Bernoulli Numbers Jeff Morton


 Melvin Cunningham
 5 years ago
 Views:
Transcription
1 Bernoulli Numbers Jeff Morton. We re interested in the opertor e t k d k t k, which is to sy k tk. Applying this to some function f E to get e t f d k k tk d k f f + d k k tk dk f, we note tht since f is entire, Tylor s d k theorem sys tht this expnsion s power series in t bout converges to the vlue of f + t. This being so for every C, we hve tht e t f f + t. 2. The difference opertor is defined s f f+ f e f f, for ll f,. So s n opertor, e e. 3. If F f, we hve n i fi n i F i n i F i + F i. This is telescoping sum, in which every vlue in the sum except the first nd lst ppers twice, with opposite signs first positive, then negtive with the next vlue of of the summtion index. Cncelltion leves the F i + term for the cse i n nd the F i term for i. Thus, we hve fi F n F. n i 4. Given ny entire function f E, we hve f d d d f d fudu As complexvlued function on the rel line, the Fundmentl Theorem of Clculus mens tht the derivtive of fudu with respect to t is just the vlue of f there, f. Since f is entire s function f : C C, the complex derivtive exists everywhere nd is just the sme s the derivtive s function f : R C. So in fct we hve for ll tht f f, so f f nd this is true f E, hence in fct s n opertor Id E. On the other hnd, since the integrl of function is only defined up to constnt, is not right inverse of : if f k for ny constnt k, we hve: d f fudu du k du du This is, in generl, not f, which is k for ll. Thus, is left inverse only for, so clled. In ctegoricl terms, both mps re endomorphisms of E. Seen this wy, is n epimorphism indeed, split epi since it hs right inverse  nd in fct is surjective s setmp since every function in E is the derivtive of something in E nd likewise is monomorphism indeed, spilt mono since it hs left inverse  nd in fct is injective s set mp, since there is exctly one function in E whose integrl ny given f is, nmely its derivtive. 5. The Bernoulli numbers re the coefficients B k in the expression e k B k k, which is n entire function. The function e is lso entire.
2 nd only ero t, where it hs ero of first order hence e being entire. The power series for this function is e j j j j. Since both of these re entire functions, the power series converge everywhere in C, nd the product is lso entire, so we cn write the product of the two functions which is just, of course s the product of the two power series: j j k B k k Now, to see tht the sme pplies when we replce the complex vrible by the differentil opertor d d, we cn note tht the Fourier trnsform of this differentil opertor is multipliction by i.e. if we tke functions to their Fourier trnsforms, the ction of is to tke the trnsform of function f, sy f, to f, nd k cting on f tkes f to k f. Thus, by the bove nd by linerity of the Fourier trnsform, the effect of on f is: Now, by definition of nd j j e k B k k, this just sys tht e. 6. To see tht is rightinverse of, note tht for ny f E, we hve f e f definition of e fudu definition of fudu by prt 5 fudu d d f So in fct f f. On the other hnd, the converse need not be so: f e f e e f e j j fdu k B k k j j f du k B k k j j f du This lst step mkes sense by linerity nd since f is entire, so every derivtive exists everywhere: the sum converges since e f is lso entire. Now, since the integrl is only rightinverse of, this will not necessrily be the sme s f. If the integrl were leftinverse of, we could pss the integrl through the derivtives in front of f nd get bck f by prt 5. However, this is not gurnteed to work, nd we mke get constnt of integrtion. Thus, f my not be equl to f. 7. We hd seen tht j j k B k k nd if we equte coefficients of powers of, we find tht every coefficient of the right hnd side is except 2
3 for the coefficient of, which is. Now, the coefficient of i on the right hnd side will be j + k i j > Bk i j B i j i If we expnd this sum for ny i, so tht the whole sum is, we find:! B i i! i! B +! i! B! 8. The reltions we found in prt 7 give expressions in the B j which sum to, one for ech vlue of i greter thn. In ech cse, we hve frctionl coefficients which cn be clered by multiplying the whole expression on the right hnd side by i!, in which cse we get the reltions: j + k i j > i! B i j j + k i j > i j B i j Notice tht the coefficients of the B j re the sme s the binomil coefficients from Pscl s tringle, s we hd hoped. 9. To find out B, recll tht we defined the B k to be the coefficients in of the power series for the function e extended to equl t x. B is the constnt coefficient for the power series bout, nd is therefore. Using the reltions from prt 8, this implies tht: + 2B, hence B B B 2, hence B B 3 + 4B 3, hence B B B 4, hence B B 5, hence B 5. We hd seen tht n i ip p p+ k B p+ k k n + p+ k Applying this to the sitution where p 4, we find n i i4 4 5 k B 5 k k n + 5 k [ 5 n n n ] 3 5n + n+5 5 n n+3 3 n+ 3. The binomil expnsion for B + n + p+ is p+ p+ k k B k n + p+ k. Identifying B k with B k nd dividing by p + gives the expression bove. 2. The first nd most obvious reson it s difficult to ctegorify this business is the presence of negtive coefficients, which mens we cn t ctegorify using 3
