Module:32,Huckel Molecular Orbital theory- Application Part-II PAPER: 2, PHYSICAL CHEMISTRY-I QUANTUM CHEMISTRY

Size: px
Start display at page:

Download "Module:32,Huckel Molecular Orbital theory- Application Part-II PAPER: 2, PHYSICAL CHEMISTRY-I QUANTUM CHEMISTRY"

Transcription

1 Subject PHYSICAL Paper No and Title TOPIC Sub-Topic (if any) 2, PHYSICAL -I QUANTUM Hückel Molecular orbital Theory Application PART II Module No. 32

2 TABLE OF CONTENTS 1. Learning outcomes 2. Hückel Molecular Orbital (HMO) Theory 3. Application of HMO theory 3.1 Butadiene 4. Summary

3 1. Learning Outcomes After studying this module, you shall be able to Find the π-electron energy and wave function for butadiene molecule Find the resonance energy, electronic charge and bond order for butadiene Understand the basis of molecular orbital diagram for π-electron systems 2. Hückel Molecular orbital theory HMO theory is an approximate method which simplifies variation method to treat planar conjugated hydrocarbons. This theory treats the π electrons separately from σ electrons. Properties of the conjugated molecules are primarily determined by π-electrons. The consideration of σ-π electron separation in a multi-electron molecule in HMO theory reduces the problem to the study of only π electrons.hmo calculations are carried out using variation method and LCAO(π)-MO approximation. According to LCAO-MO approximation, the MO is written as, φ a = n i=1 c i ψ 2pz i -(1) For a planar conjugated hydrocarbon, the only atomic orbitals of π symmetry are the 2pπ orbtials on carbon. In this module, we have consistently assumed the plane of the molecule as x-y plane with π orbital in the z axis, perpendicular to the molecular plane. And the approximate energy is given by, E a = φ a H φ a dτ φ a φ a dτ -(2) The Hamiltonian Ĥ incorporates the effect of the interaction of π electron with the rest of the molecule (nuclei, inner electrons, σ bonds) in an average way. In HMO method, π

4 electrons are assumed to be moving in a potential generated by the nuclei and σ electrons of the molecule. The Secular determinant for the two π electron system is of the form, [ H 11 ES 11 H 12 ES 12 H 21 ES 21 H 22 ES 22 ] [ c 1 c 2 ] = 0 -(3) To solve the Secular determinant for an n-π electron system, Hückel treated the Hii, Hij, Sij and Sij integrals as parameters that can be evaluated empirically by fitting the theory to experimental results. 1. H ij = ψ i H ψ j dτ α (i = j) H ij = { β (i j) Coulomb integral Resonance integral 2. S ij = ψ i ψ j dτ 1 (i = j) S ij = { 0 (i j) Overlap integral Taking into account the assumptions of HMO theory, the secular determinant reduces to, α-e β β α-e = 0 -(4) In this manner, Hückel determinant can be generated for an n-π electron system The expansion of an n x nhückel determinant yields a polynomial equation which has n real roots giving n energy levels and n molecular orbitals for then-π electron system. The energy of any a th molecular orbital (MO) is given by E a = α + x a β, where x a is the a th root of the polynomial -(5)

5 3. Application of HMO theory In this section, we shall apply HMO theory to simple conjugated molecule viz., butadiene. 3.1 Butadiene We consider here the case of 1,3-butadiene. 1,3-butadiene molecule is a linear sequence of four carbon atoms where each carbon 2pz orbital contributes 1 electron to the HMO π-electron system. Or simply, one can say that HMO theory treats 1,3-butadieneas a four π-electron system. Note: 1,3-butadiene molecule exists in trans and cis configuration but HMO theory does not disingush between the two and consider butadiene as a linear combination of four carbon 2pz orbitals respectively where lies one π electron in each pz orbital perpendicular to the molecular plane. The four atomic orbitals (AOs) combine to form molecular orbitals (MOs). Labeling the four carbons as 1, 2, 3 and 4,

6 φ a = c 1 ψ 2pz1 + c 2 ψ 2pz2 + c 3 ψ 2pz3 + c 4 ψ 2pz4 -(6) The Secular equations obtained for butadiene molecule are of the form: (H 11 ES 11 )c 1 + (H 12 ES 12 )c 2 + (H 13 ES 13 )c 3 + (H 14 ES 14 )c 4 = 0 (H 21 ES 21 )c 1 + (H 22 ES 22 )c 2 + (H 23 ES 23 )c 3 + (H 24 ES 24 )c 4 = 0 (H 31 ES 31 )c 1 + (H 32 ES 32 )c 2 + (H 33 ES 33 )c 3 + (H 34 ES 34 )c 4 = 0 (H 41 ES 41 )c 1 + (H 42 ES 42 )c 2 + (H 43 ES 43 )c 3 + (H 44 ES 44 )c 4 = 0 which can be written in the form of secular determinant as, H 11 -ES 11 H 12 -ES 12 H 13 -ES 13 H 14 -ES 14 c 1 c 2 H 21 -ES 21 H 22 -ES 22 H 23 -ES 23 H 24 -ES 24 [ H 31 -ES 31 H 32 -ES 32 H 33 -ES 33 H 34 -ES c ] = c 4 [ H 41 -ES 41 H 42 -ES 42 H 43 -ES 43 H 44 -ES 44 ] -(7) Taking into account the assumptions of HMO theory, the secular determinant transforms into Hückel determinant as, H 11 = H 22 = H 33 = H 44 = α H 12 = H 21 = H 23 = H 32 = H 34 = H 43 = β H 13 = H 31 = H 14 = H 41 = 0 S 11 = S 22 = S 33 = S 44 = 1 S 12 = S 21 = S 13 = S 31 = S 14 = S 41 = S 23 = S 32 = S 24 = S 42 = S 34 = S 43 = 0

7 c 1 α E β 0 0 β α E β 0 c 2 [ ] [ 0 β α E β c ] = β α E c 4 c 1 c 2 c 3 α E β 0 0 β α E β 0 [ ] 0 [ ] = 0 0 β α E β c β α E α E β 0 0 β α E β 0 = 0 0 β α E β 0 0 β α E -(8) Let, λ = α E β This reduces the Hückel determinant as, λ λ 1 0 = λ λ -(9) which on expansion gives, λ λ 1 λ λ 1 = λ 0 1 λ λ[λ(λ 2 1) 1(λ) + 0] 1(λ 2 1) = 0 which gives, λ 4 3λ = 0 Let λ 2 = z -(10)

