A New Macro-Model for Power Diodes Reverse Recovery

Size: px
Start display at page:

Download "A New Macro-Model for Power Diodes Reverse Recovery"

Transcription

1 Proceeings o he 7h WSEAS Inernaional Conerence on Power Sysems, Beijing, China, Sepember 15-17, 7 48 A New Macro-Moel or Power Dioes Reverse Recovery ALI DASTFAN Depaen o Elecrical & Roboic Engineering Shahroo Universiy o Technology Shahroo, Iran asan@ieee.org Absrac: - The power ioe is one o he mos imporan elemens o he power elecronics circuis, because o is role in ieren converers. The objecive o his paper is o in a moel or power ioe reverse recovery, which can be use in circui simulaion. A simple macro-moel or reverse recovery in power ioe, ha is he mos imporan ynamic eec or power circui, is evelope. Then in orer o veriy he accuracy o he moel, PSPICE simulaion an benchmark es resuls o a power ioe in a DC/DC boos converer are given. The simulaion an experimenal resuls emonsraes he accuracy o he propose power ioe moels. Finally, calculaion o he ioe power losses ue o he ioe reverse recovery is given an is compare wih simulaion an experimenal resuls. Key-Wors: -Macro moel, power ioe moel, power losses, PSPICE simulaion, es resul 1 Inroucion The power ioe is one o he mos imporan, because o is role in power elecronics circuis, an in he some ways he leas unersoo power evice. Till oay, various power ioe moels have been propose [1-9], however, ue o he ieren requiremens an simulaors, here is no unique moel or he power ioes. Tha means a power ioe moel may work on one paricular simulaor bu suer rom some iiculy on oher simulaor. In general he power ioe moels can be classiie as eiher macro-moels [1]-[4] or eaile physical moels [6], [8], [9]. The macro-moels are compose o elecrical equivalen circuis which are no irecly relae o inernal physical processes in he evice. Physical moels inclue equaions or ri an iusion o elecrons an holes. They usually conain many mahemaical equaions an parameers, an are complicae o incorporae ino circui simulaors. In he irs secion o his paper a simple macromoel or reverse recovery in power ioe is evelope o simulae he behaviour o he power ioes uring reverse recovery ransien. Then in orer o veriy he ioe moel, operaion o power ioe in he boos converer is invesigae by PSPICE simulaion an experimen. The calculaion o he ioe power losses ue o he ioe reverse recovery is also presene. The preice value o he losses or ieren swiching requencies is compare wih he power losses oun by experimens. Dioe Moel or Reverse Recovery Transien The reverse recovery phenomenon in ioe occurs when a orwar biase ioe is urne o rapily. The excess charges sore in is juncion uring orwar conucion, akes some ime o be remove. During his ime, he ioe remains conucing an a reverse cuen lows hrough i. Aer mos o he sore charge has been remove, epliion layer in ioe begins o accumulae a reverse volage an he ioe cuen evenually alls o almos zero. Figure 1 shows ioe cuen an volage waveos uring urn-o an einiions relae o ha. Where: = Reverse recovery ime I = Maximum reverse cuen I I I / 1 Q V r.1i Figure 1: Dioe reverse recovery cuen an volage waveos

2 Proceeings o he 7h WSEAS Inernaional Conerence on Power Sysems, Beijing, China, Sepember 15-17, 7 49 Q = Reverse recovery charge I /= Slope o he ioe orwar cuen This ransien can be ivie ino wo secions. The irs secion, < <, sars when cuen is ecreasing rom i. Prior o his ime (a = - ), he ioe sore charge can be represene by: Q() = = i (1) Where is he orwar minoriy caier lieime. The ioe cuen uring irs secion can be oun by using he ollowing equaion: Q() Q() i () = + () A he en o secion one (a = 1 ), he ioe reverse cuen reach is maximum value, I. This ime can be oun by assuming ha he oal sore charge uring secion ( 1 < < ) is irecly proporional o he reverse cuen [7]. Q() = I (3) 1 = r Where r is he reverse biase minoriy caier lieime. During secion he ioe cuen alls exponenially an can be represene as: ( ) i () = I e (4) When is he ime consan o he circui. Figure is a propose simple macro-moel or power ioe reverse recovery an consiss o an ieal ioe, wo resisances, an inucance, an a volage conrolle cuen source. In his circui, aer ioe urne o, or << he ieal ioe conucs an he series inucance o he exernal circui eeines he ioe cuen an is slope(i /). As ioe cuen linearly ecreases, ( << 1 ), he consan volage across inucance ( I L F ) commans a consan reverse cuen hrough he conrolle cuen source unil cuen reaches I. The ieal ioe hen becomes blocke since is cuen has ecrease o zero an i can be regare as an open swich. The parallele RL a 1 <<, imposes an exponenial cuen wih a ime consan equal o L/R as given in (4) where =L/R. Thereore, his moel only epens on wo parameers: L/R an K (he coeicien o he volage conrolle cuen source). Some power ioe manuacurers may provie one or wo ioe parameers, such as I,, an Q, or speciie I an I / coniions. The oher parameers can be oun as explaine by Fliners e al []. Q an I / have been use in his simulaion, an L/R an K can be relae o hese parameers. From Equaion (4) ime consan L/R can be oun as ollow: R C V L Ieal Dioe A R L = i() = = i() =.1 Thereore, by solving Equaion (4), ime consan is equal o: L 1 = ( ) (5) R ln1 / For power ioes wih so recovery, Equaion (5) can be simpliie, because he Reverse Snap-o Facor (RSF) in hese ioes is close o one [], [7]. Tha means: RSF = Q = 1 Q1 Thereore, I an can be relae o Q an I / as ollow: = Q (6) Q = / Thereore in ha case ime consan is equal o: Q L 1 Q 1 Q = ( ) = (7) R ln1 / / ln1 / A egree o reeom exiss beween L an R, so he inucance se o a small value ha makes V L negligible compare o orwar volage across ioe (e.g., 1pH). Thereore, or K>>1, his inucance acs as a probe measuring I / or he conrolle cuen source. R can be calculae rom L an ime consan, ha has been calculae rom (7), as ollow: L 11 / R = = 1 ln1 (8) Q i K*V L Figure : Propose Moel or he ioe reverse recovery

