:C O: σorbitals of CO. πorbitals of CO. Assumed knowledge. Chemistry 2. Learning outcomes. Lecture 2 Particle in a box approximation. C 2p.

Size: px
Start display at page:

Download ":C O: σorbitals of CO. πorbitals of CO. Assumed knowledge. Chemistry 2. Learning outcomes. Lecture 2 Particle in a box approximation. C 2p."

Transcription

1 Chemistry 2 Lecture 2 Particle in a bo approimation Assumed knowledge Be able to predict the geometry of a hydrocarbon from its structure and account for each valence electron. Predict the hybridization of atomic orbitals on carbon atoms. Learning outcomes Be able to eplain why confining a particle to a bo leads to quantization of its energy levels Be able to eplain why the lowest energy of the particle in a bo is not zero Be able to apply the particle in a bo approimation as a model for the electronic structure of a conjugated molecule (given equation for E n ). πorbitals of CO More carbon character σorbitals of CO 2sσ 2sσ* 2pσ π* C 2p The unequal energies of C and O 2p orbitalsmeans that the miing is incomplete. This results in the p bonding orbital being polarized to the oygen, and the antibonding orbital polarized to the carbon. This is important for inorganic chemistry π O 2p More oygen character σ-bonding orbital Polarized to oygen lone pairs. ighest occupied σ orbital is localized on carbon lone pair this is important for inorganic chemistry :C O:

2 sp hybridization acetylene (ethyne) When one mies the 2s and the 2p to make an sp hybrid orbital, one must obtain, afterwards, two orbitals. These are the plus and the minus combinations. There are 1 valence electrons 2 go into C-C bonding σ orbital (sp + sp) 2 go into one of the C- bonding σ orbitals (sp + 1s) 2 go into the other C- bond We are left with pristine (unhybridized) 2p and 2p y orbitals. 2 electrons go into 2p π bonding orbital 2 electrons go into 2p y π bonding orbital CC bond is triple σ and 2 π minus combinations are anti-bonding and are not occupied. C C σ σ σ π π sp 2 hybridization In order to make two σ bonds, sp hybrids are constructed. In some molecules, such as ethylene (ethene), the carbon atom must make three sigma bonds. To achieve this, the 2s orbital is mied with two 2p orbitals to make three sp 2 hybrid orbitals. There are 12 valence electrons ethylene (ethene) 2 go into C-C bonding σ orbital (sp 2 + sp 2 ) 2 go into each the C- bonding σ orbitals (sp 2 + 1s) (8 electrons) We are left with pristine (unhybridized) 2p z orbitals. 2 electrons go into 2p π bonding orbital σ σ CC bond is double σ and π minus combinations are anti-bonding and are not occupied. π

3 sp 3 hybridization In order to make four bonds, sp 3 hybrids are constructed. All saturated carbon atoms are sp 3 hybridized. To achieve this, the 2s orbital is mied with two 3p orbitals to make four sp 3 hybrid orbitals. sp 3 hybridization The bonding orbitals in methane are sums of sp3 hybrids on the carbon, and 1s orbitals of the hydrogen. 1s There are four sp3 hybrids since they are constructed from four atomic orbitals, (2s + 3 2p). They point at the corners of a tetrahedron and are 19 apart. C sp 3 sp 3 hybridization All tetrahedral atoms are considered to be sp 3 hybridized. σ-framework The electronic structure of most molecules may be simplified by considering the σ framework to be constructed from σ-bonding orbitals, with anti-bonding combinations unoccupied. Where carbons are sp 2, or sp hybridized, there are unhybridized p orbitals which may be used to construct π-bonds. π-system O : N : : water ammonia σ-framework C C C

4 σ interactions: ethylene σ interactions no nodes ( ignoring inside) one node Same energy, interact and mi one node C-C σbond appears to be positive overlap of sp 2 hybrids two nodes two nodes σorbitals do not interact with πorbitals π orbital of ethylene ψ ˆ ψ d τ = 2 1 = cancels ψ σ ψ π There is no net interaction between these orbitals. The positive-positive term is cancelled by the positive-negative term C-C π bond appears to be positive overlap of unhybridized p orbitals

5 σ orbitals of cis-butadiene π orbitals of cis-butadiene three nodes two nodes The four p orbitals all have the same energy interact and mi one node no node (ignore plane) The σmolecular orbitals are mitures of the sp 2 hybrids π orbitals of heatriene The si p orbitals all have the same energy interact and mi Maybe we can model the π-electrons as confined to a one dimensional bo?

6 The Schrödinger equation The total energy is etracted by the amiltonian operator. These are the observable energy levels of a quantum particle The Schrödinger equation The amiltonian has parts corresponding to Kinetic Energy and Potential Energy. In one dimension, : Energy eigenfunction Potential Energy amiltonian operator Energy eigenvalue amiltonian operator Kinetic Energy The particle in a bo The bo is a 1d well, with sides of infinite potential, where the electron cannot be The particle in a bo The bo is a 1d well, with sides of infinite potential, where the electron cannot be E E L L

7 The particle in a bo The particle cannot eist outside the bo Ψ = {<;>L (boundary conditions) The particle in a bo Let s try some test solutions Ψ = sin(π/l) {>;<L E E?? L L The particle in a bo The particle in a bo Zero potential inside bo Lowest energy possible is ε = ħ 2 π 2 /2mL 2 This is called zero point energy (ZPE) V =εψ!!! L

8 The particle in a bo Other solutions? Ψ = sin(2π/l) {>;<L The particle in a bo Other solutions? Ψ = sin(3π/l) {>;<L V V L L The particle in a bo Other solutions? Ψ = sin(4π/l) {>;<L V The particle in a bo Other solutions? Ψ = sin(nπ/l) {>;<L V ε n = ħ 2 n 2 π 2 /2mL 2? L L

9 The particle in a bo Ψ = sin(nπ/l) {>;<L;n> ε n = ħ 2 n 2 π 2 /2mL 2 ε n The particle in a bo Ψ = sin(nπ/l) {>;<L;n> ε n = ħ 2 n 2 π 2 /2mL 2 Philosophical question: why is n = not an appropriate solution? int: what s the probability of observing the particle? Consequences of confinement For a particle in a bo, there eist solutions to the Schrödinger equation (eigenfunctions) of the form Ψ = sin(nπ/l) with energies (eigenvalues) ε n = ħ 2 n 2 π 2 /2mL 2 These are quantized energy levels! Increasing L decreases spacing Increasing m decreases spacing (correspondence principle) Boundary conditions We impose the boundary conditions on imaginary atoms one bond length beyond the edge of the π-system.

