PSYC 331 STATISTICS FOR PSYCHOLOGISTS

Size: px
Start display at page:

Download "PSYC 331 STATISTICS FOR PSYCHOLOGISTS"

Transcription

1 PSYC 331 STATISTICS FOR PSYCHOLOGISTS Session 4 A PARAMETRIC STATISTICAL TEST FOR MORE THAN TWO POPULATIONS Lecturer: Dr. Paul Narh Doku, Dept of Psychology, UG Contact Information: pndoku@ug.edu.gh College of Education School of Continuing and Distance Education 2014/ /2017 godsonug.wordpress.com/blog

2 Session Overview This session builds upon previous sessions and provides further insight into some parametric statistical concepts that will help in the testing of hypotheses. The goal of this session is to equip students with the ability to explain the terminology of analysis of variance (ANOVA) ; Dr. P. N. Doku, Slide 2

3 Session Outline The key topics to be covered in the session are as follows: The analysis of variance (ANOVA) procedure The general logic of ANOVA Computational procedures Post-hoc analysis: Multiple comparisons following the ANOVA test Worked example and exercises based on the One-Way ANOVA test Introduction to Two-Way analysis of variance (Two-Way ANOVA) Slide 3

4 Reading List Opoku, J. Y. (2007). Tutorials in Inferential Social Statistics. (2nd Ed.). Accra: Ghana Universities Press. Pages Slide 4

5 Analysis of Variance The analysis of variance is the parametric procedure for determining whether significant differences occur in an experiment with three or more sample means However, in a research study of experiment involving only two conditions of the independent variable (two samples means), you may use either a t-test or the ANOVA and the outcome of the analysis will be the same. Slide 5

6 Experiment-Wise Error The probability of making a Type I error over a series of individual statistical tests or comparisons in an experiment is called the experiment-wise error rate When we use a t-test to compare only two means in an experiment, the experimentwise error rate equals Slide 6

7 Experiment-Wise Error When there are more than two means in an experiment, the multiple t-tests result in an experiment-wise error rate much larger than the we have selected Using the ANOVA allows us to make all our decisions and keep the experiment-wise error rate equal to Slide 7

8 An Overview of One Way ANOVA ANalysis Of VAriance is abbreviated as ANOVA ANOVA is also called the F ratio There is a single independent variable, hence called One-Way An independent variable is also called a factor Each condition of the independent variable is called a level or treatment Differences produced by the independent variable are treatment effect Slide 8

9 Requirements for using the F ratio 1) Must be a comparison between three or more means. 2) Must be working with interval data. 3) Our sample must have been collected randomly from the research population. 4) We can/must assume that the sample characteristics are normally distributed. 5) We must assume that the variance between samples

10 Between-Subjects A one-way ANOVA is performed when one independent variable is tested in the experiment When an independent variable is studied using independent samples in all conditions, it is called a between-subjects factor A between-subjects factor involves using the formulas for a between-subjects ANOVA 10

11 Within-Subjects Factor When a factor is studied using related (dependent) samples in all levels, it is called a within-subjects factor This involves a set of formulas called a within-subjects ANOVA 11

12 Diagram of a Study Having Three Levels of One Factor 12

13 Null and Alternate Hypotheses Null hypothesis H 0 : k Alternate hypothesis: states that at least the means of two of the populations differ. H a : not all k are equal 13

14 The ANOVA (F) Test The statistic for the ANOVA is F When F obs is significant, it indicates only that somewhere among the means at least two of them differ significantly It does NOT indicate which specific means differ significantly When the F-test is significant, we perform post hoc comparisons to determine which specific means differ significantly

15 Computation of the ANOVA (F) Test The Analysis of Variance is a multi-step process. 1. Sum of Squares 2. Mean Square 3. F Ratio Slide 15

16 Sum of Squares The computations for the ANOVA require the use of several sums of squared deviations The sum of squares is simply the sum of the squared deviations of a set of scores around the mean of those scores Adding them up. It is symbolized as SS

17 Sum of Squares Comparing Groups: When groups are compared, there are more than one type of sum of squares. Total Sum of Squares (SS total) Between Groups Sum of Squares (SS between) Within Groups Sum of Squares (SS within) Each type represents the sum of squared deviations

18 Computational Formulae for SS SS T 2 X X 2 N X 1 2 X 2 2 X k 1 2 X k 2 X 2 SS B... n 1 n2 n k 1 n k N 2 SS W X 1 2 X X k 1 X 1 2 X 2 2 X k 1 2 X k 2 n 1 n 2 Slide 18 n k 1 2 X k n k

19 The Computational Formulas for Sum of Squares: worked example

20 The Computational Formulas for Sum of Squares: worked example

21 The Computational Formulas for Sum of Squares: Summary

22 The mean square between groups describes the differences between the means of the conditions in a factor. It is symbolized by MS. Mean Squares NOTE: The value of the sum of squares becomes larger as variation increases. The sum of squares also increases with sample size. Because of this, the SS cannot be viewed as a true measure of variation. Another measure of variation that we can use is the Mean Square. The mean square within groups describes the variability in scores within the conditions of an experiment. It is symbolized by MS W.

23 Coputation of Mean Squares Between Within MS between SS between df between MS within SS within df within MS between = between group mean square SS between = between group sum of squares df between = between group degrees of freedom MS within = within group mean square SS within = within group sum of squares df within = within group degrees of freedom

24 Degrees of Freedom Use the following equations to obtain the correct degrees of freedom: df be tween k 1 df within N total k k = number of groups

25 Critical Value of F (F critical) The Critical value of F (F crit ) depends on: The degrees of freedom (both the df bn = k 1 and the df wn = N k) The selected To obtain the F crit from the F statistical table: Use the df B (the numerator) across the top of the table. Use the df W (the denominator) along the side of the table.

