Brownian Motion An Introduction to Stochastic Processes de Gruyter Graduate, Berlin 2012 ISBN:

Size: px
Start display at page:

Download "Brownian Motion An Introduction to Stochastic Processes de Gruyter Graduate, Berlin 2012 ISBN:"

Transcription

1 Browia Moio A Iroducio o Sochasic Processes de Gruyer Graduae, Berli 22 ISBN: Soluio Maual Reé L. Schillig & Lohar Parzsch Dresde, May 23

2 R.L. Schillig, L. Parzsch: Browia Moio Ackowledgeme. We are graeful o Björ Böcher, Kaharia Fischer, Fraziska Küh, Julia Holleder, Felix Lider ad Michael Schwarzeberger who suppored us i he preparaio of his soluio maual. Daiel Tillich poied ou quie a few mispris ad mior errors. Dresde, May 23 Reé Schillig Lohar Parzsch 2

3 Coes Rober Brow s New Thig 5 2 Browia moio as a Gaussia process 3 3 Cosrucios of Browia Moio 25 4 The Caoical Model 3 5 Browia Moio as a Marigale 35 6 Browia Moio as a Markov Process 45 7 Browia Moio ad Trasiio Semigroups 55 8 The PDE Coecio 7 9 The Variaio of Browia Pahs 79 Regulariy of Browia Pahs 89 The Growh of Browia Pahs 95 2 Srasse s Fucioal Law of he Ieraed Logarihm 99 3 Skorokhod Represeaio 7 4 Sochasic Iegrals: L 2 Theory 9 5 Sochasic Iegrals: Beyod L 2 T 9 6 Iô s Formula 2 7 Applicaios of Iô s Formula 29 8 Sochasic Differeial Equaios 39 9 O Diffusios 53 3

4

5 Rober Brow s New Thig Problem. (Soluio) a) We show he resul for R d -valued radom variables. Le ξ, η R d. By assumpio, lim E exp [i (ξ η ), (X ) ] E exp [i ( ξ Y η ), (X Y ) ] lim E exp [i ξ, X + i η, Y ] E exp [i ξ, X + i η, Y ] If we ake ξ ad η, respecively, we see ha Sice X Y we fid lim E exp [i η, Y d ] E exp [i η, Y ] or Y Y lim E exp [i ξ, X ] E exp [i ξ, X ] or X d X. E exp [i ξ, X + i η, Y ] lim E exp [i ξ, X + i η, Y ] ad his shows ha X Y. b) We have Y X X X + lim E exp [i ξ, X ] E exp [i η, Y ] lim E exp [i ξ, X ] lim E exp [i η, Y ] E exp [i ξ, X ] E exp [i η, Y ] almos surely d X X X almos surely d X X Y X X + Y almos surely d X + Y. A simple direc calculaio shows ha X 2 (δ + δ ) Y. Thus, X d X, Y d Y X, X + Y d. Assume ha (X, Y ) d (X, Y ). Sice X Y, we fid for he disribuio of X + Y : X + Y 2 (δ + δ ) 2 (δ + δ ) 4 (δ δ + 2δ δ + δ δ ) 4 (δ + 2δ + δ 2 ). Thus, X + Y / δ lim (X + Y ) ad his shows ha we cao have ha (X, Y ) d (X, Y ). 5

6 R.L. Schillig, L. Parzsch: Browia Moio c) If X Y ad X Y, he we have X + Y d X + Y : his follows sice we have for all ξ R: lim E eiξ(x+y) lim E e iξx E e iξy lim E e iξx E e iξx E e iξy a) E [e iξx e iξy ] E e iξ(x+y ). lim E e iξy A similar (eve easier) argume works if (X, Y ) d (X, Y ). The we have f(x, y) e iξ(x+y) is bouded ad coiuous, i.e. we ge direcly lim E eiξ(x+y) lim E f(x, Y ) E f(x, Y ) E e iξ(x+y ). For a couerexample (if X ad Y are o idepede), see par b). Noice ha he idepedece ad d-covergece of he sequeces X, Y already implies X Y ad he d-covergece of he bivariae sequece (X, Y ). This is a cosequece of he followig Lemma. Le (X ) ad (Y ) be sequeces of radom variables (or radom vecors) o he same probabiliy space (Ω, A, P). If he (X, Y ) d X Y for all ad X X ad Y d Y, d (X, Y ) ad X Y. Proof. Wrie φ X, φ Y, φ X,Y (X, Y ). By assumpio for he characerisic fucios of X, Y ad he pair lim φ X (ξ) lim E e iξx E e iξx φ X (ξ). A similar saeme is rue for Y ad Y. For he pair we ge, because of idepedece lim φ X,Y (ξ, η) lim E e iξx+iηy lim E e iξx E e iηy lim E e iξx lim E e iηy E e iξx E e iηy φ X (ξ)φ Y (η). 6

7 Soluio Maual. Las updae Jue 2, 27 Thus, φ X,Y (ξ, η) h(ξ, η) φ X (ξ)φ Y (η). Sice h is coiuous a he origi (ξ, η) ad h(, ), we coclude from Lévy s coiuiy heorem ha h is a (bivariae) characerisic fucio ad ha (X, Y ) d (X, Y ). Moreover, h(ξ, η) φ X,Y (ξ, η) φ X (ξ)φ Y (η) which shows ha X Y. Problem.2 (Soluio) Usig he elemeary esimae e iz iz e ζ dζ sup e iy z z (*) y z we see ha he fucio e i ξ,, ξ, R d is locally Lipschiz coiuous: Thus, e i ξ, e i ξ,s e i ξ, s ξ, s ξ s for all ξ,, s R d, E e i ξ,y E [e i ξ,y X e i ξ,x ] E [(e i ξ,y X )e i ξ,x ] + E e i ξ,x. Sice lim E e i ξ,x E e i ξ,x, we are doe if we ca show ha he firs erm i he las lie of he displayed formula eds o zero. To see his, we use he Lipschiz coiuiy of he expoeial fucio. Fix ξ R d. E [(e i ξ,y X )e i ξ,x ] E (e i ξ,y X )e i ξ,x E e i ξ,y X Y X δ ei ξ,y X d P + Y X >δ ei ξ,y X d P (*) δ ξ + Y X >δ 2 d P δ ξ + 2 P ( Y X > δ) δ ξ, δ where we used i he las sep he fac ha X Y P. Problem.3 (Soluio) Recall ha Y d Y wih Y c a.s., i. e. where Y δc for some cosa c R. Sice he d-limi is rivial, his implies Y P Y. This meas ha boh is his sill rue -quesios ca be aswered i he affirmaive. We will show ha (X, Y ) d (X, c) holds wihou assumig ayhig o he joi disribuio of he radom vecor (X, Y ), i.e. we do o make assumpio o he correlaio srucure of X ad Y. Sice he maps x x + y ad x x y are coiuous, we see ha lim E f(x, Y ) E f(x, c) f C b (R R) 7

8 R.L. Schillig, L. Parzsch: Browia Moio implies boh ad This proves (a) ad (b). lim E g(x Y ) E g(xc) lim E h(x + Y ) E h(x + c) g C b (R) h C b (R). I order o show ha (X, Y ) coverges i disribuio, we use Lévy s characerizaio of disribuioal covergece, i.e. he poiwise covergece of he characerisic fucios. This meas ha we ake f(x, y) e i(ξx+ηy) for ay ξ, η R: E e i(ξx+ηy) E e i(ξx+ηc) E e i(ξx+ηy) E e i(ξx+ηc) + E e i(ξx+ηc) E e i(ξx+ηc) E e i(ξx+ηy) E e i(ξx+ηc) + E e i(ξx+ηc) E e i(ξx+ηc) E e iηy e iηc + E e iξx E e iξx. d The secod expressio o he righ-had side coverges o zero as X X. For fixed η we have ha y e iηy is uiformly coiuous. Therefore, he firs expressio o he righ-had side becomes, wih ay ɛ > ad a suiable choice of δ δ(ɛ) > E e iηy e iηc E [ e iηy e iηc { Y c >δ}] + E [ e iηy e iηc { Y c δ}] 2 E [ { Y c >δ}] + E [ɛ { Y c δ}] 2 P( Y c > δ) + ɛ P -covergece as δ,ɛ are fixed ɛ. ɛ Remark. The direc approach o (a) is possible bu relaively ugly. Par (b) has a relaively simple direc proof: Fix ξ R. E e iξ(x+y) E e iξx ( E e iξ(x+y) E e iξx ) + ( E e iξx E e iξx ) by d-covergece For he firs erm o he righ we fid wih he uiform-coiuiy argume from Problem..2 ad ay ɛ > ad suiable δ δ(ɛ, ξ) ha E e iξ(x+y) E e iξx E e iξx (e iξy ) E e iξy where we use P-covergece i he peulimae sep. ɛ + P ( Y > δ) ɛ fixed ɛ ɛ. 8

9 Soluio Maual. Las updae Jue 2, 27 Problem.4 (Soluio) Le ξ, η R ad oe ha f(x) e iξx ad g(y) e iηy are bouded ad coiuous fucios. Thus we ge ad we see ha (X, Y ) d (X, Y ). E e i (ξ η ), (X Y ) E e iξx e iηy E f(x)g(y ) lim E f(x )g(y ) lim E e iξx e iηy lim E e i (ξ ), (X η Y ) Assume ow ha X φ(y ) for some Borel fucio φ. Le f C b ad pick g f φ. Clearly, f φ B b ad we ge E f(x )f(x) E f(x )f(φ(y )) E f(x )g(y ) E f(x)g(y ) E f(x)f(x) E f 2 (X). Now observe ha f C b f 2 C b ad g B b. By assumpio Thus, i.e. f(x ) L2 f(x). E f 2 (X ) E f 2 (X). E ( f(x) f(x ) 2 ) E f 2 (X ) 2 E f(x )f(x) + E f 2 (X) E f 2 (X) 2 E f(x)f(x) + E f 2 (X), Now fix ɛ > ad R > ad se f(x) R x R. Clearly, f C b. The P( X X > ɛ) P( X X > ɛ, X R, X R) + P( X R) + P( X R) P( f(x ) f(x) > ɛ, X R, X R) + P( X R) + P( f(x ) R) P( f(x ) f(x) > ɛ) + P( X R) + P( f(x ) R) P( f(x ) f(x) > ɛ) + P( X R) + P( f(x) R/2) + P( f(x ) f(x) R/2) where we used ha { f(x ) R} { f(x) R/2} { f(x ) f(x) R/2} because of he riagle iequaliy: f(x ) f(x) + f(x) f(x ) P( f(x ) f(x) > ɛ) + P( X R/2) + P( X R/2) + P( f(x ) f(x) R/2) 9

10 R.L. Schillig, L. Parzsch: Browia Moio P( f(x ) f(x) > ɛ) + 2 P( X R/2) + P( f(x ) f(x) R/2) ( ɛ R 2 ) E ( f(x) f(x ) 2 ) + 2 P( X R/2) ɛ,r fixed ad ff R C b X is a.s. R-valued 2 P( X R/2). R Problem.5 (Soluio) Noe ha E δ j ad V δ j E δ 2 j. Thus, E S ad V S. a) We have, by he ceral limi heorem (CLT) S S CLT G where G N(, ), hece G G N(, ). b) Le s <. Sice he δ j are iid, we have, S S s S s, ad by he ceral limi heorem (CLT) S s s S s CLT s G G s. s If we kow ha he bivariae radom variable (S s, S S s ) coverges i disribuio, we do ge G G s +G s because of Problem.. Bu his follows agai from he lemma which we prove i par d). This lemma shows ha he limi has idepede coordiaes, see also par c). This is as close as we ca come o G G s G s, uless we have a realizaio of ALL he G o a good space. I is Browia moio which will achieve jus his. c) We kow ha he eries of he vecor (X m X m,..., X 2 X, X ) are idepede (hey deped o differe blocks of he δ j ad he δ j are iid) ad, by he oe-dimesioal argume of b) we see ha X k X k k k G k G k k k d for all k,..., m where he G k, k,..., m are sadard ormal radom vecors. By he lemma i par d) we eve see ha (X m X m,..., X 2 X, X ) d ( G,..., m m G m ) ad he G k, k,..., m are idepede. Thus, by he secod asserio of par b) ( G,..., m m G m ) (G,..., G m m m ) (G,..., G m G m ). d) We have he followig Lemma. Le (X ) ad (Y ) be sequeces of radom variables (or radom vecors) o he same probabiliy space (Ω, A, P). If he (X, Y ) d X Y for all ad X X ad Y d Y, d (X, Y ) ad X Y (for suiable versios of he rv s).