10 A word about nitrogen Application: Polymethine dyes When a nitrogen is adjacent to a π-system, it may possess sp 2 hybridized resonance forms which allow it to participate in that π-system. e.g. amides If the resonance forms are not favourable, they may only contribute in a minor way and the nitrogen will still have a pyramidal structure to some etent. In amides, the oygen stabilizes the resonance structure and the nitrogen is planar. Adapted from Brooker, JACS 62, 1116 (194). Application: Polymethine dyes Polymethine dyes Question: how many π-electrons in the a- Brooker dye? Question: what is the length over which the π- electrons are delocalized, if the average bond length is 1.4 Å? Answer: firstly, we should recognize that the π -system etends over both nitrogens. There are two resonance forms. By symmetry these will involve double bonds with either nitrogen. Looking carefully at the structure, there are 2a+3 carbon atoms which each contribute one electron each. There are two nitrogens, one which contributes two electrons, and one which contributes one electron, since it bears a positive charge. Therefore, there are 2a+6 electrons. A = ε.c.l (Beer s Law) Answer: Looking carefully at the structure there are 2a+4 bonds in the π -system. If we add a bond at each end of the system, we get 2a+6 bonds in length, which equates to L = (2a+6) 1.4 Å. Question: if the energy levels of the electrons are given by ε n = ħ 2 n 2 π 2 /2mL 2, what is the energy of the OMO in ev if a=1? Answer: since there are 2a+ 6 π-electrons, there must be 8 electrons, and therefore the OMO must have n=4. We know that L = Å = 11.2 Å. From these numbers, we get ε n = n 2 in Joules. The energy of the OMO is thus ε 4 = J = 4.79 ev.

11 Polymethine dyes Question: what is the energy of the LUMO, and thus the OMO-LUMO transition? ow does this compare to eperiment (see figure)? Effect of chromophore size Answer: ε n = n 2 in Joules. The energy of the LUMO is thus ε 5 = J = 7.49 ev. The energy of the OMO-LUMO transition is thus 2.69 ev. This corresponds to photons of wavelength λ = hc/( ) ~ 46nm. This is not so far from the eperimental value (about 55nm), which is about as good as we can epect. Indeed, the R groups in the picture are, in fact, themselves conjugated. Inclusion of these as part of the electron track will improve the model considerably by further delocalizing the electrons and thus bringing the energies down closer to the eperimental values. Chromophore Wavelength (nm) Something to think about Particle on a ring Must fit even wavelengths into whole cycle Summary The particle in a bo problem can be solved eactly and is a good first approimation for the electrons in a delocalized π- system. Confining a particle in a bo leads to quantization of its energy levels due to the condition that its wavefunctionis zero at the edges of the bo The lowest energy (ZPE) of a particle in a bo is not zero Be able to apply the particle in a bo approimation as a Be able to apply the particle in a bo approimation as a model for the electronic structure of a conjugated molecule (given equation for E n ).

12 Net lecture Particle-on-a-ring model Practice Questions 1. The energy levels of the particle in a bo are given by ε n = ħ 2 n 2 p 2 /2mL 2. (a) Why does the lowest energy correspond to n = 1 rather than n =? Week 1 tutorials Particle in a bo approimation you solve the Schrödinger equation. (b) (c) (d) What is the separation between two adjacent levels? (int: ε = ε n+1 - ε n ) The π chain in a heatriene derivative has L = 973 pm and has 6 π electrons. What is energy of the OMO LUMO gap? What does the particle in a bo model predicts happens to the OMO LUMO gap of polyenes as the chain length increases?

Covalent Bonding: Orbitals

Covalent Bonding: Orbitals Hybridization and the Localized Electron Model Covalent Bonding: Orbitals A. Hybridization 1. The mixing of two or more atomic orbitals of similar energies on the same atom to produce new orbitals of equal

More information

1s atomic orbital 2s atomic orbital 2s atomic orbital (with node) 2px orbital 2py orbital 2pz orbital

1s atomic orbital 2s atomic orbital 2s atomic orbital (with node) 2px orbital 2py orbital 2pz orbital Atomic Orbitals 1s atomic orbital 2s atomic orbital 2s atomic orbital (with node) 2px orbital 2py orbital 2pz orbital Valence Bond Theory and ybridized Atomic Orbitals Bonding in 2 1s 1s Atomic Orbital

More information

Molecular Structure and Orbitals

Molecular Structure and Orbitals CHEM 1411 General Chemistry Chemistry: An Atoms First Approach by Zumdahl 2 5 Molecular Structure and Orbitals Chapter Objectives: Learn the basics of Valence Bond Theory and Molecular Orbital Theory and

More information

Chapter 9 Molecular Geometry Valence Bond and Molecular Orbital Theory

Chapter 9 Molecular Geometry Valence Bond and Molecular Orbital Theory Chapter 9 Molecular Geometry Valence Bond and Molecular Orbital Theory Chapter Objectives: Learn the basics of Valence Bond Theory and Molecular Orbital Theory and how they are used to model covalent bonding.