8 z 2 3z = 0 z = 3 ± λ 2 = z = 3 ± 5 2 λ = ± ( 3 ± ) 2 λ = ± ( ) 2 = ±1.618 ; ± ( ) 2 = ± We assumed earlier λ = α E β -(11) So, the energies of the molecular orbitals of butadiene are obtained as, If λ = , E = α β (Bonding Molecular Orbital BMO) If λ = 1.618, E = α 1.618β (Antibonding Molecular Orbital ABMO) If λ = , E = α β (Bonding Molecular Orbital BMO) If λ = 0.618, E = α 0.618β (Antibonding Molecular Orbital ABMO) The number of molecular orbitals that are generated using LCAO approximation are equal to the number of combining atomic orbitals. The Hückel energy level diagram for butadiene is shown below:

9 HMO energy level diagram for butadiene Total (π bond)energy = 2(α β) + 2(α β) -(12) Total (π bond)energy = 4α β Using λ asλ = α E β the secular equations are obtained as c 1 λ λ 1 0 c 2 [ ] [ 0 1 λ 1 c ] = λ c 4 -(13)

10 λc 1 + c = 0 c 1 + λc 2 + c = c 2 + λc 3 + c 4 = 0 -(14) c 3 + λc 4 = 0 If λ = c 2 = 1.618c 1 ; c 3 = c 1 ; c 4 = c 1 If λ = c 2 = 0.618c 1 ; c 3 = 0.618c 1 ; c 4 = c 1 If λ = c 2 = 0.618c 1 ; c 3 = 0.618c 1 ; c 4 = c 1 If λ = c 2 = 1.618c 1 ; c 3 = 1.618c 1 ; c 4 = c 1 -(15) -(16) -(17) -(18) Now, we know that the sum of squares of coefficients is always unity, c c c c 4 2 = 1 -(19) Putting equations (15, 16, 17 & 18) respectively in equation (19) gives the value of c1 and so forth the values of all the other coefficients in each respective case. λ = c 1 = 0.372; c 2 = 0.602; c 3 = 0.602; c 4 = λ = c 1 = 0.602; c 2 = 0.372; c 3 = 0.372; c 4 = λ = c 1 = 0.602; c 2 = 0.372; c 3 = 0.372; c 4 = λ = c 1 = 0.372; c 2 = 0.602; c 3 = 0.602; c 4 = Substituting the values of coefficients in equation (6) gives the four molecular orbitals (2 BMOs & 2 ABMOs) of butadiene, φ 1 = 0.372ψ 2pz ψ 2pz ψ 2pz ψ 2pz4

11 φ 2 = 0.602ψ 2pz ψ 2pz ψ 2pz ψ 2pz4 φ 3 = 0.602ψ 2pz ψ 2pz ψ 2pz ψ 2pz4 φ 4 = 0.372ψ 2pz ψ 2pz ψ 2pz ψ 2pz4 The pictorial representation of the four Hückel molecular orbitals viz., 2 BMOs and 2 ABMOs for butadiene is shown below. Nodes (or nodal planes) are regions where the probability of finding electrons is zero. The ground state of butadiene has no nodes. The number of nodes in an MO increases with increase in energy. Thus φ 2 has one node (shown by a dot in the figure), φ 3 has two nodes and φ 4 has three nodes. The total π electron energy (or π electron binding energy) Eπ is taken as the sum of the energies corresponding to each π electron. For butadiene, the total π electron energy Eπ is given by E π = 4α β -(20)

12 The energy of two π electrons in ethylene is E ethylene = 2α + 2β Resonance energy is defined as the difference in the energy of π electrons in a molecule and the sum of energies of isolated double bond E π(resonance energy) = E π E ethylene = 4α β 2(2α + 2β) = 0.472β Resonance energy is the measure of the stability of a molecule. Hence butadiene molecule is more stable than two ethylene molecules by a factor of 0.472β. Another related term is π bond formation energy which is the energy released when a π bond is formed. Since the contribution of α is same in the molecules as in the atoms,

13 so we can consider the energy of four electrons, each one in isolated and noninteracting atomic orbitals as 4α, then the π bond formation energy becomes, E π(bond formation) = E π E isolated -(21) E π(bond formation) = 4α β 4α = 4.472β 4.472β is the total π bonding energy of formation of the butadiene molecule. Total π-electronic charge on n th carbon atom is given by For butadiene, 2 q n = n i c in, n i is the number of electrons in ith MO i q 1 = 2c c = 2(0.372) 2 + 2(0.602) 2 = 1 The value unity indicates that the π electrons in butadiene are uniformly distributed over the molecule. One can try and find out q2, q3 and q4 for which the value will come out to be unity. Π-bond order between adjacent carbon atoms is given by BO π ab = n i c ia c ib i where n i is the number of π electrons in ith MO c ia c ib is the π electorn charge in ith MO between adjacent carbon atoms a and b For butadiene, BO π 12 = 2c 11 c c 21 c c 31 c c 41 c 42 BO π 12 = 2. (0.372). (0.602) + 2. (0.602). (0.372) BO π 12 = BO 12 π = BO π 34, by symmetry

14 BO π 23 = 2c 12 c c 22 c 23 BO π 23 = 2. (0.602). (0.602) + 2. (0.372). ( 0.372) BO π 23 = There is a σ bond between each carbon atom which is taken into account while reporting the total bond order. The total bond order is given by BO total π ab = 1 + BO ab For butadiene, total bond order comes out to be, BO total 12 = BO total 34 = BO total 23 = The bond order values for butadiene are in very good agreement with the experimental results.

15 4. Summary HMO theory is an approximate method which simplifies variation method to treat planar conjugated hydrocarbons. Properties of the conjugated molecules are primarily determined by π-electrons. HMO calculations are carried out using variation method and LCAO(π)-MO approximation Application of HMO theory to butadiene molecule 1,3-butadiene is a four π-electron system E = α ± 1.618β; α ± 0.618β φ 1 = 0.372ψ 2pz ψ 2pz ψ 2pz ψ 2pz4 φ 2 = 0.602ψ 2pz ψ 2pz ψ 2pz ψ 2pz4 φ 3 = 0.602ψ 2pz ψ 2pz ψ 2pz ψ 2pz4 φ 4 = 0.372ψ 2pz ψ 2pz ψ 2pz ψ 2pz4 Total (π bond)energy = 4α β E π(resonance energy) = 0.472β E π(bond formation) = 4.472β Total π-electronic charge on n th carbon atom of butadiene molecule is unity which indicates that the π electrons in butadiene are uniformly distributed over the molecule. Π-bond order between adjacent carbon atoms BO π 12 = BO π 34 = BO π 23 = 0.448

