EE1305/EE1105 Intro to Electrical and Computer Engineering Lecture Week 6


 Kevin Blankenship
 2 years ago
 Views:
Transcription
1 EE1305/EE1105 Intro to Electrical and Computer Engineering Lecture Week 6 Homework Passive Components Capacitors RC Filters fc Calculations Bode Plots Module III
2 Homework due 2/20 (Najera), due 2/23 (Quinones) SUCCESS POINTS: DESIGN AND ANALYZE YOUR OWN CIRCUITS. PROVE THAT THE CONSERVATION OF POWER IS SATISFIED BY YOUR CIRCUIT. P13 and P14 PreLab Module III Supplies Module II (week of 2/19) will not be allowed in lab without Analog Discovery, Power Supply and Digikey Supplies
3 Homework Questions? P13. (a) Simplify the circuit in P12 in order to, (b) use Voltage Divider to determine the value of V A, and (c) use Ohm s Law to calculate the current through the 5 k resistor. P14. Use any method to (a) determine the voltage drop across the 6 k resistor, (b) the current flowing through it, and (c) the power consumed by the 6 k resistor.
4 xx Intro to Capacitors i(t) = C dv dt C = ε A d i Current C Capacitance V Voltage t Time  Permittivity of free space A Area d Distance between 2 plates Capacitors store charge with applied voltage. Unit for capacitance is the Farad and 1 Farad = 1 Coulomb/Volt or F=C/V. One Farad capacitor stores 1 coulomb of charge per 1 volt. Capacitors DO NOT react instantaneously with changes in voltage. Capacitors are like a bath tub, it takes time to fill them up, and it takes time to empty them.
5 xx Capacitor Simulator
6 Learning Something New Capacitance how is it related to prior knowledge?
7 Voltage. The voltage across a capacitor does not change instantaneously, even after remove power supply the capacitor holds charge, and this keeps the potential drop across the capacitor constant.
8 Current. Connect a capacitor to a power supply the current will flow through the circuit and capacitor until it is fully charged. once the capacitor is fully charged, no more current will flow through the capacitor.
9 What do I need to understand? Assume Capacitor is fully charged. What is current through capacitor? What is V A? What is current through R2? V A R1 R2
10 Visualize How the Capacitor Charges and Discarges
11 See it while it s happening with DC Power. 1. Switch 1 open 2. Switch 1 closed 3. Switch 1 open 4. Switch 2 closed OBSERVE THE CURRENT INCREASING AND DECREASING AS CAPACITOR IS CHARGED AND THEN DISCHARGED
12 See it while it s happening with AC Power. 1. Small frequency 2. Large frequency WHAT HAPPENS TO THE VOLTAGE DROP ACROSS THE RESISTOR IN PARALLEL TO THE CAPACITOR AS THE FREQUENCY IS INCREASED?
13 xx What is a filter?
14 What is a filter? xx a device or material for suppressing or minimizing waves or oscillations of certain frequencies (as of electricity, light, or sound)
15 RC Filters xx How do I make an RC filter?
16 Low Pass and High Pass xx Filter LOW PASS FILTER W1, Ch1+ Ch2+ F Grd, Ch1, Ch2 Eliminates signals ABOVE the cutoff frequency (fc) HIGH PASS FILTER F W1, Ch1+ Ch2+ R = 5 k Grd, Ch1, Ch2 Eliminates signals BELOW the cutoff frequency (fc)
17 Low Pass and High Pass xx Filter  Simulation LOW PASS FILTER W1, Ch1+ Ch2+ F Grd, Ch1, Ch2 Eliminates signals ABOVE the cutoff frequency (fc)
18 Determining the cutoff frequency for RC filters
19 0.01 F (10 nf) xx Low Pass Filter: Cutoff frequency The cutoff frequency for RC circuits is equal to: 10 k f c = 1 2πRC in units of Hz or 1/s
20 0.01 F (10 nf) xx Low Pass Filter: Cutoff Frequency Example Prove that the units for f c = 1 2πRC are Hz (1 Hz = 1/s) 10 k Calculate the critical frequency for filter shown here. Use the following unit conversions: F = C/V A = C/s V = A Hz = 1/s f c = 1 2πRC = 2π x 10 6 F FV C C As A V Hz s 1 = 1592 Hz