3 Proceeings o he 7h WSEAS Inernaional Conerence on Power Sysems, Beijing, China, Sepember 15-17, 7 5 LS Dioe Vc S Lσ C R L Cuen (A) Volage (V) I1 V1 Figure 3: DC boos converer A = 1 volage across L is LI /, hereore K can be oun a his ime which reverse cuen has maximum value: KL = (9) 1 Q 11 Q K = = = 1 LI / L I / I / 3 Simulaion an Experimen Resuls To valiae he propose moel, simulaion an experimenal es have been caie ou. Figure 3 shows he circui use o suy ioe reverse recovery. The power ioe is BYX5, which is 1 V, A wih maximum orwar volage o 1.8 V. The reverse recovery ime,, an Q are given by he manuacurer. Compuer Simulaion or he DC/DC boos converer circui was conuce or he swiching requency o 1 khz using PSPICE. Circui componen values ha have been use are: L s = 8.mH, C= 1mF, R L = 5Ω, L σ =1μH Figure 4 shows he simulaion resuls o he cuen an volage waveos o he power ioe D 1 uring he reverse recovery ransien. Figure 5 shows he experimenal resul when he orwar cuen is aroun 3 A. From his graph i can be seen ha oal reverse recovery charge is approximaely 38 μc, I is abou 5 A, I / is abou 3 A/μs when i is abou.5 A. Comparison o he simulaion an experimenal waveos (Figures 4 & 5) shows ha he general characerisics are very similar. The only ierence is beween volage waveos. In simulaion resuls he volage across he ioe alls o a value which is even greaer han he blocking volage an hen graually seles o is inal value, bu experimenally he ioe volage alls o value less han he blocking volage an recovers back o i. This migh be ue o no having a realisic IGBT moel in he simulaion. The cuen an volage waveos o he IGBT oun by experimen uring urn-on process an when he cuen is.5 A is shown in Figures 6. I will be shown in he nex subsecion ha his Time (μsec.) Figure 4: Simulaion resul: Dioe cuen an volage waveos Figure 5: Experimenal resul: ioe cuen an volage waveos uring ioe urn-o ransien (5 A/iv 1 V/iv & 5 μsec/iv) ierence has lile eec on he calculaion o power losses. 4 Dioe Power Losses One o he objecives o his paper is o in power losses ue o ioe reverse recovery in he circui wih ieren swiching requencies. Using he basic einiion o average power in Figure 1 an or one cycle is: Figure 6: Experimenal resul: IGBT cuen an volage waveos uring swich urn-on ransien (.5 A/iv 1 V/iv &.5 μsec/iv)

4 Proceeings o he 7h WSEAS Inernaional Conerence on Power Sysems, Beijing, China, Sepember 15-17, 7 51 T 1 p losse = v()i() = s v()i() (1) T Where i () is given in (1), an v () is equal o: ( ) i v () = Vr Lσ = (Vr e ) (11) So power losses are equal o: ( ) plosse = s (Vr + L e )I σ ( 1) e = (. 1 1) = 9. ( 1) e = 1 1 (. ). ( ) e (1) Aer solving his inegraion, 1 plosse = s (1.1Vr I I ) (13) I F = sq ( Vr ) ln1 By using ioe parameers an is cuen, he ioe power losses ue o reverse recovery can be esimae. 4.1 Esimaion o Dioe Power Losses The esimae ioe power losses ue o reverse recovery in circui shown in Figure 3 or ieren swiching requencies by using Equaion (13) are given in Table 1. The power losses have also been esimae by simulaion or ieren swiching requencies, which are given in Table 1. This has been calculae by muliplying ioes cuens by heir volages o obain he insananeous power, an hen ining is average or uraion o one power cycle. The measuremen o ioe power losses by experimen has been one by measuremen o cuens an volages in one swiching cycle an hen calculaing he losses as one in he simulaion. Unlike esimaion by equaion (13) an by simulaion, which jus inclue power ioe losses ue o reverse recovery phenomena, he power losses Losses(W) oun by experimen inclue all power losses in he power ioe shown in Figure 3. The oal power losses oun by experimens or swiching requencies up o 5 khz or his circui are also given in Table 1. Figure 7 shows hese power losses or ieren swiching requencies. The simulaion resuls are less han he esimae resuls an his may be ue o no using a goo moel or he IGBTs in he simulaion. 5 Conclusion In his paper, a simple moel o power ioe or reverse recovery ransien has been presene an implemene in PSPICE simulaor. A major eaure o his moel is is simpliciy an simulaion spee compares o oher subcircui moels. The moel has been veriie by comparing experimenal an simulaion resuls or power ioe use in DC boos converer. Power losses have been preice or ieren swiching requencies an compare wih simulaion an experimenal resuls. The power ioe moel propose here provies goo peroance in accuracy an simulaion spee. Reerences Esimae Simulaion Experimenal Swiching Frequency (khz) Figure 7: Dioe power losses [1] Liang Y. C. an Gosbell V. J., "Dioe Forwar an Reverse Recovery Moel or Power Elecronics SPICE Simulaion," IEEE, Transacions on Power Elecronics, Vol. 4, No. 3, PP , 199 [] Fliners F. M., Wols P. J., Kwong K., "The Preicion o Dioe Reverse Recovery Behaviour From Limie Daa," Ausralasian Table 1: Dioe power losses or ieren swiching requencies Dioe power losses (W) Swiching Frequency (khz) Esimae by (13) Simulaions resuls Experimenal resuls

5 Proceeings o he 7h WSEAS Inernaional Conerence on Power Sysems, Beijing, China, Sepember 15-17, 7 5 Universiies Power Engineering Conerence (AUPEC'9), Queenslan, PP , 199 [3] Baar G., Smih D. M., Zelaya H., an Gooman C. J., "New High Power Dioe Moel wih boh Forwar an Reverse Recovery," IEE Power Elecronics an Variable Spee Drives, pp , 1994 [4] Tseng K. J., Yang J., an Foo C. F., "Peroance o power Dioe Moel or Circui Simulaion," IEEE Proceeing o 1995 Inernaional Conerence on Power Elecronics an Drive Sysems, Singapore, PP , 1993 [5] Goebel H. an Homann K., "power Dioe Hybri Moel wih Forwar an Reverse Recovery or use in Circui Simulaors," IEEE, APEC'9, Boson, pp , 199 [6] Laurizen P. O. an Ma C. L., "A simple Dioe Moel wih Reverse Recovery," IEEE Transacion on Power Elecronics, Vol. 6, No., pp , 1991 [7] Ghanhi S. K., "Semiconucor Power Device," John Wiley & Sons, 1997 [8] Ma C. L., Laurizen P. O., an Sigg J., "Moeling o Power Dioes wih he Lumpe- Charge Moeling Technique", IEEE Transacion on Power Elecronics, VOL. 1, NO. 3, 1997 [9] Bryan A. T.,. Kang X., Sani E., Palmer P. R., an Hugins J. L., "Two-Sep Parameer Exracion Proceure Wih Foal Opimizaion or Physics-Base Circui Simulaor IGBT an p-i-n Dioe Moels", IEEE Transacion on Power Elecronics, VOL. 1, NO., 6