11 Soluio Maual. Las updae Jue 2, 27 Proof. Wrie φ X, φ Y, φ X,Y (X, Y ). By assumpio for he characerisic fucios of X, Y ad he pair lim φ X (ξ) lim E e iξx E e iξx φ X (ξ). A similar saeme is rue for Y ad Y. For he pair we ge, because of idepedece lim φ X,Y (ξ, η) lim E e iξx+iηy lim E e iξx E e iηy lim E e iξx lim E e iηy E e iξx E e iηy φ X (ξ)φ Y (η). Thus, φ X,Y (ξ, η) h(ξ, η) φ X (ξ)φ Y (η). Sice h is coiuous a he origi (ξ, η) ad h(, ), we coclude from Lévy s coiuiy heorem ha h is a (bivariae) characerisic fucio ad ha (X, Y ) d (X, Y ). Moreover, which shows ha X Y. h(ξ, η) φ X,Y (ξ, η) φ X (ξ)φ Y (η) Problem.6 (Soluio) Necessiy is clear. For sufficiecy wrie B() B(s) B() B( s+ 2 ) + s 2 s 2 B( s+ 2 ) B(s) s 2 2 (X + Y ). By assumpio X Y, X Y ad X 2 (X + Y ). This is already eough o guaraee ha X N(, ), cf. Réyi [8, Chaper VI.5, Theorem 2, pp ]. Aleraive Soluio: Fix s < ad defie j s + j ( s) for j,...,. The B B s B j B j s j j j j B j B j j j G j By assumpio, he radom variables (G j ) j, are ideically disribued (for all j, ) ad idepede (i j). Moreover, E(G j ) ad V(G j ). Applyig he ceral limi heorem (for riagular arrays) we obai G j where G N(, ). Thus, B B s N(, s). d G

12

13 2 Browia moio as a Gaussia process Problem 2. (Soluio) Le us check firs ha f(u, v) g(u)g(v)( si u si v) is ideed a probabiliy desiy. Clearly, f(u, v). Sice g(u) (2π) /2 e u2 /2 is eve ad si u is odd, we ge f(u, v) du dv g(u) du g(v) dv g(u) si u du g(v) si v dv. Moreover, he desiy f U (u) of U is f U (u) f(u, v) dv g(u) g(v) dv g(u) si u g(v) si v dv g(u). This, ad a aalogous argume show ha U, V N(, ). Le us show ha (U, V ) is o a ormal radom variable. Assume ha (U, V ) is ormal, he U + V N(, σ 2 ), i.e. O he oher had we calculae wih f(u, v) ha ad his coradics (*). E e iξ(u+v ) e 2 ξ2 σ 2. (*) E e iξ(u+v ) e iξu+iξv f(u, v) du dv 2 2 ( e iξu g(u) du) ( e iξu g(u) si u du) e ξ2 ( 2i e iξu (e iu e iu 2 )g(u) du) e ξ2 ( 2i (e i(ξ+)u e i(ξ )u 2 )g(u) du) e ξ2 ( 2i (e 2 (ξ+)2 e 2 2 (ξ )2 )) e ξ2 + 4 (e 2 (ξ+)2 e 2 (ξ )2 ) 2 e ξ2 + 4 e e ξ2 (e ξ e ξ ) 2, Problem 2.2 (Soluio) Le (ξ,..., ξ ) (,..., ) ad se. The we fid from (2.2) ( j k ) ξ j ξ k ( j j )(ξ j + + ξ ) 2. (2.) k > Equaliy ( ) occurs if, ad oly if, (ξ j + + ξ ) 2 for all j,...,. This implies ha ξ... ξ. 3

14 R.L. Schillig, L. Parzsch: Browia Moio Absrac aleraive: Le (X ) I be a real-valued sochasic process which has a secod mome (such ha he covariace is defied!), se µ E X. For ay fiie se S I we pick λ s C, s S. The Cov(X s, X )λ s λ E ((X s µ s )(X µ ))λ s λ s, S s, S E (X s µ s )λ s (X µ )λ s, S E ((X s µ s )λ s(x µ )λ ) s S S E s S(X s µ s )λ s 2. Remark: Noe ha his aleraive does o prove ha he covariace is sricly posiive defiie. A sadard couerexample is o ake X s X. Problem 2.3 (Soluio) These are direc & sraighforward calculaios. Problem 2.4 (Soluio) Le e i (,...,,,...) R be he ih sadard ui vecor. The i a ii Ae i, e i Be i, e i b ii. Moreover, for i j, we ge by he symmery of A ad B ad which shows ha a ij b ij. Thus, A B. We have A(e i + e j ), e i + e j a ii + a jj + 2b ij B(e i + e j ), e i + e j b ii + b jj + 2b ij Le A, B R be symmeric marices. If Ax, x Bx, x for all x R, he A B. Problem 2.5 (Soluio) a) X 2B /4 is a BM : scalig propery wih c /4, cf b) Y B 2 B is o a BM, he idepede icremes is clearly violaed: E(Y 2 Y )Y E(Y 2 Y ) E Y 2 E(B 4 B 2 )(B 2 B ) E(B 2 B ) 2 (B) E(B 4 B 2 ) E(B 2 B ) E(B 2 B ) 2 (B) E(B 2 ). c) Z B is o a BM, he idepede icremes propery is violaed: E(Z Z s )Z s ( s) s E B 2 ( s) s. 4

15 Soluio Maual. Las updae Jue 2, 27 Problem 2.6 (Soluio) We use formula (2.b). a) f B(s),B() (x, y) 2π s( s) exp [ (y 2 (x2 x)2 + s s )]. b) Deoe by f B() he desiy of B(). The we have f B(s),B() B() (x, y B() z) f B(s),B(),B()(x, y, z) f B() (z) Thus, (2π) 3/2 s( s)( ) exp [ (y 2 (x2 x)2 + + s s f B(s),B() B() (x, y B() ) Noe ha x 2 s + (y x)2 s Therefore, (z y)2 )] (2π) /2 exp [ z2 2 ]. 2π s( s)( ) exp [ (y 2 (x2 x)2 + + y2 s s )]. + y2 s( s) (x s 2 y) + y2 + y2 s( s) (x s 2 y) y 2 + ( ). E(B(s)B() B() ) c) I aalogy o par b) we ge xyf B(s),B() B() (x, y B() ) dx dy 2π s( s)( ) y y exp [ 2 y 2 ( ) ] x exp [ x 2 s( s) (x s 2 y) ] dx dy 2π ( ) s ( ) s( ). s( s) s y y2 f B(2 ),B( 3 ) B( ),B( 4 )(x, y B( ) u, B( 4 ) z) f B( ),B( 2 ),B( 3 ),B( 4 )(u, x, y, z) f B( ),B( 4 )(u, z) 2π s y exp [ 2 y 2 ( ) ] dy 2π [ ( 4 ) ( 2 )( 3 2 )( 4 3 ) ] 2 (x exp [ 2 (u2 u)2 (y x)2 (z y) )] Thus, exp [ (z 2 (u2 u)2 + )]. 4 f B(2 ),B( 3 ) B( ),B( 4 )(x, y B( ) B( 4 ) ) 5

16 R.L. Schillig, L. Parzsch: Browia Moio 2π [ ( 4 ) ( 2 )( 3 2 )( 4 3 ) ] 2 exp [ 2 ( x2 (y x)2 + + y2 )] Observe ha x 2 (y x)2 + + y ( 2 )( 3 2 ) (x 2 2 y) ( 3 )( 4 3 ) y2. Therefore, we ge (usig physiciss oaio: dy h(y) h(y) dy for easier readabiliy) xy f B(2 ),B( 3 ) B( ),B( 4 )(x, y B( ) B( 4 ) ) dx dy 2π( 4 3 ) y dy exp [ 2 4 ( 3 )( 4 3 ) y2 ] y 2π(2 )( 3 2 ) x exp [ x 2 (x y) 3 ( 2 )( 3 2 ) ] dx y ( 4 3 )( 3 ) 4 ( 2 )( 4 3 ) 4. Problem 2.7 (Soluio) Le s. The C(s, ) E(X s X ) E(B 2 s s)(b 2 ) E(B 2 s s)([b B s + B s ] 2 ) E(B 2 s s)(b B s ) E(B 2 s s)b s (B B s ) + E(B 2 s s)b 2 s E(B 2 s s) (B) E(B 2 s s) E(B B s ) E(B 2 s s)b s E(B B s ) + E(B 2 s s)b 2 s E(B 2 s s) ( s) + 2 E(B 2 s s)b s + E B 4 s s E B 2 s 2s 2 2(s 2 2 ) 2(s ) 2. Problem 2.8 (Soluio) a) We have for s, m() E X e α/2 E B e α. C(s, ) E(X s X ) e α 2 (s+) E B e αsb e α e α 2 (s+) (e αs e α ) e α 2 s. b) We have P(X( ) x,..., X( ) x ) P (B(e α ) e α /2 x,..., B(e α ) e α/2 x ) Thus, he desiy is f X( ),...,X( )(x,..., x ) k e α k/2 f B(e α ),...,B(e α)(e α /2 x,..., e α/2 x ) 6

17 k e αk/2 (2π) /2 ( k (2π) /2 ( ( e α( k k ) )) k /2 (e α k e α k )) (we use he coveio ad x ). Soluio Maual. Las updae Jue 2, 27 e 2 k (eα k /2 x k e α k /2 x k ) 2 /(e α k e α k ) /2 e 2 k (x k e α( k k )/2 x k ) 2 /( e α( k k ) ) Remark: he form of he desiy shows ha he Orsei Uhlebeck is sricly saioary, i.e. (X( + h),..., X( + h) (X( ),..., X( )) h >. Problem 2.9 (Soluio) Assume ha we have (B). Observe ha he family of ses σ(b u,..., B u ) u u s, is a -sable family. This meas ha i is eough o show ha By (B) we kow ha B B s (B u,..., B u ) for all s. B B s (B u, B u2 B u,..., B u B u ) ad so... B u... B u2 B u B B s... B u3 B u2... B u B u B u B u2 B u3 B u Le < 2 <... < <,. The we fid for all ξ,..., ξ R d E (e i k ξ k, B( k ) B( k ) ) E (e i ξ, B() B( ) e i ) F mble., hece B( ) B( ) k ξ k, B( k ) B( k ) E (e i ξ, B() B( ) ) E (e i k ξ k, B( k ) B( k ) ) This shows (B). k E (e i ξ k, B( k ) B( k ) ). Problem 2. (Soluio) Reflecio ivariace of BM, cf. 2.8, shows τ a if{s B s a} if{s B s a} if{s B s a} τ a. The scalig propery 2.2 of BM shows for c /a 2 τ a if{s B s a} if{s ab s/a 2 a} if{a 2 r ab r a} a 2 if{r B r } a 2 τ. 7