26 Worked example of Mean Square Calculating the Mean Square Computation using Table 8.2 data in the previous example

27 Computing F obs The analysis of variance yields an F ratio. The F ratio is the variance between groups and variation within groups compared. F obs M S be twe e n (bn ) M S within ( wn ) The larger our calculated F ratio, the increased likelihood that we will have a statistically significant result.

28 Illustration of another way of computing the Sum of Squares and Mean Squares using the mean method Dr. Richard Boateng, UGBS Slide 28

29 Example: does family size vary by religious affiliation?

30 Step 1: Find the mean for each sample

31 Step 2:Cal. (1) Sum of scores, (2) sum of sq. scores, (3) number of subjs., (4) and mean

32 computations

33 computations

34 computation

35 DECISION To reject the null hypothesis at the.05 significance level with 2 and 12 degrees of freedom, our calculated F ratio must exceed From the computation, our obtained F ratio of 8.24, is clearly greater than the F critical, hence we must reject the null hypothesis. Interpretation: At 0.05 significant level, it is indeed true that Family size does vary by religion.

36 Post Hoc Comparisons When the F-test is significant, we perform post hoc comparisons Post hoc comparisons are like t-tests We compare all possible pairs of level means from a factor, one pair at a time to determine which means differ significantly from each other Examples: The protected t test method and Fisher Least Significant (LSD) method

37 The Protected t Test method The null hypothesis for comparing any pair of means tested with the formula: and is t X 1 X 2 X 1 X 2 MS error MS error 1 1 MS error n 1 n 2 n 1 n 2 Ms error = MS w where MS w is simply taken from the ANOVA results and n 1 and n 2 are the sizes of the two samples whose means we are comparing. The computed value of t is referred to the t tables at α = 0.05 for a two-tailed test with the degrees of freedom (df) associated with the MS w (= N - k) and a decision is taken as to whether or not H o should be

38 Note that t here refers to the critical value of t with N-k df in a two-tailed test Fisher LSD (Least Significant Difference) method Used when all the groups have equal sample sizes, i.e. n1=n2=n3 Then the denominator of the protected t test becomes a constant for all pairwise comparisons. In such a situation, it becomes possible to determine what least significant difference (LSD) between means is needed to reject H o at any given level of significance. = t X 1 X 2 X 1 X 2 MS error MS error 1 1 MS error n 1 n 2 n 1 n 2

39 Two- way ANOVA- overview We have learned how to test for the effects of independent variables considered one at a time. However, much of human behavior is determined by the influence of several variables operating at the same time. Sometimes these variables combine to influence performance.

40 Two- way ANOVA We need to test for the independent and combined effects of multiple variables on performance. We do this with a Two- way ANOVA that asks: (i)how different from each other are the means for levels of Variable A? (ii)how different from each other are the means for levels of Variable B? (iii)how different from each other are the means for the treatment combinations produced by A and B together?

41 Two way ANOVA The first two of those questions are questions about main effects of the respective independent variables. The third question is about the interaction effect, the effect of the two variables considered simultaneously.

42 MAIN vs INTERACTION EFFECTS Main effect A main effect is the effect on performance of one treatment variable considered in isolation (ignoring other variables in the study) Interaction Effect an interaction effect occurs when the effect of one variable is different across levels of one or more other variables Slide 42

43 Illustration In order to detect interaction effects, we must use factorial designs. In a factorial design each variable is tested at every level of all of the other variables. Below represent two variables A and B both with two levels A1,A2 and B1,B2 respectively. A1 A2 B1 i ii B2 iii iv

44 Illustration I.vs III Effect of B at level A 1 of variable A II.vs IV Effect of B at A 2 If these are different, then we say that A and B interact I vs II ALTERNATIVELY Effect of A at B 1 III vs IV Effect of A at B 2 If these are different, then we say that A and B interact

45 B 2 B 2 Illustration B 1 B 1 A 1 A 2 A 1 A 2 In the graphs above, the effect of A varies at levels of B, and the effect of B varies at levels of A. How you say it is a matter of preference (and your theory). In each case, the interaction is the whole pattern. No part of the graph shows the interaction. It can only be seen in the entire pattern (here, all 4 data points).

46 Computation of F ratios in Two- Way ANOVA In a Two-Way ANOVA, three F ratios are computed: One F ratio is computed for the factor represented along the rows; a second F ratio is computed for the factor represented along the columns; and a third F ratio is computed for the interaction between the factors represented along the rows and columns. The various F ratios are each referred to the F tables with the appropriate degrees of freedom associated with each F ratio under a specified decision rule and a decision is taken as to whether or not H o should be rejected in each case. Slide 46

The One-Way Repeated-Measures ANOVA. (For Within-Subjects Designs)

The One-Way Repeated-Measures ANOVA. (For Within-Subjects Designs) The One-Way Repeated-Measures ANOVA (For Within-Subjects Designs) Logic of the Repeated-Measures ANOVA The repeated-measures ANOVA extends the analysis of variance to research situations using repeated-measures

More information

The One-Way Independent-Samples ANOVA. (For Between-Subjects Designs)

The One-Way Independent-Samples ANOVA. (For Between-Subjects Designs) The One-Way Independent-Samples ANOVA (For Between-Subjects Designs) Computations for the ANOVA In computing the terms required for the F-statistic, we won t explicitly compute any sample variances or

More information

PSYC 331 STATISTICS FOR PSYCHOLOGIST

PSYC 331 STATISTICS FOR PSYCHOLOGIST PSYC 331 STATISTICS FOR PSYCHOLOGIST Session 2 INTRODUCTION TO THE GENERAL STRATEGY OF INFERENTIAL STATITICS Lecturer: Dr. Paul Narh Doku, Dept of Psychology, UG Contact Information: pndoku@ug.edu.gh College