EE100 Lab 3 Experiment Guide: RC Circuits

EE100 Lab 3 Experiment Guide: RC Circuits I. Inroducion EE100 Lab 3 Experimen Guide: A. apaciors A capacior is a passive elecronic componen ha sores energy in he form of an elecrosaic field. The uni of capaciance is he farad (coulomb/vol). Pracical

More information

Chapter 7 Response of First-order RL and RC Circuits

Chapter 7 Response of First-order RL and RC Circuits Chaper 7 Response of Firs-order RL and RC Circuis 7.- The Naural Response of RL and RC Circuis 7.3 The Sep Response of RL and RC Circuis 7.4 A General Soluion for Sep and Naural Responses 7.5 Sequenial

More information

Topic Astable Circuits. Recall that an astable circuit has two unstable states;

Topic Astable Circuits. Recall that an astable circuit has two unstable states; Topic 2.2. Asable Circuis. Learning Objecives: A he end o his opic you will be able o; Recall ha an asable circui has wo unsable saes; Explain he operaion o a circui based on a Schmi inverer, and esimae

More information

RC, RL and RLC circuits

RC, RL and RLC circuits Name Dae Time o Complee h m Parner Course/ Secion / Grade RC, RL and RLC circuis Inroducion In his experimen we will invesigae he behavior of circuis conaining combinaions of resisors, capaciors, and inducors.

More information

Lab 10: RC, RL, and RLC Circuits

Lab 10: RC, RL, and RLC Circuits Lab 10: RC, RL, and RLC Circuis In his experimen, we will invesigae he behavior of circuis conaining combinaions of resisors, capaciors, and inducors. We will sudy he way volages and currens change in

More information

Inductor Energy Storage

Inductor Energy Storage School of Compuer Science and Elecrical Engineering 5/5/ nducor Energy Sorage Boh capaciors and inducors are energy sorage devices They do no dissipae energy like a resisor, bu sore and reurn i o he circui

More information

Reading from Young & Freedman: For this topic, read sections 25.4 & 25.5, the introduction to chapter 26 and sections 26.1 to 26.2 & 26.4.

Reading from Young & Freedman: For this topic, read sections 25.4 & 25.5, the introduction to chapter 26 and sections 26.1 to 26.2 & 26.4. PHY1 Elecriciy Topic 7 (Lecures 1 & 11) Elecric Circuis n his opic, we will cover: 1) Elecromoive Force (EMF) ) Series and parallel resisor combinaions 3) Kirchhoff s rules for circuis 4) Time dependence

More information

Determination of the Sampling Period Required for a Fast Dynamic Response of DC-Motors

Determination of the Sampling Period Required for a Fast Dynamic Response of DC-Motors Deerminaion of he Sampling Period Required for a Fas Dynamic Response of DC-Moors J. A. GA'EB, Deparmen of Elecrical and Compuer Eng, The Hashemie Universiy, P.O.Box 15459, Posal code 13115, Zerka, JORDAN

More information

EECE251. Circuit Analysis I. Set 4: Capacitors, Inductors, and First-Order Linear Circuits

EECE251. Circuit Analysis I. Set 4: Capacitors, Inductors, and First-Order Linear Circuits EEE25 ircui Analysis I Se 4: apaciors, Inducors, and Firs-Order inear ircuis Shahriar Mirabbasi Deparmen of Elecrical and ompuer Engineering Universiy of Briish olumbia shahriar@ece.ubc.ca Overview Passive

More information

04. Kinetics of a second order reaction

04. Kinetics of a second order reaction 4. Kineics of a second order reacion Imporan conceps Reacion rae, reacion exen, reacion rae equaion, order of a reacion, firs-order reacions, second-order reacions, differenial and inegraed rae laws, Arrhenius

More information

INDEX. Transient analysis 1 Initial Conditions 1

INDEX. Transient analysis 1 Initial Conditions 1 INDEX Secion Page Transien analysis 1 Iniial Condiions 1 Please inform me of your opinion of he relaive emphasis of he review maerial by simply making commens on his page and sending i o me a: Frank Mera

More information

First Order RC and RL Transient Circuits

First Order RC and RL Transient Circuits Firs Order R and RL Transien ircuis Objecives To inroduce he ransiens phenomena. To analyze sep and naural responses of firs order R circuis. To analyze sep and naural responses of firs order RL circuis.

More information

CHAPTER 6: FIRST-ORDER CIRCUITS

CHAPTER 6: FIRST-ORDER CIRCUITS EEE5: CI CUI T THEOY CHAPTE 6: FIST-ODE CICUITS 6. Inroducion This chaper considers L and C circuis. Applying he Kirshoff s law o C and L circuis produces differenial equaions. The differenial equaions

More information

Basic Circuit Elements Professor J R Lucas November 2001

Basic Circuit Elements Professor J R Lucas November 2001 Basic Circui Elemens - J ucas An elecrical circui is an inerconnecion of circui elemens. These circui elemens can be caegorised ino wo ypes, namely acive and passive elemens. Some Definiions/explanaions

More information

University of Cyprus Biomedical Imaging and Applied Optics. Appendix. DC Circuits Capacitors and Inductors AC Circuits Operational Amplifiers

University of Cyprus Biomedical Imaging and Applied Optics. Appendix. DC Circuits Capacitors and Inductors AC Circuits Operational Amplifiers Universiy of Cyprus Biomedical Imaging and Applied Opics Appendix DC Circuis Capaciors and Inducors AC Circuis Operaional Amplifiers Circui Elemens An elecrical circui consiss of circui elemens such as

More information

Some Basic Information about M-S-D Systems

Some Basic Information about M-S-D Systems Some Basic Informaion abou M-S-D Sysems 1 Inroducion We wan o give some summary of he facs concerning unforced (homogeneous) and forced (non-homogeneous) models for linear oscillaors governed by second-order,

More information

Electrical Circuits. 1. Circuit Laws. Tools Used in Lab 13 Series Circuits Damped Vibrations: Energy Van der Pol Circuit

Electrical Circuits. 1. Circuit Laws. Tools Used in Lab 13 Series Circuits Damped Vibrations: Energy Van der Pol Circuit V() R L C 513 Elecrical Circuis Tools Used in Lab 13 Series Circuis Damped Vibraions: Energy Van der Pol Circui A series circui wih an inducor, resisor, and capacior can be represened by Lq + Rq + 1, a

More information

Phys1112: DC and RC circuits

Phys1112: DC and RC circuits Name: Group Members: Dae: TA s Name: Phys1112: DC and RC circuis Objecives: 1. To undersand curren and volage characerisics of a DC RC discharging circui. 2. To undersand he effec of he RC ime consan.