More information

Chapter 10 Chemical Bonding II

Chapter 10 Chemical Bonding II Chapter 10 Chemical Bonding II Valence Bond Theory Valence Bond Theory: A quantum mechanical model which shows how electron pairs are shared in a covalent bond. Bond forms between two atoms when the following

More information

Shapes of Molecules VSEPR

Shapes of Molecules VSEPR Shapes of Molecules In this section we will use Lewis structures as an introduction to the shapes of molecules. The key concepts are: Electron pairs repel each other. Electron pairs assume orientations

More information

- H. Predicts linear structure. Above are all σ bonds

- H. Predicts linear structure. Above are all σ bonds arbon sp hybrids: : Acetylene and the Triple bond 2 2 is - - Form sp on each leaving 2p x, 2p y unused - sp sp + + sp sp - Predicts linear structure. Above are all σ bonds --- Uses up 2 valence e - for

More information

Lecture 16 C1403 October 31, Molecular orbital theory: molecular orbitals and diatomic molecules

Lecture 16 C1403 October 31, Molecular orbital theory: molecular orbitals and diatomic molecules Lecture 16 C1403 October 31, 2005 18.1 Molecular orbital theory: molecular orbitals and diatomic molecules 18.2 Valence bond theory: hybridized orbitals and polyatomic molecules. From steric number to

More information

Valence Bond Theory. Localized Electron Model. Hybridize the Orbitals! Overlap and Bonding. Atomic Orbitals are. mmmkay. Overlap and Bonding

Valence Bond Theory. Localized Electron Model. Hybridize the Orbitals! Overlap and Bonding. Atomic Orbitals are. mmmkay. Overlap and Bonding Valence Bond Theory Atomic Orbitals are bad mmmkay Overlap and Bonding Lewis taught us to think of covalent bonds forming through the sharing of electrons by adjacent atoms. In such an approach this can

More information

Hybridization of Orbitals

Hybridization of Orbitals Hybridization of Orbitals Structure & Properties of Matter 1 Atomic Orbitals and Bonding Previously: Electron configurations Lewis structures Bonding Shapes of molecules Now: How do atoms form covalent

More information

Chapter 9. Molecular Geometries and Bonding Theories. Lecture Presentation. John D. Bookstaver St. Charles Community College Cottleville, MO

Chapter 9. Molecular Geometries and Bonding Theories. Lecture Presentation. John D. Bookstaver St. Charles Community College Cottleville, MO Lecture Presentation Chapter 9 Theories John D. Bookstaver St. Charles Community College Cottleville, MO Shapes The shape of a molecule plays an important role in its reactivity. By noting the number of

More information

Chapter 9. Covalent Bonding: Orbitals

Chapter 9. Covalent Bonding: Orbitals Chapter 9. Covalent onding: Orbitals Models to explain the structures and/or energies of the covalent molecules Localized Electron (LE) onding Model Lewis Structure Valence Shell Electron Pair Repulsion

More information

Molecular Shape and Molecular Polarity. Molecular Shape and Molecular Polarity. Molecular Shape and Molecular Polarity

Molecular Shape and Molecular Polarity. Molecular Shape and Molecular Polarity. Molecular Shape and Molecular Polarity Molecular Shape and Molecular Polarity When there is a difference in electronegativity between two atoms, then the bond between them is polar. It is possible for a molecule to contain polar bonds, but

More information

Lecture 16 C1403 October 31, Molecular orbital theory: molecular orbitals and diatomic molecules

Lecture 16 C1403 October 31, Molecular orbital theory: molecular orbitals and diatomic molecules Lecture 16 C1403 October 31, 2005 18.1 Molecular orbital theory: molecular orbitals and diatomic molecules 18.2 Valence bond theory: hybridized orbitals and polyatomic molecules Bond order, bond lengths,

More information

Chapter 10 Theories of Covalent Bonding

Chapter 10 Theories of Covalent Bonding Chapter 10 Theories of Covalent Bonding 1 Atomic Orbitals Molecules Bonding and 2 Molecular Structure Questions How are molecules held together? Why is O 2 paramagnetic? And how is this property connected

More information

Chapter 9. Molecular Geometries and Bonding Theories. Lecture Presentation. John D. Bookstaver St. Charles Community College Cottleville, MO

Chapter 9. Molecular Geometries and Bonding Theories. Lecture Presentation. John D. Bookstaver St. Charles Community College Cottleville, MO Lecture Presentation Chapter 9 Theories John D. Bookstaver St. Charles Community College Cottleville, MO Shapes The shape of a molecule plays an important role in its reactivity. By noting the number of

More information

Chemistry 2. Lecture 1 Quantum Mechanics in Chemistry

Chemistry 2. Lecture 1 Quantum Mechanics in Chemistry Chemistry 2 Lecture 1 Quantum Mechanics in Chemistry Your lecturers 8am Assoc. Prof Timothy Schmidt Room 315 timothy.schmidt@sydney.edu.au 93512781 12pm Assoc. Prof. Adam J Bridgeman Room 222 adam.bridgeman@sydney.edu.au

More information

3. Orbitals and hybridization.

3. Orbitals and hybridization. Grossman, E 230 3. Orbitals and hybridization. 3.1 Atomic and Molecular Orbitals. We can use molecular orbital (MO) theory to describe the structure of molecules in more detail. MO theory also provides

More information

Molecular Orbital Theory

Molecular Orbital Theory Junior Sophister Quantum Chemistry Course 333 (Part) Molecular Orbital Theory D.A.Morton-Blake Molecular orbital theory We have seen how the atomic orbital wave function provides a complete description

More information

Chemical Bonding & Structure

Chemical Bonding & Structure Chemical Bonding & Structure Further aspects of covalent bonding and structure Hybridization Ms. Thompson - HL Chemistry Wooster High School Topic 14.2 Hybridization A hybrid orbital results from the mixing

More information

Chapter 9. Molecular Geometry and Bonding Theories

Chapter 9. Molecular Geometry and Bonding Theories Chapter 9. Molecular Geometry and Bonding Theories 9.1 Molecular Shapes Lewis structures give atomic connectivity: they tell us which atoms are physically connected to which atoms. The shape of a molecule

More information

Valence Bond Model and Hybridization

Valence Bond Model and Hybridization Valence Bond Model and ybridization APPENDIX 4 1 Concepts The key ideas required to understand this section are: Concept Book page reference VSEPR theory 65 More advanced ideas about electronic structure

More information

Chapter 10. Structure Determines Properties! Molecular Geometry. Chemical Bonding II

Chapter 10. Structure Determines Properties! Molecular Geometry. Chemical Bonding II Chapter 10 Chemical Bonding II Structure Determines Properties! Properties of molecular substances depend on the structure of the molecule The structure includes many factors, including: the skeletal arrangement

More information

Covalent Bonding - Orbitals

Covalent Bonding - Orbitals Covalent Bonding - Orbitals ybridization - The Blending of Orbitals + = Poodle + Cocker Spaniel = Cockapoo + = s orbital + p orbital = sp orbital What Proof Exists for ybridization? We have studied electron

More information

Chapter 9: Molecular Geometries and Bonding Theories Learning Outcomes: Predict the three-dimensional shapes of molecules using the VSEPR model.