4 ordinry species. Cubicl species could help here, though they re not necessry t first. Another problem is tht A nd will not be ssocited with nturl trnsformtions between structure types, since they necessrily involves n rbitrry choice of elements to remove, in ech cse. Here follow some comments on ctegorifying the results from vrious prts of this computtion: ta k,. If we define E ta to be the opertion on structure types E T A k this mounts to n opertion tking structure type nd producing the sum union of types which pply T A some number k of times, over ll k. For ech prticulr cse k, in the cse t, this is simply tking the derivtive k times, which gives new structure whose effect on set S is to put the originl structure on the set S + k  the denomintor reduces be the ction of permuttion group, mening these elements re unordered. When T is generl, we interpret this s mening tht the elements we dd re T coloured. The result here is tht E T A F Z F Z + T  tht is, putting the structure E ta F on set is the sme s putting n F structure on set of things which re either oneelement sets or members of T, the set of colours we could pint the new elements we dd in the definition of E T A. Tht is, we think of these not s elements of set contributing to the crdinlity of the set S on which we put the E T A structure, but s just colours. Here we re using the interprettion of composition tht F Z + T structure is n F structure on sets of Z + T structures, i.e. things which re either oneelement set or colour from T. 2. The opertor, pplied to structure type F, should stisfy F Z F Z + F Z, which s n equivlence of structure types mens tht F structure on set S is n F structure on set consisting of either single elements, or the empty set tht is, n F structure on ny set lrger thn or equl to thn S, since we re simply not counting some of the points towrd the crdinlity, with the exception tht it cnnot be simply n F structure on S tht is, those on sets whose elements re just onepoint sets re removed. This mens F structure on S is n F structure on ny set bigger thn S. Wht we re sying here E A, is tht the nturl trnsformtion between structure types which re functors is the sme s the nt. trns. which tkes the derivtive ny number of times other thn  tht is, which dds ny number of points surreptitiously into our set before putting the F structure on it where F is whtever structure is cting on. This is obvious from the description in the lst prgrph. 3. We wnt to sy tht if G F, then n i F i Gn G. The first sys tht F structures on S re G structures on nything strictly It seems there should be correction in the crdinlity ccounting for the denomintor, something to the effect tht ll the dded elements re interchngeble... Not cler to me t the moment wht exctly this should be, though. 4
5 contining S. The second sys tht when we tke the groupoid we get by evluting G t the nelement set nd removing from it the subgroupoid which is the sme s wht we get evluting G t the empty set, we should get the sme s if we tck together ll the groupoids obtined by evluting F t sets of sie smller thn n. When we proved this in the power series cse, we hd telescoping series  similir effect should occur here  ech of the F i groupoids will be esily describble s some groupoid Gi + with Gi removed the strict inclusion in our description of F, so tking ll these together will fill in ll the missing prts of Gn from F n except the prt where we evlute t the empty set Now we re defining n inverse to the derivtive. This A is clerly nonunique, since ny given set S cn be written in S different wys s some smller set with single element djoined. So when we tke A of some structure type F nd put this new type on set S, we get sets of F structures on S with one element removed nonuniqueness coming from the fct tht we could tke out different elements, so there is no nturl wy to do this. This is not relly nturl trnsformtion of species, which presumbly hs something to do with the extr constnt tht comes in when we integrte e.g. integrting the structure type being 5element set, Z 5 gives 6 Z6  this frctionl coefficient pprently counting the number of wys we could hve done this, suggesting tht it mesures the degree of nonuniqueness of A. Tht AA F F, if we swllow this problem nd keep going, is due to the fct tht putting n element in, once we hve removed one, gives set tht cn be nturlly identified with the originl by clling these the sme element, which we re putting bck in. Tht A AF is not nturlly equivlent to F is due to the fct tht if we remove the element AFTER putting one it, it my not be the sme one. 5. Getting n inverse for, the trnsformtion which, pplied to F gives F structures on bigger sets thn S, is problemtic for similr resons to the problems we encountered in ctegorifying prt 4, only more so. The even more so is visible in the fct tht we would need to ctegorify the differentilopertor power series we hd for the difference opertor, which, however, hs coefficients which re not only frctionl which we might could hndle by some clever trick with groupoids, but lso negtive. This might could be hndled by recsting this whole cry ffir in the setting of cubicl species, but I won t be doing tht here. Well, from here on in these problems will only get worse, so let s tke this opportunity to stop ctegorifying for the moment, mentioning only tht to do this properly would require working in ctegory in which we cn hndle negtive coefficients, which by itself would be oky since such ctegory exists. We lso lso would hve to somehow del suitbly with the nonnturlity of 2 I m not quite sure how to put this better. Describing the groupoids involved here is still bit mysterious to me. So it goes. 5