18 R.L. Schillig, L. Parzsch: Browia Moio Problem 2. (Soluio) a) No saioary: E W 2 C(, ) E(B 2 ) 2 E(B 4 2B ) cos. b) Saioary. We have E X ad E X s X e α(+s)/2 E B e αsb e α e α(+s)/2 (e αs e α ) e α s /2, i.e. i is saioary wih g(r) e α r /2. c) Saioary. We have E Y. Le s. The we use E B s B s o ge E Y s Y E(B s+h B s )(B +h B ) E B s+h B +h E B s+h B E B s B +h + E B s B (s + h) ( + h) (s + h) s ( + h) + s, if > s + h h < s (s + h) (s + h) h ( s), if s + h h s. Swappig he roles of s ad fially gives: he process is saioary wih g() (h ) + (h ). d) No saioary. Noe ha E Z 2 E Be 2 e cos. Problem 2.2 (Soluio) Clearly, W is coiuous for. If we ge ad his proves coiuiy for. lim W (ω) W (ω) B (ω) lim W (ω) B (ω) lim β / (ω) β (ω) B (ω); Le us check ha W is a Gaussia process wih E W ad E W s W s. Corollary 2.7, W is a BM. By Pick ad < <... <. Case : If, here is ohig o show sice (B ) [,] is a BM. Case 2: Assume ha >. The we have W W 2 W 2 3 B β / β / β 8

19 Soluio Maual. Las updae Jue 2, 27 ad sice B (β /,..., β /, β ) are boh Gaussia, we see ha (W,..., W ) is Gaussia. Furher, le ad i < j : E W E B + E β / E β E W i W j E(B + i β /i β )(B + j β /j β ) + i j j i i j j + i i j. Case 3: Assume ha < <... < k < k+ <... <. The we have W W 2 W k W k+ k+2 B B k B β /k+ β / β. Sice (B,..., B k, B ) (β /k+,..., β /, β ) are Gaussia vecors, (W,..., W ) is also Gaussia ad we fid E W E W i W j E B i (B + j β /j β ) i i j for i k < j. Problem 2.3 (Soluio) The process X() B(e ) has o memory sice (cf. Problem 2.9) σ(b(s) s e a ) σ(b(s) B(e a ) s e a ) ad, herefore, σ(x() a) σ(b(s) s e a ) σ(b(e a+s ) B(e a ) s ) σ(x( + a) X(a) ). The process X() e /2 B(e ) is o memoryless. For example, X(a + a) X(a) is o idepede of X(a): E(X(2a) X(a))X(a) E (e a B(e 2a ) e a/2 B(e a ))e a/2 B(e a ) e 3a/2 e a e a e a. 9

20 R.L. Schillig, L. Parzsch: Browia Moio Problem 2.4 (Soluio) The process W B a B a, a clearly saisfies (B) ad (B4). For s a we fid W W s B a B a s B a s B a B s N(, ( s) id) ad his shows (B2) ad (B3). For < <... < a we have W j W j B a j B a j B a j B a j j ad his proves ha W iheris (B) from B. Problem 2.5 (Soluio) We kow from Paragraph 2.3 ha Moreover, B(s) lim B(/) lim a.s. s s E ( B(s) 2 ) s s s 2 s i.e. we ge also covergece i mea square. s Remark: a direc proof of he SLLN is a bi more ricky. Of course we have by he classical SLLN ha B (B j B j ) SLLN a.s. Bu he we have o make sure ha B s /s coverges. This ca be doe i he followig way: fix s >. The here is a uique ierval (, + ] such ha s (, + ]. Thus, B s s B s B + + B + s + + sup s + B s B s B ad we have o show ha he expressio wih he sup eds o zero. This ca be doe by showig, e.g., ha he L 2 -limi of his expressio goes o zero (usig he reflecio priciple) ad wih a subsequece argume. Problem 2.6 (Soluio) Se Clearly, Σ σ(b() J) J [,), J couable σ(b ) Σ σ(b ) def F B (*) The firs iclusio follows from he fac ha each B is measurable wih respec o Σ. Le us show ha Σ is a σ-algebra. Obviously, Σ ad F Σ F c Σ. 2

21 Soluio Maual. Las updae Jue 2, 27 Le (A ) Σ. The, for every here is a couable se J such ha A σ(b() J ). Sice J J is sill couable we see ha A σ(b() J) for all. Sice he laer family is a σ-algebra, we fid A σ(b() J) Σ. Sice σ(b ) Σ, we ge oe: F B is, by defiiio, he smalles σ-algebra for which all B are measurable ha This shows ha Σ F B. F B Σ. Problem 2.7 (Soluio) Assume ha he idices,..., m ad s,..., s are give. Le {u,..., u p } {s,..., s } {,..., m }. By assumpio, (X(u ),..., X(u p )) (Y (u ),..., Y (u p )). Thus, we may hi ou he idices o each side wihou edagerig idepedece: {s,..., s } {u,..., u p } ad {,..., m } {u,..., u p }, ad so (X(s ),..., X(s )) (Y ( ),..., Y ( m )). Problem 2.8 (Soluio) Sice F F ad G G i is clear ha F G F G. Coversely, sice (F ) ad (G ) are filraios we fid F F, G G, F F, G G. By assumpio: P(F G) P(F ) P(G). Thus, F G. Sice he families F ad G are -sable (use agai he argume ha we have filraios o fid for F, F F some wih F, F F ec.), he σ-algebras geeraed by hese families are idepede: F σ ( F ) σ ( G ) G. Problem 2.9 (Soluio) Le U R d d be a orhogoal marix: UU id ad se X UB for a BM d (B ). The E exp i ξ j, X( j ) X( j ) E exp i ξ j, UB( j ) UB( j ) 2

22 R.L. Schillig, L. Parzsch: Browia Moio E exp i U ξ j, B( j ) B( j ) exp 2 ( j j ) U ξ j, U ξ j exp 2 ( j j ) ξ j 2. (Observe U ξ j, U ξ j UU ξ j, ξ j ξ j, ξ j ξ j 2 ). The claim follows. Problem 2.2 (Soluio) Noe ha he coordiae processes b ad β are idepede BM. a) Sice b β, he process W (b + β )/ 2 is a Gaussia process wih coiuous sample pahs. We deermie is mea ad covariace fucios: E W 2 (E b + E β ) ; Cov(W s, W ) E(W s W ) 2 E(b s + β s )(b + β ) 2 ( E b sb + E β s b + E b s β + E β s β ) (s s ) s 2 where we used ha, by idepedece, E b u β v E b u E β v. Now he claim follows from Corollary 2.7. b) The process X (W, β ) has he followig properies W ad β are BM E(W b ) 2 /2 E(b + β )β 2 /2 (E b E β + E β 2 ) / 2, i.e. W ad β are NOT idepede. This meas ha X is o a BM 2, as is coordiaes are o idepede. The process Y ca be wrie as b + β 2 b β U b β b 2 β. Clearly, UU id, i.e. Problem 2.9 shows ha (Y ) is a BM 2. Problem 2.2 (Soluio) Observe ha b β sice B is a BM 2. Sice E X Cov(X, X s ) E X X s E(λb s + µβ s )(λb + µβ ) λ 2 E b s b + λµ E b s β + λµ E b β s + µ 2 β s β 22

23 Soluio Maual. Las updae Jue 2, 27 λ 2 E b s b + λµ E b s E β + λµ E b E β s + µ 2 E β s β λ 2 (s ) µ 2 s (λ 2 + µ 2 )(s ). Thus, by Corollary 2.7, X is a BM if, ad oly if, λ 2 + µ 2. Problem 2.22 (Soluio) X (b, β s β ), s, is NOT a Browia moio: X (, β s ) (, ). O he oher had, Y (b, β s β s ), s, IS a Browia moio, sice b ad β s β s are idepede BM, cf. Time iversio 2. ad Theorem 2.6. Problem 2.23 (Soluio) We have W UB cos α si α si α b cos α β. The marix U is a roaio, hece orhogoal ad we see from Problem 2.9 ha W is a Browia moio. Geeralizaio: ake U orhogoal. Problem 2.24 (Soluio) If G N(, Q) he Q is he covariace marix, i.e. Cov(G j, G k ) q jk. Thus, we ge for s < The characerisic fucio is Cov(X j s, X k ) E(X j sx k ) E X j s(x k X k s ) + E(X j sx k s ) E X j s E(X k X k s ) + sq jk (s )q jk. E e i ξ,x E e i Σ ξ,b e 2 Σ ξ 2 e 2 ξ,σσ ξ, ad he rasiio probabiliy is, if Q is o-degeerae, f Q (x) (2π) de Q exp ( x, Qx ). 2 If Q is degeerae, here is a orhogoal marix U R such ha UX (Y,..., Y k,,..., k ) where k < is he rak of Q. disribuio i R k. The k-dimesioal vecor has a odegeerae ormal 23

24

25 3 Cosrucios of Browia Moio Problem 3. (Soluio) The parial sums W N (, ω) N G (ω)s (), [, ], coverge as N P-a.s. uiformly for owards B(, ω), [, ] cf. Problem 3.2. Therefore, he radom variables W N() d N G S () d P -a.s. X N B() d. This shows ha W N() d is he sum of idepede N(, )-radom variables, hece iself ormal ad so is is limi X. From he defiiio of he Schauder fucios (cf. Figure 3.2) we fid ad his shows S () d 2 S 2 j +k() d j, k,,..., 2 j, j. W 2 +() d 2 G + 4 j 2 j j G 2 j +l. l Cosequely, sice he G j are iid N(, ) radom variables, This meas ha E W 2 +() d, V W 2 +() d X 2 G + j j 2 3j l j 2 2j j (+) j 2 j l G 2 j +l N(,2 j ) where he series coverges P-a.s. ad i mea square, ad X N(, 3 ). 25

26 R.L. Schillig, L. Parzsch: Browia Moio Problem 3.2 (Soluio) [, ], we fid a) From he defiiio of he Schauder fucios S (),, S (), S 2 j +k() S 2 j +k((2k + )/2 j+ ) 2 j/2 /2 j+ 2 2 j/2 j, k, 2 j S 2 j +k() k 2 2 j/2 (disjoi suppors!) By assumpio, C >, ɛ (, 2 ), a C ɛ. Thus, we fid a S () a + j a + j a + (The series is coverge sice ɛ < /2). j 2 j a 2 j +k S 2 j +k() k 2 j C (2 j+ ) ɛ S 2 j +k() k C 2 (j+)ɛ 2 2 j <. This shows ha a S () coverges absoluely ad uiformly for [, ]. b) For C > 2 we fid from P ( G > log ) 2 π C log e 2 C2 log 2 π C C2 /2 3 ha he followig series coverges: P ( G > log ) <. By he Borel Caelli Lemma we fid ha G (ω) O( log ) for almos all ω, hus G (ω) O( ɛ ) for ay ɛ (, /2). From par a) we kow ha he series G (ω)s () coverges a.s. uiformly for [, ]. Problem 3.3 (Soluio) Se f p ( E f p ) /p Soluio : We observe ha he space L p (Ω, A, P; S) {X X S, d(x, ) p < } is complee ad ha he codiio saed i he problem jus says ha (X ) is a Cauchy sequece i he space L p (Ω, A, P; S). A good referece for his is, for example, he moograph by F. Trèves [3, Chaper 46]. You will fid he pedesria approach as Soluio 2 below. 26

27 Soluio Maual. Las updae Jue 2, 27 Soluio 2: By assumpio k N k sup m N k d(x Nk, X m ) p 2 k. Wihou loss of geeraliy we ca assume ha N k N k+. I paricular d(x Nk, X Nk+ ) p 2 k l l>k d(x Nk, X Nl ) p jk 2 j 2 2 k. Fix m. The we see ha d(x Nk, X m ) d(x Nl, X m ) p d(x Nk, X Nl ) p k,l. This meas ha ha (d(x Nk, X m )) k is a Cauchy sequece i L p (P; R). By he compleeess of he space L p (P; R) here is some f m L p (P; R) such ha d(x Nk, X m ) ad, for a subsequece ( k ) (N k ) k we fid d(x k, X m ) The subsequece k may also deped o m. i Lp f m k almos surely f m. k Sice ( k (m)) k is sill a subsequece of (N k ), we sill have d(x k (m), X m+ ) f m+ i L p, hece we ca fid a subsequece ( k (m + )) k ( k (m)) k such ha d(x k (m+), X m+ ) f m+ a.s. Ieraig his we see ha we ca assume ha ( k ) k does o deped o m. I paricular, we have almos surely Moreover, ɛ > L L(ɛ) k L d(x k, X m ) f m ɛ. lim f m p lim lim d(x k, X m ) p lim lim d(x k, X m ) p m m k m k lim sup d(x k, X m ) p. m k k Thus, f m i L p ad, for a subsequece m k we ge Therefore, ɛ > K K(ɛ) r K f mr ɛ. d(x k, X l ) d(x k, X mr ) + d(x k, X mr ) d(x k, X mr ) f mr + d(x k, X mr ) f mr + 2 f mr. Fix ɛ > ad pick r > K. The le k, l. This gives d(x k, X l ) d(x k, X mr ) f mr + d(x k, X mr ) f mr + 2ɛ 4ɛ k, l L(ɛ). 27