Chapter 9: Molecular Geometries and Bonding Theories Learning Outcomes: Predict the three-dimensional shapes of molecules using the VSEPR model. Chapter 9: Molecular Geometries and Bonding Theories Learning Outcomes: Predict the three-dimensional shapes of molecules using the VSEPR model. Determine whether a molecule is polar or nonpolar based

More information

Chapter 5. Molecular Orbitals

Chapter 5. Molecular Orbitals Chapter 5. Molecular Orbitals MO from s, p, d, orbitals: - Fig.5.1, 5.2, 5.3 Homonuclear diatomic molecules: - Fig. 5.7 - Para- vs. Diamagnetic Heteronuclear diatomic molecules: - Fig. 5.14 - ex. CO Hybrid

More information

Chapter 9. Covalent Bonding: Orbitals. Copyright 2017 Cengage Learning. All Rights Reserved.

Chapter 9. Covalent Bonding: Orbitals. Copyright 2017 Cengage Learning. All Rights Reserved. Chapter 9 Covalent Bonding: Orbitals Chapter 9 Table of Contents (9.1) (9.2) (9.3) (9.4) (9.5) (9.6) Hybridization and the localized electron model The molecular orbital model Bonding in homonuclear diatomic

More information

hand and delocalization on the other, can be instructively exemplified and extended

hand and delocalization on the other, can be instructively exemplified and extended Text Related to Segment 8.0 00 Claude E. Wintner The ideas developed up to this point, concerning stereochemistry on the one hand and delocalization on the other, can be instructively exemplified and extended

More information

Chapter 9 - Covalent Bonding: Orbitals

Chapter 9 - Covalent Bonding: Orbitals Chapter 9 - Covalent Bonding: Orbitals 9.1 Hybridization and the Localized Electron Model A. Hybridization 1. The mixing of two or more atomic orbitals of similar energies on the same atom to produce new

More information

Chapter 9. and Bonding Theories

Chapter 9. and Bonding Theories Chemistry, The Central Science, 11th edition Theodore L. Brown, H. Eugene LeMay, Jr., and Bruce E. Bursten Chapter 9 Theories John D. Bookstaver St. Charles Community College Cottleville, MO Shapes The

More information

UNIT TWO BOOKLET 1. Molecular Orbitals and Hybridisation

UNIT TWO BOOKLET 1. Molecular Orbitals and Hybridisation DUNCANRIG SECONDARY ADVANCED HIGHER CHEMISTRY UNIT TWO BOOKLET 1 Molecular Orbitals and Hybridisation In the inorganic unit we learned about atomic orbitals and how they could be used to write the electron

More information

Chemistry 2000 Lecture 8: Valence bond theory

Chemistry 2000 Lecture 8: Valence bond theory Chemistry 000 Lecture 8: Valence bond theory Marc R. Roussel January 9, 08 Marc R. Roussel Valence bond theory January 9, 08 / 5 MO theory: a recap A molecular orbital is a one-electron wavefunction which,

More information

Chapter 9. and Bonding Theories. Molecular Shapes. What Determines the Shape of a Molecule? 3/8/2013

Chapter 9. and Bonding Theories. Molecular Shapes. What Determines the Shape of a Molecule? 3/8/2013 Chemistry, The Central Science, 10th edition Theodore L. Brown, H. Eugene LeMay, Jr., and Bruce E. Bursten Chapter 9 Theories John D. Bookstaver St. Charles Community College St. Peters, MO 2006, Prentice-Hall,

More information

Chapter 10: Chemical Bonding II. Bonding Theories

Chapter 10: Chemical Bonding II. Bonding Theories Chapter 10: Chemical Bonding II Dr. Chris Kozak Memorial University of Newfoundland, Canada Bonding Theories Previously, we saw how the shapes of molecules can be predicted from the orientation of electron

More information

Shapes of Molecules. Lewis structures are useful but don t allow prediction of the shape of a molecule.

Shapes of Molecules. Lewis structures are useful but don t allow prediction of the shape of a molecule. Shapes of Molecules Lewis structures are useful but don t allow prediction of the shape of a molecule. H O H H O H Can use a simple theory based on electron repulsion to predict structure (for non-transition

More information

MOLECULAR ORBITAL AND VALENCE BOND THEORY EXPLAINED (HOPEFULLY)

MOLECULAR ORBITAL AND VALENCE BOND THEORY EXPLAINED (HOPEFULLY) MOLEULAR ORBITAL AND VALENE BOND TEORY EXPLAINED (OPEFULLY) Quantum Mechanics is a very difficult topic, with a great deal of detail that is extremely complex, yet interesting. owever, in this Organic

More information

Structure and Bonding of Organic Molecules

Structure and Bonding of Organic Molecules Chem 220 Notes Page 1 Structure and Bonding of Organic Molecules I. Types of Chemical Bonds A. Why do atoms forms bonds? Atoms want to have the same number of electrons as the nearest noble gas atom (noble

More information

like carbon, has fewer than an octet. It is simply less likely but still imperative to draw.

like carbon, has fewer than an octet. It is simply less likely but still imperative to draw. Andrew Rosen Chapter 1: The Basics - Bonding and Molecular Structure 1.1 - We Are Stardust - Organic chemistry is simply the study of carbon-based compounds, hydrocarbons, and their derivatives, which