6 some of the trnsformtions involved  nd the method for doing this ought to give entities rther like structure types, but with frctionl coefficients, where the denomintors hndle the sie of the collection of different choices we might mke t certin key points. Since we lredy hve nonintegrl coefficients turning up when we consider groupoid crdinlities, nd these re relted to utomorphisms of objects in groupoid, this might be relevnt tool, using those nonunique choices to give those utomorphisms. Then gin, it might not. 6
The Regulated and Riemann Integrals
Chpter 1 The Regulted nd Riemnn Integrls 1.1 Introduction We will consider severl different pproches to defining the definite integrl f(x) dx of function f(x). These definitions will ll ssign the sme vlue
More informationImproper Integrals. The First Fundamental Theorem of Calculus, as we ve discussed in class, goes as follows:
Improper Integrls The First Fundmentl Theorem of Clculus, s we ve discussed in clss, goes s follows: If f is continuous on the intervl [, ] nd F is function for which F t = ft, then ftdt = F F. An integrl
More informationA REVIEW OF CALCULUS CONCEPTS FOR JDEP 384H. Thomas Shores Department of Mathematics University of Nebraska Spring 2007
A REVIEW OF CALCULUS CONCEPTS FOR JDEP 384H Thoms Shores Deprtment of Mthemtics University of Nebrsk Spring 2007 Contents Rtes of Chnge nd Derivtives 1 Dierentils 4 Are nd Integrls 5 Multivrite Clculus
More informationn f(x i ) x. i=1 In section 4.2, we defined the definite integral of f from x = a to x = b as n f(x i ) x; f(x) dx = lim i=1
The Fundmentl Theorem of Clculus As we continue to study the re problem, let s think bck to wht we know bout computing res of regions enclosed by curves. If we wnt to find the re of the region below the
More informationODE: Existence and Uniqueness of a Solution
Mth 22 Fll 213 Jerry Kzdn ODE: Existence nd Uniqueness of Solution The Fundmentl Theorem of Clculus tells us how to solve the ordinry differentil eqution (ODE) du = f(t) dt with initil condition u() =
More informationImproper Integrals, and Differential Equations
Improper Integrls, nd Differentil Equtions October 22, 204 5.3 Improper Integrls Previously, we discussed how integrls correspond to res. More specificlly, we sid tht for function f(x), the region creted
More informationTHE EXISTENCEUNIQUENESS THEOREM FOR FIRSTORDER DIFFERENTIAL EQUATIONS.
THE EXISTENCEUNIQUENESS THEOREM FOR FIRSTORDER DIFFERENTIAL EQUATIONS RADON ROSBOROUGH https://intuitiveexplntionscom/picrdlindeloftheorem/ This document is proof of the existenceuniqueness theorem
More informationPhysics 116C Solution of inhomogeneous ordinary differential equations using Green s functions
Physics 6C Solution of inhomogeneous ordinry differentil equtions using Green s functions Peter Young November 5, 29 Homogeneous Equtions We hve studied, especilly in long HW problem, second order liner
More information7.2 The Definite Integral
7.2 The Definite Integrl the definite integrl In the previous section, it ws found tht if function f is continuous nd nonnegtive, then the re under the grph of f on [, b] is given by F (b) F (), where
More informationThe Bernoulli Numbers John C. Baez, December 23, x k. x e x 1 = n 0. B k n = n 2 (n + 1) 2
The Bernoulli Numbers John C. Bez, December 23, 2003 The numbers re defined by the eqution e 1 n 0 k. They re clled the Bernoulli numbers becuse they were first studied by Johnn Fulhber in book published
More informationand that at t = 0 the object is at position 5. Find the position of the object at t = 2.
7.2 The Fundmentl Theorem of Clculus 49 re mny, mny problems tht pper much different on the surfce but tht turn out to be the sme s these problems, in the sense tht when we try to pproimte solutions we
More information5.7 Improper Integrals
458 pplictions of definite integrls 5.7 Improper Integrls In Section 5.4, we computed the work required to lift pylod of mss m from the surfce of moon of mss nd rdius R to height H bove the surfce of the
More informationW. We shall do so one by one, starting with I 1, and we shall do it greedily, trying
Vitli covers 1 Definition. A Vitli cover of set E R is set V of closed intervls with positive length so tht, for every δ > 0 nd every x E, there is some I V with λ(i ) < δ nd x I. 2 Lemm (Vitli covering)
More informationpadic Egyptian Fractions
padic Egyptin Frctions Contents 1 Introduction 1 2 Trditionl Egyptin Frctions nd Greedy Algorithm 2 3 Setup 3 4 pgreedy Algorithm 5 5 pegyptin Trditionl 10 6 Conclusion 1 Introduction An Egyptin frction
More informationThe First Fundamental Theorem of Calculus. If f(x) is continuous on [a, b] and F (x) is any antiderivative. f(x) dx = F (b) F (a).
The Fundmentl Theorems of Clculus Mth 4, Section 0, Spring 009 We now know enough bout definite integrls to give precise formultions of the Fundmentl Theorems of Clculus. We will lso look t some bsic emples
More informationBefore we can begin Ch. 3 on Radicals, we need to be familiar with perfect squares, cubes, etc. Try and do as many as you can without a calculator!!!