28 R.L. Schillig, L. Parzsch: Browia Moio Sice S is complee, his proves ha (X k ) k coverges o some X S almos surely. Remark: If we replace he codiio of he Problem by higs become MUCH simpler: lim E (sup d p (X, X m )) m This codiio says ha he sequece d sup m d p (X, X m ) coverges i L p (P; R) o zero. Hece here is a subsequece ( k ) k such ha lim sup d(x k, X m ) k m k almos surely. This shows ha d(x k, X l ) as k, l, i.e. we fid by he compleeess of he space S ha X k X. Problem 3.4 (Soluio) Fix,... ad Borel ses A,..., A. By assumpio, we kow ha P(X Y ) P(X j Y j j,..., ) P {X j Y j }. Thus, P {X j A j } P {X j A j } {X j Y j } P {X j A j } {X j Y j } P {Y j A j } {X j Y j } P {Y j A j }. Problem 3.5 (Soluio) idisiguishable modificaio: P(X Y ) P(X Y ). modificaio equivale: see he previous Problem 3.4 Now assume ha I is couable or X, Y are (lef- or righ-)coiuous. modificaio idisiquishable: By assumpio, P(X Y ) for ay I. Le D I be ay couable dese subse. The P q D{X q Y q } P(X q Y q ) q D 28

29 Soluio Maual. Las updae Jue 2, 27 which meas ha P(X q Y q q D). If I is couable, we are doe. I he oher case we have, by he desiy of D, P(X Y I) P (lim D q X q lim D q Y q I) P (X q Y q q D). equivale / modificaio: To see his le (B ) ad (W ) be wo idepede oe-dimesioal Browia moios defied o he same probabiliy space. Clearly, hese processes have he same fiie-dimesioal disribuios, i.e. hey are equivale. O he oher had, for ay > P(B W ) P(B y) P(W dy) P(W dy). Problem 3.6 (Soluio) Sice (B q ) q Q [,) is uiformly coiuous, here exiss a uique process (B ) such ha B lim q B q ad B is coiuous. We use he characerizaio from Lemma 2.4. Is proof shows ha we ca derive (2.7) E exp i j, X qj X qj + i ξ, X q ξ exp 2 o he basis of (B) (B3) for (B q ) q Q [,) ad q,..., q Q [, ). ξ j 2 (q j q j ) Now se q ad pick,..., R ad approximae each j by a raioal sequece, k. Sice (2.7) holds for q (k), j,..., ad every k, we ca easily perform q (k) j j he limi k o boh sides (o he lef we use domiaed covergece!) sice B is coiuous. This proves (2.7) for (B ), ad sice (B ) has coiuous pahs, Lemma 2.4 proves ha (B ) is a BM. Problem 3.7 (Soluio) The joi desiy of (W ( ), W (), W ( )) is f,, (x, x, x ) (2π) 3/2 exp ( ( )( ) 2 [(x x) 2 + (x x ) 2 + x2 ]) while he joi desiy of (W ( ), W ( )) is f, (x, x ) (2π) exp ( ( ) 2 [(x x ) 2 + x2 ]). The codiioal desiy of W () give (W ( ), W ( )) is f, (x x, x 2 ) f,, (x, x, x ) f, (x, x ) (2π) 3/2 exp ( ( )( ) 2 [ (x x) 2 + (x x ) 2 + x2 ]) (2π) exp ( ( ) 2 [ (x x ) 2 + x2 ]) 29

30 R.L. Schillig, L. Parzsch: Browia Moio ( ) 2π ( )( ) exp ( 2 [(x x) 2 + (x x ) 2 (x x ) 2 ]) ( ) 2π ( )( ) exp ( 2 [( )(x x) 2 + ( )(x x ) 2 (x x ) 2 ]) ( )( ) Now cosider he argume i he square brackes [ ] of he exp-fucio [ ( )(x x) 2 + ( )(x x ) 2 ( )( ) (x x ) 2 ] ( ) ( )( ) [ (x x) 2 + (x x ) 2 ( )( ) ( ) 2 (x x ) 2 ] ( ) ( )( ) [ ( + ) x 2 + ( ( )( ) ( ) 2 ) x 2 + ( ( )( ) ( ) 2 ) x 2 2 x x 2 xx + 2 ( )( ) ( ) 2 x x ] ( ) ( )( ) [x2 + ( ) 2 ( ) 2 x2 + ( ) 2 ( ) 2 x2 2 x x 2 xx + 2 ( )( ) ( ) 2 x x ] ( ) ( )( ) [x x 2 x ] ( ) ( )( ) [x ( x + 2 x )]. Se σ 2 ( )( ) ( ) ad m x + x he our calculaio shows ha f, (x x, x 2 ) (x m)2 exp ( 2π σ 2σ 2 ). 3

31 4 The Caoical Model Problem 4. (Soluio) Le F R [, ] be a disribuio fucio. We begi wih a geeral lemma: F has a uique geeralized moooe icreasig righ-coiuous iverse: F (u) G(u) if{x F (x) > u} [ sup{x F (x) u}]. (4.) We have F (G(u)) u if F () is coiuous i G(u), oherwise, F (G(u)) u. Ideed: For hose where F is sricly icreasig ad coiuous, here is ohig o show. Le us look a he wo problem cases: F jumps ad F is fla. F () G(u) w + w w v u G(u) G(v ) G(v) G(w) u Figure 4.: A illusraio of he problem cases If F () jumps, we have G(w) G(w + ) G(w ) ad if F () is fla, we ake he righ edpoi of he flaess ierval [G(v ), G(v)] o defie G (his leads o righ-coiuiy of G) a) Le (Ω, A, P) ([, ], B[, ], du) (du sads for Lebesgue measure) ad defie X G (G F as before). The P({ω Ω X(ω) x}) λ({u [, ] G(u) x}) (he discoiuiies of F are couable, i.e. a Lebesgue ull se) 3

32 R.L. Schillig, L. Parzsch: Browia Moio λ({ [, ] F (x)}) λ([, F (x)]) F (x). Measurabiliy is clear because of moooiciy. b) Use he produc cosrucio ad par a). To be precise, we do he cosrucio for wo radom variables. Le X Ω R ad Y Ω R be wo iid copies. We defie o he produc space (Ω Ω, A A, P P ) he ew radom variables ξ(ω, ω ) X(ω) ad η(ω, ω ) Y (ω ). The we have ξ, η live o he same probabiliy space ξ X, η Y P P (ξ A) P P ({(ω, ω ) Ω Ω ξ(ω, ω ) A}) P P ({(ω, ω ) Ω Ω X(ω) A}) P P ({ω Ω X(ω) A} Ω ) P({ω Ω X(ω) A}) P(X A). ad a similar argume works for η. ξ η P P (ξ A, η B) P P ({(ω, ω ) Ω Ω ξ(ω, ω ) A, η(ω, ω ) B}) P P ({(ω, ω ) Ω Ω X(ω) A, Y (ω ) B}) P P ({ω Ω X(ω) A} {ω Ω Y (ω ) B}) P({ω Ω X(ω) A}) P ({ω Ω Y (ω ) B}) P(X A) P(Y B) P P (ξ A) P P (η B) The same ype of argume works for arbirary producs, sice idepedece is always defied for ay fiie-dimesioal subfamily. I he ifiie case, we have o ivoke he heorem o he exisece of ifiie produc measures (which are cosruced via heir fiie margials) ad which ca be see as a paricular case of Kolmogorov s heorem, cf. Theorem 4.8 ad Theorem A.2 i he appedix. c) The saemes are he same if oe uses he same cosrucio as above. A difficuly is o ideify a mulidimesioal disribuio fucio F (x). Roughly speakig, hese are fucios of he form F (x) P (X (, x ] (, x ]) where X (X,..., X ) ad x (x,..., x ), i.e. x is he upper righ edpoi of a ifiie recacle. A absrac characerisaio is he followig 32

33 Soluio Maual. Las updae Jue 2, 27 F R [, ] x j F (x) is moooe icreasig x j F (x) is righ coiuous F (x) if a leas oe ery x j F (x) if all eries x j + ( ) k ɛ k F (ɛ a +( ɛ )b,..., ɛ a +( ɛ )b ) where < a j < b j < ad where he ouer sum rus over all uples (ɛ,..., ɛ ) {, } The las propery is equivale o () h () h F (x) h,..., h where (k) h F (x) F (x + he k) F (x) ad e k is he kh sadard ui vecor of R. I priciple we ca cosruc such a mulidimesioal F from is margials usig he heory of copulas, i paricular, Sklar s heorem ec. ec. ec. Aoher way would be o ake (Ω, A, P) (R, B(R ), µ) where µ is he probabiliy measure iduced by F (x). The he radom variables X are jus he ideiy maps! The idepede copies are he obaied by he usual produc cosrucio. Problem 4.2 (Soluio) Sep : Le us firs show ha P(lim s X s exiss) <. Sice X r X s ad X s X s we ge Thus, X r X s X r + X s N(, s + r) s + r N(, ). P( X r X s > ɛ) P ( X > ɛ ) P ( X > ɛ ). s + r r,s 2 This proves ha X s is o a Cauchy sequece i probabiliy, i. e. i does o eve coverge i probabiliy owards a limi, so a.e. covergece is impossible. I fac we have {ω lim X s (ω) does o exis} { sup X s X r > } s k s,r [ /k,+/k] ad so we fid wih he above calculaio P ( lim X s does o exis) lim P ( sup X s X r > ) P ( X > ɛ ) s k s,r [ /k,+/k] 2 This shows, i paricular ha for ay sequece we have P ( lim X exiss) < q <. where q q() (bu idepede of he sequece). Sep 2: Fix >, fix a sequece ( ) wih, ad se A {ω Ω lim s X s (ω) exiss} ad A( ) {ω Ω lim X (ω) exiss}. 33

34 R.L. Schillig, L. Parzsch: Browia Moio Clearly, A A( ) for ay such sequece. Moreover, ake wo sequeces (s ), ( ) such ha s ad ad which have o pois i commo; he we ge by idepedece ad sep (X s, X s2, X s3...) (X, X 2, X 3...) A( ) A(s ) ad so, P(A) P(A(s ) A( )) P(A(s )) P(A( )) q 2. By Sep, q <. Sice here are ifiiely may sequeces havig all o pois i commo, we ge P(A) lim k q k. 34

35 5 Browia Moio as a Marigale Problem 5. (Soluio) a) We have F B σ(σ(x), F B ) σ(x, B s s ) F. Le s. The σ(b B s ), F B s ad σ(x) are idepede, hus σ(b B s ) is idepede of σ(σ(x), F B ) F. This shows ha F B (B ). b) Se N {N M A such ha N M, P(M) }. The we have F B σ(f B, N) F B. is a admissible filraio for From measure heory we kow ha (Ω, A, P) ca be compleed o (Ω, A, P ) where We fid for all A B(R d ), F F s, N N A {A N A A, N N}, P (A ) P(A) for A A N A. P ({B B s A} (F N)) P (({B B s A} F ) ({B B s A} N) ) A N P({B B s A} F ) P(B B s A) P(F ) P (B B s A) P (F N). Therefore F B is admissible. Problem 5.2 (Soluio) Le <... <, ad cosider he radom variables B( ) B( ),..., B( ) B( ). Usig he argume of Problem 2.9 we see for ay F F E (e i k ξ k, B( k ) B( k ) F ) E (e i ξ, B() B( ) e i k ξ k, B( k ) B( k ) F ) F mble., hece B( ) B( ) E (e i ξ, B() B( ) ) E (e i k ξ k, B( k ) B( k ) F ) 35