21 What is a Bode Plot?
22 COMPARES THE SIGNAL COMING INTO THE FILTER TO THE SIGNAL COMING OUT OF THE FILTER. What is a Bode Plot? Plot used to interpret how the filter affects the input in terms of both magnitude and phase. Logarithm scale of frequency on x axis for both plots Magnitude in units of decibels (db) in one plot PLOT 1 Phase angle in degrees in second plot PLOT 2 Source:
23 Bode Plots LOW PASS FILTER HIGH PASS FILTER Image Source:
24 0.01 F (10 nf) Bode Plot Example xx Analog Discovery 10 k BUILD AND TEST RC FILTER  PROVE THAT fc = 1592 Hz  PROVE IT IS A LOW PASS FILTER
25 Exercise: Solve for R, C or fc to Complete the Table Below Show all calculations, units and unit conversions for each row. R, C, F Cutoff Frequency, Hz 1 x x x x x x x
26 Exercise: Solve for R, C or fc to Complete the Table Below Show all calculations, units and unit conversions for each row. R, C, F Cutoff Frequency, Hz 1 x x x x x x x x x
27 How does a strain gauge work? R = ρl A MODULE I AND II Image Source:
28 How does a strain gauge work? Voltage, Volts Time, seconds MODULE I AND II Signal before filter Signal after filter
29 Homeworkdue 2/27 (Najera), due 3/2 (Quinones) SUCCESS POINTS: REPORT WRITING CHECK TO MAKE SURE EVERYTHING YOU SAY REFER DIRECTLY TO YOUR TABLES AND GRAPHS? P15 and P16 PreLab Module IV Module IV: Build and Analyze 3 types of filters, and add a low pass filter to the output of the Strain Gauge Circuit from Module II.
30 What s Next in Week 6? Will introduce LAB Module III: Strain Gauge II Sensor LECTURE Quiz 3 System of Equations Adding Equtions Analog Discovery Constructing Bode Plots Please bring laptops to all lectures and labs.
31 Questions?
Calendar Update Energy of Charges Intro to Circuits Ohm s Law Analog Discovery MATLAB What s next?
Calendar Update Energy of Charges Intro to Circuits Ohm s Law Analog Discovery MATLAB What s next? Calendar Update http://www.ece.utep.edu/courses/web1305/ee1305/reso urces.html P2 FOLLOW YOUR PROBLEM
More informationVoltage, Current, Resistance and Power Report Tips
Voltage, Current, Resistance and Power Report Tips Power in a Circuit Power can be supplied/delivered to a circuit or it can be absorbed by a circuit component. WHAT IS POWER? POWER GENERATED  +  + 
More informationChapter 13. Capacitors
Chapter 13 Capacitors Objectives Describe the basic structure and characteristics of a capacitor Discuss various types of capacitors Analyze series capacitors Analyze parallel capacitors Analyze capacitive
More informationExperiment FT1: Measurement of Dielectric Constant
Experiment FT1: Measurement of Dielectric Constant Name: ID: 1. Objective: (i) To measure the dielectric constant of paper and plastic film. (ii) To examine the energy storage capacity of a practical capacitor.
More informationExercise 1: RC Time Constants
Exercise 1: RC EXERCISE OBJECTIVE When you have completed this exercise, you will be able to determine the time constant of an RC circuit by using calculated and measured values. You will verify your results
More informationCIRCUIT ELEMENT: CAPACITOR
CIRCUIT ELEMENT: CAPACITOR PROF. SIRIPONG POTISUK ELEC 308 Types of Circuit Elements Two broad types of circuit elements Ati Active elements capable of generating electric energy from nonelectric energy
More informationExperiment 8: Capacitance and the Oscilloscope
Experiment 8: Capacitance and the Oscilloscope Nate Saffold nas2173@columbia.edu Office Hour: Mondays, 5:30PM6:30PM @ Pupin 1216 INTRO TO EXPERIMENTAL PHYSLAB 1493/1494/2699 Outline Capacitance: Capacitor
More informationIn addition to resistors that we have considered to date, there are two other basic electronic components that can be found everywhere: the capacitor
In addition to resistors that we have considered to date, there are two other basic electronic components that can be found everywhere: the capacitor and the inductor. We will consider these two types
More informationLab 5 AC Concepts and Measurements II: Capacitors and RC TimeConstant
EE110 Laboratory Introduction to Engineering & Laboratory Experience Lab 5 AC Concepts and Measurements II: Capacitors and RC TimeConstant Capacitors Capacitors are devices that can store electric charge
More informationLab 10: DC RC circuits
Name: Lab 10: DC RC circuits Group Members: Date: TA s Name: Objectives: 1. To understand current and voltage characteristics of a DC RC circuit 2. To understand the effect of the RC time constant Apparatus:
More informationName: Lab Partner: Section:
Chapter 6 Capacitors and RC Circuits Name: Lab Partner: Section: 6.1 Purpose The purpose of this experiment is to investigate the physics of capacitors in circuits. The charging and discharging of a capacitor
More informationElectronics Capacitors
Electronics Capacitors Wilfrid Laurier University October 9, 2015 Capacitor an electronic device which consists of two conductive plates separated by an insulator Capacitor an electronic device which consists
More informationUniversity of TN Chattanooga Physics 1040L 8/18/2012 PHYSICS 1040L LAB LAB 4: R.C. TIME CONSTANT LAB
PHYSICS 1040L LAB LAB 4: R.C. TIME CONSTANT LAB OBJECT: To study the discharging of a capacitor and determine the time constant for a simple circuit. APPARATUS: Capacitor (about 24 μf), two resistors (about
More informationECE2262 Electric Circuits. Chapter 6: Capacitance and Inductance
ECE2262 Electric Circuits Chapter 6: Capacitance and Inductance Capacitors Inductors Capacitor and Inductor Combinations OpAmp Integrator and OpAmp Differentiator 1 CAPACITANCE AND INDUCTANCE Introduces
More informationENGR 2405 Chapter 6. Capacitors And Inductors
ENGR 2405 Chapter 6 Capacitors And Inductors Overview This chapter will introduce two new linear circuit elements: The capacitor The inductor Unlike resistors, these elements do not dissipate energy They
More informationCoulomb s constant k = 9x10 9 N m 2 /C 2
1 Part 2: Electric Potential 2.1: Potential (Voltage) & Potential Energy q 2 Potential Energy of Point Charges Symbol U mks units [Joules = J] q 1 r Two point charges share an electric potential energy
More informationLab 08 Capacitors 2. Figure 2 Series RC circuit with SPDT switch to charge and discharge capacitor.
Lab 08: Capacitors Last edited March 5, 2018 Learning Objectives: 1. Understand the shortterm and longterm behavior of circuits containing capacitors. 2. Understand the mathematical relationship between
More informationChapter 10 EMT1150 Introduction to Circuit Analysis
Chapter 10 EM1150 Introduction to Circuit Analysis Department of Computer Engineering echnology Fall 2018 Prof. Rumana Hassin Syed Chapter10 Capacitors Introduction to Capacitors he Electric Field Capacitance
More informationTime Varying Circuit Analysis
MAS.836 Sensor Systems for Interactive Environments th Distributed: Tuesday February 16, 2010 Due: Tuesday February 23, 2010 Problem Set # 2 Time Varying Circuit Analysis The purpose of this problem set
More informationProf. Anyes Taffard. Physics 120/220. Voltage Divider Capacitor RC circuits
Prof. Anyes Taffard Physics 120/220 Voltage Divider Capacitor RC circuits Voltage Divider The figure is called a voltage divider. It s one of the most useful and important circuit elements we will encounter.
More informationE40M. RC Circuits and Impedance. M. Horowitz, J. Plummer, R. Howe
E40M RC Circuits and Impedance Reading Reader: Chapter 6 Capacitance (if you haven t read it yet) Section 7.3 Impedance You should skip all the parts about inductors We will talk about them in a lecture
More informationENERGY AND TIME CONSTANTS IN RC CIRCUITS By: Iwana Loveu Student No Lab Section: 0003 Date: February 8, 2004
ENERGY AND TIME CONSTANTS IN RC CIRCUITS By: Iwana Loveu Student No. 416 614 5543 Lab Section: 0003 Date: February 8, 2004 Abstract: Two charged conductors consisting of equal and opposite charges forms
More informationDirect Current (DC) Circuits
Direct Current (DC) Circuits NOTE: There are short answer analysis questions in the Participation section the informal lab report. emember to include these answers in your lab notebook as they will be
More informationLecture 5: Using electronics to make measurements
Lecture 5: Using electronics to make measurements As physicists, we re not really interested in electronics for its own sake We want to use it to measure something often, something too small to be directly
More informationChapter 24: Capacitance and dielectrics
Chapter 24: Capacitance and dielectrics Capacitor: a device store electric energy How to define capacitance In parallel and/or in series Electric energy stored in a capacitor Dielectric materials Capacitor:
More informationCapacitance. A capacitor consists of two conductors that are close but not touching. A capacitor has the ability to store electric charge.