Nme: Algebr II Honors PreChpter Homework Before we cn begin Ch on Rdicls, we need to be fmilir with perfect squres, cubes, etc Try nd do s mny s you cn without clcultor!!! n The nth root of n n Be ble
More information1 The Riemann Integral
The Riemnn Integrl. An exmple leding to the notion of integrl (res) We know how to find (i.e. define) the re of rectngle (bse height), tringle ( (sum of res of tringles). But how do we find/define n re
More informationAdvanced Calculus: MATH 410 Notes on Integrals and Integrability Professor David Levermore 17 October 2004
Advnced Clculus: MATH 410 Notes on Integrls nd Integrbility Professor Dvid Levermore 17 October 2004 1. Definite Integrls In this section we revisit the definite integrl tht you were introduced to when
More informationReview of Calculus, cont d
Jim Lmbers MAT 460 Fll Semester 200910 Lecture 3 Notes These notes correspond to Section 1.1 in the text. Review of Clculus, cont d Riemnn Sums nd the Definite Integrl There re mny cses in which some
More informationChapter 0. What is the Lebesgue integral about?
Chpter 0. Wht is the Lebesgue integrl bout? The pln is to hve tutoril sheet ech week, most often on Fridy, (to be done during the clss) where you will try to get used to the ides introduced in the previous
More informationExam 2, Mathematics 4701, Section ETY6 6:05 pm 7:40 pm, March 31, 2016, IH1105 Instructor: Attila Máté 1
Exm, Mthemtics 471, Section ETY6 6:5 pm 7:4 pm, Mrch 1, 16, IH115 Instructor: Attil Máté 1 17 copies 1. ) Stte the usul sufficient condition for the fixedpoint itertion to converge when solving the eqution
More information1 Probability Density Functions
Lis Yn CS 9 Continuous Distributions Lecture Notes #9 July 6, 28 Bsed on chpter by Chris Piech So fr, ll rndom vribles we hve seen hve been discrete. In ll the cses we hve seen in CS 9, this ment tht our
More information1.2. Linear Variable Coefficient Equations. y + b "! = a y + b " Remark: The case b = 0 and a nonconstant can be solved with the same idea as above.
1 12 Liner Vrible Coefficient Equtions Section Objective(s): Review: Constnt Coefficient Equtions Solving Vrible Coefficient Equtions The Integrting Fctor Method The Bernoulli Eqution 121 Review: Constnt
More informationInfinite Geometric Series
Infinite Geometric Series Finite Geometric Series ( finite SUM) Let 0 < r < 1, nd let n be positive integer. Consider the finite sum It turns out there is simple lgebric expression tht is equivlent to
More informationSYDE 112, LECTURES 3 & 4: The Fundamental Theorem of Calculus
SYDE 112, LECTURES & 4: The Fundmentl Theorem of Clculus So fr we hve introduced two new concepts in this course: ntidifferentition nd Riemnn sums. It turns out tht these quntities re relted, but it is
More informationP 3 (x) = f(0) + f (0)x + f (0) 2. x 2 + f (0) . In the problem set, you are asked to show, in general, the n th order term is a n = f (n) (0)
1 Tylor polynomils In Section 3.5, we discussed how to pproximte function f(x) round point in terms of its first derivtive f (x) evluted t, tht is using the liner pproximtion f() + f ()(x ). We clled this
More informationAP Calculus Multiple Choice: BC Edition Solutions
AP Clculus Multiple Choice: BC Edition Solutions J. Slon Mrch 8, 04 ) 0 dx ( x) is A) B) C) D) E) Divergent This function inside the integrl hs verticl symptotes t x =, nd the integrl bounds contin this
More informationMATH34032: Green s Functions, Integral Equations and the Calculus of Variations 1
MATH34032: Green s Functions, Integrl Equtions nd the Clculus of Vritions 1 Section 1 Function spces nd opertors Here we gives some brief detils nd definitions, prticulrly relting to opertors. For further
More information63. Representation of functions as power series Consider a power series. ( 1) n x 2n for all 1 < x < 1
3 9. SEQUENCES AND SERIES 63. Representtion of functions s power series Consider power series x 2 + x 4 x 6 + x 8 + = ( ) n x 2n It is geometric series with q = x 2 nd therefore it converges for ll q =
More information7. Indefinite Integrals
7. Indefinite Integrls These lecture notes present my interprettion of Ruth Lwrence s lecture notes (in Herew) 7. Prolem sttement By the fundmentl theorem of clculus, to clculte n integrl we need to find
More informationSummary: Method of Separation of Variables
Physics 246 Electricity nd Mgnetism I, Fll 26, Lecture 22 1 Summry: Method of Seprtion of Vribles 1. Seprtion of Vribles in Crtesin Coordintes 2. Fourier Series Suggested Reding: Griffiths: Chpter 3, Section
More informationUNIFORM CONVERGENCE. Contents 1. Uniform Convergence 1 2. Properties of uniform convergence 3
UNIFORM CONVERGENCE Contents 1. Uniform Convergence 1 2. Properties of uniform convergence 3 Suppose f n : Ω R or f n : Ω C is sequence of rel or complex functions, nd f n f s n in some sense. Furthermore,
