Analysis and modelling of dielectric relaxation data using DCALC

Size: px
Start display at page:

Download "Analysis and modelling of dielectric relaxation data using DCALC"

Transcription

1 Analysis and modelling of dielectric relaxation data using DCALC Michael Wübbenhorst Short course, Lodz, 8 October 2008 Part I dielectric theory, representation of data

2 Schedule 1 st session (8 October 2008): 1) A brief introduction into DRS including dielectric relaxation theory, presentation of dielectric relaxation data in f- and T-domain, empirical relaxation functions and their temperature dependence (~ 45 min). 2) Presentation of the internal structure of DCALC, import/export of data, 2D and 3D graphical presentation capabilities and quick data analysis, example: PVAc. 2 nd session (9 October 2008): 3) General fit-functions in the frequency domain, Fit-functions and options in DCALC, demonstration case PVAc or P2VP 4) "Hands-on" session (Please bring your own laptop with you and have DCALC installed and tested in advance) 3 rd session (date t.b.a.): 5) Advanced numerical algorithm of DCALC: 1D and 2D derivatives, KK-transform, conductivity analysis 6) Fits using ε der and fitting in temperature domain; 2D-fits and temperature depending HNparameters Laboratorium voor Akoestiek en Thermische Fysica Michael Wübbenhorst

3 Outline Electrostatic relations Polarization microscopic approach From macroscopic to macroscopic quantities The complex permittivity, the f-domain d i experiment Relaxation time (spectra) Empiric dielectric functions Temperature dependence of the dielectric properties Experimental implementation if DRS Representation of dielectric relaxation data Laboratorium voor Akoestiek en Thermische Fysica Michael Wübbenhorst

4 Dielectric response Electrostatic relations on a parallel-plate capacitor: Electrical field E between plates in vacuum: E = V d Charges +Q and -Q on surface: Q = ε EA Vacuum capacitance C 0 : 0 C = Q V 0 Dielectric constant of the material ε: C Q+ PA ε = = C Q 0 or ε = ε 0E + ε E 0 P ε 0= As/Vm As [ C] = F ( Farad) = V P : polarisation

5 Dielectric response (2) Total electrical polarisation in a dielectric: ( ε 1ε ) E Ps P + = 0 induced polarisation all dielectric materials with ε > 1 spontaneous polarisation pyroelectricity, piezoelectricity ferroelectricity passive dielectric properties active further: χ el = electrical susceptibility = ε 1 χ el

6 Polarisation microscopic approach P = N α N 0 : concentration of dipoles 0 E L molecular polarisability α E L : local electric field P = N ) E 0( α e + αa + αo orientational atomic electronic α o α e Electronic and atomic polarisability: α a L + _ + No field fast displacements of electrons and atoms at optical frequencies + _ + - E (almost) T-independent property of all nonpolar materials refractive index n > 1

7 Polarisation microscopic approach (2) DRS characteristic time scales α o αe α e α a Relaxation phenomena IR VIS/UV Orientational polarisability

8 Orientational polarisation No field, E=0: Direction of mobile molecular dipoles arbitrary and driven by thermal energy kt no average orientation m=0 μ E>0: Change of angular distribution due to directing electrical field, energy is me L m μ E Effective (induced) dipole moment m: m 2 μ E 3kT L m : molecular dipole moment

9 Orientational polarisation Langevin function x x m e + e 1 μe ( ) L Lx = = with x= x x μ e e x kt L( (x) Lx ( ) saturation Practical (low-field) conditions: E = 1V/50μm T = 300K μ = 2D x μe = L μe ! 3 3kT kt 0.0 linear approximation holds x=æe/kt

10 From microscopic to macroscopic quantities P N ) E = local field external field ( 0 α e + α a + α o) L Clausius-Mosotti relation: ε 1 MW N Aα = ε + 2 ρ 3ε M W : molecular weight ρ: density N A : Avogadro s number 0 local field considerations see e.g. Blythe, Electrical Properties of Polymers 10

11 From microscopic to macroscopic quantities (2) Dielectric experiment capacity C d Aεε = Alternating voltage: d C 0 ε = C C 0 A V ( t) = V e 0 Current response of capacitor C= εc 0 ε V I 0 iωt dv ( t) t) = ε C0 = iωεc V ( t) dt ( 0 90 phase shift

12 From microscopic to macroscopic quantities (3) Non-ideal capacitor: polarisation build-up requires finite time complex dielectric constant ε * = ε' iε" this leads to 2 components of the current: I C = iωc0ε ' V I R = ωc0ε " V imaginary (capacitive) component, real (resistive) component, I and V are out of phase energy dissipation term additional phase lag δ beteen V and I tanδ = ε ε 12

13 Single-Time Relaxation Process thermal agitation Relaxation of P 0 into thermal equilibrium i 1.2 Characteristic time to attain thermal equilibrium: P(t), E(t) E(t) t Pt () = P0 exp τ relaxation time τ 0.2 τ= time 13

14 Single-Time Relaxation Process Statistical nature of single-exponential relaxation E=0 m = t 0 E>>0 time t m > t 0 thermal energy: rotational diffusion of individual dipoles time τ involves many small-step rotations

15 Dielectric relaxations Alternating electrical field at angular frequency ω: complex dielectric constant ε ω ε ω ε ω ' ( ) = ( ) i "( ) All molecules have the same τ Debye relaxation ε' ωτ = 1 ε" (loss) ( ) ' ε ω εs ε " = ε + ε ( ω) ω τ equivalent circuit: τ = RC εs ε = 1 + ωτ 2 2 ωτ ( ) C 0 εs ε R ε CC log(ω)

16 Relaxation time spectra deviation of peak shape from Debye type no single relaxation time behaviour formal approach: Debye equation: Δε ε * ( ω) = ε iωτ distribution in relaxation time L(τ) ( ) ε * ω = ε +Δε lnτ 1+ iωτ L ( τ ) d with L ( τ ) d ln τ = 1

17 Relaxation time spectra molecular reasons: real distribution in molecular potentials causes distribution in relaxation time e.g.: secondary peaks cooperativity it many-body interactions between relaxing units e.g.: α-relaxation (segmental process) t=t 0 t=tt 0 +Δ t

18 Relaxation time spectra model functions Debye equation: Δε ε * ( ω) = ε iωτ ε ω = ε + * Cole/Davidson: ( ) CD asymmetric broadening + Δε ( 1+ iωτ ) CD β ε ω ε * Cole-Cole: ( ) CC symmetric broadening Δε = ( iωτ ) 1 CC β