More information

Chemistry Lecture Notes

Chemistry Lecture Notes Molecular orbital theory Valence bond theory gave us a qualitative picture of chemical bonding. Useful for predicting shapes of molecules, bond strengths, etc. It fails to describe some bonding situations

More information

Hybridization and Molecular Orbital (MO) Theory

Hybridization and Molecular Orbital (MO) Theory ybridization and Molecular Orbital (MO) Theory Chapter 10 istorical Models G.N.Lewis and I. Langmuir (~1920) laid out foundations Ionic species were formed by electron transfer Covalent molecules arise

More information

Chemical Bonding II. Molecular Geometry Valence Bond Theory Phys./Chem. Properties Quantum Mechanics Sigma & Pi bonds Hybridization MO theory

Chemical Bonding II. Molecular Geometry Valence Bond Theory Phys./Chem. Properties Quantum Mechanics Sigma & Pi bonds Hybridization MO theory Chemical Bonding II Molecular Geometry Valence Bond Theory Phys./Chem. Properties Quantum Mechanics Sigma & Pi bonds ybridization MO theory 1 Molecular Geometry 3-D arrangement of atoms 2 VSEPR Valence-shell

More information

General Chemistry. Contents. Chapter 12: Chemical Bonding II: Additional Aspects What a Bonding Theory Should Do. Potential Energy Diagram

General Chemistry. Contents. Chapter 12: Chemical Bonding II: Additional Aspects What a Bonding Theory Should Do. Potential Energy Diagram General Chemistry Principles and Modern Applications Petrucci Harwood Herring 8 th Edition Chapter 12: Chemical Bonding II: Additional Aspects Philip Dutton University of Windsor, Canada N9B 3P4 Contents

More information

Covalent Compounds: Bonding Theories and Molecular Structure

Covalent Compounds: Bonding Theories and Molecular Structure CHM 123 Chapter 8 Covalent Compounds: Bonding Theories and Molecular Structure 8.1 Molecular shapes and VSEPR theory VSEPR theory proposes that the geometric arrangement of terminal atoms, or groups of

More information

CHEMISTRY. Chapter 10 Theories of Bonding and Structure. The Molecular Nature of Matter. Jespersen Brady Hyslop SIXTH EDITION

CHEMISTRY. Chapter 10 Theories of Bonding and Structure. The Molecular Nature of Matter. Jespersen Brady Hyslop SIXTH EDITION CHEMISTRY The Molecular Nature of Matter SIXTH EDITION Jespersen Brady Hyslop Chapter 10 Theories of Bonding and Structure Copyright 2012 by John Wiley & Sons, Inc. Molecular Structures Molecules containing

More information

Chapter 1 Carbon Compounds and Chemical Bonds

Chapter 1 Carbon Compounds and Chemical Bonds Chapter 1 Carbon Compounds and Chemical Bonds Introduction Organic Chemistry The chemistry of the compounds of carbon The human body is largely composed of organic compounds Organic chemistry plays a central

More information

Chapter 9 Molecular Geometry and Bonding Theories

Chapter 9 Molecular Geometry and Bonding Theories Chapter 9 Molecular Geometry and Bonding Theories 9.1 Molecular Shapes Lewis structures give atomic connectivity (which atoms are physically connected). By noting the number of bonding and nonbonding electron

More information

8.3 Bonding Theories > Chapter 8 Covalent Bonding. 8.3 Bonding Theories. 8.1 Molecular Compounds 8.2 The Nature of Covalent Bonding

8.3 Bonding Theories > Chapter 8 Covalent Bonding. 8.3 Bonding Theories. 8.1 Molecular Compounds 8.2 The Nature of Covalent Bonding Chapter 8 Covalent Bonding 8.1 Molecular Compounds 8.2 The Nature of Covalent Bonding 8.3 Bonding Theories 8.4 Polar Bonds and Molecules 1 Copyright Pearson Education, Inc., or its affiliates. All Rights

More information

4 Copyright Pearson Education, Inc., or its affiliates. All Rights Reserved.

4 Copyright Pearson Education, Inc., or its affiliates. All Rights Reserved. CHEMISTRY & YOU Chapter 8 Covalent Bonding 8.1 Molecular Compounds 8.2 The Nature of Covalent Bonding 8.3 Bonding Theories 8.4 Polar Bonds and Molecules 1 Copyright Pearson Education, Inc., or its affiliates.

More information

Carbon and Its Compounds

Carbon and Its Compounds Chapter 1 Carbon and Its Compounds Copyright 2018 by Nelson Education Limited 1 1.2 Organic Molecules from the Inside Out I: The Modelling of Atoms Copyright 2018 by Nelson Education Limited 2 s orbitals:

More information

Andrew Rosen *Note: If you can rotate a molecule to have one isomer equal to another, they are both the same

Andrew Rosen *Note: If you can rotate a molecule to have one isomer equal to another, they are both the same *Note: If you can rotate a molecule to have one isomer equal to another, they are both the same *Note: For hybridization, if an SP 2 is made, there is one unhybridized p orbital (because p usually has

More information

Chapter 9. Molecular Geometry and Bonding Theories

Chapter 9. Molecular Geometry and Bonding Theories Chapter 9. Molecular Geometry and Bonding Theories PART I Molecular Shapes Lewis structures give atomic connectivity: they tell us which atoms are physically connected to which atoms. The shape of a molecule

More information

Carbon Compounds. Electronegativity. Chemical Bonding Part 1c. Bond Polarity. Bond Polarity

Carbon Compounds. Electronegativity. Chemical Bonding Part 1c. Bond Polarity. Bond Polarity Electronegativity Carbon Compounds Electronegativity is a relative measure on the pull of electrons by an atom in a bond. Most bonds fall somewhere in between and these bonds are considered polar. Chemical

More information

Learning Organic Chemistry

Learning Organic Chemistry Objective 1 Represent organic molecules with chemical formulas, expanded formulas, Lewis structures, skeletal structures. Determine shape (VSEPR), bond polarity, and molecule polarity. Identify functional

More information

Molecular Orbital Theory. Molecular Orbital Theory: Electrons are located in the molecule, not held in discrete regions between two bonded atoms