More informationNotes on length and conformal metrics
Notes on length nd conforml metrics We recll how to mesure the Eucliden distnce of n rc in the plne. Let α : [, b] R 2 be smooth (C ) rc. Tht is α(t) (x(t), y(t)) where x(t) nd y(t) re smooth rel vlued
More informationCMDA 4604: Intermediate Topics in Mathematical Modeling Lecture 19: Interpolation and Quadrature
CMDA 4604: Intermedite Topics in Mthemticl Modeling Lecture 19: Interpoltion nd Qudrture In this lecture we mke brief diversion into the res of interpoltion nd qudrture. Given function f C[, b], we sy
More informationSection 6.1 INTRO to LAPLACE TRANSFORMS
Section 6. INTRO to LAPLACE TRANSFORMS Key terms: Improper Integrl; diverge, converge A A f(t)dt lim f(t)dt Piecewise Continuous Function; jump discontinuity Function of Exponentil Order Lplce Trnsform
More informationACCESS TO SCIENCE, ENGINEERING AND AGRICULTURE: MATHEMATICS 1 MATH00030 SEMESTER /2019
ACCESS TO SCIENCE, ENGINEERING AND AGRICULTURE: MATHEMATICS MATH00030 SEMESTER 208/209 DR. ANTHONY BROWN 7.. Introduction to Integrtion. 7. Integrl Clculus As ws the cse with the chpter on differentil
More informationUnit #9 : Definite Integral Properties; Fundamental Theorem of Calculus
Unit #9 : Definite Integrl Properties; Fundmentl Theorem of Clculus Gols: Identify properties of definite integrls Define odd nd even functions, nd reltionship to integrl vlues Introduce the Fundmentl
More informationapproaches as n becomes larger and larger. Since e > 1, the graph of the natural exponential function is as below
. Eponentil nd rithmic functions.1 Eponentil Functions A function of the form f() =, > 0, 1 is clled n eponentil function. Its domin is the set of ll rel f ( 1) numbers. For n eponentil function f we hve.
More informationImproper Integrals. Type I Improper Integrals How do we evaluate an integral such as
Improper Integrls Two different types of integrls cn qulify s improper. The first type of improper integrl (which we will refer to s Type I) involves evluting n integrl over n infinite region. In the grph
More information5.5 The Substitution Rule
5.5 The Substitution Rule Given the usefulness of the Fundmentl Theorem, we wnt some helpful methods for finding ntiderivtives. At the moment, if n ntiderivtive is not esily recognizble, then we re in
More informationSUMMER KNOWHOW STUDY AND LEARNING CENTRE
SUMMER KNOWHOW STUDY AND LEARNING CENTRE Indices & Logrithms 2 Contents Indices.2 Frctionl Indices.4 Logrithms 6 Exponentil equtions. Simplifying Surds 13 Opertions on Surds..16 Scientific Nottion..18
More informationHow can we approximate the area of a region in the plane? What is an interpretation of the area under the graph of a velocity function?
Mth 125 Summry Here re some thoughts I ws hving while considering wht to put on the first midterm. The core of your studying should be the ssigned homework problems: mke sure you relly understnd those
More informationSection 6.1 INTRO to LAPLACE TRANSFORMS
Section 6. INTRO to LAPLACE TRANSFORMS Key terms: Improper Integrl; diverge, converge A A f(t)dt lim f(t)dt Piecewise Continuous Function; jump discontinuity Function of Exponentil Order Lplce Trnsform
More informationMath 8 Winter 2015 Applications of Integration
Mth 8 Winter 205 Applictions of Integrtion Here re few importnt pplictions of integrtion. The pplictions you my see on n exm in this course include only the Net Chnge Theorem (which is relly just the Fundmentl
More informationMath 1B, lecture 4: Error bounds for numerical methods
Mth B, lecture 4: Error bounds for numericl methods Nthn Pflueger 4 September 0 Introduction The five numericl methods descried in the previous lecture ll operte by the sme principle: they pproximte the
More informationMATH 174A: PROBLEM SET 5. Suggested Solution
MATH 174A: PROBLEM SET 5 Suggested Solution Problem 1. Suppose tht I [, b] is n intervl. Let f 1 b f() d for f C(I; R) (i.e. f is continuous relvlued function on I), nd let L 1 (I) denote the completion
More informationDuality # Second iteration for HW problem. Recall our LP example problem we have been working on, in equality form, is given below.
Dulity #. Second itertion for HW problem Recll our LP emple problem we hve been working on, in equlity form, is given below.,,,, 8 m F which, when written in slightly different form, is 8 F Recll tht we
More informationChapter 6 Notes, Larson/Hostetler 3e
Contents 6. Antiderivtives nd the Rules of Integrtion.......................... 6. Are nd the Definite Integrl.................................. 6.. Are............................................ 6. Reimnn
More informationWeek 10: Line Integrals
Week 10: Line Integrls Introduction In this finl week we return to prmetrised curves nd consider integrtion long such curves. We lredy sw this in Week 2 when we integrted long curve to find its length.