Hückel Molecular orbital Theory Application PART III

Hückel Molecular orbital Theory Application PART III Subject PHYSICAL Paper No and Title TOPIC Sub-Topic (if any) 2, PHYSICAL -I QUANTUM Hückel Molecular orbital Theory Module No. 33 PAPER: 2, PHYSICAL -I TABLE OF CONTENTS 1. Learning outcomes 2. Hückel

More information

PAPER:2, PHYSICAL CHEMISTRY-I QUANTUM CHEMISTRY. Module No. 34. Hückel Molecular orbital Theory Application PART IV

PAPER:2, PHYSICAL CHEMISTRY-I QUANTUM CHEMISTRY. Module No. 34. Hückel Molecular orbital Theory Application PART IV Subject PHYSICAL Paper No and Title TOPIC Sub-Topic (if any), PHYSICAL -II QUANTUM Hückel Molecular orbital Theory Module No. 34 TABLE OF CONTENTS 1. Learning outcomes. Hückel Molecular Orbital (HMO) Theory

More information

QUANTUM CHEMISTRY. Hückel Molecular orbital Theory Application PART I PAPER:2, PHYSICAL CHEMISTRY-I

QUANTUM CHEMISTRY. Hückel Molecular orbital Theory Application PART I PAPER:2, PHYSICAL CHEMISTRY-I Subject PHYSICAL Pper No nd Title TOPIC Sub-Topic (if ny) Module No., PHYSICAL -II QUANTUM Hückel Moleculr orbitl Theory CHE_P_M3 PAPER:, PHYSICAL -I MODULE: 3, Hückel Moleculr orbitl Theory TABLE OF CONTENTS.

More information

Molecular Orbital Theory

Molecular Orbital Theory Molecular Orbital Theory While FMO theory allows prediction of reactions (by thermodynamics, regio or stereochemistry), all predictions seen so far have been qualitative We have predicted that HOMO or

More information

Hückel Molecular Orbital (HMO) Theory

Hückel Molecular Orbital (HMO) Theory Hückel Molecular Orbital (HMO) Theory A simple quantum mechanical concept that gives important insight into the properties of large molecules Why HMO theory The first MO theory that could be applied to

More information

σ u * 1s g - gerade u - ungerade * - antibonding σ g 1s

σ u * 1s g - gerade u - ungerade * - antibonding σ g 1s One of these two states is a repulsive (dissociative) state. Other excited states can be constructed using linear combinations of other orbitals. Some will be binding and others will be repulsive. Thus

More information

On semiempirical treatment of hydrocarbons

On semiempirical treatment of hydrocarbons On semiempirical treatment of hydrocarbons Debangshu Mukherjee B.Sc Physics, IInd Year Chennai Mathematical Institute 27..2009 Abstract As, we do in case of small systems like H + 2 or He atom, we write

More information

( ) ( ) SALCs as basis functions. LCAO-MO Theory. Rewriting the Schrödinger Eqn. Matrix form of Schrödinger Eqn. Hφ j. φ 1. φ 3. φ 2. φ j. φ i.

( ) ( ) SALCs as basis functions. LCAO-MO Theory. Rewriting the Schrödinger Eqn. Matrix form of Schrödinger Eqn. Hφ j. φ 1. φ 3. φ 2. φ j. φ i. LCAO-MO Theory In molecular orbital theory the MOs, { }, are usually expanded as combinations of atomic orbitals, {φ i }. For the µ th MO, we write this expansion as = c iµ φ i = c 1µ φ 1 + c µ φ + c 3µ

More information

$ +! j. % i PERTURBATION THEORY AND SUBGROUPS (REVISED 11/15/08)

$ +! j. % i PERTURBATION THEORY AND SUBGROUPS (REVISED 11/15/08) PERTURBATION THEORY AND SUBGROUPS REVISED 11/15/08) The use of groups and their subgroups is of much importance when perturbation theory is employed in understanding molecular orbital theory and spectroscopy

More information

General Physical Chemistry II

General Physical Chemistry II General Physical Chemistry II Lecture 13 Aleksey Kocherzhenko October 16, 2014" Last time " The Hückel method" Ø Used to study π systems of conjugated molecules" Ø π orbitals are treated separately from

More information

New σ bond closes a ring. Loss of one π bond and gain of one σ bond

New σ bond closes a ring. Loss of one π bond and gain of one σ bond CHAPTER 1 Pericyclic Reactions 1.1 INTRODUCTION Pericyclic reactions are defined as the reactions that occur by a concerted cyclic shift of electrons. This definition states two key points that characterise

More information

MO theory is better for spectroscopy (Exited State Properties; Ionization)

MO theory is better for spectroscopy (Exited State Properties; Ionization) CHEM 2060 Lecture 25: MO Theory L25-1 Molecular Orbital Theory (MO theory) VB theory treats bonds as electron pairs. o There is a real emphasis on this point (over-emphasis actually). VB theory is very

More information

Chemistry 431. Lecture 14. Wave functions as a basis Diatomic molecules Polyatomic molecules Huckel theory. NC State University

Chemistry 431. Lecture 14. Wave functions as a basis Diatomic molecules Polyatomic molecules Huckel theory. NC State University Chemistry 431 Lecture 14 Wave functions as a basis Diatomic molecules Polyatomic molecules Huckel theory NC State University Wave functions as the basis for irreducible representations The energy of the

More information

Lecture 12. Symmetry Operations. NC State University

Lecture 12. Symmetry Operations. NC State University Chemistry 431 Lecture 12 Group Theory Symmetry Operations NC State University Wave functions as the basis for irreducible representations The energy of the system will not change when symmetry Operations

More information

Chemistry 2000 Lecture 2: LCAO-MO theory for homonuclear diatomic molecules

Chemistry 2000 Lecture 2: LCAO-MO theory for homonuclear diatomic molecules Chemistry 2000 Lecture 2: LCAO-MO theory for homonuclear diatomic molecules Marc R. Roussel January 5, 2018 Marc R. Roussel Homonuclear diatomics January 5, 2018 1 / 17 MO theory for homonuclear diatomic

More information

Electronic Structure Models

Electronic Structure Models Electronic Structure Models Hückel Model (1933) Basic Assumptions: (a) One orbital per atom contributes to the basis set; all orbitals "equal" (b) The relevant integrals involving the Hamiltonian are α

More information

5.111 Lecture Summary #13 Monday, October 6, 2014

5.111 Lecture Summary #13 Monday, October 6, 2014 5.111 Lecture Summary #13 Monday, October 6, 2014 Readings for today: Section 3.8 3.11 Molecular Orbital Theory (Same in 5 th and 4 th ed.) Read for Lecture #14: Sections 3.4, 3.5, 3.6 and 3.7 Valence