Molecular Orbital Theory. Molecular Orbital Theory: Electrons are located in the molecule, not held in discrete regions between two bonded atoms Molecular Orbital Theory Valence Bond Theory: Electrons are located in discrete pairs between specific atoms Molecular Orbital Theory: Electrons are located in the molecule, not held in discrete regions

More information

Chapter 12: Chemical Bonding II: Additional Aspects

Chapter 12: Chemical Bonding II: Additional Aspects General Chemistry Principles and Modern Applications Petrucci Harwood Herring 8 th Edition Chapter 12: Chemical Bonding II: Additional Aspects Philip Dutton University of Windsor, Canada N9B 3P4 Prentice-Hall

More information

Part 1. Reading: Gray: (4-1), (4-2), and (4-4) OGN: (16.2)

Part 1. Reading: Gray: (4-1), (4-2), and (4-4) OGN: (16.2) Part 1 Reading: Gray: (4-1), (4-2), and (4-4) OGN: (16.2) The story so far: MO-LCAO works great for diatomic molecules! But... What about other numbers of atoms? Will MO-LCAO work for polyatomic molecules?

More information

Spectroscopy and the Particle in a Box

Spectroscopy and the Particle in a Box Spectroscopy and the Particle in a Box Introduction The majority of colors that we see result from transitions between electronic states that occur as a result of selective photon absorption. For a molecule

More information

Chapter 9. Chemical Bonding II: Molecular Geometry and Bonding Theories

Chapter 9. Chemical Bonding II: Molecular Geometry and Bonding Theories Chapter 9 Chemical Bonding II: Molecular Geometry and Bonding Theories Topics Molecular Geometry Molecular Geometry and Polarity Valence Bond Theory Hybridization of Atomic Orbitals Hybridization in Molecules

More information

CHEMISTRY. Chapter 8 ADVANCED THEORIES OF COVALENT BONDING Kevin Kolack, Ph.D. The Cooper Union HW problems: 6, 7, 12, 21, 27, 29, 41, 47, 49

CHEMISTRY. Chapter 8 ADVANCED THEORIES OF COVALENT BONDING Kevin Kolack, Ph.D. The Cooper Union HW problems: 6, 7, 12, 21, 27, 29, 41, 47, 49 CHEMISTRY Chapter 8 ADVANCED THEORIES OF COVALENT BONDING Kevin Kolack, Ph.D. The Cooper Union HW problems: 6, 7, 12, 21, 27, 29, 41, 47, 49 2 CH. 8 OUTLINE 8.1 Valence Bond Theory 8.2 Hybrid Atomic Orbitals

More information

Lecture Presentation. Chapter 10 Chemical Bonding II: Molecular Shapes, Valence Bond Theory, and Molecular Orbital Theory

Lecture Presentation. Chapter 10 Chemical Bonding II: Molecular Shapes, Valence Bond Theory, and Molecular Orbital Theory Lecture Presentation Chapter 10 Chemical Bonding II: Molecular Shapes, Valence Bond Theory, and Molecular Orbital Theory Predicting Molecular Geometry 1. Draw the Lewis structure. 2. Determine the number

More information

New σ bond closes a ring. Loss of one π bond and gain of one σ bond

New σ bond closes a ring. Loss of one π bond and gain of one σ bond CHAPTER 1 Pericyclic Reactions 1.1 INTRODUCTION Pericyclic reactions are defined as the reactions that occur by a concerted cyclic shift of electrons. This definition states two key points that characterise

More information

ANNOUNCEMENTS. If you have questions about your exam 2 grade, write to me or Chapter 8 homework due April. 13 th.

ANNOUNCEMENTS. If you have questions about your exam 2 grade, write to me or Chapter 8 homework due April. 13 th. ANNOUNCEMENTS If you have questions about your exam 2 grade, write to me or Chem200@mail.sdsu.edu. Chapter 8 homework due April. 13 th. Chapter 9 home work due April. 20th. Exam 3 is 4/14 at 2 pm. LECTURE

More information

and Ultraviolet Spectroscopy

and Ultraviolet Spectroscopy Organic Chemistry, 7 th Edition L. G. Wade, Jr. Chapter 15 Conjugated Systems, Orbital Symmetry, and Ultraviolet Spectroscopy 2010, Prentice all Conjugated Systems Conjugated double bonds are separated

More information

Chapter 9. Lewis Theory-VSEPR Valence Bond Theory Molecular Orbital Theory

Chapter 9. Lewis Theory-VSEPR Valence Bond Theory Molecular Orbital Theory Chapter 9 Lewis Theory-VSEPR Valence Bond Theory Molecular Orbital Theory Problems with Lewis Theory Lewis theory generally predicts trends in properties, but does not give good numerical predictions.

More information

Lewis Dot Structures for Methane, CH 4 The central C atom is bonded by single bonds (-) to 4 individual H atoms

Lewis Dot Structures for Methane, CH 4 The central C atom is bonded by single bonds (-) to 4 individual H atoms Chapter 10 (Hill/Petrucci/McCreary/Perry Bonding Theory and Molecular Structure This chapter deals with two additional approaches chemists use to describe chemical bonding: valence-shell electron pair

More information

Bonding in Molecules Covalent Bonding

Bonding in Molecules Covalent Bonding Bonding in Molecules Covalent Bonding The term covalent implies sharing of electrons between atoms. Valence electrons and valence shell orbitals - nly valence electrons are used for bonding: ns, np, nd

More information

Valence Shell Electron Pair repulsion

Valence Shell Electron Pair repulsion Molecular Geometry Valence Shell Electron Pair repulsion The valence shell electron pair repulsion model (VSEPR model) assumes that electron pairs repel one another. (VSEPR) model gives helps determine

More information

Types of Covalent Bonds

Types of Covalent Bonds Types of Covalent Bonds There are two types of covalent bonds (sigma bonds and pi-bonds) depending on which atomic orbitals overlap and how they overlap to form a bond. A sigma bond (σ-bond) is formed

More information

Chapter One MULTIPLE CHOICE QUESTIONS. Topic: General Section: 1.1 Difficulty Level: Easy