More informationHow do we solve these things, especially when they get complicated? How do we know when a system has a solution, and when is it unique?
XII. LINEAR ALGEBRA: SOLVING SYSTEMS OF EQUATIONS Tody we re going to tlk bout solving systems of liner equtions. These re problems tht give couple of equtions with couple of unknowns, like: 6 2 3 7 4
More informationHandout: Natural deduction for first order logic
MATH 457 Introduction to Mthemticl Logic Spring 2016 Dr Json Rute Hndout: Nturl deduction for first order logic We will extend our nturl deduction rules for sententil logic to first order logic These notes
More informationARITHMETIC OPERATIONS. The real numbers have the following properties: a b c ab ac
REVIEW OF ALGEBRA Here we review the bsic rules nd procedures of lgebr tht you need to know in order to be successful in clculus. ARITHMETIC OPERATIONS The rel numbers hve the following properties: b b
More informationMath Solutions to homework 1
Mth 75  Solutions to homework Cédric De Groote October 5, 07 Problem, prt : This problem explores the reltionship between norms nd inner products Let X be rel vector spce ) Suppose tht is norm on X tht
More informationLecture 13  Linking E, ϕ, and ρ
Lecture 13  Linking E, ϕ, nd ρ A Puzzle... InnerSurfce Chrge Density A positive point chrge q is locted offcenter inside neutrl conducting sphericl shell. We know from Guss s lw tht the totl chrge on
More informationMORE FUNCTION GRAPHING; OPTIMIZATION. (Last edited October 28, 2013 at 11:09pm.)
MORE FUNCTION GRAPHING; OPTIMIZATION FRI, OCT 25, 203 (Lst edited October 28, 203 t :09pm.) Exercise. Let n be n rbitrry positive integer. Give n exmple of function with exctly n verticl symptotes. Give
More informationLecture 1. Functional series. Pointwise and uniform convergence.
1 Introduction. Lecture 1. Functionl series. Pointwise nd uniform convergence. In this course we study mongst other things Fourier series. The Fourier series for periodic function f(x) with period 2π is
More informationMath Lecture 23
Mth 8  Lecture 3 Dyln Zwick Fll 3 In our lst lecture we delt with solutions to the system: x = Ax where A is n n n mtrix with n distinct eigenvlues. As promised, tody we will del with the question of
More informationConvergence of Fourier Series and Fejer s Theorem. Lee Ricketson
Convergence of Fourier Series nd Fejer s Theorem Lee Ricketson My, 006 Abstrct This pper will ddress the Fourier Series of functions with rbitrry period. We will derive forms of the Dirichlet nd Fejer
More informationMapping the delta function and other Radon measures
Mpping the delt function nd other Rdon mesures Notes for Mth583A, Fll 2008 November 25, 2008 Rdon mesures Consider continuous function f on the rel line with sclr vlues. It is sid to hve bounded support
More informationAbstract inner product spaces
WEEK 4 Abstrct inner product spces Definition An inner product spce is vector spce V over the rel field R equipped with rule for multiplying vectors, such tht the product of two vectors is sclr, nd the
More informationTheoretical foundations of Gaussian quadrature
Theoreticl foundtions of Gussin qudrture 1 Inner product vector spce Definition 1. A vector spce (or liner spce) is set V = {u, v, w,...} in which the following two opertions re defined: (A) Addition of
More informationChapter 14. Matrix Representations of Linear Transformations
Chpter 4 Mtrix Representtions of Liner Trnsformtions When considering the Het Stte Evolution, we found tht we could describe this process using multipliction by mtrix. This ws nice becuse computers cn
More informationReview of basic calculus
Review of bsic clculus This brief review reclls some of the most importnt concepts, definitions, nd theorems from bsic clculus. It is not intended to tech bsic clculus from scrtch. If ny of the items below
More information20 MATHEMATICS POLYNOMIALS
0 MATHEMATICS POLYNOMIALS.1 Introduction In Clss IX, you hve studied polynomils in one vrible nd their degrees. Recll tht if p(x) is polynomil in x, the highest power of x in p(x) is clled the degree of
More informationSummary of Elementary Calculus
Summry of Elementry Clculus Notes by Wlter Noll (1971) 1 The rel numbers The set of rel numbers is denoted by R. The set R is often visulized geometriclly s numberline nd its elements re often referred
More information5.2 Exponent Properties Involving Quotients
5. Eponent Properties Involving Quotients Lerning Objectives Use the quotient of powers property. Use the power of quotient property. Simplify epressions involving quotient properties of eponents. Use
More informationQuadratic Forms. Quadratic Forms
Qudrtic Forms Recll the Simon & Blume excerpt from n erlier lecture which sid tht the min tsk of clculus is to pproximte nonliner functions with liner functions. It s ctully more ccurte to sy tht we pproximte
More informationGoals: Determine how to calculate the area described by a function. Define the definite integral. Explore the relationship between the definite
Unit #8 : The Integrl Gols: Determine how to clculte the re described by function. Define the definite integrl. Eplore the reltionship between the definite integrl nd re. Eplore wys to estimte the definite
More informationPolynomial Approximations for the Natural Logarithm and Arctangent Functions. Math 230
Polynomil Approimtions for the Nturl Logrithm nd Arctngent Functions Mth 23 You recll from first semester clculus how one cn use the derivtive to find n eqution for the tngent line to function t given
More informationRiemann is the Mann! (But Lebesgue may besgue to differ.)