More information

1. Introduction. Rawid Banchuin

1. Introduction. Rawid Banchuin 011 Inernaional Conerence on Inormaion and Elecronics Engineering IPCSIT vol.6 (011 (011 IACSIT Press, Singapore Process Induced Random Variaion Models o Nanoscale MOS Perormance: Eicien ool or he nanoscale

More information

Outline. Chapter 2: DC & Transient Response. Introduction to CMOS VLSI. DC Response. Transient Response Delay Estimation

Outline. Chapter 2: DC & Transient Response. Introduction to CMOS VLSI. DC Response. Transient Response Delay Estimation Inroducion o CMOS VLSI Design Chaper : DC & Transien Response David Harris, 004 Updaed by Li Chen, 010 Ouline DC Response Logic Levels and Noise Margins Transien Response Delay Esimaion Slide 1 Aciviy

More information

Sub Module 2.6. Measurement of transient temperature

Sub Module 2.6. Measurement of transient temperature Mechanical Measuremens Prof. S.P.Venkaeshan Sub Module 2.6 Measuremen of ransien emperaure Many processes of engineering relevance involve variaions wih respec o ime. The sysem properies like emperaure,

More information

Measurement of the Equivalent Thermal Resistance of Rooftop Lawns in a. Hot-Climate Wind Tunnel 1

Measurement of the Equivalent Thermal Resistance of Rooftop Lawns in a. Hot-Climate Wind Tunnel 1 ICEBO006, Shenzhen, China Envelope Technologies for Builing Energy Efficiency Vol.II-4- Measuremen of he Equivalen Thermal Resisance of Roofop Lawns in a Ho-Climae Win Tunnel Qinglin Meng Yu Zhang Lei

More information

Homework 2 Solutions

Homework 2 Solutions Mah 308 Differenial Equaions Fall 2002 & 2. See he las page. Hoework 2 Soluions 3a). Newon s secon law of oion says ha a = F, an we know a =, so we have = F. One par of he force is graviy, g. However,

More information

EECE 301 Signals & Systems Prof. Mark Fowler

EECE 301 Signals & Systems Prof. Mark Fowler EECE 3 Signals & Sysems Prof. Mark Fowler Noe Se # Wha are Coninuous-Time Signals??? /6 Coninuous-Time Signal Coninuous Time (C-T) Signal: A C-T signal is defined on he coninuum of ime values. Tha is:

More information

V AK (t) I T (t) I TRM. V AK( full area) (t) t t 1 Axial turn-on. Switching losses for Phase Control and Bi- Directionally Controlled Thyristors

V AK (t) I T (t) I TRM. V AK( full area) (t) t t 1 Axial turn-on. Switching losses for Phase Control and Bi- Directionally Controlled Thyristors Applicaion Noe Swiching losses for Phase Conrol and Bi- Direcionally Conrolled Thyrisors V AK () I T () Causing W on I TRM V AK( full area) () 1 Axial urn-on Plasma spread 2 Swiching losses for Phase Conrol

More information

Voltage/current relationship Stored Energy. RL / RC circuits Steady State / Transient response Natural / Step response

Voltage/current relationship Stored Energy. RL / RC circuits Steady State / Transient response Natural / Step response Review Capaciors/Inducors Volage/curren relaionship Sored Energy s Order Circuis RL / RC circuis Seady Sae / Transien response Naural / Sep response EE4 Summer 5: Lecure 5 Insrucor: Ocavian Florescu Lecure

More information

LabQuest 24. Capacitors

LabQuest 24. Capacitors Capaciors LabQues 24 The charge q on a capacior s plae is proporional o he poenial difference V across he capacior. We express his wih q V = C where C is a proporionaliy consan known as he capaciance.

More information

Computation of the Effect of Space Harmonics on Starting Process of Induction Motors Using TSFEM

Computation of the Effect of Space Harmonics on Starting Process of Induction Motors Using TSFEM Journal of elecrical sysems Special Issue N 01 : November 2009 pp: 48-52 Compuaion of he Effec of Space Harmonics on Saring Process of Inducion Moors Using TSFEM Youcef Ouazir USTHB Laboraoire des sysèmes

More information

L1, L2, N1 N2. + Vout. C out. Figure 2.1.1: Flyback converter

L1, L2, N1 N2. + Vout. C out. Figure 2.1.1: Flyback converter page 11 Flyback converer The Flyback converer belongs o he primary swiched converer family, which means here is isolaion beween in and oupu. Flyback converers are used in nearly all mains supplied elecronic

More information

Random Walk with Anti-Correlated Steps

Random Walk with Anti-Correlated Steps Random Walk wih Ani-Correlaed Seps John Noga Dirk Wagner 2 Absrac We conjecure he expeced value of random walks wih ani-correlaed seps o be exacly. We suppor his conjecure wih 2 plausibiliy argumens and

More information

i L = VT L (16.34) 918a i D v OUT i L v C V - S 1 FIGURE A switched power supply circuit with diode and a switch.

i L = VT L (16.34) 918a i D v OUT i L v C V - S 1 FIGURE A switched power supply circuit with diode and a switch. 16.4.3 A SWITHED POWER SUPPY USINGA DIODE In his example, we will analyze he behavior of he diodebased swiched power supply circui shown in Figure 16.15. Noice ha his circui is similar o ha in Figure 12.41,

More information

Electrical and current self-induction

Electrical and current self-induction Elecrical and curren self-inducion F. F. Mende hp://fmnauka.narod.ru/works.hml mende_fedor@mail.ru Absrac The aricle considers he self-inducance of reacive elemens. Elecrical self-inducion To he laws of

More information

Designing Information Devices and Systems I Spring 2019 Lecture Notes Note 17

Designing Information Devices and Systems I Spring 2019 Lecture Notes Note 17 EES 16A Designing Informaion Devices and Sysems I Spring 019 Lecure Noes Noe 17 17.1 apaciive ouchscreen In he las noe, we saw ha a capacior consiss of wo pieces on conducive maerial separaed by a nonconducive

More information

8. Basic RL and RC Circuits

8. Basic RL and RC Circuits 8. Basic L and C Circuis This chaper deals wih he soluions of he responses of L and C circuis The analysis of C and L circuis leads o a linear differenial equaion This chaper covers he following opics

More information

Chapter 8 The Complete Response of RL and RC Circuits

Chapter 8 The Complete Response of RL and RC Circuits Chaper 8 The Complee Response of RL and RC Circuis Seoul Naional Universiy Deparmen of Elecrical and Compuer Engineering Wha is Firs Order Circuis? Circuis ha conain only one inducor or only one capacior

More information

LAB 5: Computer Simulation of RLC Circuit Response using PSpice

LAB 5: Computer Simulation of RLC Circuit Response using PSpice --3LabManualLab5.doc LAB 5: ompuer imulaion of RL ircui Response using Ppice PURPOE To use a compuer simulaion program (Ppice) o invesigae he response of an RL series circui o: (a) a sinusoidal exciaion.