More information

MOLECULAR ORBITAL THEORY Chapter 10.8, Morrison and Boyd

MOLECULAR ORBITAL THEORY Chapter 10.8, Morrison and Boyd MOLECULAR ORBITAL THEORY Chapter 10.8, Morrison and Boyd more understanding: why oxygen is paramagnetic, why H2 + exists; explanation of excited electronic states (e.g., visible spectra) eliminates need

More information

CHAPTER 11 MOLECULAR ORBITAL THEORY

CHAPTER 11 MOLECULAR ORBITAL THEORY CHAPTER 11 MOLECULAR ORBITAL THEORY Molecular orbital theory is a conceptual extension of the orbital model, which was so successfully applied to atomic structure. As was once playfuly remarked, a molecue

More information

Covalent Bonding: Orbitals

Covalent Bonding: Orbitals Hybridization and the Localized Electron Model Covalent Bonding: Orbitals A. Hybridization 1. The mixing of two or more atomic orbitals of similar energies on the same atom to produce new orbitals of equal

More information

3: Many electrons. Orbital symmetries. l =2 1. m l

3: Many electrons. Orbital symmetries. l =2 1. m l 3: Many electrons Orbital symmetries Atomic orbitals are labelled according to the principal quantum number, n, and the orbital angular momentum quantum number, l. Electrons in a diatomic molecule experience

More information

PHYSICAL CHEMISTRY I. Chemical Bonds

PHYSICAL CHEMISTRY I. Chemical Bonds PHYSICAL CHEMISTRY I Chemical Bonds Review The QM description of bonds is quite good Capable of correctly calculating bond energies and reaction enthalpies However it is quite complicated and sometime

More information

Chapter 9. Covalent Bonding: Orbitals

Chapter 9. Covalent Bonding: Orbitals Chapter 9. Covalent onding: Orbitals Models to explain the structures and/or energies of the covalent molecules Localized Electron (LE) onding Model Lewis Structure Valence Shell Electron Pair Repulsion

More information

5.4. Electronic structure of water

5.4. Electronic structure of water 5.4. Electronic structure of water Water belongs to C 2v point group, we have discussed the corresponding character table. Here it is again: C 2v E C 2 σ v (yz) σ v (xz) A 1 1 1 1 1 A 2 1 1-1 -1 B 1 1-1

More information

Pericyclic Reactions: Electrocyclic Reaction

Pericyclic Reactions: Electrocyclic Reaction Pericyclic Reaction Pericyclic Reactions: Electrocyclic Reaction 1. Electrocyclic ring closing 2. Electrocyclic ring opening Electrocyclic ring closing reaction is characterized by a. The formation of

More information

Molecular Orbital Theory

Molecular Orbital Theory Junior Sophister Quantum Chemistry Course 333 (Part) Molecular Orbital Theory D.A.Morton-Blake Molecular orbital theory We have seen how the atomic orbital wave function provides a complete description

More information

5.111 Principles of Chemical Science

5.111 Principles of Chemical Science MIT OpenCourseWare http://ocw.mit.edu 5.111 Principles of Chemical Science Fall 2008 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. 5.111 Lecture Summary

More information

Same idea for polyatomics, keep track of identical atom e.g. NH 3 consider only valence electrons F(2s,2p) H(1s)

Same idea for polyatomics, keep track of identical atom e.g. NH 3 consider only valence electrons F(2s,2p) H(1s) XIII 63 Polyatomic bonding -09 -mod, Notes (13) Engel 16-17 Balance: nuclear repulsion, positive e-n attraction, neg. united atom AO ε i applies to all bonding, just more nuclei repulsion biggest at low

More information

Symmetry and Molecular Orbitals (I)

Symmetry and Molecular Orbitals (I) Symmetry and Molecular Orbitals (I) Simple Bonding Model http://chiuserv.ac.nctu.edu.tw/~htchiu/chemistry/fall-2005/chemical-bonds.htm Lewis Structures Octet Rule Resonance Formal Charge Oxidation Number

More information

would represent a 1s orbital centered on the H atom and φ 2px )+ 1 r 2 sinθ

would represent a 1s orbital centered on the H atom and φ 2px )+ 1 r 2 sinθ Physical Chemistry for Engineers CHEM 4521 Homework: Molecular Structure (1) Consider the cation, HeH +. (a) Write the Hamiltonian for this system (there should be 10 terms). Indicate the physical meaning

More information

The Hückel Approximation Consider a conjugated molecule i.e. a molecule with alternating double and single bonds, as shown in Figure 1.

The Hückel Approximation Consider a conjugated molecule i.e. a molecule with alternating double and single bonds, as shown in Figure 1. The Hückel Approximation In this exercise you will use a program called Hückel to look at the p molecular orbitals in conjugated molecules. The program calculates the energies and shapes of p (pi) molecular

More information

Chemistry 6 (9 am section) Spring Covalent Bonding

Chemistry 6 (9 am section) Spring Covalent Bonding Chemistry 6 (9 am section) Spring 000 Covalent Bonding The stability of the bond in molecules such as H, O, N and F is associated with a sharing (equal) of the VALENCE ELECTRONS between the BONDED ATOMS.

More information

Morrison and Boyd, Organic Chemistry, Interference of waves 1) constructive (in-phase) 2) destructive (out-of-phase)

Morrison and Boyd, Organic Chemistry, Interference of waves 1) constructive (in-phase) 2) destructive (out-of-phase) Morrison and Boyd, Organic Chemistry, 1973 Interference of waves 1) constructive (in-phase) 2) destructive (out-of-phase) Electron wave function with n, l, m l => orbitals Molecular orbital theory 1) molecule

More information

7. Arrange the molecular orbitals in order of increasing energy and add the electrons.

7. Arrange the molecular orbitals in order of increasing energy and add the electrons. Molecular Orbital Theory I. Introduction. A. Ideas. 1. Start with nuclei at their equilibrium positions. 2. onstruct a set of orbitals that cover the complete nuclear framework, called molecular orbitals

More information

Chapter 4 Symmetry and Chemical Bonding

Chapter 4 Symmetry and Chemical Bonding Chapter 4 Symmetry and Chemical Bonding 4.1 Orbital Symmetries and Overlap 4.2 Valence Bond Theory and Hybrid Orbitals 4.3 Localized and Delocalized Molecular Orbitals 4.4 MX n Molecules with Pi-Bonding

More information

The Hydrogen Molecule-Ion

The Hydrogen Molecule-Ion Sign In Forgot Password Register ashwenchan username password Sign In If you like us, please share us on social media. The latest UCD Hyperlibrary newsletter is now complete, check it out. ChemWiki BioWiki