36 R.L. Schillig, L. Parzsch: Browia Moio k E (e i ξ k, B( k ) B( k ) ) E F. This shows ha he icremes are idepede amog hemselves (use F Ω) ad ha hey are all ogeher idepede of F (use he above calculaio ad he fac ha he icremes are amog hemselves idepede o combie agai he expeced value) uder he Thus, F σ(b( k ) B( k ) k,..., ) Therefore he saeme is implied by F < <...< σ(b( k ) B() k,..., ). Problem 5.3 (Soluio) a) i) E X <, sice he expecaio does o deped o he filraio. ii) X is F measurable ad F F. Thus X is F measurable. iii) Le N deoe he se of all ses which are subses of P-ull ses. Deoe by P he measure of he compleio of (Ω, A, P) (compare wih he soluio o Exercise 5..b)). Le s. For all F F s here exis F F s, N N such ha F F N ad F X s d P F X s d P F X d P F X d P. Sice F is arbirary his implies ha E(X F s ) X s. b) i) E Y E X <. ii) Noe ha {X Y }, is compleme ad ay of is subses is i F. Le B B(R d ). The we ge {Y B} ({X B} {X Y } ) {Y B, X Y }. F F F iii) Similar o par a-iii). For each F F s we ge i.e. E(Y F s ) Y s. F Y s d P F X s d P a) F X d P F Y d P, Problem 5.4 (Soluio) Le s < ad pick s s such ha s < s <. The E(X F s+ ) sub-mg E(X() F s ) X(s ) s s c a.e. coiuous X(s+) X(s). pahs The covergece o he lef side follows from he (sub-)marigale covergece heorem (Lévy s dowward heorem). 36

37 Soluio Maual. Las updae Jue 2, 27 Problem 5.5 (Soluio) Here is a direc proof wihou usig he hi. We sar wih calculaig he codiioal expecaios E(B 4 F s) E ((B B s + B s ) 4 F s ) Bs 4 + 4Bs 3 E(B B s ) + 6Bs 2 E((B B s ) 2 ) + 4B s E((B B s ) 3 ) + E((B B s ) 4 ) Bs 4 + 6Bs 2 ( s) + 3( s) 2 Bs 4 6Bs 2 s + 6Bs 2 + 3( s) 2, ad E(B 2 F s) E ((B B s + B s ) 2 F s ) s + 2B s E(B B s ) + Bs 2 Bs 2 + s. Combiig hese calculaios, such ha he erm 6Bs 2 vaishes from he firs formula, we ge E (B 4 6B 2 F s) Bs 4 6sBs s s + 3s 2 Bs 4 6sB s + 3s Therefore π(, B ) B 4 6B is a marigale. Problem 5.6 (Soluio) For ad all c we have E e c B E e c B 2. ad for c E e c B ad E e c B 2. Now le > ad c >. There exiss some R > such ha c x < 4 x 2 for all x > R. Thus E e c B c e c x e 2 x 2 dx c e c x e 2 x 2 dx + c e 4 x 2 e 2 x 2 dx x R x >R e cr + c e 4 x 2 dx <, x >R i.e., E e c B < for all c,. Furhermore E e c B 2 c e c x 2 2 x 2 dx c e x 2 (c 2 ) dx ad his iegral is fiie if, ad oly if, c 2 < or equivalely c < 2. 37

38 R.L. Schillig, L. Parzsch: Browia Moio Problem 5.7 (Soluio) a) We have p(, x) (2π) d 2 e x 2 2. By he chai rule we ge p(, x) d d 2 2 (2π) d x 2 e (2π) d 2 ( ) 2 ( ) x 2 x 2 2 e 2 ad for all j,..., d p(, x) (2π) d 2x j 2 ( x j 2 ) x 2 e 2, 2 x 2 j p(, x) (2π) d 2 ( ) x 2 e 2 + (2π) d 2 x 2 j x 2 2 e 2. Addig hese erms ad oig ha x 2 d x2 j we ge 2 d 2 x 2 j b) A formal calculaio yields p(, x) d 2 (2π) d 2 e x (2π) d 2 p(, x) 2 2 x 2 j f(, x) dx p(, x) f(, x) 2 x j x j p(, x) 2 f(, x) 2 x 2 p(, x) f(, x) dx. j 2 2 x 2 2 x 2 e 2 p(, x). p(, x) f(, x) dx x j 2 x j + 2 x 2 p(, x) f(, x) dx j 2 By he same argumes as i Exercise 5.6 we fid ha all erms are iegrable ad vaish as x. This jusifies he above calculaio. Furhermore summig over j,... d we obai he saeme. Problem 5.8 (Soluio) Measurabiliy (i.e. adapedess o he Filraio F ) ad iegrabiliy is o issue, see also Problem 5.6. a) U is oly a marigale for c. Soluio : see Exercise 5.9. Soluio 2: if c, E U is o cosa, i.e. cao be a marigale. If c, U is rivially a marigale. b) V is a marigale sice E (V F s ) E(B B s ) + B s E ( B r dr F s ) E ( B r dr F s ) s s B s B r dr E ( (B r B s ) + B s dr F s ) s B s B r dr ( s)b s V s. s s 38

39 Soluio Maual. Las updae Jue 2, 27 c) ad e) Le a R. The we ge E (ab 3 B F s ) E (a(b B s + B s ) 3 (B B s ) B s F s ) abs 3 + 3aBs 2 E B s + 3aB s E B s 2 + a E B s 3 B s abs 3 + (3a( s) )B s. This is a marigale if, ad oly if, s 3a( s), i.e., a 3. marigale ad W is o a marigale. Thus Y is a d) We have see i par c) ad b) ha ad Thus, X is a marigale. E (B 3 F s) B 3 s + 3( s)b s 3 E ( B r dr F s ) 3 B r dr + 3( s)b s. f) Z is oly a marigale for c 2, see Exercise 5.9. Problem 5.9 (Soluio) Noe ha E X < for all a, b, cf. Problem 5.6. We have E (e ab+b F s ) E (e a(b Bs) e abs+b F s ) e abs+b E e ab s e abs+b+( s)a2 /2. Thus, X is a marigale if, ad oly if, bs b + ( s) a2 2, i.e., b 2 a2. Problem 5. (Soluio) We have E ( d B 2 F s ) + d d E ((B (j) ) 2 Pr. 5.5 F s ) + d s d ((B (j) s ) 2 + s) d B s 2 s. Problem 5. (Soluio) For a) c) we prove oly he saemes for τ, he saemes for τ are proved aalogously. a) The followig implicaios hold: A C { X A} { X C} τ A τ C. b) By par a) we have τ A C τ A ad τ A C τ C. Thus, τ A C a) mi{τ A, τ C}. To see he coverse, mi{τa, τ C } τ A C, i is eough o show ha X (ω) A C mi{τ A(ω), τ C(ω)} sice his implicaio shows ha τa C (ω) mi{τ A (ω), τ C (ω)} holds. 39

40 R.L. Schillig, L. Parzsch: Browia Moio Now observe ha X (ω) A C X (ω) A or X (ω) C τ A(ω) or τ C(ω) mi{τ A(ω), τ C(ω)}. c) Par a) implies max{τa, τ C } τ A C. Remark: we cao expec. To see his cosider a BM sarig a B ad he se A [4, 6] ad C [, 2] [5, 7]. The B has o reach firs C ad A before i his A C. d) as i b) i is clear ha τa τ A for all, hece τ A if τ A. I order o show he coverse, τ A if τ A, i is eough o check ha X (ω) A if τ A (ω) sice, if his is rue, his implies ha τ A (ω) if τ A (ω). Now observe ha X (ω) A A X (ω) A for some N τ A (ω) for some N if τ A (ω). e) Noe ha if {s X s+. Thus we ge A} if {s X s A} is moooe decreasig as if ( + if{s X s A}) + if if{s X s A} if{s > X s A} τ A. f) Le X x +. The τ{x } ad τ {x }. More geerally, a similar siuaio may happe if we cosider a process wih coiuous pahs, a closed se F, ad if we le he process sar o he boudary F. The τf a.s. (sice he process is i he se) while τ F > is possible wih posiive probabiliy. 4

41 Soluio Maual. Las updae Jue 2, 27 Problem 5.2 (Soluio) We have τ U τ U. Le x U. The τ U ad, sice U is ope ad X is coiuous, here exiss a N > such ha Thus τ U. X U for all N. If x U, he X (ω) U ca oly happe if >. Thus, τ U τ U. Problem 5.3 (Soluio) Suppose d(x, A) d(z, A). The d(x, A) d(z, A) if x y if z y y A y A if ( x z + z y ) if z y y A y A x z ad, wih a aalogous argume for d(x, A) d(z, A), we coclude d(x, A) d(z, A) x z. Thus x d(x, A) is globally Lipschiz coiuous, hece uiformly coiuous. Problem 5.4 (Soluio) We rea he wo cases simulaeously ad check he hree properies of a sigma algebra: i) We have Ω F ad Ω {τ } {τ } F F +. ii) Le A F τ(+). Thus A F, A c F ad A c {τ } Ω A {τ } (Ω {τ } ) (A {τ } ) F (+). F F + iii) Le A F τ(+). The A, A F ad Therefore F τ ad F τ+ are σ-algebras. A {τ } F (+) sice A F τ(+) (A {τ } ) F (+). F (+) Problem 5.5 (Soluio) a) Le F F τ+, i.e., F F ad for all s we have F {τ s} F s+. Le >. The F {τ < } (F {τ s}) F s+ F. s< s< For he coverse: If τ < a.s. he F > (F {τ }) F ad F {τ s} (F {τ < }) F F s+. >s >s If τ occurs wih sricly posiive probabiliy, he we have o assume ha F F. 4

42 R.L. Schillig, L. Parzsch: Browia Moio b) We have {τ } F F ad {τ } F if r ; {τ } {τ r} {τ r} F r F if r <. Problem 5.6 (Soluio) a) e iξb+ 2 ξ 2 is a marigale for all ξ R by Example 5.2 d). By opioal soppig Sice he lef-had side is real, we ge E e 2 (τ )c2 +icb τ. E (e 2 (τ )c2 cos(cb τ )). Se m a b. Sice B τ m, we see ha for mc < 2 π he cosie is posiive. By Faou s lemma we ge for all mc < 2 π lim E (e 2 (τ )c2 cos(cb τ )) E ( lim e 2 (τ )c2 cos(cb τ )) E (e 2 τc2 cos(cb τ )) cos(mc) E e 2 τc2. Thus, E e γτ < for ay γ < 2 c2 ad all c < π/(2m). Sice e j j j!, j e j j! we see ha E τ j j! γ j E e γτ < for ay j. b) By Exercise 5.8 d) he process B 3 3 B s ds is a marigale. By opioal soppig we ge E (B 3 τ 3 τ B s ds) for all. (*) Se m max{a, b}. By he defiiio of τ we see ha B τ m; sice τ is iegrable we ge B 3 τ m 3 ad τ B s ds τ m. Therefore, we ca use i (*) he domiaed covergece heorem ad le : E ( τ B s ds) 3 E(B3 τ ) 3 ( a)3 P(B τ a) + 3 b3 P(B τ b) (5.2) a 3 b + b 3 a 3 a + b ab(b a). 3 42