More information

POLI 443 Applied Political Research

POLI 443 Applied Political Research POLI 443 Applied Political Research Session 4 Tests of Hypotheses The Normal Curve Lecturer: Prof. A. Essuman-Johnson, Dept. of Political Science Contact Information: aessuman-johnson@ug.edu.gh College

More information

Introduction to the Analysis of Variance (ANOVA) Computing One-Way Independent Measures (Between Subjects) ANOVAs

Introduction to the Analysis of Variance (ANOVA) Computing One-Way Independent Measures (Between Subjects) ANOVAs Introduction to the Analysis of Variance (ANOVA) Computing One-Way Independent Measures (Between Subjects) ANOVAs The Analysis of Variance (ANOVA) The analysis of variance (ANOVA) is a statistical technique

More information

Hypothesis testing: Steps

Hypothesis testing: Steps Review for Exam 2 Hypothesis testing: Steps Repeated-Measures ANOVA 1. Determine appropriate test and hypotheses 2. Use distribution table to find critical statistic value(s) representing rejection region

More information

Hypothesis testing: Steps

Hypothesis testing: Steps Review for Exam 2 Hypothesis testing: Steps Exam 2 Review 1. Determine appropriate test and hypotheses 2. Use distribution table to find critical statistic value(s) representing rejection region 3. Compute

More information

An Old Research Question

An Old Research Question ANOVA An Old Research Question The impact of TV on high-school grade Watch or not watch Two groups The impact of TV hours on high-school grade Exactly how much TV watching would make difference Multiple

More information

Multiple t Tests. Introduction to Analysis of Variance. Experiments with More than 2 Conditions

Multiple t Tests. Introduction to Analysis of Variance. Experiments with More than 2 Conditions Introduction to Analysis of Variance 1 Experiments with More than 2 Conditions Often the research that psychologists perform has more conditions than just the control and experimental conditions You might

More information

Difference in two or more average scores in different groups

Difference in two or more average scores in different groups ANOVAs Analysis of Variance (ANOVA) Difference in two or more average scores in different groups Each participant tested once Same outcome tested in each group Simplest is one-way ANOVA (one variable as

More information

Your schedule of coming weeks. One-way ANOVA, II. Review from last time. Review from last time /22/2004. Create ANOVA table

Your schedule of coming weeks. One-way ANOVA, II. Review from last time. Review from last time /22/2004. Create ANOVA table Your schedule of coming weeks One-way ANOVA, II 9.07 //00 Today: One-way ANOVA, part II Next week: Two-way ANOVA, parts I and II. One-way ANOVA HW due Thursday Week of May Teacher out of town all week

More information

Introduction to Business Statistics QM 220 Chapter 12

Introduction to Business Statistics QM 220 Chapter 12 Department of Quantitative Methods & Information Systems Introduction to Business Statistics QM 220 Chapter 12 Dr. Mohammad Zainal 12.1 The F distribution We already covered this topic in Ch. 10 QM-220,

More information

POLI 443 Applied Political Research

POLI 443 Applied Political Research POLI 443 Applied Political Research Session 6: Tests of Hypotheses Contingency Analysis Lecturer: Prof. A. Essuman-Johnson, Dept. of Political Science Contact Information: aessuman-johnson@ug.edu.gh College

More information

Sampling Distributions: Central Limit Theorem

Sampling Distributions: Central Limit Theorem Review for Exam 2 Sampling Distributions: Central Limit Theorem Conceptually, we can break up the theorem into three parts: 1. The mean (µ M ) of a population of sample means (M) is equal to the mean (µ)

More information

Review. One-way ANOVA, I. What s coming up. Multiple comparisons

Review. One-way ANOVA, I. What s coming up. Multiple comparisons Review One-way ANOVA, I 9.07 /15/00 Earlier in this class, we talked about twosample z- and t-tests for the difference between two conditions of an independent variable Does a trial drug work better than

More information

Independent Samples ANOVA

Independent Samples ANOVA Independent Samples ANOVA In this example students were randomly assigned to one of three mnemonics (techniques for improving memory) rehearsal (the control group; simply repeat the words), visual imagery

More information

Analysis of Variance: Part 1

Analysis of Variance: Part 1 Analysis of Variance: Part 1 Oneway ANOVA When there are more than two means Each time two means are compared the probability (Type I error) =α. When there are more than two means Each time two means are

More information

Introduction to the Analysis of Variance (ANOVA)

Introduction to the Analysis of Variance (ANOVA) Introduction to the Analysis of Variance (ANOVA) The Analysis of Variance (ANOVA) The analysis of variance (ANOVA) is a statistical technique for testing for differences between the means of multiple (more

More information

10/31/2012. One-Way ANOVA F-test

10/31/2012. One-Way ANOVA F-test PSY 511: Advanced Statistics for Psychological and Behavioral Research 1 1. Situation/hypotheses 2. Test statistic 3.Distribution 4. Assumptions One-Way ANOVA F-test One factor J>2 independent samples

More information

HYPOTHESIS TESTING. Hypothesis Testing

HYPOTHESIS TESTING. Hypothesis Testing MBA 605 Business Analytics Don Conant, PhD. HYPOTHESIS TESTING Hypothesis testing involves making inferences about the nature of the population on the basis of observations of a sample drawn from the population.