Capacitance A capacitor consists of two conductors that are close but not touching. A capacitor has the ability to store electric charge. a) Parallelplate capacitor connected to battery. (b) is a circuit
More informationBesides resistors, capacitors are one of the most common electronic components that you will encounter. Sometimes capacitors are components that one
1 Besides resistors, capacitors are one of the most common electronic components that you will encounter. Sometimes capacitors are components that one would deliberately add to a circuit. Other times,
More informationPHYS 1444 Section 004 Lecture #22
PHYS 1444 Section 004 Lecture #22 Monday, April 23, 2012 Dr. Extension of Ampere s Law Gauss Law of Magnetism Maxwell s Equations Production of Electromagnetic Waves Today s homework is #13, due 10pm,
More informationPHYSICS 171 UNIVERSITY PHYSICS LAB II. Experiment 6. Transient Response of An RC Circuit
PHYSICS 171 UNIVERSITY PHYSICS LAB II Experiment 6 Transient Response of An RC Circuit Equipment: Supplies: Function Generator, Dual Trace Oscilloscope.002 Microfarad, 0.1 Microfarad capacitors; 1 Kilohm,
More informationRC, RL, and LCR Circuits
RC, RL, and LCR Circuits EK307 Lab Note: This is a two week lab. Most students complete part A in week one and part B in week two. Introduction: Inductors and capacitors are energy storage devices. They
More informationIntroduction to AC Circuits (Capacitors and Inductors)
Introduction to AC Circuits (Capacitors and Inductors) Amin Electronics and Electrical Communications Engineering Department (EECE) Cairo University elc.n102.eng@gmail.com http://scholar.cu.edu.eg/refky/
More informationExperiment Guide for RC Circuits
GuideP1 Experiment Guide for RC Circuits I. Introduction 1. Capacitors A capacitor is a passive electronic component that stores energy in the form of an electrostatic field. The unit of capacitance is
More informationPhysics 102: Lecture 7 RC Circuits
Physics 102: Lecture 7 C Circuits Physics 102: Lecture 7, Slide 1 C Circuits Circuits that have both resistors and capacitors: K Na Cl C ε K ε Na ε Cl S With resistance in the circuits, capacitors do not
More informationECE2262 Electric Circuits. Chapter 6: Capacitance and Inductance
ECE2262 Electric Circuits Chapter 6: Capacitance and Inductance Capacitors Inductors Capacitor and Inductor Combinations 1 CAPACITANCE AND INDUCTANCE Introduces two passive, energy storing devices: Capacitors
More informationE40M Capacitors. M. Horowitz, J. Plummer, R. Howe
E40M Capacitors 1 Reading Reader: Chapter 6 Capacitance A & L: 9.1.1, 9.2.1 2 Why Are Capacitors Useful/Important? How do we design circuits that respond to certain frequencies? What determines how fast
More informationfirst name (print) last name (print) brock id (ab17cd) (lab date)
(ta initials) first name (print) last name (print) brock id (ab17cd) (lab date) Experiment 1 Capacitance In this Experiment you will learn the relationship between the voltage and charge stored on a capacitor;
More informationCapacitance Measurement
Overview The goal of this twoweek laboratory is to develop a procedure to accurately measure a capacitance. In the first lab session, you will explore methods to measure capacitance, and their uncertainties.
More informationChapter 19 Lecture Notes
Chapter 19 Lecture Notes Physics 2424  Strauss Formulas: R S = R 1 + R 2 +... C P = C 1 + C 2 +... 1/R P = 1/R 1 + 1/R 2 +... 1/C S = 1/C 1 + 1/C 2 +... q = q 0 [1e t/(rc) ] q = q 0 e t/(rc τ = RC
More informationChapter 6. Answers to examinationstyle questions. Answers Marks Examiner s tips
(a) Taking natural logs on both sides of V = V o e t/c gives ln V = ln V o + ln (e t/cr ) As ln (e t/cr ) = t CR then ln V = ln V o t CR = a bt hence a = ln V o and b = CR (b) (i) t/s 20 240 270 300 mean.427.233.033
More informationLab #4 Capacitors and Inductors. Capacitor Transient and Steady State Response
Capacitor Transient and Steady State Response Like resistors, capacitors are also basic circuit elements. Capacitors come in a seemingly endless variety of shapes and sizes, and they can all be represented
More informationSolutions to these tests are available online in some places (but not all explanations are good)...