More information

( ) ( ) if t = t. It must satisfy the identity. So, bulkiness of the unit impulse (hyper)function is equal to 1. The defining characteristic is

( ) ( ) if t = t. It must satisfy the identity. So, bulkiness of the unit impulse (hyper)function is equal to 1. The defining characteristic is UNIT IMPULSE RESPONSE, UNIT STEP RESPONSE, STABILITY. Uni impulse funcion (Dirac dela funcion, dela funcion) rigorously defined is no sricly a funcion, bu disribuion (or measure), precise reamen requires

More information

The Fundamental Theorems of Calculus

The Fundamental Theorems of Calculus FunamenalTheorems.nb 1 The Funamenal Theorems of Calculus You have now been inrouce o he wo main branches of calculus: ifferenial calculus (which we inrouce wih he angen line problem) an inegral calculus

More information

Physical Limitations of Logic Gates Week 10a

Physical Limitations of Logic Gates Week 10a Physical Limiaions of Logic Gaes Week 10a In a compuer we ll have circuis of logic gaes o perform specific funcions Compuer Daapah: Boolean algebraic funcions using binary variables Symbolic represenaion

More information

ELEC-E8417 Switched-Mode Power Supplies Exam

ELEC-E8417 Switched-Mode Power Supplies Exam ELE-E847 Swiche-Moe Power Supplies Exa 7..06 Quesion. n sep-up converer (Boos) he oupu volage o = 48 V an supply volage changes beween 0 V 5 V. upu power P o 5 W an swiching frequency ƒ s = 0 khz, = 47

More information

- If one knows that a magnetic field has a symmetry, one may calculate the magnitude of B by use of Ampere s law: The integral of scalar product

- If one knows that a magnetic field has a symmetry, one may calculate the magnitude of B by use of Ampere s law: The integral of scalar product 11.1 APPCATON OF AMPEE S AW N SYMMETC MAGNETC FEDS - f one knows ha a magneic field has a symmery, one may calculae he magniude of by use of Ampere s law: The inegral of scalar produc Closed _ pah * d

More information

EECS 141: FALL 00 MIDTERM 2

EECS 141: FALL 00 MIDTERM 2 Universiy of California College of Engineering Deparmen of Elecrical Engineering and Compuer Science J. M. Rabaey TuTh9:30-11am ee141@eecs EECS 141: FALL 00 MIDTERM 2 For all problems, you can assume he

More information

A FAMILY OF THREE-LEVEL DC-DC CONVERTERS

A FAMILY OF THREE-LEVEL DC-DC CONVERTERS A FAMIY OF THREE-EVE DC-DC CONVERTERS Anonio José Beno Boion, Ivo Barbi Federal Universiy of Sana Caarina - UFSC, Power Elecronics Insiue - INEP PO box 5119, ZIP code 88040-970, Florianópolis, SC, BRAZI

More information

Vehicle Arrival Models : Headway

Vehicle Arrival Models : Headway Chaper 12 Vehicle Arrival Models : Headway 12.1 Inroducion Modelling arrival of vehicle a secion of road is an imporan sep in raffic flow modelling. I has imporan applicaion in raffic flow simulaion where

More information

Homework-8(1) P8.3-1, 3, 8, 10, 17, 21, 24, 28,29 P8.4-1, 2, 5

Homework-8(1) P8.3-1, 3, 8, 10, 17, 21, 24, 28,29 P8.4-1, 2, 5 Homework-8() P8.3-, 3, 8, 0, 7, 2, 24, 28,29 P8.4-, 2, 5 Secion 8.3: The Response of a Firs Order Circui o a Consan Inpu P 8.3- The circui shown in Figure P 8.3- is a seady sae before he swich closes a

More information

STATE-SPACE MODELLING. A mass balance across the tank gives:

STATE-SPACE MODELLING. A mass balance across the tank gives: B. Lennox and N.F. Thornhill, 9, Sae Space Modelling, IChemE Process Managemen and Conrol Subjec Group Newsleer STE-SPACE MODELLING Inroducion: Over he pas decade or so here has been an ever increasing

More information

ELEC Power Electronics

ELEC Power Electronics School of Elecrical Engineering & Telecommunicaions Universiy of New Souh Wales ELEC464 - Power Elecronics Power Elecronics Soluion of Tuorial - Basic Conceps in Power Elecronics Quesion. (a) V A R During

More information

Zhihan Xu, Matt Proctor, Ilia Voloh

Zhihan Xu, Matt Proctor, Ilia Voloh Zhihan Xu, Ma rocor, lia Voloh - GE Digial Energy Mike Lara - SNC-Lavalin resened by: Terrence Smih GE Digial Energy CT fundamenals Circui model, exciaion curve, simulaion model CT sauraion AC sauraion,

More information

dv 7. Voltage-current relationship can be obtained by integrating both sides of i = C :

dv 7. Voltage-current relationship can be obtained by integrating both sides of i = C : EECE202 NETWORK ANALYSIS I Dr. Charles J. Kim Class Noe 22: Capaciors, Inducors, and Op Amp Circuis A. Capaciors. A capacior is a passive elemen designed o sored energy in is elecric field. 2. A capacior

More information

Theory of! Partial Differential Equations!

Theory of! Partial Differential Equations! hp://www.nd.edu/~gryggva/cfd-course/! Ouline! Theory o! Parial Dierenial Equaions! Gréar Tryggvason! Spring 011! Basic Properies o PDE!! Quasi-linear Firs Order Equaions! - Characerisics! - Linear and

More information

The problem with linear regulators

The problem with linear regulators he problem wih linear regulaors i in P in = i in V REF R a i ref i q i C v CE P o = i o i B ie P = v i o o in R 1 R 2 i o i f η = P o P in iref is small ( 0). iq (quiescen curren) is small (probably).