19 Relaxation time spectra ε ω = ε + * Havliliak-Negami: ( ) HN 2 shape parameters: β: symmetric broadening γ: asymmetry log(ε) Δε ( β 1+ ( iωτ ) ) HN γ empirical function nevertheless, widely used to model dielectric spectra m= β n= -βγ log(ω)

20 Relaxation time spectra (HN-function)

21 Relaxation time spectra (model-free) distribution in relaxation time L(τ) ( τ ) L ε *( ω) = ε +Δε d lnτ 1+ iωτ Computation of L(τ) by numerical techniques possible, e.g. Tikhonov regularization

22 Temperature dependence of the relaxation time Molecular processes usually thermally activated processes Arrhenius law ε' α E β α J β T T dielectric relaxations: gain in orientational polarisability with temperature mechanical relaxations: gain in softness with temperature 22

23 Thermally activated processes Temperature dependence of relaxation time: Arrheniuslaw thermal activation of τ log f α (Hz) max α β τ β-process p E = kt ( ) a T τ exp /T (1/K) T-dependence τ(t) ofα α and β- process in a poly(ether ester) [Mertens et al. 1999, pol. 1a]

24 Thermally activated processes Physical meaning of the Arrheniuslaw thermal activation of a motion over energy barrier Energy U Barrier model: T-independent height of energy barrier E a (activation energy) ΔU typical Arrhenius processes in polymers: rotation angle local (secondary) relaxations in glassy state dynamics in liquid crystalline polymers

25 Dipoles in polymers Some dipole moments of simple molecules Compound Dipole moment Cm Di l t i l H 2 O 6.1 HF 6.4 HCl 3.6 PVC - + HBr 2.6 H C - Cl H CH 4 0 C μ CCl 4 0 C H CO 2 0 Cl NH CH 3 Cl PVDF C 2 H 5 OH 5.7 H + (C 2 H 5 ) 2 O 3.8 F C - C C 6 H 5 Cl 5.7 F C 6 H 5 NO H F Dipole moments in polymers C - F Remember: dielectric response 2 μ

26 Dipoles in polymers Location of dipole moments in the polymer chain: Type A: dipole moment along chain axis Type B: dipole moment perpendicular to chain axis Cl Cl CH 2 C CH 2 C H H poly(vinyl chloride) Type C: dipole moment in side group CH 3 CH 2 CH 2 C C CH 2 H cis-1,4-polyisoprene CH 3 CH 3 CH 2 C CH 2 C O C O C O O CH 3 CH 3 PMMA

27 Experimental techniques for DRS measurement of (complex) capacitance or resistance by e.g. bridge techniques frequency response analyser A dielectric sample cell Z x A V phase sensitive measurement of voltage and current sample configurations: comb electrode: parallel plate config.: E E

28 Experimental techniques for DRS RLC meter HP4284A (Agilent) 20 Hz 1MHz Medium resolution in loss Dielectric spectrometer (Novocontrol) Alpha-Analyser (high resolution) Hz 10 MHz

29 Experimental techniques for DRS Time-domain setup Prof. Yuri Feldman, Jerusalem Up to 10 GHz Time domain data need transformation ti to frequency space

30 Specific application: DRS on ultrathin film "capacitors" Top electrode Polymer film Lower electrode Substrate Clean room for thin film preparation 1. thermal evaporation of lower metal electrode on glass substrates. 2. spin-coating of very dilute (filtred) polymer solutions 3. drying + annealing in vacuum 4. 2 nd evaporation patterned top electrode DRS on ultra-thin films

31 Dielectric instrumentation: Subject of separate lectures Last part of this part: Various representation of complex dielectric spectra DRS on ultra-thin films

32 Representation of relaxation spectra 1) Spectra of the real (ε ) and imaginary part (ε ) of the permittivity Generally: ε ω ε ω ε ω ' ( ) = ( ) i "( ) 2 spectra that carry (almost) equivalent information Kramers-Kronig integral transforms:

33 Representation of relaxation spectra 2) KK-transform numerically computed by DCALC = ε ε KK Note: ε KK lacks conduction term Good reproduction of ε in the peak region Additional features at low frequencies revealed

34 Representation of relaxation spectra 2) KK-transform effect of frequency spacing! less is more! DCALC algorithm optimized for geometric f- series (f, 2f, 4f )

35 Representation of relaxation spectra 3) An approximation of the KK-transform ε deriv loss-free part of ε Good reproduction of ε in the peak region for broad processes For narrow (Debye) processes extra-sharp peak in ε der Additional features at low frequencies revealed

36 Representation of relaxation spectra 3) ε deriv effect of peak shape

37 Representation of relaxation spectra 4) Loss tangent a mixed quantity ε tan δ = ε normalized dielectric ect c loss eliminates dimensional problems peak in tanδ shifted compared to ε

38 Representation of relaxation spectra 5) The Cole-Cole plot ε vs ε Allows easy consistency check between e and e data (KK relation fulfilled) Frequency not explicit displayed Easy graphical inspection of peak symmetry and broadening Commonly used in impedance spectroscopy (Nyquist-plot)

39 Representation of relaxation spectra 5) The Cole-Cole plot Nyquist Diagram General Nyquist diagram Nyquist diagram for impedance

40 Representation of relaxation spectra 5) Dielectric modulus definition Note that tanδ is the same as for ε* M

41 Representation of relaxation spectra 5) Dielectric modulus Imaginary part shows conduction peak in the conduction region, Maximum yields Ohmic relaxation time: Relaxation peaks appear shifted in M -representation This shift is twice of the shift in tanδ because of M

42 Representation of relaxation spectra 5) Dielectric modulus in CC-representation Conduction peak α-peakp α-peak

43 Representation of relaxation spectra 6) Conductivity representation σ ε ε ω = 0 Increasing T

44 Representation of relaxation spectra 6) Conductivity representation filtered data Special function of DCALC: Exclusive display of (nearly) frequency independent σ-values

45 Representation of relaxation spectra More options, e.g. Admittance Impedance Capacitance etc. Further reading: M. Wübbenhorst and J. van Turnhout, "Analysis of complex dielectric spectra. I. Onedimensional derivative techniques and three-dimensional modelling.," J. Non-Cryst. Solids, vol. 305, pp , J. van Turnhout and M. Wübbenhorst, "Analysis of complex dielectric spectra. II. Evaluation of the activation energy landscape by differential sampling.," J. Non-Cryst. Solids, vol. 305, pp , Mario F. García-Sánchez et al., An Elementary Picture of Dielectric Spectroscopy in Solids: Physical Basis, Journal of Chemical Education, Vol. 80, 2003, pp. 1062