43 Soluio Maual. Las updae Jue 2, 27 Problem 5.7 (Soluio) By Example 5.2 c) B 2 d is a marigale. Thus we ge by opioal soppig E( τ R ) d E B τ R 2 for all. Sice B τr R, we ca use moooe covergece o he lef ad domiaed covergece o he righ-had side o ge E τ R sup E( τ R ) lim d E B τ R 2 d E B τ R 2 d R2. Problem 5.8 (Soluio) a) For all we have {σ τ } {σ } {τ } F. F F b) For all we have {σ < τ} {σ τ } ({σ r < τ} {σ τ }) r Q (({σ r} {τ r} c ) {σ τ }) F. r Q [,] This shows ha {σ < τ}, {σ τ} {σ < τ} c F σ τ. Sice σ ad τ play symmeric roles, we ge wih a similar argume ha {σ > τ}, {σ τ} {σ > τ} c F σ τ, ad he claim follows. c) Sice τ σ is a iegrable soppig ime, we ge from Wald s ideiies, Theorem 5., ha Followig he hi we ge E B 2 τ σ E(τ σ) <. E(B σ B τ {σ τ} ) E(B σ τ B τ {σ τ} ) E ( E(B σ τ B τ {σ τ} F τ σ )) b) E (B σ τ {σ τ} E (B τ F τ σ )) (*) E(B 2 σ τ {σ τ} ). (We will discuss he sep marked by (*) below.) Wih a aalogous calculaio for τ σ we coclude E(B σ B τ ) E(B σ τ B τ {σ<τ} ) + E(B σ τ B τ {τ σ} ) E(B 2 σ τ ) E σ τ. I he sep marked wih (*) we used ha for iegrable soppig imes σ, τ we have E(B τ F σ τ ) B σ τ. To see his we use opioal soppig which gives E(B τ k F σ τ k ) B σ τ k for all k. 43

44 R.L. Schillig, L. Parzsch: Browia Moio This is he same as o say ha F B τ k d P F B σ τ k d P for all k, F F σ τ k. Sice B τ k B τ i L 2 (P), see he proof of Theorem 5., we ge for some fixed k i < k because of F σ τ i F σ τ k ha F B τ d P lim k F B τ k d P lim k F B σ τ k d P F B σ τ d P for all F F σ τ i. Le ρ σ τ (or ay oher soppig ime). Sice F ρ k F ρ F k we see ha F ρ is geeraed by he -sable geeraor i F ρ i, ad (*) follows. d) From he above ad Wald s ideiy we ge E( B τ B σ 2 ) E(B 2 τ 2B τ B σ + B 2 σ) E τ 2 E τ σ + E σ E(τ 2(τ σ) + σ) E τ σ. I he las sep we used he elemeary relaio (a + b) 2(a b) a b + a b 2(a b) a b a b a b. 44

45 6 Browia Moio as a Markov Process Problem 6. (Soluio) We wrie g (x) (2π) /2 e x2 /(2) for he oe-dimesioal ormal desiy. a) This follows immediaely from our proof of b). b) Le u B b (R) ad s,. The, by he idepede ad saioary icremes propery of a Browia moio E u( B +s F s ) E u( (B +s B s ) + B s F s ) Sice B B we also ge E u( (B +s B s ) + y ) ybs E u( B + y ) ybs. ad, herefore, E u( B +s F s ) E u( B + y ) y Bs E u( B y ) ybs E u( B +s F s ) 2 [E u( B + y ) + E u( B y )] ybs 2 [ (u( z + y ) + u( z y )) g (z) dz]yb s 2 [ u( z ) (g (z + y) + g (z y)) dz]yb s here we use ha he iegrad is eve i z u( z ) (g (z + y) + g (z y)) dz yb s u( z ) (g (z + y ) + g (z y )) dz g u,s,+s(y) i is idepede of s! sice he iegrad is also eve i y! This shows ha E u( B +s F s ) is a fucio of B s, i.e. Markoviaiy. P y ( B dz) g (z y) + g (z + y) for z, y, i.e. he form of he rasiio fucio. Remark: B is called reflecig (also: refleced) Browia moio. yb s 45

46 R.L. Schillig, L. Parzsch: Browia Moio c) Se M sup s B s for he ruig maximum, i.e. Y M B. From he reflecio priciple, Theorem 6.9 we kow ha Y B. So he guess is ha Y ad B are wo Markov processes wih he same rasiio fucio! Le s, ad u B b (R). We have by he idepede ad saioary icremes propery of Browia moio E (u(y +s ) F s ) E (u(m +s B +s ) F s ) E (u( max { sup B r, sup B s+u } B +s ) F s ) u s u E (u( max { sup(b r B s ) + (B s B +s ), sup (B s+u B s+ )}) F s ) u s u ad, as sup u s (B r B s ) is F s measurable ad (B s B +s ), sup u (B s+u B s+ ) F s, we ge E (u( max {y + (B s B +s ), sup (B s+u B s+ )})) u ysup u s (B r B s) E (u( max {y B, sup (B u B )})) u yy s Usig ime iversio (cf. 2.) we see ha (B u B ) u [,] is agai a BM, ad we ge (B, sup u (B u B )) ( B, sup u B u )) E (u( max {y + B, sup B u )})). u yy s Usig Soluio 2 of Problem 6.8 we kow he joi disribuio of (B, sup u B u ): E (u( max {y + B, sup B u )})) z z u u(max{y + x, z}) 2 2z x e (2z x)2 /2 dx dz. x 2π Spliig he iegral z x io wo pars z x,y+x z + z x,y+x>z we ge I u(z) 2 z y 2z x e (2z x)2 /2 2 dx dz z 2π x u(z) /2 2π z e (z+y)2 dz e (2z x)2 /2 z y ad 2 z II 2z x u(y + x) e (2z x)2 /2 dx dz 2π z x z y 2 u(y + x) x+y 2z x e (2z x)2 /2 dz 2π x y zx /2 x+y 2 e (2z x)2 dx u(y + x) /2 2π x y [e x2 e (x+2y)2 /2 ] dx zx 46

47 Soluio Maual. Las updae Jue 2, 27 u(ξ) /2 2π x y [e (ξ y)2 e (ξ+y)2 /2 ] dξ. Fially, addig I ad II we ed up wih E (u( max {y + B, sup B u )})) u which is he same rasiio fucio as i par b). d) See par c). u(z)(g (z + y) + g (z y)) dz, y Problem 6.2 (Soluio) Le s,. We use he followig abbreviaios: s I s B r dr ad M s sup B u ad F s Fs B. u s a) Le f R 2 R measurable ad bouded. The E (f(m s+, B s+ ) F s ) E (f( sup B u M s, (B s+ B s ) + B s ) F s ) s u s+ E (f([b s + sup (B u B s )] M s, (B s+ B s ) + B s ) F s ). s u s+ By he idepede icremes propery of BM we ge ha he radom variables sup s u s+ (B u B s ), B s+ B s F s while M s ad B s are F s measurable. Thus, we ca rea hese groups of radom variables separaely (see, e.g., Lemma A.3: where E (f(m s+, B s+ ) F s ) E (f([z + sup (B u B s )] y, (B s+ B s ) + z) F s ) s u s+ ym s,zb s φ(m s, B s ) φ(y, z) E (f([z + sup s u s+ b) Le f R 2 R measurable ad bouded. The E (f(i s+, B s+ ) F s ) E (f( E (f( s+ s s+ s (B u B s )] y, (B s+ B s ) + z) F s ). B u du + I s, (B s+ B s ) + B s ) F s ) (B u B s ) du + I s + B s, (B s+ B s ) + B s ) F s ). By he idepede icremes propery of BM we ge ha he radom variables s+ s (B u B s ) du, B s+ B s F s while I s + B s ad B s are F s measurable. Thus, we ca rea hese groups of radom variables separaely (see, e.g., Lemma A.3: E (f(i s+, B s+ ) F s ) 47

48 R.L. Schillig, L. Parzsch: Browia Moio for he fucio E (f( s φ(i s, B s ) s+ φ(y, z) E (f( (B u B s ) du + y + z, (B s+ B s ) + z)) yi s,zb s s s+ (B u B s ) du + y + z, (B s+ B s ) + z)). c) No! If we use he calculaio of a) ad b) for he fucio f(y, z) g(y), i.e. oly depedig o M or I, respecively, we see ha we sill ge E (g(i +s ) F s ) ψ(b s, I s ), i.e. (I, F ) cao be a Markov process. The same argume applies o (M, F ). Problem 6.3 (Soluio) We follow he hi. Firs, if f R d R, f f(x,..., x ), x,..., x R d, we see ha E x f(b( )),..., B( )) E f(b( )) + x,..., B( ) + x) f(y R d R d + x,..., y + x) P(B( ) dy,..., B( ) dy ) imes ad he las expressio is clearly measurable. This applies, i paricular, o f A j where G {B( j) A j }, i.e. E x G is Borel measurable. Se Γ {B( j ) A j }, <, A,... A B b (R d ). Le us see ha Σ is a Dyki sysem. Clearly, Σ. If A Σ, he x E x A c E x ( A ) E x A B b (R d ) A c Σ. Fially, if (A j ) j Σ are disjoi ad A j A j we ge A j Aj. Thus, x E x A E x Aj B b (R d ). j This shows ha Σ is a Dyki Sysem. Deoe by δ( ) he Dyki sysem geeraed by he argume. The Γ Σ F B δ(γ) δ(σ) Σ F B. Bu δ(γ) σ(γ) sice Γ is sable uder fiie iersecios ad σ(γ) F B. This proves, i paricular, ha Σ F B. Sice we ca approximae every bouded F B measurable fucio Z by sep fucios wih seps from F B, he claim follows. 48

49 Soluio Maual. Las updae Jue 2, 27 Problem 6.4 (Soluio) Followig he hi we se u (x) ( ) x. The u (x) u(x) x. Usig (6.7) we see Now ake o ge ad we ge E [u (B +τ ) F τ+ ](ω) E Bτ (ω) u (B ). E [u (B τ ) F τ+ ](ω) u (B τ )(ω) lim E [u (B τ ) F τ+ ](ω) lim u (B τ )(ω) B τ (ω). Sice he l.h.s. is F τ+ measurable (as limi of such measurable fucios!), he claim follows. Problem 6.5 (Soluio) By he reflecio priciple, Theorem 6.9, P (sup s B s x) P (sup B s x) + P (if B s x) P( B x) + P( B x). s s Problem 6.6 (Soluio) a) Sice B( ) B( ), we ge τ b if{s B s b} if{s B s b} if{s B s b} τ b. b) Sice B(c 2 ) c B( ), we ge τ cb if{s B s cb} if{s c B s b} if{s B s/c 2 b} if{rc 2 B r b} c 2 if{r B r b} c 2 τ b. c) We have τ b τ a if{s B s+τa b} if{s B s+τa B τa b a} which shows ha τ b τ a is idepede of F τa Browia moio. by he srog Markov propery of Now we fid for all s, ad c [, a] {τ c s} {τ a } τ c τ a {τ c s } {τ a } F s F F. This shows ha {τ c s} F τa, i.e. τ c is F τa measurable. Sice c is arbirary, {τ c } c [,a] is F τa measurable, ad he claim follows. Problem 6.7 (Soluio) We begi wih a simpler siuaio. As usual, we wrie τ b for he firs passage ime of he level b: τ b if{ sup s B s b} where b >. From Example 5.2 d) we kow ha (M ξ exp(ξb 2 ξ2 )) is a marigale. By opioal soppig we ge 49