Chapter One MULTIPLE CHOICE QUESTIONS. Topic: General Section: 1.1 Difficulty Level: Easy Chapter ne MULTIPLE CICE QUESTIS Topic: General Section: 1.1 1. Credit for the first synthesis of an organic compound from an inorganic precursor is usually given to: A) Berzelius B) Arrhenius C) Kekule

More information

1 r A. r B. 2m e. The potential energy of the electron is. r A and r B are the electron s distances from the nuclei A and B. This expression can be

1 r A. r B. 2m e. The potential energy of the electron is. r A and r B are the electron s distances from the nuclei A and B. This expression can be Introduction to Molecular Structure The Born-Oppenheimer approximation The Born-Oppenheimer approximation supposes that the nuclei, being so much heavier than the electron, move relatively slow and may

More information

Chapter 10 Chemical Bonding II: Molecular Shapes, Valence Bond Theory, and Molecular Orbital Theory

Chapter 10 Chemical Bonding II: Molecular Shapes, Valence Bond Theory, and Molecular Orbital Theory 10.1 Artificial Sweeteners: Fooled by Molecular Shape 425 10.2 VSEPR Theory: The Five Basic Shapes 426 10.3 VSEPR Theory: The Effect of Lone Pairs 430 10.4 VSEPR Theory: Predicting Molecular Geometries

More information

Molecular Orbitals. Chapter 9. Sigma bonding orbitals. Sigma bonding orbitals. Pi bonding orbitals. Sigma and pi bonds

Molecular Orbitals. Chapter 9. Sigma bonding orbitals. Sigma bonding orbitals. Pi bonding orbitals. Sigma and pi bonds Molecular Orbitals Chapter 9 Orbitals and Covalent Bond The overlap of atomic orbitals from separate atoms makes molecular orbitals Each molecular orbital has room for two electrons Two types of MO Sigma

More information

Hückel Molecular Orbital (HMO) Theory

Hückel Molecular Orbital (HMO) Theory Hückel Molecular Orbital (HMO) Theory A simple quantum mechanical concept that gives important insight into the properties of large molecules Why HMO theory The first MO theory that could be applied to

More information

Molecular Orbital Theory This means that the coefficients in the MO will not be the same!

Molecular Orbital Theory This means that the coefficients in the MO will not be the same! Diatomic molecules: Heteronuclear molecules In heteronuclear diatomic molecules, the relative contribution of atomic orbitals to each MO is not equal. Some MO s will have more contribution from AO s on

More information

Loudon Ch. 1 Review: Chemical Structure & Bonds Jacquie Richardson, CU Boulder Last updated 2/8/2018

Loudon Ch. 1 Review: Chemical Structure & Bonds Jacquie Richardson, CU Boulder Last updated 2/8/2018 Organic chemistry focuses most heavily on the top three rows of the periodic table, plus a few elements from lower rows: H (1) He (2) Li (3) Be (4) B (5) C (6) N (7) O (8) F (9) Ne (10) Na (11) Mg (12)

More information

Chapter 14: Phenomena

Chapter 14: Phenomena Chapter 14: Phenomena p p Phenomena: Scientists knew that in order to form a bond, orbitals on two atoms must overlap. However, p x, p y, and p z orbitals are located 90 from each other and compounds like

More information

What Is Organic Chemistry?

What Is Organic Chemistry? What Is Organic Chemistry? EQ: What is Organic Chemistry? Read: pages 1-3 Answer the questions in your packet Basics of Organic Chem 1 Chapter 1: Structure and Bonding Key terms Organic Chemistry Inorganic

More information

Chemical Bonding II: Molecular Geometry and Hybridization of Atomic Orbitals

Chemical Bonding II: Molecular Geometry and Hybridization of Atomic Orbitals Chemical Bonding II: Molecular Geometry and Hybridization of Atomic Orbitals Chapter 10 Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display. 1 Valence shell electron

More information

Atomic and Molecular Orbitals

Atomic and Molecular Orbitals 7 Atomic and Molecular Orbitals Chemists have developed a variety of methods for describing electrons in molecules. Lewis structures are the most familiar. These drawings assign pairs of electrons either

More information

K + 09/04/2018. Structure of Organic Molecules. Ionic bond. The compound potassium fluoride consists of potassium (K+) ions and fluoride (F-) ions

K + 09/04/2018. Structure of Organic Molecules. Ionic bond. The compound potassium fluoride consists of potassium (K+) ions and fluoride (F-) ions Structure of rganic Molecules Ref. books: 1. A text book of rganic Chemistry - B.S. Bahl and Arun Bahl 2. rganic Chemistry - R.T. Morrison and R. N. Boyd Atom: The smallest part of an element that can

More information

8.2 Hybrid Atomic Orbitals

8.2 Hybrid Atomic Orbitals 420 Chapter 8 Advanced Theories of Covalent Bonding Answer: (a) is a π bond with a node along the axis connecting the nuclei while (b) and (c) are σ bonds that overlap along the axis. 8.2 Hybrid Atomic

More information

Subtopic 4.2 MOLECULAR SHAPE AND POLARITY

Subtopic 4.2 MOLECULAR SHAPE AND POLARITY Subtopic 4.2 MOLECULAR SHAPE AND POLARITY 1 LEARNING OUTCOMES (covalent bonding) 1. Draw the Lewis structure of covalent molecules (octet rule such as NH 3, CCl 4, H 2 O, CO 2, N 2 O 4, and exception to

More information

Chemical Bonding II: Molecular Geometry and Hybridization of Atomic Orbitals Chapter 10

Chemical Bonding II: Molecular Geometry and Hybridization of Atomic Orbitals Chapter 10 Chemical Bonding II: Molecular Geometry and Hybridization of Atomic Orbitals Chapter 10 Linear Trigonal 180 o planar 120 o Tetrahedral 109.5 o Trigonal Bipyramidal 120 and 90 o Octahedral 90 o linear Linear

More information

Lesmahagow High School CfE Advanced Higher Chemistry. Unit 2 Organic Chemistry and Instrumental Analysis. Molecular Orbitals and Structure