Polymers and nano-composites

Polymers and nano-composites Polymers and nano-composites Michael Wübbenhorst Laboratorium voor Akoestiek en Thermische Fysica, Katholieke Universiteit Leuven Celestijnenlaan 200D, B-3001 Leuven, http://fys.kuleuven.be/atf Tutorial:

More information

DIELECTRIC SPECTROSCOPY. & Comparison With Other Techniques

DIELECTRIC SPECTROSCOPY. & Comparison With Other Techniques DIELECTRIC SPECTROSCOPY & Comparison With Other Techniques DIELECTRIC SPECTROSCOPY measures the dielectric and electric properties of a medium as a function of frequency (time) is based on the interaction

More information

EFFECT OF ZnO ON DIELECTRIC PROPERTIES AND ELECTRICAL CONDUCTIVITY OF TERNARY ZINC MAGNESIUM PHOSPHATE GLASSES

EFFECT OF ZnO ON DIELECTRIC PROPERTIES AND ELECTRICAL CONDUCTIVITY OF TERNARY ZINC MAGNESIUM PHOSPHATE GLASSES EFFECT OF ZnO ON DIELECTRIC PROPERTIES AND ELECTRICAL CONDUCTIVITY OF TERNARY ZINC MAGNESIUM PHOSPHATE GLASSES S. F. Khor, Z. A. Talib,, W. M. Daud, and B. H. Ng Department of Physics, Faculty of Science,

More information

BROADBAND DIELECTRIC SPECTROSCOPY - BASICS AND SELECTED APPLICATIONS

BROADBAND DIELECTRIC SPECTROSCOPY - BASICS AND SELECTED APPLICATIONS 11.9.16 BROADBAND DIELECTRIC SPECTROSCOPY - BASICS AND SELECTED APPLICATIONS Andreas Schönhals 9 th International Conference on Broadband Dielectric Spectroscopy and its Applications September 11-16, 16

More information

Chapter 2. Dielectric Theories

Chapter 2. Dielectric Theories Chapter Dielectric Theories . Dielectric Theories 1.1. Introduction Measurements of dielectric properties of materials is very important because it provide vital information regarding the material characteristics,

More information

Properties of Materials

Properties of Materials Tao Deng, dengtao@sjtu.edu.cn 1 1896 1920 1987 2006 Properties of Materials Chapter 3 Electrical Properties of Materials Tao Deng 3.1.4.4 The superconducting tunneling effect (Josephson effect) Tao Deng,

More information

Dielectrics 9.1 INTRODUCTION 9.2 DIELECTRIC CONSTANT

Dielectrics 9.1 INTRODUCTION 9.2 DIELECTRIC CONSTANT 9 Dielectrics 9.1 INTRODUCTION A dielectric is an insulating material in which all the electrons are tightly bound to the nuclei of the atoms and there are no free electrons available for the conduction

More information

Contents. 2. Fluids. 1. Introduction

Contents. 2. Fluids. 1. Introduction Contents 1. Introduction 2. Fluids 3. Physics of Microfluidic Systems 4. Microfabrication Technologies 5. Flow Control 6. Micropumps 7. Sensors 8. Ink-Jet Technology 9. Liquid Handling 10.Microarrays 11.Microreactors

More information

MSE 383, Unit 3-3. Joshua U. Otaigbe Iowa State University Materials Science & Engineering Dept.

MSE 383, Unit 3-3. Joshua U. Otaigbe Iowa State University Materials Science & Engineering Dept. Dynamic Mechanical Behavior MSE 383, Unit 3-3 Joshua U. Otaigbe Iowa State University Materials Science & Engineering Dept. Scope Why DMA & TTS? DMA Dynamic Mechanical Behavior (DMA) Superposition Principles

More information

Chap. 7. Dielectric Materials and Insulation

Chap. 7. Dielectric Materials and Insulation Chap. 7. Dielectric Materials and Insulation - The parallel plate capacitor with free space as an insulator: - The electric dipole moment for a pair of opposite changes +Q and -Q separated by a finite

More information

Glassy dynamics in geometrical confinement as studied by Broadband Dielectric Spectroscopy F. Kremer Universität Leipzig

Glassy dynamics in geometrical confinement as studied by Broadband Dielectric Spectroscopy F. Kremer Universität Leipzig Glassy dynamics in geometrical confinement as studied by Broadband Dielectric Spectroscopy F. Kremer Universität Leipzig Co-authors: M. Treß, E.U. Mapesa, W. Kipnusu, C. Iacob (Leipzig), Reiche (Halle),

More information

CHAPTER 6 DIELECTRIC AND CONDUCTIVITY STUDIES OF ZIRCONIUM TIN TITANATE (ZST)

CHAPTER 6 DIELECTRIC AND CONDUCTIVITY STUDIES OF ZIRCONIUM TIN TITANATE (ZST) 123 CHAPTER 6 DIELECTRIC AND CONDUCTIVITY STUDIES OF ZIRCONIUM TIN TITANATE (ZST) 6.1 INTRODUCTION We know that zirconium tin titanate ceramics are mostly used in microwave frequency applications. Previous

More information

Dielectric Materials: Properties and Applications

Dielectric Materials: Properties and Applications Dielectric Materials: Properties and Applications Content 1. Dielectrics : Properties 2. Fundamental definitions and Properties of electric dipole 3. Various polarization mechanisms involved in dielectric

More information

Dielectric Properties of Composite Films Made from Tin(IV) Oxide and Magnesium Oxide

Dielectric Properties of Composite Films Made from Tin(IV) Oxide and Magnesium Oxide OUSL Journal (2014) Vol 7, (pp67-75) Dielectric Properties of Composite Films Made from Tin(IV) Oxide and Magnesium Oxide C. N. Nupearachchi* and V. P. S. Perera Department of Physics, The Open University

More information

Dielectric spectroscopy

Dielectric spectroscopy University of Potsdam, Institute of Physics Advanced lab experiments May 31, 2001 M6 Dielectric spectroscopy Tutor: Dr. Peter Frübing 1 Contents 1 Introduction 2 1.1 Motivation....................................

More information

Chapter 6 ELECTRICAL CONDUCTIVITY ANALYSIS

Chapter 6 ELECTRICAL CONDUCTIVITY ANALYSIS Chapter 6 ELECTRICAL CONDUCTIVITY ANALYSIS CHAPTER-6 6.1 Introduction The suitability and potentiality of a material for device applications can be determined from the frequency and temperature response

More information

Using the thermal electrical fluctuation method to investigate molecular mobility in structurally inhomogeneous polymer systems

Using the thermal electrical fluctuation method to investigate molecular mobility in structurally inhomogeneous polymer systems Plasticheskie Massy, No.,, pp. 19 Using the thermal electrical fluctuation method to investigate molecular mobility in structurally inhomogeneous polymer systems Yu. V. Zelenev, V. A. Ivanovskii, and D.

