computtionl Method for Solving Liner Volterr Integrl Equtions Frshid Mirzee Deprtment of Mthemtics, Fculty of Science Mlyer University, Mlyer,

More information

Chapter 1. Basic Concepts

Chapter 1. Basic Concepts Socrtes Dilecticl Process: The Þrst step is the seprtion of subject into its elements. After this, by deþning nd discovering more bout its prts, one better comprehends the entire subject Socrtes (469-399)

More information

Definite integral. Mathematics FRDIS MENDELU

Definite integral. Mathematics FRDIS MENDELU Definite integrl Mthemtics FRDIS MENDELU Simon Fišnrová Brno 1 Motivtion - re under curve Suppose, for simplicity, tht y = f(x) is nonnegtive nd continuous function defined on [, b]. Wht is the re of the

More information

NUMERICAL INTEGRATION. The inverse process to differentiation in calculus is integration. Mathematically, integration is represented by.

NUMERICAL INTEGRATION. The inverse process to differentiation in calculus is integration. Mathematically, integration is represented by. NUMERICAL INTEGRATION 1 Introduction The inverse process to differentition in clculus is integrtion. Mthemticlly, integrtion is represented by f(x) dx which stnds for the integrl of the function f(x) with

More information

Adomian Decomposition Method with Green s. Function for Solving Twelfth-Order Boundary. Value Problems

Adomian Decomposition Method with Green s. Function for Solving Twelfth-Order Boundary. Value Problems Applied Mthemticl Sciences, Vol. 9, 25, no. 8, 353-368 HIKARI Ltd, www.m-hikri.com http://dx.doi.org/.2988/ms.25.486 Adomin Decomposition Method with Green s Function for Solving Twelfth-Order Boundry

More information

Jordan Journal of Mathematics and Statistics (JJMS) 11(1), 2018, pp 1-12

Jordan Journal of Mathematics and Statistics (JJMS) 11(1), 2018, pp 1-12 Jordn Journl of Mthemtics nd Sttistics (JJMS) 11(1), 218, pp 1-12 HOMOTOPY REGULARIZATION METHOD TO SOLVE THE SINGULAR VOLTERRA INTEGRAL EQUATIONS OF THE FIRST KIND MOHAMMAD ALI FARIBORZI ARAGHI (1) AND

More information

Variational problems of some second order Lagrangians given by Pfaff forms

Variational problems of some second order Lagrangians given by Pfaff forms Vritionl problems of some second order Lgrngins given by Pfff forms P. Popescu M. Popescu Abstrct. In this pper we study the dynmics of some second order Lgrngins tht come from Pfff forms i.e. differentil

More information

ON CLOSED CONVEX HULLS AND THEIR EXTREME POINTS. S. K. Lee and S. M. Khairnar

ON CLOSED CONVEX HULLS AND THEIR EXTREME POINTS. S. K. Lee and S. M. Khairnar Kngweon-Kyungki Mth. Jour. 12 (2004), No. 2, pp. 107 115 ON CLOSED CONVE HULLS AND THEIR ETREME POINTS S. K. Lee nd S. M. Khirnr Abstrct. In this pper, the new subclss denoted by S p (α, β, ξ, γ) of p-vlent

More information

ENGINEERING FOR RURAL DEVELOPMENT Jelgava,

ENGINEERING FOR RURAL DEVELOPMENT Jelgava, RESERCH IN LOL DYNMICS O DUIN-TYPE OSCILLTOR Y METHOD O COMPLETE IURCTION NLYSIS Ris Smirnov, Jurij Ivnov, Vldimir Nikishin Rig Technicl University, Ltvi rj@df.rtu.lv, ijm@df.rtu.lv, nikis@df.rtu.lv strct.

More information

3.4 Numerical integration

3.4 Numerical integration 3.4. Numericl integrtion 63 3.4 Numericl integrtion In mny economic pplictions it is necessry to compute the definite integrl of relvlued function f with respect to "weight" function w over n intervl [,

More information

S. S. Dragomir. 2, we have the inequality. b a

S. S. Dragomir. 2, we have the inequality. b a Bull Koren Mth Soc 005 No pp 3 30 SOME COMPANIONS OF OSTROWSKI S INEQUALITY FOR ABSOLUTELY CONTINUOUS FUNCTIONS AND APPLICATIONS S S Drgomir Abstrct Compnions of Ostrowski s integrl ineulity for bsolutely

More information

Math 270A: Numerical Linear Algebra

Math 270A: Numerical Linear Algebra Mth 70A: Numericl Liner Algebr Instructor: Michel Holst Fll Qurter 014 Homework Assignment #3 Due Give to TA t lest few dys before finl if you wnt feedbck. Exercise 3.1. (The Bsic Liner Method for Liner

More information

Separation of Variables in Linear PDE

Separation of Variables in Linear PDE Seprtion of Vribles in Liner PDE Now we pply the theory of Hilbert spces to liner differentil equtions with prtil derivtives (PDE). We strt with prticulr exmple, the one-dimensionl (1D) wve eqution 2 u