More information

MOLECULAR STRUCTURE. Molecular Structure - B. Molecular Structure - B. Molecular Structure - B. Molecular Structure - B. Molecular Structure - B

MOLECULAR STRUCTURE. Molecular Structure - B. Molecular Structure - B. Molecular Structure - B. Molecular Structure - B. Molecular Structure - B MOLECULAR STRUCTURE Molecular Orbital all orbitals of the appropriate symmetry contribute to a molecular orbital. Bundet Boekfa Chem Div, Faculty Lib Arts & Sci Kasetsart University Kamphaeng Saen Campus

More information

1 r A. r B. 2m e. The potential energy of the electron is. r A and r B are the electron s distances from the nuclei A and B. This expression can be

1 r A. r B. 2m e. The potential energy of the electron is. r A and r B are the electron s distances from the nuclei A and B. This expression can be Introduction to Molecular Structure The Born-Oppenheimer approximation The Born-Oppenheimer approximation supposes that the nuclei, being so much heavier than the electron, move relatively slow and may

More information

:C O: σorbitals of CO. πorbitals of CO. Assumed knowledge. Chemistry 2. Learning outcomes. Lecture 2 Particle in a box approximation. C 2p.

:C O: σorbitals of CO. πorbitals of CO. Assumed knowledge. Chemistry 2. Learning outcomes. Lecture 2 Particle in a box approximation. C 2p. Chemistry 2 Lecture 2 Particle in a bo approimation Assumed knowledge Be able to predict the geometry of a hydrocarbon from its structure and account for each valence electron. Predict the hybridization

More information

7: Hückel theory for polyatomic molecules

7: Hückel theory for polyatomic molecules 7: ückel theory for polyatomic molecules Introduction Approximate treatment of π electron systems in organic molecules: 1 Approximations 3 4 5 6 1. π and σ frameworks completely separated. Trial wavefunctions

More information

Molecular Orbitals. Based on Inorganic Chemistry, Miessler and Tarr, 4 th edition, 2011, Pearson Prentice Hall

Molecular Orbitals. Based on Inorganic Chemistry, Miessler and Tarr, 4 th edition, 2011, Pearson Prentice Hall Molecular Orbitals Based on Inorganic Chemistry, Miessler and Tarr, 4 th edition, 2011, Pearson Prentice Hall Images from Miessler and Tarr Inorganic Chemistry 2011 obtained from Pearson Education, Inc.

More information

CHEMISTRY Topic #1: Bonding What Holds Atoms Together? Spring 2012 Dr. Susan Lait

CHEMISTRY Topic #1: Bonding What Holds Atoms Together? Spring 2012 Dr. Susan Lait CHEMISTRY 2000 Topic #1: Bonding What Holds Atoms Together? Spring 2012 Dr. Susan Lait Why Do Bonds Form? An energy diagram shows that a bond forms between two atoms if the overall energy of the system

More information

Chapter 18 Molecular orbitals and spectroscopy Conjugation of bonds and resonance structures

Chapter 18 Molecular orbitals and spectroscopy Conjugation of bonds and resonance structures Chapter 18 Molecular orbitals and spectroscopy 18.1 Diatomic molecules 18.2 Polyatomic molecules 18.3 Conjugation of bonds and resonance structures 18.4 The interaction of light and matter (spectroscopy)

More information

Lecture 26: Qualitative Molecular Orbital Theory: Hückel Theory

Lecture 26: Qualitative Molecular Orbital Theory: Hückel Theory MASSACHUSETTS INSTITUTE OF TECHNOLOGY 5.6 Physical Chemistry I Fall, 07 Professor Robert W. Field Lecture 6: Qualitative Molecular Orbital Theory: Hückel Theory Models in Physical Chemistry Our job is

More information

Chapter 4 Symmetry and Chemical Bonding

Chapter 4 Symmetry and Chemical Bonding Chapter 4 Symmetry and Chemical Bonding 4.1 Orbital Symmetries and Overlap 4.2 Valence Bond Theory and Hybrid Orbitals 4.3 Localized and Delocalized Molecular Orbitals 4.4 MX n Molecules with Pi-Bonding

More information

Molecular Structure Both atoms and molecules are quantum systems

Molecular Structure Both atoms and molecules are quantum systems Molecular Structure Both atoms and molecules are quantum systems We need a method of describing molecules in a quantum mechanical way so that we can predict structure and properties The method we use is

More information

Chemistry 2. Lecture 1 Quantum Mechanics in Chemistry

Chemistry 2. Lecture 1 Quantum Mechanics in Chemistry Chemistry 2 Lecture 1 Quantum Mechanics in Chemistry Your lecturers 8am Assoc. Prof Timothy Schmidt Room 315 timothy.schmidt@sydney.edu.au 93512781 12pm Assoc. Prof. Adam J Bridgeman Room 222 adam.bridgeman@sydney.edu.au

More information

TYPES OF SYMMETRIES OF MO s s-s combinations of orbitals: , if they are antibonding. s-p combinatinos of orbitals: CHEMICAL BONDING.

TYPES OF SYMMETRIES OF MO s s-s combinations of orbitals: , if they are antibonding. s-p combinatinos of orbitals: CHEMICAL BONDING. TYPES OF SYMMETRIES OF MO s s-s combinations of : Orbitals Molecular Orbitals s s Node s s (g) (g) Bonding orbital Antibonding orbital (u) 4 (u) s-s combinations of atomic In the bonding MO there is increased

More information

Be H. Delocalized Bonding. Localized Bonding. σ 2. σ 1. Two (sp-1s) Be-H σ bonds. The two σ bonding MO s in BeH 2. MO diagram for BeH 2

Be H. Delocalized Bonding. Localized Bonding. σ 2. σ 1. Two (sp-1s) Be-H σ bonds. The two σ bonding MO s in BeH 2. MO diagram for BeH 2 The Delocalized Approach to Bonding: The localized models for bonding we have examined (Lewis and VBT) assume that all electrons are restricted to specific bonds between atoms or in lone pairs. In contrast,

More information

VALENCE Hilary Term 2018

VALENCE Hilary Term 2018 VALENCE Hilary Term 2018 8 Lectures Prof M. Brouard Valence is the theory of the chemical bond Outline plan 1. The Born-Oppenheimer approximation 2. Bonding in H + 2 the LCAO approximation 3. Many electron