More information

Ferroelectrics investigation

Ferroelectrics investigation Ferroelectrics investigation. Introduction A dielectric is understood as a material where the electric field induces an electric momentum. Let s consider a vacuum capacitor made of two planar metallic

More information

Dielectric Spectroscopy Analysis of Recycled PET with Different Synthetic Polymer Blends

Dielectric Spectroscopy Analysis of Recycled PET with Different Synthetic Polymer Blends Dielectric Spectroscopy Analysis of Recycled PET with Different Synthetic Polymer Blends Aradoaei S. 1 Constantinescu 1 G. Ciobanu R. 1 1 Technical University Gh. Asachi Iasi D. Mangeron no. 5, tel:+/7868,

More information

Polarization. D =e i E=k i e o E =e o E+ P

Polarization. D =e i E=k i e o E =e o E+ P Dielectrics Polarization a perfect insulator or a dielectric is the material with no free charge carriers. if an electric field, E, is applied to the insulator no charge flow. However in the presence of

More information

Lecture "Molecular Physics/Solid State physics" Winterterm 2013/2014 Prof. Dr. F. Kremer Outline of the lecture on

Lecture Molecular Physics/Solid State physics Winterterm 2013/2014 Prof. Dr. F. Kremer Outline of the lecture on Lecture "Molecular Physics/Solid State physics" Winterterm 013/014 Prof. Dr. F. Kremer Outline of the lecture on 7.1.014 The spectral range of Broadband Dielectric Spectroscopy (BDS) (THz -

More information

Application of Linear, Nonlinear and Nanoscale Conductivity Spectroscopy for Characterising Ion Transport in Solid Electrolytes

Application of Linear, Nonlinear and Nanoscale Conductivity Spectroscopy for Characterising Ion Transport in Solid Electrolytes Application of Linear, Nonlinear and Nanoscale Conductivity Spectroscopy for Characterising Ion Transport in Solid Electrolytes Bernhard Roling Institute of Physical Chemistry and Collaborative Research

More information

ECE 6340 Fall Homework 2. Please do the following problems (you may do the others for practice if you wish): Probs. 1, 2, 3, 4, 5, 6, 7, 10, 12

ECE 6340 Fall Homework 2. Please do the following problems (you may do the others for practice if you wish): Probs. 1, 2, 3, 4, 5, 6, 7, 10, 12 ECE 634 Fall 16 Homework Please do the following problems (you may do the others for practice if you wish: Probs. 1,, 3, 4, 5, 6, 7, 1, 1 1 Consider two parallel infinite wires in free space each carrying

More information

Structural Engineering Research Group (SERG) April 10, 2013 Dielectric Modeling of Hydrated Cement Paste Panels

Structural Engineering Research Group (SERG) April 10, 2013 Dielectric Modeling of Hydrated Cement Paste Panels Structural Engineering Research Group (SERG) April 10, 2013 Dielectric Modeling of Hydrated Cement Paste Panels Hao Liu Advisor: Dr. Tzu-Yang Yu Department of Civil and Environmental Engineering University

More information

G. R. Strobl, Chapter 5 "The Physics of Polymers, 2'nd Ed." Springer, NY, (1997). J. Ferry, "Viscoelastic Behavior of Polymers"

G. R. Strobl, Chapter 5 The Physics of Polymers, 2'nd Ed. Springer, NY, (1997). J. Ferry, Viscoelastic Behavior of Polymers G. R. Strobl, Chapter 5 "The Physics of Polymers, 2'nd Ed." Springer, NY, (1997). J. Ferry, "Viscoelastic Behavior of Polymers" Chapter 3: Specific Relaxations There are many types of relaxation processes

More information

Impedance Analysis and Low-Frequency Dispersion Behavior of Bi 4 Ti 3 O 12 Glass

Impedance Analysis and Low-Frequency Dispersion Behavior of Bi 4 Ti 3 O 12 Glass Journal of the Korean Physical Society, Vol. 56, No. 1, January 2010, pp. 462 466 Impedance Analysis and Low-Frequency Dispersion Behavior of Bi 4 Ti 3 O 12 Glass C. H. Song, M. Kim, S. M. Lee, H. W. Choi

More information

Dielectric Relaxation in Cd x InSe 9-x Chalcogenide Thin Films

Dielectric Relaxation in Cd x InSe 9-x Chalcogenide Thin Films Egypt. J. Solids, Vol. (29), No. (2), (2006) 303 Dielectric Relaxation in Cd x InSe 9-x Chalcogenide Thin Films A. Abdel Aal Physics Department, Faculty of Science, Helwan University, Egypt. The effect

More information

Chapter 5: Molecular Scale Models for Macroscopic Dynamic Response. Fluctuation-Dissipation Theorem:

Chapter 5: Molecular Scale Models for Macroscopic Dynamic Response. Fluctuation-Dissipation Theorem: G. R. Strobl, Chapter 6 "The Physics of Polymers, 2'nd Ed." Springer, NY, (1997). R. B. Bird, R. C. Armstrong, O. Hassager, "Dynamics of Polymeric Liquids", Vol. 2, John Wiley and Sons (1977). M. Doi,

More information

Transduction Based on Changes in the Energy Stored in an Electrical Field

Transduction Based on Changes in the Energy Stored in an Electrical Field Lecture 6-1 Transduction Based on Changes in the Energy Stored in an Electrical Field Electric Field and Forces Suppose a charged fixed q 1 in a space, an exploring charge q is moving toward the fixed

More information

Dielectric spectra dominated by charge transport processes, as examplified for Ionic Liquids. F.Kremer

Dielectric spectra dominated by charge transport processes, as examplified for Ionic Liquids. F.Kremer Dielectric spectra dominated by charge transport processes, as examplified for Ionic Liquids F.Kremer Content 1. Reminder concerning Broadband Dielectric Spectroscopy (BDS).. What are Ionic Liquids (IL)?