More information

u t = k 2 u x 2 (1) a n sin nπx sin 2 L e k(nπ/l) t f(x) = sin nπx f(x) sin nπx dx (6) 2 L f(x 0 ) sin nπx 0 2 L sin nπx 0 nπx

u t = k 2 u x 2 (1) a n sin nπx sin 2 L e k(nπ/l) t f(x) = sin nπx f(x) sin nπx dx (6) 2 L f(x 0 ) sin nπx 0 2 L sin nπx 0 nπx Chpter 9: Green s functions for time-independent problems Introductory emples One-dimensionl het eqution Consider the one-dimensionl het eqution with boundry conditions nd initil condition We lredy know

More information

INEQUALITIES FOR TWO SPECIFIC CLASSES OF FUNCTIONS USING CHEBYSHEV FUNCTIONAL. Mohammad Masjed-Jamei

INEQUALITIES FOR TWO SPECIFIC CLASSES OF FUNCTIONS USING CHEBYSHEV FUNCTIONAL. Mohammad Masjed-Jamei Fculty of Sciences nd Mthemtics University of Niš Seri Aville t: http://www.pmf.ni.c.rs/filomt Filomt 25:4 20) 53 63 DOI: 0.2298/FIL0453M INEQUALITIES FOR TWO SPECIFIC CLASSES OF FUNCTIONS USING CHEBYSHEV

More information

MATH34032: Green s Functions, Integral Equations and the Calculus of Variations 1

MATH34032: Green s Functions, Integral Equations and the Calculus of Variations 1 MATH34032: Green s Functions, Integrl Equtions nd the Clculus of Vritions 1 Section 1 Function spces nd opertors Here we gives some brief detils nd definitions, prticulrly relting to opertors. For further

More information

ADAPTIVE CONTROL AND SYNCHRONIZATION OF A HIGHLY CHAOTIC ATTRACTOR

ADAPTIVE CONTROL AND SYNCHRONIZATION OF A HIGHLY CHAOTIC ATTRACTOR ADAPTIVE CONTROL AND SYNCHRONIZATION OF A HIGHLY CHAOTIC ATTRACTOR Sundrpndin Vidynthn 1 1 Reserch nd Development Centre, Vel Tech Dr. RR & Dr. SR Technicl University Avdi, Chenni-600 062, Tmil Ndu, INDIA

More information

Definite integral. Mathematics FRDIS MENDELU. Simona Fišnarová (Mendel University) Definite integral MENDELU 1 / 30

Definite integral. Mathematics FRDIS MENDELU. Simona Fišnarová (Mendel University) Definite integral MENDELU 1 / 30 Definite integrl Mthemtics FRDIS MENDELU Simon Fišnrová (Mendel University) Definite integrl MENDELU / Motivtion - re under curve Suppose, for simplicity, tht y = f(x) is nonnegtive nd continuous function

More information

FUZZY HOMOTOPY CONTINUATION METHOD FOR SOLVING FUZZY NONLINEAR EQUATIONS

FUZZY HOMOTOPY CONTINUATION METHOD FOR SOLVING FUZZY NONLINEAR EQUATIONS VOL NO 6 AUGUST 6 ISSN 89-668 6-6 Asin Reserch Publishing Networ (ARPN) All rights reserved wwwrpnjournlscom FUZZY HOMOTOPY CONTINUATION METHOD FOR SOLVING FUZZY NONLINEAR EQUATIONS Muhmmd Zini Ahmd Nor

More information

5.7 Improper Integrals

5.7 Improper Integrals 458 pplictions of definite integrls 5.7 Improper Integrls In Section 5.4, we computed the work required to lift pylod of mss m from the surfce of moon of mss nd rdius R to height H bove the surfce of the

More information

Note 16. Stokes theorem Differential Geometry, 2005

Note 16. Stokes theorem Differential Geometry, 2005 Note 16. Stokes theorem ifferentil Geometry, 2005 Stokes theorem is the centrl result in the theory of integrtion on mnifolds. It gives the reltion between exterior differentition (see Note 14) nd integrtion

More information

Research Article On the Definitions of Nabla Fractional Operators

Research Article On the Definitions of Nabla Fractional Operators Abstrct nd Applied Anlysis Volume 2012, Article ID 406757, 13 pges doi:10.1155/2012/406757 Reserch Article On the Definitions of Nbl Frctionl Opertors Thbet Abdeljwd 1 nd Ferhn M. Atici 2 1 Deprtment of

More information

How can we approximate the area of a region in the plane? What is an interpretation of the area under the graph of a velocity function?

How can we approximate the area of a region in the plane? What is an interpretation of the area under the graph of a velocity function? Mth 125 Summry Here re some thoughts I ws hving while considering wht to put on the first midterm. The core of your studying should be the ssigned homework problems: mke sure you relly understnd those

More information