More information

QUANTUM MECHANICS AND MOLECULAR STRUCTURE

QUANTUM MECHANICS AND MOLECULAR STRUCTURE 6 QUANTUM MECHANICS AND MOLECULAR STRUCTURE 6.1 Quantum Picture of the Chemical Bond 6.2 Exact Molecular Orbital for the Simplest Molecule: H + 2 6.3 Molecular Orbital Theory and the Linear Combination

More information

CHAPTER 9 THEORY OF RESONANCE BY, G.DEEPA

CHAPTER 9 THEORY OF RESONANCE BY, G.DEEPA CHAPTER 9 THEORY OF RESONANCE BY, G.DEEPA Conjugation in Alkadienes and Allylic Systems conjugation a series of overlapping p orbitals The Allyl Group allylic position is the next to a double bond 1 allyl

More information

Lecture 14 Chemistry 362 M. Darensbourg 2017 Spring term. Molecular orbitals for diatomics

Lecture 14 Chemistry 362 M. Darensbourg 2017 Spring term. Molecular orbitals for diatomics Lecture 14 Chemistry 362 M. Darensbourg 2017 Spring term Molecular orbitals for diatomics Molecular Orbital Theory of the Chemical Bond Simplest example - H 2 : two H atoms H A and H B Only two a.o.'s

More information

Molecular orbitals, potential energy surfaces and symmetry

Molecular orbitals, potential energy surfaces and symmetry Molecular orbitals, potential energy surfaces and symmetry mathematical presentation of molecular symmetry group theory spectroscopy valence theory molecular orbitals Wave functions Hamiltonian: electronic,

More information

* 1s. --- if the sign does change it is called ungerade or u

* 1s. --- if the sign does change it is called ungerade or u Chapter Qualitative Theory of Chemical Bondin Backround: We have briefly mentioned bondin but it now time to talk about it for real. In this chapter we will delocalied orbitals and introduce Hückel MOT.

More information

Chapter 3. Orbitals and Bonding

Chapter 3. Orbitals and Bonding Chapter 3. Orbitals and Bonding What to master Assigning Electrons to Atomic Orbitals Constructing Bonding and Antibonding Molecular Orbitals with Simple MO Theory Understanding Sigma and Pi Bonds Identifying

More information

PAPER :8, PHYSICAL SPECTROSCOPY MODULE: 29, MOLECULAR TERM SYMBOLS AND SELECTION RULES FOR DIATOMIC MOLECULES

PAPER :8, PHYSICAL SPECTROSCOPY MODULE: 29, MOLECULAR TERM SYMBOLS AND SELECTION RULES FOR DIATOMIC MOLECULES Subject Chemistry Paper No and Title Module No and Title Module Tag 8: Physical Spectroscopy 29: Molecular Term Symbols and Selection Rules for Diatomic Molecules. CHE_P8_M29 TLE OF CONTENTS 1. Learning

More information

Be H. Delocalized Bonding. Localized Bonding. σ 2. σ 1. Two (sp-1s) Be-H σ bonds. The two σ bonding MO s in BeH 2. MO diagram for BeH 2

Be H. Delocalized Bonding. Localized Bonding. σ 2. σ 1. Two (sp-1s) Be-H σ bonds. The two σ bonding MO s in BeH 2. MO diagram for BeH 2 The Delocalized Approach to Bonding: The localized models for bonding we have examined (Lewis and VBT) assume that all electrons are restricted to specific bonds between atoms or in lone pairs. In contrast,

More information

General Chemistry. Contents. Chapter 12: Chemical Bonding II: Additional Aspects What a Bonding Theory Should Do. Potential Energy Diagram

General Chemistry. Contents. Chapter 12: Chemical Bonding II: Additional Aspects What a Bonding Theory Should Do. Potential Energy Diagram General Chemistry Principles and Modern Applications Petrucci Harwood Herring 8 th Edition Chapter 12: Chemical Bonding II: Additional Aspects Philip Dutton University of Windsor, Canada N9B 3P4 Contents

More information

Diatomic Molecules. 14th May Chemical Bonds in Diatomic Molecules: Overlaps and Delocalization of Electrons

Diatomic Molecules. 14th May Chemical Bonds in Diatomic Molecules: Overlaps and Delocalization of Electrons Diatomic Molecules 14th May 2009 1 Chemical Bonds in Diatomic Molecules: Overlaps and Delocalization of Electrons 1.1 H + 2 Molecule Consider the process where 2 atomic nuclei and associated electron (1

More information

Bonding and Physical Properties The Molecular Orbital Theory

Bonding and Physical Properties The Molecular Orbital Theory Bonding and Physical Properties The Molecular Orbital Theory Ø Developed by F. Hund and R. S. Mulliken in 1932 Ø Diagram of molecular energy levels Ø Magnetic and spectral properties Paramagnetic vs. Diamagnetic

More information

PAPER No. 7: Inorganic chemistry II MODULE No. 5: Molecular Orbital Theory

PAPER No. 7: Inorganic chemistry II MODULE No. 5: Molecular Orbital Theory Subject Chemistry Paper No and Title Module No and Title Module Tag 7, Inorganic chemistry II 5, Molecular Orbital Theory CHE_P7_M5 TABLE OF CONTENTS 1. Learning Outcomes 2. Introduction to Ligand Field

More information

Ψ g = N g (1s a + 1s b ) Themes. Take Home Message. Energy Decomposition. Multiple model wave fns possible. Begin describing brain-friendly MO

Ψ g = N g (1s a + 1s b ) Themes. Take Home Message. Energy Decomposition. Multiple model wave fns possible. Begin describing brain-friendly MO Themes Multiple model wave fns possible Different explanations of bonding Some you have seen before Errors vary (not consistently better or worse) Convenience varies Brain v. algebra v. computer Where

More information

CHEMISTRY. Chapter 8 ADVANCED THEORIES OF COVALENT BONDING Kevin Kolack, Ph.D. The Cooper Union HW problems: 6, 7, 12, 21, 27, 29, 41, 47, 49

CHEMISTRY. Chapter 8 ADVANCED THEORIES OF COVALENT BONDING Kevin Kolack, Ph.D. The Cooper Union HW problems: 6, 7, 12, 21, 27, 29, 41, 47, 49 CHEMISTRY Chapter 8 ADVANCED THEORIES OF COVALENT BONDING Kevin Kolack, Ph.D. The Cooper Union HW problems: 6, 7, 12, 21, 27, 29, 41, 47, 49 2 CH. 8 OUTLINE 8.1 Valence Bond Theory 8.2 Hybrid Atomic Orbitals

More information

Molecular Orbital Theory

Molecular Orbital Theory Molecular Orbital Theory Paramagnetic properties of O 2 pranjoto utomo Covalent Bonding Theory Valence Bond Theory useful for deriving shapes/polarity simple but inaccurate/deficient Molecular Orbital