The Physics GRE Sample test put out by ETS https://www.ets.org/s/gre/pdf/practice_book_physics.pdf OSU physics website has lots of tips, and 4 additional tests http://www.physics.ohiostate.edu/undergrad/ugs_gre.php
More informationLaboratory Worksheet Experiment NE04  RC Circuit Department of Physics The University of Hong Kong. Name: Student ID: Date:
PHYS1050 / PHYS1250 Laboratory Worksheet Experiment Department of Physics The University of Hong Kong Ref. (Staff Use) Name: Student ID: Date: Draw a schematic diagram of the charging RC circuit with ammeter
More informationCircuit AnalysisII. Circuit AnalysisII Lecture # 5 Monday 23 rd April, 18
Circuit AnalysisII Capacitors in AC Circuits Introduction ü The instantaneous capacitor current is equal to the capacitance times the instantaneous rate of change of the voltage across the capacitor.
More informationAlternating Current Circuits. Home Work Solutions
Chapter 21 Alternating Current Circuits. Home Work s 21.1 Problem 21.11 What is the time constant of the circuit in Figure (21.19). 10 Ω 10 Ω 5.0 Ω 2.0µF 2.0µF 2.0µF 3.0µF Figure 21.19: Given: The circuit
More informationnot to scale Show that the potential difference between the plates increases to about 80 V. Calculate the energy that is now stored by the capacitor.
Q1.The figure below shows a capacitor of capacitance 370 pf. It consists of two parallel metal plates of area 250 cm 2. A sheet of polythene that has a relative permittivity 2.3 completely fills the gap
More informationElectromagnetic Oscillations and Alternating Current. 1. Electromagnetic oscillations and LC circuit 2. Alternating Current 3.
Electromagnetic Oscillations and Alternating Current 1. Electromagnetic oscillations and LC circuit 2. Alternating Current 3. RLC circuit in AC 1 RL and RC circuits RL RC Charging Discharging I = emf R
More informationPhysics 405/505 Digital Electronics Techniques. University of Arizona Spring 2006 Prof. Erich W. Varnes
Physics 405/505 Digital Electronics Techniques University of Arizona Spring 2006 Prof. Erich W. Varnes Administrative Matters Contacting me I will hold office hours on Tuesday from 13 pm Room 420K in
More informationDanger High Voltage! Your friend starts to climb on this... You shout Get away! That s High Voltage!!! After you save his life, your friend asks:
Danger High Voltage! Your friend starts to climb on this... You shout Get away! That s High Voltage!!! After you save his life, your friend asks: What is Voltage anyway? Voltage... Is the energy (U, in
More informationInductors. Hydraulic analogy Duality with capacitor Charging and discharging. Lecture 12: Inductors
Lecture 12: nductors nductors Hydraulic analogy Duality with capacitor Charging and discharging Robert R. McLeod, University of Colorado http://hilaroad.com/camp/projects/magnet.html 99 Lecture 12: nductors
More informationA capacitor is a device that stores electric charge (memory devices). A capacitor is a device that stores energy E = Q2 2C = CV 2
Capacitance: Lecture 2: Resistors and Capacitors Capacitance (C) is defined as the ratio of charge (Q) to voltage (V) on an object: C = Q/V = Coulombs/Volt = Farad Capacitance of an object depends on geometry
More information[1] (b) Fig. 1.1 shows a circuit consisting of a resistor and a capacitor of capacitance 4.5 μf. Fig. 1.1
1 (a) Define capacitance..... [1] (b) Fig. 1.1 shows a circuit consisting of a resistor and a capacitor of capacitance 4.5 μf. S 1 S 2 6.3 V 4.5 μf Fig. 1.1 Switch S 1 is closed and switch S 2 is left
More informationWELCOME TO PERIOD 14. Homework Exercise #13 is due today. Watch video 3 Edison s Miracle of Light for class discussion next Tuesday or Wednesday.
WELCOME TO PERIOD 14 Homework Exercise #13 is due today. Watch video 3 Edison s Miracle of Light for class discussion next Tuesday or Wednesday. PHYSICS 1103 PERIOD 14 What is an electric circuit? How
More informationPhys 2025, First Test. September 20, minutes Name:
Phys 05, First Test. September 0, 011 50 minutes Name: Show all work for maximum credit. Each problem is worth 10 points. Work 10 of the 11 problems. k = 9.0 x 10 9 N m / C ε 0 = 8.85 x 101 C / N m e
More informationExperiment 4. RC Circuits. Observe and qualitatively describe the charging and discharging (decay) of the voltage on a capacitor.