More information

Factorial designs. Experiments

Factorial designs. Experiments Chapter 5: Factorial designs Petter Mostad mostad@chalmers.se Experiments Actively making changes and observing the result, to find causal relationships. Many types of experimental plans Measuring response

More information

COMPARING SEVERAL MEANS: ANOVA

COMPARING SEVERAL MEANS: ANOVA LAST UPDATED: November 15, 2012 COMPARING SEVERAL MEANS: ANOVA Objectives 2 Basic principles of ANOVA Equations underlying one-way ANOVA Doing a one-way ANOVA in R Following up an ANOVA: Planned contrasts/comparisons

More information

DETAILED CONTENTS PART I INTRODUCTION AND DESCRIPTIVE STATISTICS. 1. Introduction to Statistics

DETAILED CONTENTS PART I INTRODUCTION AND DESCRIPTIVE STATISTICS. 1. Introduction to Statistics DETAILED CONTENTS About the Author Preface to the Instructor To the Student How to Use SPSS With This Book PART I INTRODUCTION AND DESCRIPTIVE STATISTICS 1. Introduction to Statistics 1.1 Descriptive and

More information

Comparing Several Means: ANOVA

Comparing Several Means: ANOVA Comparing Several Means: ANOVA Understand the basic principles of ANOVA Why it is done? What it tells us? Theory of one way independent ANOVA Following up an ANOVA: Planned contrasts/comparisons Choosing

More information

One-Way ANOVA. Some examples of when ANOVA would be appropriate include:

One-Way ANOVA. Some examples of when ANOVA would be appropriate include: One-Way ANOVA 1. Purpose Analysis of variance (ANOVA) is used when one wishes to determine whether two or more groups (e.g., classes A, B, and C) differ on some outcome of interest (e.g., an achievement

More information

AMS7: WEEK 7. CLASS 1. More on Hypothesis Testing Monday May 11th, 2015

AMS7: WEEK 7. CLASS 1. More on Hypothesis Testing Monday May 11th, 2015 AMS7: WEEK 7. CLASS 1 More on Hypothesis Testing Monday May 11th, 2015 Testing a Claim about a Standard Deviation or a Variance We want to test claims about or 2 Example: Newborn babies from mothers taking

More information

Hypothesis T e T sting w ith with O ne O One-Way - ANOV ANO A V Statistics Arlo Clark Foos -

Hypothesis T e T sting w ith with O ne O One-Way - ANOV ANO A V Statistics Arlo Clark Foos - Hypothesis Testing with One-Way ANOVA Statistics Arlo Clark-Foos Conceptual Refresher 1. Standardized z distribution of scores and of means can be represented as percentile rankings. 2. t distribution

More information

Two-Sample Inferential Statistics

Two-Sample Inferential Statistics The t Test for Two Independent Samples 1 Two-Sample Inferential Statistics In an experiment there are two or more conditions One condition is often called the control condition in which the treatment is

More information

Factorial Analysis of Variance

Factorial Analysis of Variance Factorial Analysis of Variance Conceptual Example A repeated-measures t-test is more likely to lead to rejection of the null hypothesis if a) *Subjects show considerable variability in their change scores.

More information

1 Descriptive statistics. 2 Scores and probability distributions. 3 Hypothesis testing and one-sample t-test. 4 More on t-tests

1 Descriptive statistics. 2 Scores and probability distributions. 3 Hypothesis testing and one-sample t-test. 4 More on t-tests Overall Overview INFOWO Statistics lecture S3: Hypothesis testing Peter de Waal Department of Information and Computing Sciences Faculty of Science, Universiteit Utrecht 1 Descriptive statistics 2 Scores

More information

Using SPSS for One Way Analysis of Variance

Using SPSS for One Way Analysis of Variance Using SPSS for One Way Analysis of Variance This tutorial will show you how to use SPSS version 12 to perform a one-way, between- subjects analysis of variance and related post-hoc tests. This tutorial

More information

Analysis of Variance ANOVA. What We Will Cover in This Section. Situation

Analysis of Variance ANOVA. What We Will Cover in This Section. Situation Analysis of Variance ANOVA 8//007 P7 Analysis of Variance What We Will Cover in This Section Introduction. Overview. Simple ANOVA. Repeated Measures ANOVA. Factorial ANOVA 8//007 P7 Analysis of Variance

More information

Psych 230. Psychological Measurement and Statistics

Psych 230. Psychological Measurement and Statistics Psych 230 Psychological Measurement and Statistics Pedro Wolf December 9, 2009 This Time. Non-Parametric statistics Chi-Square test One-way Two-way Statistical Testing 1. Decide which test to use 2. State

More information

The legacy of Sir Ronald A. Fisher. Fisher s three fundamental principles: local control, replication, and randomization.

The legacy of Sir Ronald A. Fisher. Fisher s three fundamental principles: local control, replication, and randomization. 1 Chapter 1: Research Design Principles The legacy of Sir Ronald A. Fisher. Fisher s three fundamental principles: local control, replication, and randomization. 2 Chapter 2: Completely Randomized Design

More information

ANOVA 3/12/2012. Two reasons for using ANOVA. Type I Error and Multiple Tests. Review Independent Samples t test

ANOVA 3/12/2012. Two reasons for using ANOVA. Type I Error and Multiple Tests. Review Independent Samples t test // ANOVA Lectures - Readings: GW Review Independent Samples t test Placeo Treatment 7 7 7 Mean... Review Independent Samples t test Placeo Treatment 7 7 7 Mean.. t (). p. C. I.: p t tcrit s pt crit s t

More information

10/4/2013. Hypothesis Testing & z-test. Hypothesis Testing. Hypothesis Testing

10/4/2013. Hypothesis Testing & z-test. Hypothesis Testing. Hypothesis Testing & z-test Lecture Set 11 We have a coin and are trying to determine if it is biased or unbiased What should we assume? Why? Flip coin n = 100 times E(Heads) = 50 Why? Assume we count 53 Heads... What could

More information

One-Way Analysis of Variance (ANOVA) Paul K. Strode, Ph.D.