Riemnn is the Mnn! (But Lebesgue my besgue to differ.) Leo Livshits My 2, 2008 1 For finite intervls in R We hve seen in clss tht every continuous function f : [, b] R hs the property tht for every ɛ >
More informationSTEP FUNCTIONS, DELTA FUNCTIONS, AND THE VARIATION OF PARAMETERS FORMULA. 0 if t < 0, 1 if t > 0.
STEP FUNCTIONS, DELTA FUNCTIONS, AND THE VARIATION OF PARAMETERS FORMULA STEPHEN SCHECTER. The unit step function nd piecewise continuous functions The Heviside unit step function u(t) is given by if t
More informationRiemann Sums and Riemann Integrals
Riemnn Sums nd Riemnn Integrls Jmes K. Peterson Deprtment of Biologicl Sciences nd Deprtment of Mthemticl Sciences Clemson University August 26, 2013 Outline 1 Riemnn Sums 2 Riemnn Integrls 3 Properties
More informationAdvanced Calculus: MATH 410 Uniform Convergence of Functions Professor David Levermore 11 December 2015
Advnced Clculus: MATH 410 Uniform Convergence of Functions Professor Dvid Levermore 11 December 2015 12. Sequences of Functions We now explore two notions of wht it mens for sequence of functions {f n
More information1 1D heat and wave equations on a finite interval
1 1D het nd wve equtions on finite intervl In this section we consider generl method of seprtion of vribles nd its pplictions to solving het eqution nd wve eqution on finite intervl ( 1, 2. Since by trnsltion
More informationLine Integrals. Partitioning the Curve. Estimating the Mass
Line Integrls Suppose we hve curve in the xy plne nd ssocite density δ(p ) = δ(x, y) t ech point on the curve. urves, of course, do not hve density or mss, but it my sometimes be convenient or useful to
More informationLecture 1: Introduction to integration theory and bounded variation
Lecture 1: Introduction to integrtion theory nd bounded vrition Wht is this course bout? Integrtion theory. The first question you might hve is why there is nything you need to lern bout integrtion. You
More informationRecitation 3: More Applications of the Derivative
Mth 1c TA: Pdric Brtlett Recittion 3: More Applictions of the Derivtive Week 3 Cltech 2012 1 Rndom Question Question 1 A grph consists of the following: A set V of vertices. A set E of edges where ech
More informationf(x) dx, If one of these two conditions is not met, we call the integral improper. Our usual definition for the value for the definite integral
Improper Integrls Every time tht we hve evluted definite integrl such s f(x) dx, we hve mde two implicit ssumptions bout the integrl:. The intervl [, b] is finite, nd. f(x) is continuous on [, b]. If one
More informationRiemann Sums and Riemann Integrals
Riemnn Sums nd Riemnn Integrls Jmes K. Peterson Deprtment of Biologicl Sciences nd Deprtment of Mthemticl Sciences Clemson University August 26, 203 Outline Riemnn Sums Riemnn Integrls Properties Abstrct
More informationReview of Gaussian Quadrature method
Review of Gussin Qudrture method Nsser M. Asi Spring 006 compiled on Sundy Decemer 1, 017 t 09:1 PM 1 The prolem To find numericl vlue for the integrl of rel vlued function of rel vrile over specific rnge
More informationReversing the Chain Rule. As we have seen from the Second Fundamental Theorem ( 4.3), the easiest way to evaluate an integral b
Mth 32 Substitution Method Stewrt 4.5 Reversing the Chin Rule. As we hve seen from the Second Fundmentl Theorem ( 4.3), the esiest wy to evlute n integrl b f(x) dx is to find n ntiderivtive, the indefinite
More informationLecture 3. In this lecture, we will discuss algorithms for solving systems of linear equations.