Experiment 4 RC Circuits 4.1 Objectives Observe and qualitatively describe the charging and discharging (decay) of the voltage on a capacitor. Graphically determine the time constant τ for the decay. 4.2
More informationCapacitors. Example 1
Physics 30AP Resistors and apacitors I apacitors A capacitor is a device for storing electrical charge that consists of two conducting objects placed near one another but not touching. A A typical capacitor
More informationLab Week 6. Quiz #3 Voltage Divider Homework P11, P12 Kirchhoff's Voltage Law (KVL) Kirchhoff's Current Law (KCL) KCL + KVL Module Report tips
Lab Week 6 Quiz #3 Voltage Divider Homework P11, P12 Kirchhoff's Voltage Law (KVL) Kirchhoff's Current Law (KCL) KCL + KVL Module Report tips Quiz 3 Voltage Divider (20 pts.) Please clear desks and turn
More informationExercise 1: Capacitors
Capacitance AC 1 Fundamentals Exercise 1: Capacitors EXERCISE OBJECTIVE When you have completed this exercise, you will be able to describe the effect a capacitor has on dc and ac circuits by using measured
More informationCAPACITORS / ENERGY STORED BY CAPACITORS / CHARGING AND DISCHARGING
PHYSICS A2 UNIT 4 SECTION 3: CAPACITANCE CAPACITORS / ENERGY STORED BY CAPACITORS / CHARGING AND DISCHARGING # Question CAPACITORS 1 What is current? Current is the rate of flow of charge in a circuit
More informationDesigning Information Devices and Systems I Fall 2015 Anant Sahai, Ali Niknejad Homework 8. This homework is due October 26, 2015, at Noon.
EECS 16A Designing Information Devices and Systems I Fall 2015 Anant Sahai, Ali Niknejad Homework 8 This homework is due October 26, 2015, at Noon. 1. Nodal Analysis Or Superposition? (a) Solve for the
More informationPhysics 115. AC: RL vs RC circuits Phase relationships RLC circuits. General Physics II. Session 33
Session 33 Physics 115 General Physics II AC: RL vs RC circuits Phase relationships RLC circuits R. J. Wilkes Email: phy115a@u.washington.edu Home page: http://courses.washington.edu/phy115a/ 6/2/14 1
More informationChapter 2: Capacitor And Dielectrics
hapter 2: apacitor And Dielectrics In this chapter, we are going to discuss the different ways that a capacitor could be arranged in a circuit and how its capacitance could be increased. Overview apacitor
More informationEDEXCEL NATIONALS UNIT 5  ELECTRICAL AND ELECTRONIC PRINCIPLES. ASSIGNMENT No.2  CAPACITOR NETWORK
EDEXCEL NATIONALS UNIT 5  ELECTRICAL AND ELECTRONIC PRINCIPLES ASSIGNMENT No.2  CAPACITOR NETWORK NAME: I agree to the assessment as contained in this assignment. I confirm that the work submitted is
More informationChapter 24: Capacitance and Dielectrics
Chapter 24: Capacitance and Dielectrics When you compress/stretch a spring, we are storing potential energy This is the mechanical method to store energy It is also possible to store electric energy as
More informationCapacitors. Chapter How capacitors work Inside a capacitor
Chapter 6 Capacitors In every device we have studied so far sources, resistors, diodes and transistors the relationship between voltage and current depends only on the present, independent of the past.
More informationChapter 2: Capacitors And Dielectrics
hapter 2: apacitors And Dielectrics 2.1 apacitance and capacitors in series and parallel L.O 2.1.1 Define capacitance and use capacitance apacitor is a device that is capable of storing electric charges
More informationfarads or 10 µf. The letter indicates the part tolerance (how close should the actual value be to the marking).
p1 EE1050/60 Capacitors Lab University of Utah Electrical Engineering Department EE1050/1060 Capacitors A. Stolp, 10/4/99 rev 3/17/01 Objectives 1.) Observe charging and discharging of a capacitor. 2.)