More information

MEMS 0031 Electric Circuits

MEMS 0031 Electric Circuits MEMS 0031 Elecric Circuis Chaper 1 Circui variables Chaper/Lecure Learning Objecives A he end of his lecure and chaper, you should able o: Represen he curren and volage of an elecric circui elemen, paying

More information

Lecture -14: Chopper fed DC Drives

Lecture -14: Chopper fed DC Drives Lecure -14: Chopper fed DC Drives Chopper fed DC drives o A chopper is a saic device ha convers fixed DC inpu volage o a variable dc oupu volage direcly o A chopper is a high speed on/off semiconducor

More information

Chapter 10 INDUCTANCE Recommended Problems:

Chapter 10 INDUCTANCE Recommended Problems: Chaper 0 NDUCTANCE Recommended Problems: 3,5,7,9,5,6,7,8,9,,,3,6,7,9,3,35,47,48,5,5,69, 7,7. Self nducance Consider he circui shown in he Figure. When he swich is closed, he curren, and so he magneic field,

More information

I. OBJECTIVE OF THE EXPERIMENT.

I. OBJECTIVE OF THE EXPERIMENT. I. OBJECTIVE OF THE EXPERIMENT. Swissmero raels a high speeds hrough a unnel a low pressure. I will hereore undergo ricion ha can be due o: ) Viscosiy o gas (c. "Viscosiy o gas" eperimen) ) The air in

More information

Theory of! Partial Differential Equations-I!

Theory of! Partial Differential Equations-I! hp://users.wpi.edu/~grear/me61.hml! Ouline! Theory o! Parial Dierenial Equaions-I! Gréar Tryggvason! Spring 010! Basic Properies o PDE!! Quasi-linear Firs Order Equaions! - Characerisics! - Linear and

More information

Silicon Controlled Rectifiers UNIT-1

Silicon Controlled Rectifiers UNIT-1 Silicon Conrolled Recifiers UNIT-1 Silicon Conrolled Recifier A Silicon Conrolled Recifier (or Semiconducor Conrolled Recifier) is a four layer solid sae device ha conrols curren flow The name silicon

More information

Chapter 2 The Derivative Applied Calculus 107. We ll need a rule for finding the derivative of a product so we don t have to multiply everything out.

Chapter 2 The Derivative Applied Calculus 107. We ll need a rule for finding the derivative of a product so we don t have to multiply everything out. Chaper The Derivaive Applie Calculus 107 Secion 4: Prouc an Quoien Rules The basic rules will le us ackle simple funcions. Bu wha happens if we nee he erivaive of a combinaion of hese funcions? Eample

More information

CHAPTER 2 Signals And Spectra

CHAPTER 2 Signals And Spectra CHAPER Signals And Specra Properies of Signals and Noise In communicaion sysems he received waveform is usually caegorized ino he desired par conaining he informaion, and he undesired par. he desired par

More information

Principle and Analysis of a Novel Linear Synchronous Motor with Half-Wave Rectified Self Excitation

Principle and Analysis of a Novel Linear Synchronous Motor with Half-Wave Rectified Self Excitation Principle and Analysis of a Novel Linear Synchronous Moor wih Half-Wave Recified Self Exciaion Jun OYAMA, Tsuyoshi HIGUCHI, Takashi ABE, Shoaro KUBOTA and Tadashi HIRAYAMA Deparmen of Elecrical and Elecronic

More information

Comparative study between two models of a linear oscillating tubular motor

Comparative study between two models of a linear oscillating tubular motor IOSR Journal of Elecrical and Elecronics Engineering (IOSR-JEEE) e-issn: 78-676,p-ISSN: 3-333, Volume 9, Issue Ver. IV (Feb. 4), PP 77-83 Comparaive sudy beween wo models of a linear oscillaing ubular

More information

Simulation-Solving Dynamic Models ABE 5646 Week 2, Spring 2010

Simulation-Solving Dynamic Models ABE 5646 Week 2, Spring 2010 Simulaion-Solving Dynamic Models ABE 5646 Week 2, Spring 2010 Week Descripion Reading Maerial 2 Compuer Simulaion of Dynamic Models Finie Difference, coninuous saes, discree ime Simple Mehods Euler Trapezoid

More information

Math 333 Problem Set #2 Solution 14 February 2003

Math 333 Problem Set #2 Solution 14 February 2003 Mah 333 Problem Se #2 Soluion 14 February 2003 A1. Solve he iniial value problem dy dx = x2 + e 3x ; 2y 4 y(0) = 1. Soluion: This is separable; we wrie 2y 4 dy = x 2 + e x dx and inegrae o ge The iniial

More information

Dual Current-Mode Control for Single-Switch Two-Output Switching Power Converters

Dual Current-Mode Control for Single-Switch Two-Output Switching Power Converters Dual Curren-Mode Conrol for Single-Swich Two-Oupu Swiching Power Converers S. C. Wong, C. K. Tse and K. C. Tang Deparmen of Elecronic and Informaion Engineering Hong Kong Polyechnic Universiy, Hunghom,

More information

Lecture 13 RC/RL Circuits, Time Dependent Op Amp Circuits

Lecture 13 RC/RL Circuits, Time Dependent Op Amp Circuits Lecure 13 RC/RL Circuis, Time Dependen Op Amp Circuis RL Circuis The seps involved in solving simple circuis conaining dc sources, resisances, and one energy-sorage elemen (inducance or capaciance) are:

More information

R.#W.#Erickson# Department#of#Electrical,#Computer,#and#Energy#Engineering# University#of#Colorado,#Boulder#

R.#W.#Erickson# Department#of#Electrical,#Computer,#and#Energy#Engineering# University#of#Colorado,#Boulder# .#W.#Erickson# Deparmen#of#Elecrical,#Compuer,#and#Energy#Engineering# Universiy#of#Colorado,#Boulder# Chaper 2 Principles of Seady-Sae Converer Analysis 2.1. Inroducion 2.2. Inducor vol-second balance,

More information

Modal identification of structures from roving input data by means of maximum likelihood estimation of the state space model

Modal identification of structures from roving input data by means of maximum likelihood estimation of the state space model Modal idenificaion of srucures from roving inpu daa by means of maximum likelihood esimaion of he sae space model J. Cara, J. Juan, E. Alarcón Absrac The usual way o perform a forced vibraion es is o fix

More information

3. Alternating Current

3. Alternating Current 3. Alernaing Curren TOPCS Definiion and nroducion AC Generaor Componens of AC Circuis Series LRC Circuis Power in AC Circuis Transformers & AC Transmission nroducion o AC The elecric power ou of a home

More information

Waveform Transmission Method, A New Waveform-relaxation Based Algorithm. to Solve Ordinary Differential Equations in Parallel

Waveform Transmission Method, A New Waveform-relaxation Based Algorithm. to Solve Ordinary Differential Equations in Parallel Waveform Transmission Mehod, A New Waveform-relaxaion Based Algorihm o Solve Ordinary Differenial Equaions in Parallel Fei Wei Huazhong Yang Deparmen of Elecronic Engineering, Tsinghua Universiy, Beijing,