Lecture 3 3 Solving liner equtions In this lecture we will discuss lgorithms for solving systems of liner equtions Multiplictive identity Let us restrict ourselves to considering squre mtrices since one
More informationBest Approximation. Chapter The General Case
Chpter 4 Best Approximtion 4.1 The Generl Cse In the previous chpter, we hve seen how n interpolting polynomil cn be used s n pproximtion to given function. We now wnt to find the best pproximtion to given
More informationLecture 14: Quadrature
Lecture 14: Qudrture This lecture is concerned with the evlution of integrls fx)dx 1) over finite intervl [, b] The integrnd fx) is ssumed to be relvlues nd smooth The pproximtion of n integrl by numericl
More informationNote 16. Stokes theorem Differential Geometry, 2005
Note 16. Stokes theorem ifferentil Geometry, 2005 Stokes theorem is the centrl result in the theory of integrtion on mnifolds. It gives the reltion between exterior differentition (see Note 14) nd integrtion
More information2.4 Linear Inequalities and Interval Notation
.4 Liner Inequlities nd Intervl Nottion We wnt to solve equtions tht hve n inequlity symol insted of n equl sign. There re four inequlity symols tht we will look t: Less thn , Less thn or
More informationSection 5.1 #7, 10, 16, 21, 25; Section 5.2 #8, 9, 15, 20, 27, 30; Section 5.3 #4, 6, 9, 13, 16, 28, 31; Section 5.4 #7, 18, 21, 23, 25, 29, 40
Mth B Prof. Audrey Terrs HW # Solutions by Alex Eustis Due Tuesdy, Oct. 9 Section 5. #7,, 6,, 5; Section 5. #8, 9, 5,, 7, 3; Section 5.3 #4, 6, 9, 3, 6, 8, 3; Section 5.4 #7, 8,, 3, 5, 9, 4 5..7 Since
More informationf(x)dx . Show that there 1, 0 < x 1 does not exist a differentiable function g : [ 1, 1] R such that g (x) = f(x) for all
3 Definite Integrl 3.1 Introduction In school one comes cross the definition of the integrl of rel vlued function defined on closed nd bounded intervl [, b] between the limits nd b, i.e., f(x)dx s the
More informationLecture 3. Limits of Functions and Continuity
Lecture 3 Limits of Functions nd Continuity Audrey Terrs April 26, 21 1 Limits of Functions Notes I m skipping the lst section of Chpter 6 of Lng; the section bout open nd closed sets We cn probbly live
More informationBridging the gap: GCSE AS Level
Bridging the gp: GCSE AS Level CONTENTS Chpter Removing rckets pge Chpter Liner equtions Chpter Simultneous equtions 8 Chpter Fctors 0 Chpter Chnge the suject of the formul Chpter 6 Solving qudrtic equtions
More informationMath 360: A primitive integral and elementary functions
Mth 360: A primitive integrl nd elementry functions D. DeTurck University of Pennsylvni October 16, 2017 D. DeTurck Mth 360 001 2017C: Integrl/functions 1 / 32 Setup for the integrl prtitions Definition:
More informationset is not closed under matrix [ multiplication, ] and does not form a group.
Prolem 2.3: Which of the following collections of 2 2 mtrices with rel entries form groups under [ mtrix ] multipliction? i) Those of the form for which c d 2 Answer: The set of such mtrices is not closed
More informationNew Expansion and Infinite Series
Interntionl Mthemticl Forum, Vol. 9, 204, no. 22, 06073 HIKARI Ltd, www.mhikri.com http://dx.doi.org/0.2988/imf.204.4502 New Expnsion nd Infinite Series Diyun Zhng College of Computer Nnjing University
More information1.9 C 2 inner variations
46 CHAPTER 1. INDIRECT METHODS 1.9 C 2 inner vritions So fr, we hve restricted ttention to liner vritions. These re vritions of the form vx; ǫ = ux + ǫφx where φ is in some liner perturbtion clss P, for
More informationDefinite integral. Mathematics FRDIS MENDELU
Definite integrl Mthemtics FRDIS MENDELU Simon Fišnrová Brno 1 Motivtion  re under curve Suppose, for simplicity, tht y = f(x) is nonnegtive nd continuous function defined on [, b]. Wht is the re of the
More informationAQA Further Pure 2. Hyperbolic Functions. Section 2: The inverse hyperbolic functions
Hperbolic Functions Section : The inverse hperbolic functions Notes nd Emples These notes contin subsections on The inverse hperbolic functions Integrtion using the inverse hperbolic functions Logrithmic
More informationMath 1102: Calculus I (Math/Sci majors) MWF 3pm, Fulton Hall 230 Homework 2 solutions
Mth 1102: Clculus I (Mth/Sci mjors) MWF 3pm, Fulton Hll 230 Homework 2 solutions Plese write netly, nd show ll work. Cution: An nswer with no work is wrong! Do the following problems from Chpter III: 6,
More informationHeat flux and total heat
Het flux nd totl het John McCun Mrch 14, 2017 1 Introduction Yesterdy (if I remember correctly) Ms. Prsd sked me question bout the condition of insulted boundry for the 1D het eqution, nd (bsed on glnce
More informationLinearity, linear operators, and self adjoint eigenvalue problems
Linerity, liner opertors, nd self djoint eigenvlue problems 1 Elements of liner lgebr The study of liner prtil differentil equtions utilizes, unsurprisingly, mny concepts from liner lgebr nd liner ordinry
More informationAntiderivatives/Indefinite Integrals of Basic Functions
Antiderivtives/Indefinite Integrls of Bsic Functions Power Rule: In prticulr, this mens tht x n+ x n n + + C, dx = ln x + C, if n if n = x 0 dx = dx = dx = x + C nd x (lthough you won t use the second
More information