More information

AML 883 Properties and selection of engineering materials

AML 883 Properties and selection of engineering materials AML 883 Properties and selection of engineering materials LECTURE 17. Electrical properties M P Gururajan Email: guru.courses@gmail.com Room No. MS 207/A 3 Phone: 1340 Types of electric behaviour Conduction

More information

Abvanced Lab Course. Dynamical-Mechanical Analysis (DMA) of Polymers

Abvanced Lab Course. Dynamical-Mechanical Analysis (DMA) of Polymers Abvanced Lab Course Dynamical-Mechanical Analysis (DMA) of Polymers M211 As od: 9.4.213 Aim: Determination of the mechanical properties of a typical polymer under alternating load in the elastic range

More information

(name) Electrochemical Energy Systems, Spring 2014, M. Z. Bazant. Final Exam

(name) Electrochemical Energy Systems, Spring 2014, M. Z. Bazant. Final Exam 10.626 Electrochemical Energy Systems, Spring 2014, M. Z. Bazant Final Exam Instructions. This is a three-hour closed book exam. You are allowed to have five doublesided pages of personal notes during

More information

CIRCUIT ELEMENT: CAPACITOR

CIRCUIT ELEMENT: CAPACITOR CIRCUIT ELEMENT: CAPACITOR PROF. SIRIPONG POTISUK ELEC 308 Types of Circuit Elements Two broad types of circuit elements Ati Active elements -capable of generating electric energy from nonelectric energy

More information

Electrochemical methods : Fundamentals and Applications

Electrochemical methods : Fundamentals and Applications Electrochemical methods : Fundamentals and Applications Lecture Note 7 May 19, 2014 Kwang Kim Yonsei University kbkim@yonsei.ac.kr 39 8 7 34 53 Y O N Se I 88.91 16.00 14.01 78.96 126.9 Electrochemical

More information

Numerical differentiation methods for the logarithmic derivative technique used in dielectric spectroscopy #

Numerical differentiation methods for the logarithmic derivative technique used in dielectric spectroscopy # Processing and Application of Ceramics 4 [2] (2010) 87 93 Numerical differentiation methods for the logarithmic ivative technique used in dielectric spectroscopy # Henrik Haspel, Ákos Kukovecz *, Zoltán

More information

Non-Faradaic Impedance Characterization of an

Non-Faradaic Impedance Characterization of an Electronic Supplementary Material (ESI) for Lab on a Chip. This journal is The Royal Society of Chemistry 2014 Supplementary Information Non-Faradaic Impedance Characterization of an Evaporating Droplet

More information

The dielectric properties of charged nanoparticle colloids at radio and microwave frequencies

The dielectric properties of charged nanoparticle colloids at radio and microwave frequencies INSTITUTE OF PHYSICS PUBLISHING JOURNAL OF PHYSICS D: APPLIED PHYSICS J. Phys. D: Appl. Phys. 37 (2004) 318 325 PII: S0022-3727(04)67684-4 The dielectric properties of charged nanoparticle colloids at

More information

INFLUENCE OF RADIATION ON THE DIELECTRIC PROPERTIES OF XLPE BASED INSULATION SYSTEMS

INFLUENCE OF RADIATION ON THE DIELECTRIC PROPERTIES OF XLPE BASED INSULATION SYSTEMS Journal of ELECTRICAL ENGINEERING, VOL. 61, NO. 4, 21, 229 234 INFLUENCE OF RADIATION ON THE DIELECTRIC PROPERTIES OF XLPE BASED INSULATION SYSTEMS Vladimír Ďurman Jaroslav Lelák The paper discusses the

More information

Dielectric spectroscopy

Dielectric spectroscopy University of Potsdam, Institute of Physics Advanced lab experiments December 14, 2011 M6 Dielectric spectroscopy Tutor: Dr. Peter Frübing 1 Contents 1 Introduction 2 1.1 Motivation....................................

More information

Theory of Electrical Characterization of Semiconductors

Theory of Electrical Characterization of Semiconductors Theory of Electrical Characterization of Semiconductors P. Stallinga Universidade do Algarve U.C.E.H. A.D.E.E.C. OptoElectronics SELOA Summer School May 2000, Bologna (It) Overview Devices: bulk Schottky

More information

AC impedance and dielectric spectroscopic studies of Mg 2+ ion conducting PVA PEG blended polymer electrolytes

AC impedance and dielectric spectroscopic studies of Mg 2+ ion conducting PVA PEG blended polymer electrolytes Bull. Mater. Sci., Vol. 34, No. 5, August 211, pp. 163 167. c Indian Academy of Sciences. AC impedance and dielectric spectroscopic studies of Mg 2+ ion conducting PVA PEG blended polymer electrolytes

More information

MME 467: Ceramics for Advanced Applications

MME 467: Ceramics for Advanced Applications MME 467: Ceramics for Advanced Applications Lecture 26 Dielectric Properties of Ceramic Materials 2 1. Barsoum, Fundamental Ceramics, McGraw-Hill, 2000, pp.513 543 2. Richerson, Modern Ceramic Engineering,

More information

QENS in the Energy Domain: Backscattering and Time-of

QENS in the Energy Domain: Backscattering and Time-of QENS in the Energy Domain: Backscattering and Time-of of-flight Alexei Sokolov Department of Polymer Science, The University of Akron Outline Soft Matter and Neutron Spectroscopy Using elastic scattering

More information

Moisture Measurement in Paper Pulp Using Fringing Field Dielectrometry

Moisture Measurement in Paper Pulp Using Fringing Field Dielectrometry Moisture Measurement in Paper Pulp Using Fringing Field Dielectrometry Project Report 2003-F-1 K. Sundararajan, L. Byrd II, C. Wai-Mak, N. Semenyuk, and A.V. Mamishev Sensors, Energy, and Automation Laboratory

More information

In situ Experiments in Material Science:

In situ Experiments in Material Science: In situ Experiments in Material Science: Rheo-Saxs, Rheo-Dielectric, Rheo-NMR, In situ-nmr Prof. Dr. M. Wilhelm Institute of Chemical and Polymer Chemistry Manfred.Wilhelm@kit.edu Fourier Transform-Rheology

More information

Supporting Information

Supporting Information Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics. This journal is the Owner Societies 2016 Supporting Information to True ferroelectric switching in thin films of trialkylbenzene-1,3,5-tricarboxamide

More information

ALCT Measurement Principles

ALCT Measurement Principles Current-based Measurements At a basic electronics level, a liquid crystal sample cell may be modeled as a combination dynamic capacitor and resistor in parallel. As such, the majority of ALCT measurements

More information

Dielectric characteristion of Benzoyl Glycine crystals

Dielectric characteristion of Benzoyl Glycine crystals Available online at www.scholarsresearchlibrary.com Scholars Research Library Archives of Applied Science Research, 1, (4): 119-17 (http://scholarsresearchlibrary.com/archive.html) ISSN 975-58X CODEN (USA)

More information

Extrinsic and Intrinsic Frequency Dispersion of High-k Materials in Capacitance-Voltage Measurements

Extrinsic and Intrinsic Frequency Dispersion of High-k Materials in Capacitance-Voltage Measurements Materials 01, 5, 1005-103; doi:10.3390/ma5061005 Review OPEN ACCESS materials ISSN 1996-1944 www.mdpi.com/journal/materials Extrinsic and Intrinsic Frequency Dispersion of High-k Materials in Capacitance-Voltage

More information

4 Electric Fields in Matter

4 Electric Fields in Matter 4 Electric Fields in Matter 4.1 Parity and Time Reversal: Lecture 10 (a) We discussed how fields transform under parity and time reversal. A useful table is Quantity Parity Time Reversal t Even Odd r Odd

More information

Physikalisches Praktikum für Fortgeschrittene 1 Dielectric Constant Assistent: Herr Dr. M. Ghatkesar by Therese Challand theres.