More information

2.9 Modeling: Electric Circuits

2.9 Modeling: Electric Circuits SE. 2.9 Modeling: Elecric ircuis 93 2.9 Modeling: Elecric ircuis Designing good models is a ask he compuer canno do. Hence seing up models has become an imporan ask in modern applied mahemaics. The bes

More information

Section 5: Chain Rule

Section 5: Chain Rule Chaper The Derivaive Applie Calculus 11 Secion 5: Chain Rule There is one more ype of complicae funcion ha we will wan o know how o iffereniae: composiion. The Chain Rule will le us fin he erivaive of

More information

2.4 Cuk converter example

2.4 Cuk converter example 2.4 Cuk converer example C 1 Cuk converer, wih ideal swich i 1 i v 1 2 1 2 C 2 v 2 Cuk converer: pracical realizaion using MOSFET and diode C 1 i 1 i v 1 2 Q 1 D 1 C 2 v 2 28 Analysis sraegy This converer

More information

V L. DT s D T s t. Figure 1: Buck-boost converter: inductor current i(t) in the continuous conduction mode.

V L. DT s D T s t. Figure 1: Buck-boost converter: inductor current i(t) in the continuous conduction mode. ECE 445 Analysis and Design of Power Elecronic Circuis Problem Se 7 Soluions Problem PS7.1 Erickson, Problem 5.1 Soluion (a) Firs, recall he operaion of he buck-boos converer in he coninuous conducion

More information

N H. be the number of living fish outside area H, and let C be the cumulative catch of fish. The behavior of N H

N H. be the number of living fish outside area H, and let C be the cumulative catch of fish. The behavior of N H ALTRNATV MODLS FOR CPU AND ABUNDANC Fishing is funamenally a localize process. Tha is, fishing gear operaing in a paricular geographic area canno cach fish ha are no in ha area. Here we will evelop wo

More information

Multiphase transformer-coupled converter: two different strategies for energy conversion

Multiphase transformer-coupled converter: two different strategies for energy conversion Muliphase ransformercoupled converer: wo differen sraegies for energy conversion M.C.Gonzalez, P.Alou, O.Garcia, J.A.Oliver, J.A.Cobos Cenro de Elecrónica Indusrial Universidad Poliecnica de Madrid Madrid,

More information

UNIVERSITY OF CALIFORNIA AT BERKELEY

UNIVERSITY OF CALIFORNIA AT BERKELEY Homework #10 Soluions EECS 40, Fall 2006 Prof. Chang-Hasnain Due a 6 pm in 240 Cory on Wednesday, 04/18/07 oal Poins: 100 Pu (1) your name and (2) discussion secion number on your homework. You need o

More information

UNIVERSITY OF TRENTO MEASUREMENTS OF TRANSIENT PHENOMENA WITH DIGITAL OSCILLOSCOPES. Antonio Moschitta, Fabrizio Stefani, Dario Petri.

UNIVERSITY OF TRENTO MEASUREMENTS OF TRANSIENT PHENOMENA WITH DIGITAL OSCILLOSCOPES. Antonio Moschitta, Fabrizio Stefani, Dario Petri. UNIVERSIY OF RENO DEPARMEN OF INFORMAION AND COMMUNICAION ECHNOLOGY 385 Povo reno Ialy Via Sommarive 4 hp://www.di.unin.i MEASUREMENS OF RANSIEN PHENOMENA WIH DIGIAL OSCILLOSCOPES Anonio Moschia Fabrizio

More information

CHAPTER 12 DIRECT CURRENT CIRCUITS

CHAPTER 12 DIRECT CURRENT CIRCUITS CHAPTER 12 DIRECT CURRENT CIUITS DIRECT CURRENT CIUITS 257 12.1 RESISTORS IN SERIES AND IN PARALLEL When wo resisors are conneced ogeher as shown in Figure 12.1 we said ha hey are conneced in series. As

More information

555 Timer. Digital Electronics

555 Timer. Digital Electronics 555 Timer Digial Elecronics This presenaion will Inroduce he 555 Timer. 555 Timer Derive he characerisic equaions for he charging and discharging of a capacior. Presen he equaions for period, frequency,

More information

AN603 APPLICATION NOTE

AN603 APPLICATION NOTE AN603 APPLICAION NOE URBOSWICH IN A PFC BOOS CONVERER INRODUCION SMicroelecronics offers wo families of 600V ulrafas diodes (URBOSWICH"A" and "B" ) having differen compromises beween he forward characerisics

More information

Stability and Bifurcation in a Neural Network Model with Two Delays

Stability and Bifurcation in a Neural Network Model with Two Delays Inernaional Mahemaical Forum, Vol. 6, 11, no. 35, 175-1731 Sabiliy and Bifurcaion in a Neural Nework Model wih Two Delays GuangPing Hu and XiaoLing Li School of Mahemaics and Physics, Nanjing Universiy

More information

Rapid Termination Evaluation for Recursive Subdivision of Bezier Curves

Rapid Termination Evaluation for Recursive Subdivision of Bezier Curves Rapid Terminaion Evaluaion for Recursive Subdivision of Bezier Curves Thomas F. Hain School of Compuer and Informaion Sciences, Universiy of Souh Alabama, Mobile, AL, U.S.A. Absrac Bézier curve flaening

More information

EE 230 Lecture 28. Nonlinear Circuits using Diodes. Rectifiers Precision Rectifiers Nonlinear function generators

EE 230 Lecture 28. Nonlinear Circuits using Diodes. Rectifiers Precision Rectifiers Nonlinear function generators EE 230 Lecure 28 Nonlinear Circuis using ioes ecifiers Precision ecifiers Nonlinear funcion generaors Quiz 8 f a ioe has a value of S =E-4A an he ioe volage is.65v, wha will be he ioe curren if operaing

More information

Lecture #6: Continuous-Time Signals

Lecture #6: Continuous-Time Signals EEL5: Discree-Time Signals and Sysems Lecure #6: Coninuous-Time Signals Lecure #6: Coninuous-Time Signals. Inroducion In his lecure, we discussed he ollowing opics:. Mahemaical represenaion and ransormaions

More information

1. VELOCITY AND ACCELERATION

1. VELOCITY AND ACCELERATION 1. VELOCITY AND ACCELERATION 1.1 Kinemaics Equaions s = u + 1 a and s = v 1 a s = 1 (u + v) v = u + as 1. Displacemen-Time Graph Gradien = speed 1.3 Velociy-Time Graph Gradien = acceleraion Area under

More information

The fundamental mass balance equation is ( 1 ) where: I = inputs P = production O = outputs L = losses A = accumulation

The fundamental mass balance equation is ( 1 ) where: I = inputs P = production O = outputs L = losses A = accumulation Hea (iffusion) Equaion erivaion of iffusion Equaion The fundamenal mass balance equaion is I P O L A ( 1 ) where: I inpus P producion O oupus L losses A accumulaion Assume ha no chemical is produced or

More information

EECE 301 Signals & Systems Prof. Mark Fowler

EECE 301 Signals & Systems Prof. Mark Fowler EECE 3 Signals & Sysems Prof. Mark Fowler Noe Se #2 Wha are Coninuous-Time Signals??? Reading Assignmen: Secion. of Kamen and Heck /22 Course Flow Diagram The arrows here show concepual flow beween ideas.