More informationLab 5 CAPACITORS & RC CIRCUITS
L051 Name Date Partners Lab 5 CAPACITORS & RC CIRCUITS OBJECTIVES OVERVIEW To define capacitance and to learn to measure it with a digital multimeter. To explore how the capacitance of conducting parallel
More informationChapt ha e pt r e r 9 Capacitors
Chapter 9 Capacitors Basics of a Capacitor In its simplest form, a capacitor is an electrical device constructed of two parallel plates separated by an insulating material called the dielectric In the
More informationCapacitor investigations
Sensors: Loggers: Voltage Any EASYSENSE Capacitor investigations Logging time: EasyLog (20 s) Teacher s notes 01 Time constant for a capacitor  resistor circuit Theory The charging and discharging of
More informationLab 5  Capacitors and RC Circuits
Lab 5 Capacitors and RC Circuits L51 Name Date Partners Lab 5 Capacitors and RC Circuits OBJECTIVES To define capacitance and to learn to measure it with a digital multimeter. To explore how the capacitance
More informationPhysics 248, Spring 2009 Lab 7: Capacitors and RCDecay
Name Section Physics 248, Spring 2009 Lab 7: Capacitors and RCDecay Your TA will use this sheet to score your lab. It is to be turned in at the end of lab. To receive full credit you must use complete
More informationLab 5  Capacitors and RC Circuits
Lab 5 Capacitors and RC Circuits L51 Name Date Partners Lab 5 Capacitors and RC Circuits OBJECTIVES To define capacitance and to learn to measure it with a digital multimeter. To explore how the capacitance
More informationPHY 101 Practice Exam III Monday, November 27, 2:153:35PM
1 PHY 101 Practice Exam III Monday, November 27, 2:153:35PM Please be sure to show your work where it is requested. If no work is shown where it is requested, you will not receive any points. Partial
More informationToday s agenda: Capacitors and Capacitance. You must be able to apply the equation C=Q/V.
Today s agenda: Capacitors and Capacitance. You must be able to apply the equation C=Q/V. Capacitors: parallel plate, cylindrical, spherical. You must be able to calculate the capacitance of capacitors
More informationLab 4 RC Circuits. Name. Partner s Name. I. Introduction/Theory
Lab 4 RC Circuits Name Partner s Name I. Introduction/Theory Consider a circuit such as that in Figure 1, in which a potential difference is applied to the series combination of a resistor and a capacitor.
More informationThe Basic Capacitor. Dielectric. Conductors
Chapter 9 The Basic Capacitor Capacitors are one of the fundamental passive components. In its most basic form, it is composed of two conductive plates separated by an insulating dielectric. The ability
More informationLinear Circuits. Concept Map 9/10/ Resistive Background Circuits. 5 Power. 3 4 Reactive Circuits. Frequency Analysis
Linear Circuits Dr. Bonnie Ferri Professor School of Electrical and Computer Engineering An introduction to linear electric components and a study of circuits containing such devices. School of Electrical
More informationElectric Power * OpenStax HS Physics. : By the end of this section, you will be able to:
OpenStaxCNX module: m54446 1 Electric Power * OpenStax HS Physics This work is produced by OpenStaxCNX and licensed under the Creative Commons Attribution License 4.0 1 : By the end of this section,
More informationLecture 5: Using electronics to make measurements
Lecture 5: Using electronics to make measurements As physicists, we re not really interested in electronics for its own sake We want to use it to measure something often, something too small to be directly
More informationMeasuring the time constant for an RCCircuit
Physics 8.02T 1 Fall 2001 Measuring the time constant for an RCCircuit Introduction: Capacitors Capacitors are circuit elements that store electric charge Q according to Q = CV where V is the voltage
More informationPhysics 102: Lecture 04 Capacitors (& batteries)
Physics 102: Lecture 04 Capacitors (& batteries) Physics 102: Lecture 4, Slide 1 I wish the checkpoints were given to us on material that we learned from the previous lecture, rather than on material from
More informationReview. Multiple Choice Identify the letter of the choice that best completes the statement or answers the question.
Review Multiple Choice Identify the letter of the choice that best completes the statement or answers the question. 1. When more devices are added to a series circuit, the total circuit resistance: a.