Physikalisches Praktikum für Fortgeschrittene 1 Dielectric Constant Assistent: Herr Dr. M. Ghatkesar by Therese Challand theres. Physikalisches Praktikum für Fortgeschrittene 1 Dielectric Constant Assistent: Herr Dr. M. Ghatkesar by Therese Challand theres.challand stud.unibas.ch Contents 1 Theory 1 1.1 Introduction............................

More information

Nuclear Magnetic Resonance Spectroscopy

Nuclear Magnetic Resonance Spectroscopy Nuclear Magnetic Resonance Spectroscopy Ecole Polytechnique Département de Chimie CHI 551 Dr. Grégory Nocton Bureau 01 30 11 A Tel: 44 02 Ecole polytechnique / CNRS Laboratoire de Chimie Moléculaire E-mail:

More information

Unit 3 Transducers. Lecture_3.1 Introduction to Transducers

Unit 3 Transducers. Lecture_3.1 Introduction to Transducers Unit 3 Transducers Lecture_3.1 Introduction to Transducers Introduction to transducers A transducer is a device that converts one form of energy to other form. It converts the measurand to a usable electrical

More information

Contents. I Background 1. Contents... Preface... Acknowledgments... The Blind Men and the Elephant... xxi. History of Impedance Spectroscopy...

Contents. I Background 1. Contents... Preface... Acknowledgments... The Blind Men and the Elephant... xxi. History of Impedance Spectroscopy... Contents Contents...................................... Preface....................................... Acknowledgments................................. v xv xix The Blind Men and the Elephant.......................

More information

Lecture contents Review: Few concepts from physics Electric field

Lecture contents Review: Few concepts from physics Electric field 1 Lecture contents Review: Few concepts from physics Electric field Coulomb law, Gauss law, Poisson equation, dipole, capacitor Conductors and isolators 1 Electric current Dielectric constant Overview

More information

journal of August 2006 physics pp

journal of August 2006 physics pp PRAMANA c Indian Academy of Sciences Vol. 67, No. 2 journal of August 2006 physics pp. 375 381 Chain length effect on dynamical structure of poly(vinyl pyrrolidone) polar solvent mixtures in dilute solution

More information

3.3 Capacitance, relative permittivity & dielectrics 4

3.3 Capacitance, relative permittivity & dielectrics 4 3.3 Capacitance, relative permittivity & dielectrics 4 +Q d E Gaussian surface Voltage, V Q Fig. 3.2. Parallel plate capacitor with the plates separated by a distance d which have been charged by a power

More information

MODELING OF CV CHARACTERISTICS OF HIGH-k MIM CAPACITORS

MODELING OF CV CHARACTERISTICS OF HIGH-k MIM CAPACITORS Chapter 6 MODELING OF CV CHARACTERISTICS OF HIGH-k MIM CAPACITORS 6.1 Introduction and Motivation Capacitance-Voltage characteristics and voltage linearity of MIM capacitor are important performance parameters

More information

Dielectric Properties of Solids

Dielectric Properties of Solids Dielectric Properties of Solids Electric polarization In an insulator the electrons are so tightly bound that at ordinary temperatures they cannot be dislodged either by thermal vibrations or with ordinary

More information

Chapter 2 Theories and Models of Ion Diffusion

Chapter 2 Theories and Models of Ion Diffusion Chapter 2 Theories and Models of Ion Diffusion This chapter describes some models that are often used in trying to understand experimental data and fundamental questions in ion diffusion in ionically conducting

More information

Electrical Circuits Lab Series RC Circuit Phasor Diagram

Electrical Circuits Lab Series RC Circuit Phasor Diagram Electrical Circuits Lab. 0903219 Series RC Circuit Phasor Diagram - Simple steps to draw phasor diagram of a series RC circuit without memorizing: * Start with the quantity (voltage or current) that is

More information

Classification of Dielectrics & Applications

Classification of Dielectrics & Applications Classification of Dielectrics & Applications DIELECTRICS Non-Centro- Symmetric Piezoelectric Centro- Symmetric Pyroelectric Non- Pyroelectric Ferroelectrics Non-Ferroelectric Piezoelectric Effect When

More information

Macroscopic dielectric theory

Macroscopic dielectric theory Macroscopic dielectric theory Maxwellʼs equations E = 1 c E =4πρ B t B = 4π c J + 1 c B = E t In a medium it is convenient to explicitly introduce induced charges and currents E = 1 B c t D =4πρ H = 4π

More information

Lecture 5 Junction characterisation

Lecture 5 Junction characterisation Lecture 5 Junction characterisation Jon Major October 2018 The PV research cycle Make cells Measure cells Despair Repeat 40 1.1% 4.9% Data Current density (ma/cm 2 ) 20 0-20 -1.0-0.5 0.0 0.5 1.0 Voltage

More information

Supercooled liquids with enhanced orientational order

Supercooled liquids with enhanced orientational order SUPPLEMENTARY INFORMATION for Supercooled liquids with enhanced orientational order Simona Capponi 1,, Simone Napolitano 2, Michael Wübbenhorst 1 1 Laboratory of Acoustics and Thermal Physics, Department

More information

University of Ljubljana Faculty of Mathematics and Physics

University of Ljubljana Faculty of Mathematics and Physics University of Ljubljana Faculty of Mathematics and Physics Oddelek za fiziko Seminar Experimental methods in dielectric spectroscopy Author: David Fabijan Supervisor: doc. dr. Vid Bobnar Ljubljana, May

More information

Fig. 4.1 Poole-Frenkel conduction mechanism

Fig. 4.1 Poole-Frenkel conduction mechanism Fig. 4.1 Poole-Frenkel conduction mechanism Fig. 4.2 Schottky effect at a metal-semiconductor contact Fig. 4.3 X-ray diffraction pattern of the MgO films deposited at 450 o C on Si (111) Fig. 4.4 Illustration

More information

DIELECTRIC AND AC CONDUCTION STUDIES OF LEAD PHTHALOCYANINE THIN FILM

DIELECTRIC AND AC CONDUCTION STUDIES OF LEAD PHTHALOCYANINE THIN FILM Chalcogenide Letters Vol. 6, No. 9, September 2009, p. 469 476 DIELECTRIC AND AC CONDUCTION STUDIES OF LEAD PHTHALOCYANINE THIN FILM P. KALUGASALAM a*, DR.S. GANESAN b a Department of Physics, Tamil Nadu

More information

During such a time interval, the MOS is said to be in "deep depletion" and the only charge present in the semiconductor is the depletion charge.