More information

Molecular Bond Theory

Molecular Bond Theory Molecular Bond Theory Short comings of the localized electron model: electrons are not really localized so the concept of resonance was added no direct information about bond energies Molecular Orbital

More information

Chapter 9. Covalent Bonding: Orbitals

Chapter 9. Covalent Bonding: Orbitals Chapter 9 Covalent Bonding: Orbitals Chapter 9 Table of Contents 9.1 Hybridization and the Localized Electron Model 9.2 The Molecular Orbital Model 9.3 Bonding in Homonuclear Diatomic Molecules 9.4 Bonding

More information

Chem120a : Exam 3 (Chem Bio) Solutions

Chem120a : Exam 3 (Chem Bio) Solutions Chem10a : Exam 3 (Chem Bio) Solutions November 7, 006 Problem 1 This problem will basically involve us doing two Hückel calculations: one for the linear geometry, and one for the triangular geometry. We

More information

Chemistry 3502 Physical Chemistry II (Quantum Mechanics) 3 Credits Fall Semester 2003 Christopher J. Cramer. Lecture 25, November 5, 2003

Chemistry 3502 Physical Chemistry II (Quantum Mechanics) 3 Credits Fall Semester 2003 Christopher J. Cramer. Lecture 25, November 5, 2003 Chemistry 3502 Physical Chemistry II (Quantum Mechanics) 3 Credits Fall Semester 2003 Christopher J. Cramer Lecture 25, November 5, 2003 (Some material in this lecture has been adapted from Cramer, C.

More information

Conjugated Systems. With conjugated double bonds resonance structures can be drawn

Conjugated Systems. With conjugated double bonds resonance structures can be drawn Conjugated Systems Double bonds in conjugation behave differently than isolated double bonds With conjugated double bonds resonance structures can be drawn With isolated double bonds cannot draw resonance

More information

Activity Molecular Orbital Theory

Activity Molecular Orbital Theory Activity 201 9 Molecular Orbital Theory Directions: This Guided Learning Activity (GLA) discusses the Molecular Orbital Theory and its application to homonuclear diatomic molecules. Part A describes the

More information

Chemistry Lecture Notes

Chemistry Lecture Notes Molecular orbital theory Valence bond theory gave us a qualitative picture of chemical bonding. Useful for predicting shapes of molecules, bond strengths, etc. It fails to describe some bonding situations

More information

Chem 442 Review for Exam 2. Exact separation of the Hamiltonian of a hydrogenic atom into center-of-mass (3D) and relative (3D) components.

Chem 442 Review for Exam 2. Exact separation of the Hamiltonian of a hydrogenic atom into center-of-mass (3D) and relative (3D) components. Chem 44 Review for Exam Hydrogenic atoms: The Coulomb energy between two point charges Ze and e: V r Ze r Exact separation of the Hamiltonian of a hydrogenic atom into center-of-mass (3D) and relative

More information

Bonding in Molecules Prof John McGrady Michaelmas Term 2009

Bonding in Molecules Prof John McGrady Michaelmas Term 2009 Bonding in Molecules Prof John McGrady Michaelmas Term 2009 6 lectures building on material presented in Introduction to Molecular Orbitals (HT Year 1). Provides a basis for analysing the shapes, properties,

More information

MOLECULAR ORBITAL AND VALENCE BOND THEORY EXPLAINED (HOPEFULLY)

MOLECULAR ORBITAL AND VALENCE BOND THEORY EXPLAINED (HOPEFULLY) MOLEULAR ORBITAL AND VALENE BOND TEORY EXPLAINED (OPEFULLY) Quantum Mechanics is a very difficult topic, with a great deal of detail that is extremely complex, yet interesting. owever, in this Organic

More information

Lecture 16 C1403 October 31, Molecular orbital theory: molecular orbitals and diatomic molecules

Lecture 16 C1403 October 31, Molecular orbital theory: molecular orbitals and diatomic molecules Lecture 16 C1403 October 31, 2005 18.1 Molecular orbital theory: molecular orbitals and diatomic molecules 18.2 Valence bond theory: hybridized orbitals and polyatomic molecules. From steric number to

More information

2 Electronic structure theory

2 Electronic structure theory Electronic structure theory. Generalities.. Born-Oppenheimer approximation revisited In Sec..3 (lecture 3) the Born-Oppenheimer approximation was introduced (see also, for instance, [Tannor.]). We are

More information

CB VII. Molecular Orbital (MO) Theory. General. Basic Principles. Basic Ideas. further improvement on Lewis, VSEPR & VB theory;

CB VII. Molecular Orbital (MO) Theory. General. Basic Principles. Basic Ideas. further improvement on Lewis, VSEPR & VB theory; chem101/3, D1 fa010 po 14 1 CB VII Molecular Orbital (MO) Theory chem101/3, D1 fa010 po 14 General further improvement on Lewis, VSEPR & VB theory; resulting in better info on: bond energy bond order magnetic

More information

Using Symmetry to Generate Molecular Orbital Diagrams

Using Symmetry to Generate Molecular Orbital Diagrams Using Symmetry to Generate Molecular Orbital Diagrams review a few MO concepts generate MO for XH 2, H 2 O, SF 6 Formation of a bond occurs when electron density collects between the two bonded nuclei

More information

On the Uniqueness of Molecular Orbitals and limitations of the MO-model.

On the Uniqueness of Molecular Orbitals and limitations of the MO-model. On the Uniqueness of Molecular Orbitals and limitations of the MO-model. The purpose of these notes is to make clear that molecular orbitals are a particular way to represent many-electron wave functions.