One-Way Analysis of Variance (ANOVA) Paul K. Strode, Ph.D. One-Way Analysis of Variance (ANOVA) Paul K. Strode, Ph.D. Purpose While the T-test is useful to compare the means of two samples, many biology experiments involve the parallel measurement of three or

More information

MATH 240. Chapter 8 Outlines of Hypothesis Tests

MATH 240. Chapter 8 Outlines of Hypothesis Tests MATH 4 Chapter 8 Outlines of Hypothesis Tests Test for Population Proportion p Specify the null and alternative hypotheses, ie, choose one of the three, where p is some specified number: () H : p H : p

More information

PLSC PRACTICE TEST ONE

PLSC PRACTICE TEST ONE PLSC 724 - PRACTICE TEST ONE 1. Discuss briefly the relationship between the shape of the normal curve and the variance. 2. What is the relationship between a statistic and a parameter? 3. How is the α

More information

Sampling distribution of t. 2. Sampling distribution of t. 3. Example: Gas mileage investigation. II. Inferential Statistics (8) t =

Sampling distribution of t. 2. Sampling distribution of t. 3. Example: Gas mileage investigation. II. Inferential Statistics (8) t = 2. The distribution of t values that would be obtained if a value of t were calculated for each sample mean for all possible random of a given size from a population _ t ratio: (X - µ hyp ) t s x The result

More information

Statistical methods for comparing multiple groups. Lecture 7: ANOVA. ANOVA: Definition. ANOVA: Concepts

Statistical methods for comparing multiple groups. Lecture 7: ANOVA. ANOVA: Definition. ANOVA: Concepts Statistical methods for comparing multiple groups Lecture 7: ANOVA Sandy Eckel seckel@jhsph.edu 30 April 2008 Continuous data: comparing multiple means Analysis of variance Binary data: comparing multiple

More information

COGS 14B: INTRODUCTION TO STATISTICAL ANALYSIS

COGS 14B: INTRODUCTION TO STATISTICAL ANALYSIS COGS 14B: INTRODUCTION TO STATISTICAL ANALYSIS TA: Sai Chowdary Gullapally scgullap@eng.ucsd.edu Office Hours: Thursday (Mandeville) 3:30PM - 4:30PM (or by appointment) Slides: I am using the amazing slides

More information

PSYC 331 STATISTICS FOR PSYCHOLOGISTS

PSYC 331 STATISTICS FOR PSYCHOLOGISTS PSYC 331 STATISTICS FOR PSYCHOLOGISTS Session 1 BASIC CONCEPTS IN STATISTICS Lecturer: Dr. Paul Narh Doku, Dept of Psychology, UG Contact Information: pndoku@ug.edu.gh College of Education School of Continuing

More information

FRANKLIN UNIVERSITY PROFICIENCY EXAM (FUPE) STUDY GUIDE

FRANKLIN UNIVERSITY PROFICIENCY EXAM (FUPE) STUDY GUIDE FRANKLIN UNIVERSITY PROFICIENCY EXAM (FUPE) STUDY GUIDE Course Title: Probability and Statistics (MATH 80) Recommended Textbook(s): Number & Type of Questions: Probability and Statistics for Engineers

More information

2 and F Distributions. Barrow, Statistics for Economics, Accounting and Business Studies, 4 th edition Pearson Education Limited 2006

2 and F Distributions. Barrow, Statistics for Economics, Accounting and Business Studies, 4 th edition Pearson Education Limited 2006 and F Distributions Lecture 9 Distribution The distribution is used to: construct confidence intervals for a variance compare a set of actual frequencies with expected frequencies test for association

More information

OHSU OGI Class ECE-580-DOE :Design of Experiments Steve Brainerd

OHSU OGI Class ECE-580-DOE :Design of Experiments Steve Brainerd Why We Use Analysis of Variance to Compare Group Means and How it Works The question of how to compare the population means of more than two groups is an important one to researchers. Let us suppose that

More information

Workshop Research Methods and Statistical Analysis

Workshop Research Methods and Statistical Analysis Workshop Research Methods and Statistical Analysis Session 2 Data Analysis Sandra Poeschl 08.04.2013 Page 1 Research process Research Question State of Research / Theoretical Background Design Data Collection

More information

Statistics Primer. ORC Staff: Jayme Palka Peter Boedeker Marcus Fagan Trey Dejong

Statistics Primer. ORC Staff: Jayme Palka Peter Boedeker Marcus Fagan Trey Dejong Statistics Primer ORC Staff: Jayme Palka Peter Boedeker Marcus Fagan Trey Dejong 1 Quick Overview of Statistics 2 Descriptive vs. Inferential Statistics Descriptive Statistics: summarize and describe data

More information

Chapter 12 - Lecture 2 Inferences about regression coefficient

Chapter 12 - Lecture 2 Inferences about regression coefficient Chapter 12 - Lecture 2 Inferences about regression coefficient April 19th, 2010 Facts about slope Test Statistic Confidence interval Hypothesis testing Test using ANOVA Table Facts about slope In previous

More information

Psychology 282 Lecture #4 Outline Inferences in SLR

Psychology 282 Lecture #4 Outline Inferences in SLR Psychology 282 Lecture #4 Outline Inferences in SLR Assumptions To this point we have not had to make any distributional assumptions. Principle of least squares requires no assumptions. Can use correlations

More information

Chapter 8 Student Lecture Notes 8-1. Department of Economics. Business Statistics. Chapter 12 Chi-square test of independence & Analysis of Variance

Chapter 8 Student Lecture Notes 8-1. Department of Economics. Business Statistics. Chapter 12 Chi-square test of independence & Analysis of Variance Chapter 8 Student Lecture Notes 8-1 Department of Economics Business Statistics Chapter 1 Chi-square test of independence & Analysis of Variance ECON 509 Dr. Mohammad Zainal Chapter Goals After completing