Lesmahagow High School CfE Advanced Higher Chemistry. Unit 2 Organic Chemistry and Instrumental Analysis. Molecular Orbitals and Structure Lesmahagow High School CfE Advanced Higher Chemistry Unit 2 Organic Chemistry and Instrumental Analysis Molecular Orbitals and Structure 1 Molecular Orbitals Orbitals can be used to explain the bonding

More information

Conjugated Systems. With conjugated double bonds resonance structures can be drawn

Conjugated Systems. With conjugated double bonds resonance structures can be drawn Conjugated Systems Double bonds in conjugation behave differently than isolated double bonds With conjugated double bonds resonance structures can be drawn With isolated double bonds cannot draw resonance

More information

Introduction to Alkenes and Alkynes

Introduction to Alkenes and Alkynes Introduction to Alkenes and Alkynes In an alkane, all covalent bonds between carbon were σ (σ bonds are defined as bonds where the electron density is symmetric about the internuclear axis) In an alkene,

More information

Chapter 9 Molecular Geometry and Bonding Theories

Chapter 9 Molecular Geometry and Bonding Theories Chapter 9 Molecular Geometry and Bonding Theories molecular shapes the VSEPR model molecular shape and molecular polarity covalent bonding and orbital overlap hybrid orbitals multiple bonds 9.1 Molecular

More information

Chapter 9. Covalent Bonding: Orbitals

Chapter 9. Covalent Bonding: Orbitals Chapter 9 Covalent Bonding: Orbitals Chapter 9 Table of Contents 9.1 Hybridization and the Localized Electron Model 9.2 The Molecular Orbital Model 9.3 Bonding in Homonuclear Diatomic Molecules 9.4 Bonding

More information

Chem 3502/4502 Physical Chemistry II (Quantum Mechanics) 3 Credits Spring Semester Christopher J. Cramer. Lecture 30, April 10, 2006

Chem 3502/4502 Physical Chemistry II (Quantum Mechanics) 3 Credits Spring Semester Christopher J. Cramer. Lecture 30, April 10, 2006 Chem 3502/4502 Physical Chemistry II (Quantum Mechanics) 3 Credits Spring Semester 20056 Christopher J. Cramer Lecture 30, April 10, 2006 Solved Homework The guess MO occupied coefficients were Occupied

More information

CHAPTER 8. Molecular Structure & Covalent Bonding Theories

CHAPTER 8. Molecular Structure & Covalent Bonding Theories CAPTER 8 Molecular Structure & Covalent Bonding Theories 1 Chapter Goals 1. A Preview of the Chapter 2. Valence Shell Electron Pair Repulsion (VSEPR) Theory 3. Polar Molecules:The Influence of Molecular

More information

William H. Brown & Christopher S. Foote

William H. Brown & Christopher S. Foote William. Brown & Christopher S. Foote Requests for permission to make copies of any part of the work should be mailed to:permissions Department, arcourt Brace & Company, 6277 Sea arbor Drive, rlando, Florida

More information

14.1 Shapes of molecules and ions (HL)

14.1 Shapes of molecules and ions (HL) 14.1 Shapes of molecules and ions (HL) The octet is the most common electron arrangement because of its stability. Exceptions: a) Fewer electrons (incomplete octet) if the central atom is a small atoms,

More information

Chapter 9. Covalent Bonding: Orbitals

Chapter 9. Covalent Bonding: Orbitals Chapter 9 Covalent Bonding: Orbitals EXERCISE! Draw the Lewis structure for methane, CH 4. What is the shape of a methane molecule? tetrahedral What are the bond angles? 109.5 o H H C H H Copyright Cengage

More information

Hybridization of Atomic Orbitals. (Chapter 1 in the Klein text)

Hybridization of Atomic Orbitals. (Chapter 1 in the Klein text) Hybridization of Atomic Orbitals (Chapter 1 in the Klein text) Basic Ideas The atomic structures, from the Periodic Table, of atoms such as C, N, and O do not adequately explain how these atoms use orbitals

More information

CHEM 344 Molecular Modeling

CHEM 344 Molecular Modeling CHEM 344 Molecular Modeling The Use of Computational Chemistry to Support Experimental Organic Chemistry Part 1: Molecular Orbital Theory, Hybridization, & Formal Charge * all calculation data obtained

More information

Chapter Molecules are 3D. Shapes and Bonds. Chapter 9 1. Chemical Bonding and Molecular Structure

Chapter Molecules are 3D. Shapes and Bonds. Chapter 9 1. Chemical Bonding and Molecular Structure Chapter 9 Chemical Bonding and Molecular Structure 1 Shape 9.1 Molecules are 3D Angle Linear 180 Planar triangular (trigonal planar) 120 Tetrahedral 109.5 2 Shapes and Bonds Imagine a molecule where the

More information

1. It can help us decide which of several Lewis dot structures is closest to representing the properties of the real compound.

1. It can help us decide which of several Lewis dot structures is closest to representing the properties of the real compound. Molecular Structure Properties The electron was discovered in the year of 1900, and it took about twenty years for the electronic nature of the chemical bond to come into wide acceptance. Particle-based

More information

Carbon Compounds and Chemical Bonds

Carbon Compounds and Chemical Bonds Carbon Compounds and Chemical Bonds Introduction Organic Chemistry The chemistry of the compounds of carbon The human body is largely composed of organic compounds Organic chemistry plays a central role

More information

Rethinking Hybridization

Rethinking Hybridization Rethinking Hybridization For more than 60 years, one of the most used concepts to come out of the valence bond model developed by Pauling was that of hybrid orbitals. The ideas of hybridization seemed

More information

Organic Chemistry Lecture I. Dr. John D. Spence

Organic Chemistry Lecture I. Dr. John D. Spence HEMISTRY 3 Organic hemistry Lecture I Dr. John D. Spence jdspence@scu.edu jspence@csus.eduedu http://www.csus.edu/indiv/s/spencej What is Organic hemistry? 780 s hemistry of compounds from living organisms

More information