More information

In this chapter the model of free motion under gravity is extended to objects projected at an angle. When you have completed it, you should

In this chapter the model of free motion under gravity is extended to objects projected at an angle. When you have completed it, you should Cambridge Universiy Press 978--36-60033-7 Cambridge Inernaional AS and A Level Mahemaics: Mechanics Coursebook Excerp More Informaion Chaper The moion of projeciles In his chaper he model of free moion

More information

Università degli Studi di Roma Tor Vergata Dipartimento di Ingegneria Elettronica. Analogue Electronics. Paolo Colantonio A.A.

Università degli Studi di Roma Tor Vergata Dipartimento di Ingegneria Elettronica. Analogue Electronics. Paolo Colantonio A.A. Universià degli Sudi di Roma Tor Vergaa Diparimeno di Ingegneria Eleronica Analogue Elecronics Paolo Colanonio A.A. 2015-16 Diode circui analysis The non linearbehaviorofdiodesmakesanalysisdifficul consider

More information

Application Note AN Software release of SemiSel version 3.1. New semiconductor available. Temperature ripple at low inverter output frequencies

Application Note AN Software release of SemiSel version 3.1. New semiconductor available. Temperature ripple at low inverter output frequencies Applicaion Noe AN-8004 Revision: Issue Dae: Prepared by: 00 2008-05-21 Dr. Arend Winrich Ke y Words: SemiSel, Semiconducor Selecion, Loss Calculaion Sofware release of SemiSel version 3.1 New semiconducor

More information

Section 2.2 Charge and Current 2.6 b) The current direction is designated as the direction of the movement of positive charges.

Section 2.2 Charge and Current 2.6 b) The current direction is designated as the direction of the movement of positive charges. Chaper Soluions Secion. Inroducion. Curren source. Volage source. esisor.4 Capacior.5 Inducor Secion. Charge and Curren.6 b) The curren direcion is designaed as he direcion of he movemen of posiive charges..7

More information

d 1 = c 1 b 2 - b 1 c 2 d 2 = c 1 b 3 - b 1 c 3

d 1 = c 1 b 2 - b 1 c 2 d 2 = c 1 b 3 - b 1 c 3 and d = c b - b c c d = c b - b c c This process is coninued unil he nh row has been compleed. The complee array of coefficiens is riangular. Noe ha in developing he array an enire row may be divided or

More information

Fitting Parameters in a Differential Equation With a Non-Analytical Solution

Fitting Parameters in a Differential Equation With a Non-Analytical Solution NDSolve u.nb 1 Fiing Parameers in a Dierenial Equaion Wih a Non-Analyical Soluion Mahew Smih 9-Jan-005 In[]:= Remove "Global` " O General::"spell" O General::"spell1" Graphics` Oen dierenial equaions do

More information

STUDY ON A METHOD TO IDENTIFY EXTERNAL FORCES AND DAMPING PARAMETERS OF STRUCTURE FROM RANDOM RESPONSE VALUES

STUDY ON A METHOD TO IDENTIFY EXTERNAL FORCES AND DAMPING PARAMETERS OF STRUCTURE FROM RANDOM RESPONSE VALUES STUDY ON A METHOD TO IDENTIFY ETERNAL FORCES AND DAMPING PARAMETERS OF STRUCTURE FROM RANDOM RESPONSE VALUES 114 M KANDA 1, E MARUTA, D INABA 3 And T MATSUYAMA 4 SUMMARY Proposed in his paper is a mehod

More information

Chapter Three Systems of Linear Differential Equations

Chapter Three Systems of Linear Differential Equations Chaper Three Sysems of Linear Differenial Equaions In his chaper we are going o consier sysems of firs orer orinary ifferenial equaions. These are sysems of he form x a x a x a n x n x a x a x a n x n

More information

Module 2 F c i k c s la l w a s o s f dif di fusi s o i n

Module 2 F c i k c s la l w a s o s f dif di fusi s o i n Module Fick s laws of diffusion Fick s laws of diffusion and hin film soluion Adolf Fick (1855) proposed: d J α d d d J (mole/m s) flu (m /s) diffusion coefficien and (mole/m 3 ) concenraion of ions, aoms

More information

Analysis of Microstrip Coupling Gap to Estimate Polymer Permittivity

Analysis of Microstrip Coupling Gap to Estimate Polymer Permittivity Analysis of Microsrip Couplin Gap o Esimae Polymer Permiiviy Chanchal Yadav Deparmen of Physics & Elecronics Rajdhani Collee, Universiy of Delhi Delhi, India Absrac A ap in he microsrip line can be modeled

More information

Chapter 1 Electric Circuit Variables

Chapter 1 Electric Circuit Variables Chaper 1 Elecric Circui Variables Exercises Exercise 1.2-1 Find he charge ha has enered an elemen by ime when i = 8 2 4 A, 0. Assume q() = 0 for < 0. 8 3 2 Answer: q () = 2 C 3 () 2 i = 8 4 A 2 8 3 2 8

More information

A First Course on Kinetics and Reaction Engineering. Class 19 on Unit 18

A First Course on Kinetics and Reaction Engineering. Class 19 on Unit 18 A Firs ourse on Kineics and Reacion Engineering lass 19 on Uni 18 Par I - hemical Reacions Par II - hemical Reacion Kineics Where We re Going Par III - hemical Reacion Engineering A. Ideal Reacors B. Perfecly

More information

MATHEMATICAL DESCRIPTION OF THEORETICAL METHODS OF RESERVE ECONOMY OF CONSIGNMENT STORES

MATHEMATICAL DESCRIPTION OF THEORETICAL METHODS OF RESERVE ECONOMY OF CONSIGNMENT STORES MAHEMAICAL DESCIPION OF HEOEICAL MEHODS OF ESEVE ECONOMY OF CONSIGNMEN SOES Péer elek, József Cselényi, György Demeer Universiy of Miskolc, Deparmen of Maerials Handling and Logisics Absrac: Opimizaion

More information