More information

DESIGNING EXPERIMENTS AND ANALYZING DATA A Model Comparison Perspective

DESIGNING EXPERIMENTS AND ANALYZING DATA A Model Comparison Perspective DESIGNING EXPERIMENTS AND ANALYZING DATA A Model Comparison Perspective Second Edition Scott E. Maxwell Uniuersity of Notre Dame Harold D. Delaney Uniuersity of New Mexico J,t{,.?; LAWRENCE ERLBAUM ASSOCIATES,

More information

Advanced Experimental Design

Advanced Experimental Design Advanced Experimental Design Topic Four Hypothesis testing (z and t tests) & Power Agenda Hypothesis testing Sampling distributions/central limit theorem z test (σ known) One sample z & Confidence intervals

More information

" M A #M B. Standard deviation of the population (Greek lowercase letter sigma) σ 2

 M A #M B. Standard deviation of the population (Greek lowercase letter sigma) σ 2 Notation and Equations for Final Exam Symbol Definition X The variable we measure in a scientific study n The size of the sample N The size of the population M The mean of the sample µ The mean of the

More information

Unit 27 One-Way Analysis of Variance

Unit 27 One-Way Analysis of Variance Unit 27 One-Way Analysis of Variance Objectives: To perform the hypothesis test in a one-way analysis of variance for comparing more than two population means Recall that a two sample t test is applied

More information

Factorial Independent Samples ANOVA

Factorial Independent Samples ANOVA Factorial Independent Samples ANOVA Liljenquist, Zhong and Galinsky (2010) found that people were more charitable when they were in a clean smelling room than in a neutral smelling room. Based on that

More information

Analysis of variance

Analysis of variance Analysis of variance 1 Method If the null hypothesis is true, then the populations are the same: they are normal, and they have the same mean and the same variance. We will estimate the numerical value

More information

The t-statistic. Student s t Test

The t-statistic. Student s t Test The t-statistic 1 Student s t Test When the population standard deviation is not known, you cannot use a z score hypothesis test Use Student s t test instead Student s t, or t test is, conceptually, very

More information

Chapter 12: Estimation

Chapter 12: Estimation Chapter 12: Estimation Estimation In general terms, estimation uses a sample statistic as the basis for estimating the value of the corresponding population parameter. Although estimation and hypothesis

More information

STAT 115:Experimental Designs

STAT 115:Experimental Designs STAT 115:Experimental Designs Josefina V. Almeda 2013 Multisample inference: Analysis of Variance 1 Learning Objectives 1. Describe Analysis of Variance (ANOVA) 2. Explain the Rationale of ANOVA 3. Compare

More information

Factorial Analysis of Variance

Factorial Analysis of Variance Factorial Analysis of Variance Overview of the Factorial ANOVA In the context of ANOVA, an independent variable (or a quasiindependent variable) is called a factor, and research studies with multiple factors,

More information

Lecture 11: Two Way Analysis of Variance

Lecture 11: Two Way Analysis of Variance Lecture 11: Two Way Analysis of Variance Review: Hypothesis Testing o ANOVA/F ratio: comparing variances o F = s variance between treatment effect + chance s variance within sampling error (chance effects)

More information

Chapter Seven: Multi-Sample Methods 1/52

Chapter Seven: Multi-Sample Methods 1/52 Chapter Seven: Multi-Sample Methods 1/52 7.1 Introduction 2/52 Introduction The independent samples t test and the independent samples Z test for a difference between proportions are designed to analyze

More information

Department of Economics. Business Statistics. Chapter 12 Chi-square test of independence & Analysis of Variance ECON 509. Dr.

Department of Economics. Business Statistics. Chapter 12 Chi-square test of independence & Analysis of Variance ECON 509. Dr. Department of Economics Business Statistics Chapter 1 Chi-square test of independence & Analysis of Variance ECON 509 Dr. Mohammad Zainal Chapter Goals After completing this chapter, you should be able

More information

Lecture 18: Analysis of variance: ANOVA

Lecture 18: Analysis of variance: ANOVA Lecture 18: Announcements: Exam has been graded. See website for results. Lecture 18: Announcements: Exam has been graded. See website for results. Reading: Vasilj pp. 83-97. Lecture 18: Announcements:

More information

8/23/2018. One-Way ANOVA F-test. 1. Situation/hypotheses. 2. Test statistic. 3.Distribution. 4. Assumptions

8/23/2018. One-Way ANOVA F-test. 1. Situation/hypotheses. 2. Test statistic. 3.Distribution. 4. Assumptions PSY 5101: Advanced Statistics for Psychological and Behavioral Research 1 1. Situation/hypotheses 2. Test statistic One-Way ANOVA F-test One factor J>2 independent samples H o :µ 1 µ 2 µ J F 3.Distribution

More information

CHAPTER 17 CHI-SQUARE AND OTHER NONPARAMETRIC TESTS FROM: PAGANO, R. R. (2007)

CHAPTER 17 CHI-SQUARE AND OTHER NONPARAMETRIC TESTS FROM: PAGANO, R. R. (2007) FROM: PAGANO, R. R. (007) I. INTRODUCTION: DISTINCTION BETWEEN PARAMETRIC AND NON-PARAMETRIC TESTS Statistical inference tests are often classified as to whether they are parametric or nonparametric Parameter

More information

Lecture 7: Hypothesis Testing and ANOVA

Lecture 7: Hypothesis Testing and ANOVA Lecture 7: Hypothesis Testing and ANOVA Goals Overview of key elements of hypothesis testing Review of common one and two sample tests Introduction to ANOVA Hypothesis Testing The intent of hypothesis

More information

Statistiek II. John Nerbonne using reworkings by Hartmut Fitz and Wilbert Heeringa. February 13, Dept of Information Science

Statistiek II. John Nerbonne using reworkings by Hartmut Fitz and Wilbert Heeringa. February 13, Dept of Information Science Statistiek II John Nerbonne using reworkings by Hartmut Fitz and Wilbert Heeringa Dept of Information Science j.nerbonne@rug.nl February 13, 2014 Course outline 1 One-way ANOVA. 2 Factorial ANOVA. 3 Repeated