During such a time interval, the MOS is said to be in deep depletion and the only charge present in the semiconductor is the depletion charge. Q1 (a) If we apply a positive (negative) voltage step to a p-type (n-type) MOS capacitor, which is sufficient to generate an inversion layer at equilibrium, there is a time interval, after the step, when

More information

Piezoelectric Resonators ME 2082

Piezoelectric Resonators ME 2082 Piezoelectric Resonators ME 2082 Introduction K T : relative dielectric constant of the material ε o : relative permittivity of free space (8.854*10-12 F/m) h: distance between electrodes (m - material

More information

PHASE TRANSITIONS IN (CH3NH3)5B12X11 (X = Cl, Br) CRYSTALS H. PYKACZ, J. MRÓZ

PHASE TRANSITIONS IN (CH3NH3)5B12X11 (X = Cl, Br) CRYSTALS H. PYKACZ, J. MRÓZ Vol. 84 (1993) ACTA PHYSICA POLONICA A Νo. 6 PHASE TRANSITIONS IN (CH3NH3)5B12X11 (X = Cl, Br) CRYSTALS H. PYKACZ, J. MRÓZ Institute of Physics, Technical University of Wroclaw Wybrzeże Wyspiańskiego 27,

More information

VI. EIS STUDIES LEAD NANOPOWDER

VI. EIS STUDIES LEAD NANOPOWDER VI. EIS STUDIES LEAD NANOPOWDER 74 26. EIS Studies of Pb nanospheres Impedance (valid for both DC and AC), a complex resistance occurs when current flows through a circuit (composed of various resistors,

More information

Handout 11: AC circuit. AC generator

Handout 11: AC circuit. AC generator Handout : AC circuit AC generator Figure compares the voltage across the directcurrent (DC) generator and that across the alternatingcurrent (AC) generator For DC generator, the voltage is constant For

More information

Basic Electronics. Introductory Lecture Course for. Technology and Instrumentation in Particle Physics Chicago, Illinois June 9-14, 2011

Basic Electronics. Introductory Lecture Course for. Technology and Instrumentation in Particle Physics Chicago, Illinois June 9-14, 2011 Basic Electronics Introductory Lecture Course for Technology and Instrumentation in Particle Physics 2011 Chicago, Illinois June 9-14, 2011 Presented By Gary Drake Argonne National Laboratory drake@anl.gov

More information

Transduction Based on Changes in the Energy Stored in an Electrical Field

Transduction Based on Changes in the Energy Stored in an Electrical Field Lecture 7-1 Transduction Based on Changes in the Energy Stored in an Electrical Field - Electrostriction The electrostrictive effect is a quadratic dependence of strain or stress on the polarization P

More information

Nonlinear Dielectric Effects in Simple Fluids

Nonlinear Dielectric Effects in Simple Fluids Nonlinear Dielectric ffects in Simple Fluids High-Field Dielectric Response: Coulombic stress Langevin effect homogeneous heating heterogeneous heating Ranko Richert LINAR RSPONS - THORY AND PRACTIC Søminestationen,

More information

Capacitor. Capacitor (Cont d)

Capacitor. Capacitor (Cont d) 1 2 1 Capacitor Capacitor is a passive two-terminal component storing the energy in an electric field charged by the voltage across the dielectric. Fixed Polarized Variable Capacitance is the ratio of

More information

EE1305/EE1105 Intro to Electrical and Computer Engineering Lecture Week 6

EE1305/EE1105 Intro to Electrical and Computer Engineering Lecture Week 6 EE1305/EE1105 Intro to Electrical and Computer Engineering Lecture Week 6 Homework Passive Components Capacitors RC Filters fc Calculations Bode Plots Module III Homework- due 2/20 (Najera), due 2/23 (Quinones)

More information

F 10 Electrical Poling of Polymers

F 10 Electrical Poling of Polymers University of Potsdam, Institute of Physics Advanced lab experiments May 28, 2002 F 10 Electrical Poling of Polymers Tutor: Dr. Michael Wegener * Contents 1 Introduction 2 2 Tasks 3 3 Theoretical background

More information

Characterization of electric charge carrier transport in organic semiconductors by time-of-flight technique

Characterization of electric charge carrier transport in organic semiconductors by time-of-flight technique Characterization of electric charge carrier transport in organic semiconductors by time-of-flight technique Raveendra Babu Penumala Mentor: Prof. dr. Gvido Bratina Laboratory of Organic Matter Physics

More information

3 Constitutive Relations: Macroscopic Properties of Matter

3 Constitutive Relations: Macroscopic Properties of Matter EECS 53 Lecture 3 c Kamal Sarabandi Fall 21 All rights reserved 3 Constitutive Relations: Macroscopic Properties of Matter As shown previously, out of the four Maxwell s equations only the Faraday s and

More information

Dielectric relaxation studies of polyvinylpyrrolidone (PVP) and polyvinylbutyral (PVB) in benzene solutions at microwave frequency

Dielectric relaxation studies of polyvinylpyrrolidone (PVP) and polyvinylbutyral (PVB) in benzene solutions at microwave frequency Indian Journal of Pure & Applied Physics Vol. 5, September 014, pp. 63-636 Dielectric relaxation studies of polyvinylpyrrolidone (PVP) and polyvinylbutyral (PVB) in benzene solutions at microwave frequency

More information

ANALYSIS OF DIELECTRIC, MODULUS, ELECTRO CHEMICAL STABILITY OF PVP ABSA POLYMER ELECTROLYTE SYSTEMS

ANALYSIS OF DIELECTRIC, MODULUS, ELECTRO CHEMICAL STABILITY OF PVP ABSA POLYMER ELECTROLYTE SYSTEMS Int. J. Chem. Sci.: 14(1), 216, 477-481 ISSN 972-768X www.sadgurupublications.com ANALYSIS OF DIELECTRIC, MODULUS, ELECTRO CHEMICAL STABILITY OF PVP ABSA POLYMER ELECTROLYTE SYSTEMS R. S. DIANA SANGEETHA

More information

This lecture: Crystallization and Melting. Next Lecture: The Glass Transition Temperature

This lecture: Crystallization and Melting. Next Lecture: The Glass Transition Temperature Thermal Transitions: Crystallization, Melting and the Glass Transition This lecture: Crystallization and Melting Next Lecture: The Glass Transition Temperature Today: Why do polymers crystallize in a chain

More information

Local Field. Estimate for E indiv?-some sort of average?