More information

Chapter 5 Equations for Wave Function

Chapter 5 Equations for Wave Function Chapter 5 Equations for Wave Function In very simple cases, the explicit expressions for the SALCs could be deduced by inspection, but not for complicated system. It would be useful for cases like these

More information

like carbon, has fewer than an octet. It is simply less likely but still imperative to draw.

like carbon, has fewer than an octet. It is simply less likely but still imperative to draw. Andrew Rosen Chapter 1: The Basics - Bonding and Molecular Structure 1.1 - We Are Stardust - Organic chemistry is simply the study of carbon-based compounds, hydrocarbons, and their derivatives, which

More information

Learning Objectives and Worksheet VIII. Chemistry 1B-AL Fall Lectures (13-14) Molecular Orbital Theory of Covalent Bonding

Learning Objectives and Worksheet VIII. Chemistry 1B-AL Fall Lectures (13-14) Molecular Orbital Theory of Covalent Bonding Learning Objectives and Worksheet VIII Chemistry 1B-AL Fall 2016 Lectures (13-14) Molecular Orbital Theory of Covalent Bonding WE WILL BE COVERING CHAPTER 14 IN A DIFFERENT ORDER THAN THE TEXT: first we

More information

Chemistry 1B, Fall 2012 Lectures 15-16

Chemistry 1B, Fall 2012 Lectures 15-16 Chemistry 1B Fall 2012 Quantum Mechanics of the Covalent Bond for chapter 14 animations and links see: http://switkes.chemistry.ucsc.edu/teaching/chem1b/www_other_links/ch14_links.htm 1 LISTEN UP!!! WE

More information

Chapter 12: Chemical Bonding II: Additional Aspects

Chapter 12: Chemical Bonding II: Additional Aspects General Chemistry Principles and Modern Applications Petrucci Harwood Herring 8 th Edition Chapter 12: Chemical Bonding II: Additional Aspects Philip Dutton University of Windsor, Canada N9B 3P4 Prentice-Hall

More information

Molecular Orbitals. Chapter 9. Sigma bonding orbitals. Sigma bonding orbitals. Pi bonding orbitals. Sigma and pi bonds

Molecular Orbitals. Chapter 9. Sigma bonding orbitals. Sigma bonding orbitals. Pi bonding orbitals. Sigma and pi bonds Molecular Orbitals Chapter 9 Orbitals and Covalent Bond The overlap of atomic orbitals from separate atoms makes molecular orbitals Each molecular orbital has room for two electrons Two types of MO Sigma

More information

Part 1. Reading: Gray: (4-1), (4-2), and (4-4) OGN: (16.2)

Part 1. Reading: Gray: (4-1), (4-2), and (4-4) OGN: (16.2) Part 1 Reading: Gray: (4-1), (4-2), and (4-4) OGN: (16.2) The story so far: MO-LCAO works great for diatomic molecules! But... What about other numbers of atoms? Will MO-LCAO work for polyatomic molecules?

More information

Chemistry 1B, Fall 2013 Lectures 15-16

Chemistry 1B, Fall 2013 Lectures 15-16 Chemistry 1, Fall 2013 Lectures 1516 Chemistry 1 Fall 2013 Lectures 1516 Quantum Mechanics of the Covalent ond LISTEN UP!!! WE WILL E COVERING SECOND PRT OF CHPTER 14 (pp 676688) FIRST You will go CRZY

More information

The symmetry properties & relative energies of atomic orbitals determine how they react to form molecular orbitals. These molecular orbitals are then

The symmetry properties & relative energies of atomic orbitals determine how they react to form molecular orbitals. These molecular orbitals are then 1 The symmetry properties & relative energies of atomic orbitals determine how they react to form molecular orbitals. These molecular orbitals are then filled with the available electrons according to

More information

Electronic structure of solids

Electronic structure of solids Electronic structure of solids Eigenvalue equation: Áf(x) = af(x) KNOWN: Á is an operator. UNKNOWNS: f(x) is a function (and a vector), an eigenfunction of Á; a is a number (scalar), the eigenvalue. Ackowledgement:

More information

Shapes of Molecules. Lewis structures are useful but don t allow prediction of the shape of a molecule.

Shapes of Molecules. Lewis structures are useful but don t allow prediction of the shape of a molecule. Shapes of Molecules Lewis structures are useful but don t allow prediction of the shape of a molecule. H O H H O H Can use a simple theory based on electron repulsion to predict structure (for non-transition

More information

MO THEORY FOR CONJUGATED MOLECULES

MO THEORY FOR CONJUGATED MOLECULES 22.2 MO TEORY FOR CONJUGATED MOLECULES 959 methyl groups have a cis orientation in the cyclobutene product. There is no obvious reason why conrotation should be preferred over disrotation in the thermal

More information

Symmetry III: Molecular Orbital Theory. Reading: Shriver and Atkins and , 6.10

Symmetry III: Molecular Orbital Theory. Reading: Shriver and Atkins and , 6.10 Lecture 9 Symmetry III: Molecular Orbital Theory Reading: Shriver and Atkins 2.7-2.9 and g 6.6-6.7, 6.10 The orbitals of molecules H H The electron energy in each H atom is -13.6 ev below vacuum. What

More information

Lecture 9: Molecular Orbital theory for hydrogen molecule ion

Lecture 9: Molecular Orbital theory for hydrogen molecule ion Lecture 9: Molecular Orbital theory for hydrogen molecule ion Molecular Orbital Theory for Hydrogen Molecule Ion We have seen that the Schrödinger equation cannot be solved for many electron systems. The

More information

Benzene: E. det E E 4 E 6 0.

Benzene: E. det E E 4 E 6 0. Benzene: 2 5 3 4 We will solve Schodinger equation for this molecule by considering only porbitals of six carbons under the Huckel approximation. Huckel approximation, though quite crude, provides very

More information

Chapter 10 Theories of Covalent Bonding

Chapter 10 Theories of Covalent Bonding Chapter 10 Theories of Covalent Bonding 1 Atomic Orbitals Molecules Bonding and 2 Molecular Structure Questions How are molecules held together? Why is O 2 paramagnetic? And how is this property connected

More information

Constitutional isomers. Two bracelets with the same structural parts assembled differently

Constitutional isomers. Two bracelets with the same structural parts assembled differently Constitutional isomers 1 6 6 Two bracelets with the same structural parts assembled differently Constitutional isomers C C N C C N C 2 7 N Two molecules with the same constituent atoms assembled differently

More information

AN INTRODUCTION TO MOLECULAR ORBITALS

AN INTRODUCTION TO MOLECULAR ORBITALS AN INTRODUCTION TO MOLECULAR ORBITALS by YVES JEAN and FRANCOIS VOLATRON translated and edited by Jeremy Burdett New York Oxford OXFORD UNIVERSITY PRESS 1993 Contents Introduction, xiii I INTRODUCTION

More information

We can model covalent bonding in molecules in essentially two ways:

We can model covalent bonding in molecules in essentially two ways: CHEM 2060 Lecture 22: VB Theory L22-1 PART FIVE: The Covalent Bond We can model covalent bonding in molecules in essentially two ways: 1. Localized Bonds (retains electron pair concept of Lewis Structures)

More information

Hybridization and Molecular Orbital (MO) Theory

Hybridization and Molecular Orbital (MO) Theory ybridization and Molecular Orbital (MO) Theory Chapter 10 istorical Models G.N.Lewis and I. Langmuir (~1920) laid out foundations Ionic species were formed by electron transfer Covalent molecules arise

More information