50 R.L. Schillig, L. Parzsch: Browia Moio ha (M ξ ) τ is also a marigale ad has, herefore, cosa expecaio. Thus, for b ξ > (ad wih E E ) E M ξ E ( exp(ξb τ b 2 ( τ b)ξ 2 )) Sice he RV exp(ξb τb ) is bouded (mid: ξ ad B τb b), we ca le ad ge E ( exp(ξb τb 2 τ bξ 2 )) E ( exp(ξb 2 τ bξ 2 )) or, if we ake ξ 2λ, E e λτ b e 2λb. As B B, τ b τ b, ad he above calculaio yields E e λτ b e 2λ b b R. Now le us ur o he siuaio of he problem. Se τ τ (a,b) c. Here, B τ is bouded (i is i he ierval (a, b), ad his makes higs easier whe i comes o opioal soppig. As before, we ge by soppig he marigale (M ξ ) ha e ξx lim E x ( exp(ξb τ 2 ( τ)ξ2 )) E x ( exp(ξb τ 2 τξ2 )) (ad o, as before, for posiive ξ! Mid also he sarig poi x, bu his does o chage higs dramaically.) by, e.g., domiaed covergece. The problem is ow ha B τ does o aai a paricular value as i may be a or b. We ge, herefore, for all ξ R e ξx E x ( exp(ξb τ 2 τξ2 ) {Bτ a}) + E x ( exp(ξb τ 2 τξ2 ) {Bτ b}) E x ( exp(ξa 2 τξ2 ) {Bτ a}) + E x ( exp(ξb 2 τξ2 ) {Bτ b}) Now pick ξ ± 2λ. This yields 2 equaios i wo ukows: e 2λ x e 2λ a E x (e λτ {Bτ a}) + e 2λ b E x (e λτ {Bτ b}) e 2λ x e 2λ a E x (e λτ {Bτ a}) + e 2λ b E x (e λτ {Bτ b}) Solvig his sysem of equaios gives e 2λ (x a) E x (e λτ {Bτ a}) + e 2λ (b a) E x (e λτ {Bτ b}) e 2λ (x a) E x (e λτ {Bτ a}) + e 2λ (b a) E x (e λτ {Bτ b}) ξ ad so E x (e λτ {Bτ b}) sih ( 2λ (x a)) sih ( 2λ (b a)) This aswers Problem b). ad E x (e λτ {Bτ a}) sih ( 2λ (b x)) sih ( 2λ (b a)). For he soluio of Problem a) we oly have o add hese wo expressios: E e λτ E (e λτ {Bτ a}) + E (e λτ {Bτ b}) sih ( 2λ (b x)) + sih ( 2λ (x a)) sih (. 2λ (b a)) 5

Lecture 15 First Properties of the Brownian Motion

Lecture 15 First Properties of the Brownian Motion Lecure 15: Firs Properies 1 of 8 Course: Theory of Probabiliy II Term: Sprig 2015 Isrucor: Gorda Zikovic Lecure 15 Firs Properies of he Browia Moio This lecure deals wih some of he more immediae properies

More information

STK4080/9080 Survival and event history analysis

STK4080/9080 Survival and event history analysis STK48/98 Survival ad eve hisory aalysis Marigales i discree ime Cosider a sochasic process The process M is a marigale if Lecure 3: Marigales ad oher sochasic processes i discree ime (recap) where (formally

More information

Math 6710, Fall 2016 Final Exam Solutions

Math 6710, Fall 2016 Final Exam Solutions Mah 67, Fall 6 Fial Exam Soluios. Firs, a sude poied ou a suble hig: if P (X i p >, he X + + X (X + + X / ( evaluaes o / wih probabiliy p >. This is roublesome because a radom variable is supposed o be

More information

MATH 507a ASSIGNMENT 4 SOLUTIONS FALL 2018 Prof. Alexander. g (x) dx = g(b) g(0) = g(b),

MATH 507a ASSIGNMENT 4 SOLUTIONS FALL 2018 Prof. Alexander. g (x) dx = g(b) g(0) = g(b), MATH 57a ASSIGNMENT 4 SOLUTIONS FALL 28 Prof. Alexader (2.3.8)(a) Le g(x) = x/( + x) for x. The g (x) = /( + x) 2 is decreasig, so for a, b, g(a + b) g(a) = a+b a g (x) dx b so g(a + b) g(a) + g(b). Sice

More information

Solution. 1 Solutions of Homework 6. Sangchul Lee. April 28, Problem 1.1 [Dur10, Exercise ]

Solution. 1 Solutions of Homework 6. Sangchul Lee. April 28, Problem 1.1 [Dur10, Exercise ] Soluio Sagchul Lee April 28, 28 Soluios of Homework 6 Problem. [Dur, Exercise 2.3.2] Le A be a sequece of idepede eves wih PA < for all. Show ha P A = implies PA i.o. =. Proof. Noice ha = P A c = P A c

More information

Mathematical Statistics. 1 Introduction to the materials to be covered in this course

Mathematical Statistics. 1 Introduction to the materials to be covered in this course Mahemaical Saisics Iroducio o he maerials o be covered i his course. Uivariae & Mulivariae r.v s 2. Borl-Caelli Lemma Large Deviaios. e.g. X,, X are iid r.v s, P ( X + + X where I(A) is a umber depedig

More information

1 Notes on Little s Law (l = λw)

1 Notes on Little s Law (l = λw) Copyrigh c 26 by Karl Sigma Noes o Lile s Law (l λw) We cosider here a famous ad very useful law i queueig heory called Lile s Law, also kow as l λw, which assers ha he ime average umber of cusomers i

More information

Extremal graph theory II: K t and K t,t

Extremal graph theory II: K t and K t,t Exremal graph heory II: K ad K, Lecure Graph Theory 06 EPFL Frak de Zeeuw I his lecure, we geeralize he wo mai heorems from he las lecure, from riagles K 3 o complee graphs K, ad from squares K, o complee

More information

10.3 Autocorrelation Function of Ergodic RP 10.4 Power Spectral Density of Ergodic RP 10.5 Normal RP (Gaussian RP)

10.3 Autocorrelation Function of Ergodic RP 10.4 Power Spectral Density of Ergodic RP 10.5 Normal RP (Gaussian RP) ENGG450 Probabiliy ad Saisics for Egieers Iroducio 3 Probabiliy 4 Probabiliy disribuios 5 Probabiliy Desiies Orgaizaio ad descripio of daa 6 Samplig disribuios 7 Ifereces cocerig a mea 8 Comparig wo reames

More information

Supplement for SADAGRAD: Strongly Adaptive Stochastic Gradient Methods"

Supplement for SADAGRAD: Strongly Adaptive Stochastic Gradient Methods Suppleme for SADAGRAD: Srogly Adapive Sochasic Gradie Mehods" Zaiyi Che * 1 Yi Xu * Ehog Che 1 iabao Yag 1. Proof of Proposiio 1 Proposiio 1. Le ɛ > 0 be fixed, H 0 γi, γ g, EF (w 1 ) F (w ) ɛ 0 ad ieraio

More information

Lecture 8 April 18, 2018

Lecture 8 April 18, 2018 Sas 300C: Theory of Saisics Sprig 2018 Lecure 8 April 18, 2018 Prof Emmauel Cades Scribe: Emmauel Cades Oulie Ageda: Muliple Tesig Problems 1 Empirical Process Viewpoi of BHq 2 Empirical Process Viewpoi

More information

Actuarial Society of India

Actuarial Society of India Acuarial Sociey of Idia EXAMINAIONS Jue 5 C4 (3) Models oal Marks - 5 Idicaive Soluio Q. (i) a) Le U deoe he process described by 3 ad V deoe he process described by 4. he 5 e 5 PU [ ] PV [ ] ( e ).538!

More information

Ideal Amplifier/Attenuator. Memoryless. where k is some real constant. Integrator. System with memory

Ideal Amplifier/Attenuator. Memoryless. where k is some real constant. Integrator. System with memory Liear Time-Ivaria Sysems (LTI Sysems) Oulie Basic Sysem Properies Memoryless ad sysems wih memory (saic or dyamic) Causal ad o-causal sysems (Causaliy) Liear ad o-liear sysems (Lieariy) Sable ad o-sable

More information

1. Solve by the method of undetermined coefficients and by the method of variation of parameters. (4)

1. Solve by the method of undetermined coefficients and by the method of variation of parameters. (4) 7 Differeial equaios Review Solve by he mehod of udeermied coefficies ad by he mehod of variaio of parameers (4) y y = si Soluio; we firs solve he homogeeous equaio (4) y y = 4 The correspodig characerisic

More information

Moment Generating Function

Moment Generating Function 1 Mome Geeraig Fucio m h mome m m m E[ ] x f ( x) dx m h ceral mome m m m E[( ) ] ( ) ( x ) f ( x) dx Mome Geeraig Fucio For a real, M () E[ e ] e k x k e p ( x ) discree x k e f ( x) dx coiuous Example

More information

λiv Av = 0 or ( λi Av ) = 0. In order for a vector v to be an eigenvector, it must be in the kernel of λi

λiv Av = 0 or ( λi Av ) = 0. In order for a vector v to be an eigenvector, it must be in the kernel of λi Liear lgebra Lecure #9 Noes This week s lecure focuses o wha migh be called he srucural aalysis of liear rasformaios Wha are he irisic properies of a liear rasformaio? re here ay fixed direcios? The discussio

More information

ODEs II, Supplement to Lectures 6 & 7: The Jordan Normal Form: Solving Autonomous, Homogeneous Linear Systems. April 2, 2003

ODEs II, Supplement to Lectures 6 & 7: The Jordan Normal Form: Solving Autonomous, Homogeneous Linear Systems. April 2, 2003 ODEs II, Suppleme o Lecures 6 & 7: The Jorda Normal Form: Solvig Auoomous, Homogeeous Liear Sysems April 2, 23 I his oe, we describe he Jorda ormal form of a marix ad use i o solve a geeral homogeeous

More information

EXISTENCE THEORY OF RANDOM DIFFERENTIAL EQUATIONS D. S. Palimkar

EXISTENCE THEORY OF RANDOM DIFFERENTIAL EQUATIONS D. S. Palimkar Ieraioal Joural of Scieific ad Research Publicaios, Volue 2, Issue 7, July 22 ISSN 225-353 EXISTENCE THEORY OF RANDOM DIFFERENTIAL EQUATIONS D S Palikar Depare of Maheaics, Vasarao Naik College, Naded

More information

Calculus Limits. Limit of a function.. 1. One-Sided Limits...1. Infinite limits 2. Vertical Asymptotes...3. Calculating Limits Using the Limit Laws.

Calculus Limits. Limit of a function.. 1. One-Sided Limits...1. Infinite limits 2. Vertical Asymptotes...3. Calculating Limits Using the Limit Laws. Limi of a fucio.. Oe-Sided..... Ifiie limis Verical Asympoes... Calculaig Usig he Limi Laws.5 The Squeeze Theorem.6 The Precise Defiiio of a Limi......7 Coiuiy.8 Iermediae Value Theorem..9 Refereces..

More information

Solutions to Problems 3, Level 4

Solutions to Problems 3, Level 4 Soluios o Problems 3, Level 4 23 Improve he resul of Quesio 3 whe l. i Use log log o prove ha for real >, log ( {}log + 2 d log+ P ( + P ( d 2. Here P ( is defied i Quesio, ad parial iegraio has bee used.

More information

Exercise 3 Stochastic Models of Manufacturing Systems 4T400, 6 May

Exercise 3 Stochastic Models of Manufacturing Systems 4T400, 6 May Exercise 3 Sochasic Models of Maufacurig Sysems 4T4, 6 May. Each week a very popular loery i Adorra pris 4 ickes. Each ickes has wo 4-digi umbers o i, oe visible ad he oher covered. The umbers are radomly

More information

An interesting result about subset sums. Nitu Kitchloo. Lior Pachter. November 27, Abstract

An interesting result about subset sums. Nitu Kitchloo. Lior Pachter. November 27, Abstract A ieresig resul abou subse sums Niu Kichloo Lior Pacher November 27, 1993 Absrac We cosider he problem of deermiig he umber of subses B f1; 2; : : :; g such ha P b2b b k mod, where k is a residue class

More information

A note on deviation inequalities on {0, 1} n. by Julio Bernués*

A note on deviation inequalities on {0, 1} n. by Julio Bernués* A oe o deviaio iequaliies o {0, 1}. by Julio Berués* Deparameo de Maemáicas. Faculad de Ciecias Uiversidad de Zaragoza 50009-Zaragoza (Spai) I. Iroducio. Le f: (Ω, Σ, ) IR be a radom variable. Roughly

More information

COS 522: Complexity Theory : Boaz Barak Handout 10: Parallel Repetition Lemma

COS 522: Complexity Theory : Boaz Barak Handout 10: Parallel Repetition Lemma COS 522: Complexiy Theory : Boaz Barak Hadou 0: Parallel Repeiio Lemma Readig: () A Parallel Repeiio Theorem / Ra Raz (available o his websie) (2) Parallel Repeiio: Simplificaios ad he No-Sigallig Case

More information

N! AND THE GAMMA FUNCTION

N! AND THE GAMMA FUNCTION N! AND THE GAMMA FUNCTION Cosider he produc of he firs posiive iegers- 3 4 5 6 (-) =! Oe calls his produc he facorial ad has ha produc of he firs five iegers equals 5!=0. Direcly relaed o he discree! fucio

More information

BEST LINEAR FORECASTS VS. BEST POSSIBLE FORECASTS

BEST LINEAR FORECASTS VS. BEST POSSIBLE FORECASTS BEST LINEAR FORECASTS VS. BEST POSSIBLE FORECASTS Opimal ear Forecasig Alhough we have o meioed hem explicily so far i he course, here are geeral saisical priciples for derivig he bes liear forecas, ad

More information

K3 p K2 p Kp 0 p 2 p 3 p

K3 p K2 p Kp 0 p 2 p 3 p Mah 80-00 Mo Ar 0 Chaer 9 Fourier Series ad alicaios o differeial equaios (ad arial differeial equaios) 9.-9. Fourier series defiiio ad covergece. The idea of Fourier series is relaed o he liear algebra

More information

ECE-314 Fall 2012 Review Questions

ECE-314 Fall 2012 Review Questions ECE-34 Fall 0 Review Quesios. A liear ime-ivaria sysem has he ipu-oupu characerisics show i he firs row of he diagram below. Deermie he oupu for he ipu show o he secod row of he diagram. Jusify your aswer.