More information

Note: k = the # of conditions n = # of data points in a condition N = total # of data points

Note: k = the # of conditions n = # of data points in a condition N = total # of data points The ANOVA for2 Dependent Groups -- Analysis of 2-Within (or Matched)-Group Data with a Quantitative Response Variable Application: This statistic has two applications that can appear very different, but

More information

Lab #12: Exam 3 Review Key

Lab #12: Exam 3 Review Key Psychological Statistics Practice Lab#1 Dr. M. Plonsky Page 1 of 7 Lab #1: Exam 3 Review Key 1) a. Probability - Refers to the likelihood that an event will occur. Ranges from 0 to 1. b. Sampling Distribution

More information

Design of Experiments. Factorial experiments require a lot of resources

Design of Experiments. Factorial experiments require a lot of resources Design of Experiments Factorial experiments require a lot of resources Sometimes real-world practical considerations require us to design experiments in specialized ways. The design of an experiment is

More information

These are all actually contrasts (the coef sum to zero). What are these contrasts representing? What would make them large?

These are all actually contrasts (the coef sum to zero). What are these contrasts representing? What would make them large? Lecture 12 Comparing treatment effects Orthogonal Contrasts What use are contrasts? Recall the Cotton data In this case, the treatment levels have an ordering to them this is not always the case) Consider

More information

ANALYTICAL COMPARISONS AMONG TREATMENT MEANS (CHAPTER 4)

ANALYTICAL COMPARISONS AMONG TREATMENT MEANS (CHAPTER 4) ANALYTICAL COMPARISONS AMONG TREATMENT MEANS (CHAPTER 4) ERSH 8310 Fall 2007 September 11, 2007 Today s Class The need for analytic comparisons. Planned comparisons. Comparisons among treatment means.

More information

BIOL Biometry LAB 6 - SINGLE FACTOR ANOVA and MULTIPLE COMPARISON PROCEDURES

BIOL Biometry LAB 6 - SINGLE FACTOR ANOVA and MULTIPLE COMPARISON PROCEDURES BIOL 458 - Biometry LAB 6 - SINGLE FACTOR ANOVA and MULTIPLE COMPARISON PROCEDURES PART 1: INTRODUCTION TO ANOVA Purpose of ANOVA Analysis of Variance (ANOVA) is an extremely useful statistical method

More information

STAT 263/363: Experimental Design Winter 2016/17. Lecture 1 January 9. Why perform Design of Experiments (DOE)? There are at least two reasons:

STAT 263/363: Experimental Design Winter 2016/17. Lecture 1 January 9. Why perform Design of Experiments (DOE)? There are at least two reasons: STAT 263/363: Experimental Design Winter 206/7 Lecture January 9 Lecturer: Minyong Lee Scribe: Zachary del Rosario. Design of Experiments Why perform Design of Experiments (DOE)? There are at least two

More information

INTRODUCTION TO ANALYSIS OF VARIANCE

INTRODUCTION TO ANALYSIS OF VARIANCE CHAPTER 22 INTRODUCTION TO ANALYSIS OF VARIANCE Chapter 18 on inferences about population means illustrated two hypothesis testing situations: for one population mean and for the difference between two

More information

Analysis of Variance (ANOVA)

Analysis of Variance (ANOVA) Analysis of Variance (ANOVA) Two types of ANOVA tests: Independent measures and Repeated measures Comparing 2 means: X 1 = 20 t - test X 2 = 30 How can we Compare 3 means?: X 1 = 20 X 2 = 30 X 3 = 35 ANOVA

More information

Introduction and Descriptive Statistics p. 1 Introduction to Statistics p. 3 Statistics, Science, and Observations p. 5 Populations and Samples p.

Introduction and Descriptive Statistics p. 1 Introduction to Statistics p. 3 Statistics, Science, and Observations p. 5 Populations and Samples p. Preface p. xi Introduction and Descriptive Statistics p. 1 Introduction to Statistics p. 3 Statistics, Science, and Observations p. 5 Populations and Samples p. 6 The Scientific Method and the Design of

More information

One-way between-subjects ANOVA. Comparing three or more independent means

One-way between-subjects ANOVA. Comparing three or more independent means One-way between-subjects ANOVA Comparing three or more independent means Data files SpiderBG.sav Attractiveness.sav Homework: sourcesofself-esteem.sav ANOVA: A Framework Understand the basic principles

More information

Lecture 3: Analysis of Variance II

Lecture 3: Analysis of Variance II Lecture 3: Analysis of Variance II http://www.stats.ox.ac.uk/ winkel/phs.html Dr Matthias Winkel 1 Outline I. A second introduction to two-way ANOVA II. Repeated measures design III. Independent versus

More information

One-way ANOVA. Experimental Design. One-way ANOVA

One-way ANOVA. Experimental Design. One-way ANOVA Method to compare more than two samples simultaneously without inflating Type I Error rate (α) Simplicity Few assumptions Adequate for highly complex hypothesis testing 09/30/12 1 Outline of this class

More information

Chapter 9 Inferences from Two Samples

Chapter 9 Inferences from Two Samples Chapter 9 Inferences from Two Samples 9-1 Review and Preview 9-2 Two Proportions 9-3 Two Means: Independent Samples 9-4 Two Dependent Samples (Matched Pairs) 9-5 Two Variances or Standard Deviations Review

More information

9 One-Way Analysis of Variance

9 One-Way Analysis of Variance 9 One-Way Analysis of Variance SW Chapter 11 - all sections except 6. The one-way analysis of variance (ANOVA) is a generalization of the two sample t test to k 2 groups. Assume that the populations of