More informationPhysics 2B Notes  Capacitors Spring 2018
Definition of a Capacitor Special Case: Parallel Plate Capacitor Capacitors in Series or Parallel Capacitor Network Definition of a Capacitor Webassign Chapter 0: 8, 9, 3, 4, 5 A capacitor is a device
More informationExperiment P43: RC Circuit (Power Amplifier, Voltage Sensor)
PASCO scientific Vol. 2 Physics Lab Manual: P431 Experiment P43: (Power Amplifier, Voltage Sensor) Concept Time SW Interface Macintosh file Windows file circuits 30 m 700 P43 P43_RCCI.SWS EQUIPMENT NEEDED
More information(3.5.1) V E x, E, (3.5.2)
Lecture 3.5 Capacitors Today we shall continue our discussion of electrostatics and, in particular, the concept of electrostatic potential energy and electric potential. The main example which we have
More informationEnergy Storage Elements: Capacitors and Inductors
CHAPTER 6 Energy Storage Elements: Capacitors and Inductors To this point in our study of electronic circuits, time has not been important. The analysis and designs we have performed so far have been static,
More informationLAB 3: Capacitors & RC Circuits
LAB 3: Capacitors & C Circuits Name: Circuits Experiment Board Wire leads Capacitors, esistors EQUIPMENT NEEDED: Two Dcell Batteries Multimeter Logger Pro Software, ULI Purpose The purpose of this lab
More informationSwitch or amplifies f. Capacitor i. Capacitance is measured in micro/pico farads ii. Filters frequencies iii. Stores electrical energy
Applied Science Study Guide By Patton and Zahen 1. Relationships between Science and Technology a. Circuits are a relationship between Science and technology because the power within a current comes from
More informationSwitch. R 5 V Capacitor. ower upply. Voltmete. Goals. Introduction
Switch Lab 6. Circuits ower upply Goals + + R 5 V Capacitor V To appreciate the capacitor as a charge storage device. To measure the voltage across a capacitor as it discharges through a resistor, and
More informationSwitch. R 5 V Capacitor. ower upply. Voltmete. Goals. Introduction
Switch Lab 6. Circuits ower upply Goals + + R 5 V Capacitor V To appreciate the capacitor as a charge storage device. To measure the voltage across a capacitor as it discharges through a resistor, and
More informationApplication of Physics II for. Final Exam
Application of Physics II for Final Exam Question 1 Four resistors are connected as shown in Figure. (A)Find the equivalent resistance between points a and c. (B)What is the current in each resistor if
More informationNo prep assignment to do, but here are four questions anyway.
Preparation Assignments for Homework #3 Due at the start of class. Reading Assignments Please see the handouts for each lesson for the reading assignments. 3,4 February Lesson 2.5 No prep assignment to
More informationLab 4 CAPACITORS & RC CIRCUITS
67 Name Date Partners Lab 4 CAPACITORS & RC CIRCUITS OBJECTIVES OVERVIEW To define capacitance and to learn to measure it with a digital multimeter. To explore how the capacitance of conducting parallel
More informationCircuits Gustav Robert Kirchhoff 12 March October 1887
Welcome Back to Physics 1308 Circuits Gustav Robert Kirchhoff 12 March 1824 17 October 1887 Announcements Assignments for Thursday, October 18th:  Reading: Chapter 28.128.2, 28.4  Watch Video: https://youtu.be/39vkt4cc5nu
More informationLecture 18 Capacitance and Conductance
Lecture 18 Capacitance and Conductance Sections: 6.3, 6.4, 6.5 Homework: See homework file Definition of Capacitance capacitance is a measure of the ability of the physical structure to accumulate electrical
More informationPhysics Electricity & Opcs Lecture 8 Chapter 24 sec Fall 2017 Semester Professor
Physics 24100 Electricity & Opcs Lecture 8 Chapter 24 sec. 12 Fall 2017 Semester Professor Kol@ck How Much Energy? V 1 V 2 Consider two conductors with electric potentials V 1 and V 2 We can always pick
More informationChapter 24: Capacitance and Dielectrics
Chapter 24: Capacitance and Dielectrics When you compress/stretch a spring, we are storing potential energy This is the mechanical method to store energy It is also possible to store electric energy as
More informationWhat happens when things change. Transient current and voltage relationships in a simple resistive circuit.
Module 4 AC Theory What happens when things change. What you'll learn in Module 4. 4.1 Resistors in DC Circuits Transient events in DC circuits. The difference between Ideal and Practical circuits Transient
More informationCircuits Capacitance of a parallelplate capacitor : C = κ ε o A / d. (ρ = resistivity, L = length, A = crosssectional area) Resistance : R = ρ L / A
k = 9.0 x 109 N m2 / C2 e = 1.60 x 1019 C ε o = 8.85 x 1012 C2 / N m2 Coulomb s law: F = k q Q / r2 (unlike charges attract, like charges repel) Electric field from a point charge : E = k q / r2 ( towards
More informationProperties of Capacitors and its DC Behavior
LABORATORY Experiment 2 Properties of Capacitors and its DC Behavior 1. Objectives To investigate the /V characteristics of capacitor. To calculate the equivalent capacitance of capacitors connected in
More information