Local Field. Estimate for E indiv?-some sort of average? &M Lecture 6 Topics: (1) Local Field in a dielectric medium (2) Clausius-Mossotti equation (3) non-uniform polarisation (4) lectric displacement (5) Origins of volume bound charge density Local Field the

More information

Electrical material properties

Electrical material properties Electrical material properties U = I R Ohm s law R = ρ (l/a) ρ resistivity l length σ = 1/ρ σ conductivity A area σ = n q μ n conc. of charge carriers q their charge μ their mobility μ depends on T, defects,

More information

Lecture 24. Impedance of AC Circuits.

Lecture 24. Impedance of AC Circuits. Lecture 4. Impedance of AC Circuits. Don t forget to complete course evaluations: https://sakai.rutgers.edu/portal/site/sirs Post-test. You are required to attend one of the lectures on Thursday, Dec.

More information

Short-Term Dielectric Performance Assessment of BOPP Capacitor Films: A Baseline Study

Short-Term Dielectric Performance Assessment of BOPP Capacitor Films: A Baseline Study Short-Term Dielectric Performance Assessment of BOPP Capacitor Films: A Baseline Study Dr. Ilkka Rytöluoto, Mikael Ritamäki & Kari Lahti Tampere University of Technology (TUT) Laboratory of Electrical

More information

ELECTROCHEMICAL IMPEDANCE SPECTROSCOPY

ELECTROCHEMICAL IMPEDANCE SPECTROSCOPY ELECTROCHEMICAL IMPEDANCE SPECTROSCOPY MARK E. ORAZEM University of Florida BERNARD TRIBOLLET Universite Pierre et Marie Curie WILEY A JOHN WILEY & SONS, INC., PUBLICATION Contents Contents Preface Acknowledgments

More information

Evaluation of Capacitance in Motor Circuit Analysis Findings. Howard W Penrose, Ph.D., CMRP President, SUCCESS by DESIGN

Evaluation of Capacitance in Motor Circuit Analysis Findings. Howard W Penrose, Ph.D., CMRP President, SUCCESS by DESIGN Evaluation of Capacitance in Motor Circuit Analysis Findings Howard W Penrose, Ph.D., CMRP President, SUCCESS by DESIGN Introduction The question related to the ability of low voltage testing to detect

More information

Demystifying Transmission Lines: What are They? Why are They Useful?

Demystifying Transmission Lines: What are They? Why are They Useful? Demystifying Transmission Lines: What are They? Why are They Useful? Purpose of This Note This application note discusses theory and practice of transmission lines. It outlines the necessity of transmission

More information

Chemistry 24b Lecture 23 Spring Quarter 2004 Instructor: Richard Roberts. (1) It induces a dipole moment in the atom or molecule.

Chemistry 24b Lecture 23 Spring Quarter 2004 Instructor: Richard Roberts. (1) It induces a dipole moment in the atom or molecule. Chemistry 24b Lecture 23 Spring Quarter 2004 Instructor: Richard Roberts Absorption and Dispersion v E * of light waves has two effects on a molecule or atom. (1) It induces a dipole moment in the atom

More information

Fabrication and Characterization of Al/Al2O3/p-Si MOS Capacitors

Fabrication and Characterization of Al/Al2O3/p-Si MOS Capacitors Fabrication and Characterization of Al/Al2O3/p-Si MOS Capacitors 6 MOS capacitors were fabricated on silicon substrates. ALD deposited Aluminum Oxide was used as dielectric material. Various electrical

More information

Thermal impedance calculations for micro-electronic structures. Bjorn Vermeersch Seminar Fysische Elektronica March 9, 2006

Thermal impedance calculations for micro-electronic structures. Bjorn Vermeersch Seminar Fysische Elektronica March 9, 2006 Thermal impedance calculations for micro-electronic structures Bjorn Vermeersch Seminar Fysische Elektronica March 9, 2006 Overview Introduction Thermal characterization Numerical calculations Influence

More information

JOURNAL OF INTERNATIONAL ACADEMIC RESEARCH FOR MULTIDISCIPLINARY Impact Factor 2.417, ISSN: , Volume 3, Issue 12, January 2016

JOURNAL OF INTERNATIONAL ACADEMIC RESEARCH FOR MULTIDISCIPLINARY Impact Factor 2.417, ISSN: , Volume 3, Issue 12, January 2016 DIELECTRIC PROPERTIES OF SUNFLOWER OIL R.KAMESWARI 1 G.GIRIDHAR 2 M. RANGACHARYULU 3 1 Lecturer in Physics, Department of Physics, SRR& CVR Govt. Vijayawada, A.P., India 2 Assistant Professor, Department

More information

1 Fundamentals of laser energy absorption

1 Fundamentals of laser energy absorption 1 Fundamentals of laser energy absorption 1.1 Classical electromagnetic-theory concepts 1.1.1 Electric and magnetic properties of materials Electric and magnetic fields can exert forces directly on atoms

More information

Crystallization and Relaxation Dynamics of Amorphous Loratadine under Different Quench-cooling Temperatures

Crystallization and Relaxation Dynamics of Amorphous Loratadine under Different Quench-cooling Temperatures Electronic Supplementary Material (ESI) for CrystEngComm. This journal is The Royal Society of Chemistry 2016 Electronic Supplementary Information (ESI) Crystallization and Relaxation Dynamics of Amorphous

More information

[1] Laboratory for Thin Films and Photovoltaics, Empa - Swiss Federal Laboratories for

[1] Laboratory for Thin Films and Photovoltaics, Empa - Swiss Federal Laboratories for Supporting Information The Effect of Gallium Substitution on Lithium Ion Conductivity and Phase Evolution in Sputtered Li 7-3x Ga x La 3 Zr 2 O 12 Thin Films: Supporting Information M. Rawlence 1,2, A.

More information

Lecture 19 - p-n Junction (cont.) October 18, Ideal p-n junction out of equilibrium (cont.) 2. pn junction diode: parasitics, dynamics

Lecture 19 - p-n Junction (cont.) October 18, Ideal p-n junction out of equilibrium (cont.) 2. pn junction diode: parasitics, dynamics 6.720J/3.43J - Integrated Microelectronic Devices - Fall 2002 Lecture 19-1 Lecture 19 - p-n Junction (cont.) October 18, 2002 Contents: 1. Ideal p-n junction out of equilibrium (cont.) 2. pn junction diode:

More information