More information

Lec 1: An Introduction to ANOVA

Lec 1: An Introduction to ANOVA Ying Li Stockholm University October 31, 2011 Three end-aisle displays Which is the best? Design of the Experiment Identify the stores of the similar size and type. The displays are randomly assigned to

More information

Statistics For Economics & Business

Statistics For Economics & Business Statistics For Economics & Business Analysis of Variance In this chapter, you learn: Learning Objectives The basic concepts of experimental design How to use one-way analysis of variance to test for differences

More information

16.400/453J Human Factors Engineering. Design of Experiments II

16.400/453J Human Factors Engineering. Design of Experiments II J Human Factors Engineering Design of Experiments II Review Experiment Design and Descriptive Statistics Research question, independent and dependent variables, histograms, box plots, etc. Inferential

More information

One-way between-subjects ANOVA. Comparing three or more independent means

One-way between-subjects ANOVA. Comparing three or more independent means One-way between-subjects ANOVA Comparing three or more independent means ANOVA: A Framework Understand the basic principles of ANOVA Why it is done? What it tells us? Theory of one-way between-subjects

More information

psyc3010 lecture 2 factorial between-ps ANOVA I: omnibus tests

psyc3010 lecture 2 factorial between-ps ANOVA I: omnibus tests psyc3010 lecture 2 factorial between-ps ANOVA I: omnibus tests last lecture: introduction to factorial designs next lecture: factorial between-ps ANOVA II: (effect sizes and follow-up tests) 1 general

More information

4/6/16. Non-parametric Test. Overview. Stephen Opiyo. Distinguish Parametric and Nonparametric Test Procedures

4/6/16. Non-parametric Test. Overview. Stephen Opiyo. Distinguish Parametric and Nonparametric Test Procedures Non-parametric Test Stephen Opiyo Overview Distinguish Parametric and Nonparametric Test Procedures Explain commonly used Nonparametric Test Procedures Perform Hypothesis Tests Using Nonparametric Procedures

More information

SOCI 221 Basic Concepts in Sociology

SOCI 221 Basic Concepts in Sociology SOCI 221 Basic Concepts in Sociology Session 3 Sociology and Other Related Social Science Disciplines Lecturer: Dr. Samson Obed Appiah, Dept. of Sociology Contact Information: soappiah@ug.edu.gh College

More information

Nominal Data. Parametric Statistics. Nonparametric Statistics. Parametric vs Nonparametric Tests. Greg C Elvers

Nominal Data. Parametric Statistics. Nonparametric Statistics. Parametric vs Nonparametric Tests. Greg C Elvers Nominal Data Greg C Elvers 1 Parametric Statistics The inferential statistics that we have discussed, such as t and ANOVA, are parametric statistics A parametric statistic is a statistic that makes certain

More information

Comparing the means of more than two groups

Comparing the means of more than two groups Comparing the means of more than two groups Chapter 15 Analysis of variance (ANOVA) Like a t-test, but can compare more than two groups Asks whether any of two or more means is different from any other.

More information

One-Way ANOVA Source Table J - 1 SS B / J - 1 MS B /MS W. Pairwise Post-Hoc Comparisons of Means

One-Way ANOVA Source Table J - 1 SS B / J - 1 MS B /MS W. Pairwise Post-Hoc Comparisons of Means One-Way ANOVA Source Table ANOVA MODEL: ij = µ* + α j + ε ij H 0 : µ 1 = µ =... = µ j or H 0 : Σα j = 0 Source Sum of Squares df Mean Squares F Between Groups n j ( j - * ) J - 1 SS B / J - 1 MS B /MS

More information

Hypothesis Tests and Estimation for Population Variances. Copyright 2014 Pearson Education, Inc.

Hypothesis Tests and Estimation for Population Variances. Copyright 2014 Pearson Education, Inc. Hypothesis Tests and Estimation for Population Variances 11-1 Learning Outcomes Outcome 1. Formulate and carry out hypothesis tests for a single population variance. Outcome 2. Develop and interpret confidence

More information

DISTRIBUTIONS USED IN STATISTICAL WORK

DISTRIBUTIONS USED IN STATISTICAL WORK DISTRIBUTIONS USED IN STATISTICAL WORK In one of the classic introductory statistics books used in Education and Psychology (Glass and Stanley, 1970, Prentice-Hall) there was an excellent chapter on different

More information

SEVERAL μs AND MEDIANS: MORE ISSUES. Business Statistics

SEVERAL μs AND MEDIANS: MORE ISSUES. Business Statistics SEVERAL μs AND MEDIANS: MORE ISSUES Business Statistics CONTENTS Post-hoc analysis ANOVA for 2 groups The equal variances assumption The Kruskal-Wallis test Old exam question Further study POST-HOC ANALYSIS

More information

One-Way Analysis of Variance: ANOVA

One-Way Analysis of Variance: ANOVA One-Way Analysis of Variance: ANOVA Dr. J. Kyle Roberts Southern Methodist University Simmons School of Education and Human Development Department of Teaching and Learning Background to ANOVA Recall from

More information

16.3 One-Way ANOVA: The Procedure

16.3 One-Way ANOVA: The Procedure 16.3 One-Way ANOVA: The Procedure Tom Lewis Fall Term 2009 Tom Lewis () 16.3 One-Way ANOVA: The Procedure Fall Term 2009 1 / 10 Outline 1 The background 2 Computing formulas 3 The ANOVA Identity 4 Tom

More information

CIVL /8904 T R A F F I C F L O W T H E O R Y L E C T U R E - 8

CIVL /8904 T R A F F I C F L O W T H E O R Y L E C T U R E - 8 CIVL - 7904/8904 T R A F F I C F L O W T H E O R Y L E C T U R E - 8 Chi-square Test How to determine the interval from a continuous distribution I = Range 1 + 3.322(logN) I-> Range of the class interval

More information