More information

FIXED FUZZY POINT THEOREMS IN FUZZY METRIC SPACE

FIXED FUZZY POINT THEOREMS IN FUZZY METRIC SPACE Mohia & Samaa, Vol. 1, No. II, December, 016, pp 34-49. ORIGINAL RESEARCH ARTICLE OPEN ACCESS FIED FUZZY POINT THEOREMS IN FUZZY METRIC SPACE 1 Mohia S. *, Samaa T. K. 1 Deparme of Mahemaics, Sudhir Memorial

More information

Department of Mathematical and Statistical Sciences University of Alberta

Department of Mathematical and Statistical Sciences University of Alberta MATH 4 (R) Wier 008 Iermediae Calculus I Soluios o Problem Se # Due: Friday Jauary 8, 008 Deparme of Mahemaical ad Saisical Scieces Uiversiy of Albera Quesio. [Sec.., #] Fid a formula for he geeral erm

More information

Comparison between Fourier and Corrected Fourier Series Methods

Comparison between Fourier and Corrected Fourier Series Methods Malaysia Joural of Mahemaical Scieces 7(): 73-8 (13) MALAYSIAN JOURNAL OF MATHEMATICAL SCIENCES Joural homepage: hp://eispem.upm.edu.my/oural Compariso bewee Fourier ad Correced Fourier Series Mehods 1

More information

The Central Limit Theorem

The Central Limit Theorem The Ceral Limi Theorem The ceral i heorem is oe of he mos impora heorems i probabiliy heory. While here a variey of forms of he ceral i heorem, he mos geeral form saes ha give a sufficiely large umber,

More information

Review Exercises for Chapter 9

Review Exercises for Chapter 9 0_090R.qd //0 : PM Page 88 88 CHAPTER 9 Ifiie Series I Eercises ad, wrie a epressio for he h erm of he sequece..,., 5, 0,,,, 0,... 7,... I Eercises, mach he sequece wih is graph. [The graphs are labeled

More information

th m m m m central moment : E[( X X) ] ( X X) ( x X) f ( x)

th m m m m central moment : E[( X X) ] ( X X) ( x X) f ( x) 1 Trasform Techiques h m m m m mome : E[ ] x f ( x) dx h m m m m ceral mome : E[( ) ] ( ) ( x) f ( x) dx A coveie wa of fidig he momes of a radom variable is he mome geeraig fucio (MGF). Oher rasform echiques

More information

GAUSSIAN CHAOS AND SAMPLE PATH PROPERTIES OF ADDITIVE FUNCTIONALS OF SYMMETRIC MARKOV PROCESSES

GAUSSIAN CHAOS AND SAMPLE PATH PROPERTIES OF ADDITIVE FUNCTIONALS OF SYMMETRIC MARKOV PROCESSES The Aals of Probabiliy 996, Vol, No 3, 3077 GAUSSIAN CAOS AND SAMPLE PAT PROPERTIES OF ADDITIVE FUNCTIONALS OF SYMMETRIC MARKOV PROCESSES BY MICAEL B MARCUS AND JAY ROSEN Ciy College of CUNY ad College

More information

Stochastic Processes Adopted From p Chapter 9 Probability, Random Variables and Stochastic Processes, 4th Edition A. Papoulis and S.

Stochastic Processes Adopted From p Chapter 9 Probability, Random Variables and Stochastic Processes, 4th Edition A. Papoulis and S. Sochasic Processes Adoped From p Chaper 9 Probabiliy, adom Variables ad Sochasic Processes, 4h Ediio A. Papoulis ad S. Pillai 9. Sochasic Processes Iroducio Le deoe he radom oucome of a experime. To every

More information

Notes 03 largely plagiarized by %khc

Notes 03 largely plagiarized by %khc 1 1 Discree-Time Covoluio Noes 03 largely plagiarized by %khc Le s begi our discussio of covoluio i discree-ime, sice life is somewha easier i ha domai. We sar wih a sigal x[] ha will be he ipu io our

More information

OLS bias for econometric models with errors-in-variables. The Lucas-critique Supplementary note to Lecture 17

OLS bias for econometric models with errors-in-variables. The Lucas-critique Supplementary note to Lecture 17 OLS bias for ecoomeric models wih errors-i-variables. The Lucas-criique Supplemeary oe o Lecure 7 RNy May 6, 03 Properies of OLS i RE models I Lecure 7 we discussed he followig example of a raioal expecaios

More information

Inference for Stochastic Processes 4. Lévy Processes. Duke University ISDS, USA. Poisson Process. Limits of Simple Compound Poisson Processes

Inference for Stochastic Processes 4. Lévy Processes. Duke University ISDS, USA. Poisson Process. Limits of Simple Compound Poisson Processes Poisso Process Iferece for Sochasic Processes 4. Lévy Processes τ = δ j, δ j iid Ex X sup { Z + : τ }, < By ober L. Wolper Duke Uiversiy ISDS, USA [X j+ X j ] id Po [ j+ j ],... < evised: Jue 8, 5 E[e

More information

A Note on Random k-sat for Moderately Growing k

A Note on Random k-sat for Moderately Growing k A Noe o Radom k-sat for Moderaely Growig k Ju Liu LMIB ad School of Mahemaics ad Sysems Sciece, Beihag Uiversiy, Beijig, 100191, P.R. Chia juliu@smss.buaa.edu.c Zogsheg Gao LMIB ad School of Mahemaics

More information

A Note on Prediction with Misspecified Models

A Note on Prediction with Misspecified Models ITB J. Sci., Vol. 44 A, No. 3,, 7-9 7 A Noe o Predicio wih Misspecified Models Khresha Syuhada Saisics Research Divisio, Faculy of Mahemaics ad Naural Scieces, Isiu Tekologi Badug, Jala Gaesa Badug, Jawa

More information

Introduction to the Mathematics of Lévy Processes

Introduction to the Mathematics of Lévy Processes Iroducio o he Mahemaics of Lévy Processes Kazuhisa Masuda Deparme of Ecoomics The Graduae Ceer, The Ciy Uiversiy of New York, 365 Fifh Aveue, New York, NY 10016-4309 Email: maxmasuda@maxmasudacom hp://wwwmaxmasudacom/

More information

A TAUBERIAN THEOREM FOR THE WEIGHTED MEAN METHOD OF SUMMABILITY

A TAUBERIAN THEOREM FOR THE WEIGHTED MEAN METHOD OF SUMMABILITY U.P.B. Sci. Bull., Series A, Vol. 78, Iss. 2, 206 ISSN 223-7027 A TAUBERIAN THEOREM FOR THE WEIGHTED MEAN METHOD OF SUMMABILITY İbrahim Çaak I his paper we obai a Tauberia codiio i erms of he weighed classical

More information

Solutions to selected problems from the midterm exam Math 222 Winter 2015

Solutions to selected problems from the midterm exam Math 222 Winter 2015 Soluios o seleced problems from he miderm eam Mah Wier 5. Derive he Maclauri series for he followig fucios. (cf. Pracice Problem 4 log( + (a L( d. Soluio: We have he Maclauri series log( + + 3 3 4 4 +...,

More information

Calculus BC 2015 Scoring Guidelines

Calculus BC 2015 Scoring Guidelines AP Calculus BC 5 Scorig Guidelies 5 The College Board. College Board, Advaced Placeme Program, AP, AP Ceral, ad he acor logo are regisered rademarks of he College Board. AP Ceral is he official olie home

More information

Additional Tables of Simulation Results

Additional Tables of Simulation Results Saisica Siica: Suppleme REGULARIZING LASSO: A CONSISTENT VARIABLE SELECTION METHOD Quefeg Li ad Ju Shao Uiversiy of Wiscosi, Madiso, Eas Chia Normal Uiversiy ad Uiversiy of Wiscosi, Madiso Supplemeary

More information

MASSACHUSETTS INSTITUTE OF TECHNOLOGY 6.265/15.070J Fall 2013 Lecture 4 9/16/2013. Applications of the large deviation technique

MASSACHUSETTS INSTITUTE OF TECHNOLOGY 6.265/15.070J Fall 2013 Lecture 4 9/16/2013. Applications of the large deviation technique MASSACHUSETTS ISTITUTE OF TECHOLOGY 6.265/5.070J Fall 203 Lecure 4 9/6/203 Applicaios of he large deviaio echique Coe.. Isurace problem 2. Queueig problem 3. Buffer overflow probabiliy Safey capial for

More information

RENEWAL THEORY FOR EMBEDDED REGENERATIVE SETS. BY JEAN BERTOIN Universite Pierre et Marie Curie

RENEWAL THEORY FOR EMBEDDED REGENERATIVE SETS. BY JEAN BERTOIN Universite Pierre et Marie Curie The Aals of Probabiliy 999, Vol 27, No 3, 523535 RENEWAL TEORY FOR EMBEDDED REGENERATIVE SETS BY JEAN BERTOIN Uiversie Pierre e Marie Curie We cosider he age processes A A associaed o a moooe sequece R

More information

2 f(x) dx = 1, 0. 2f(x 1) dx d) 1 4t t6 t. t 2 dt i)

2 f(x) dx = 1, 0. 2f(x 1) dx d) 1 4t t6 t. t 2 dt i) Mah PracTes Be sure o review Lab (ad all labs) There are los of good quesios o i a) Sae he Mea Value Theorem ad draw a graph ha illusraes b) Name a impora heorem where he Mea Value Theorem was used i he

More information

In this section we will study periodic signals in terms of their frequency f t is said to be periodic if (4.1)

In this section we will study periodic signals in terms of their frequency f t is said to be periodic if (4.1) Fourier Series Iroducio I his secio we will sudy periodic sigals i ers o heir requecy is said o be periodic i coe Reid ha a sigal ( ) ( ) ( ) () or every, where is a uber Fro his deiiio i ollows ha ( )

More information

L-functions and Class Numbers

L-functions and Class Numbers L-fucios ad Class Numbers Sude Number Theory Semiar S. M.-C. 4 Sepember 05 We follow Romyar Sharifi s Noes o Iwasawa Theory, wih some help from Neukirch s Algebraic Number Theory. L-fucios of Dirichle

More information

Completeness of Random Exponential System in Half-strip

Completeness of Random Exponential System in Half-strip 23-24 Prepri for School of Mahemaical Scieces, Beijig Normal Uiversiy Compleeess of Radom Expoeial Sysem i Half-srip Gao ZhiQiag, Deg GuaTie ad Ke SiYu School of Mahemaical Scieces, Laboraory of Mahemaics

More information

Lecture 9: Polynomial Approximations

Lecture 9: Polynomial Approximations CS 70: Complexiy Theory /6/009 Lecure 9: Polyomial Approximaios Isrucor: Dieer va Melkebeek Scribe: Phil Rydzewski & Piramaayagam Arumuga Naiar Las ime, we proved ha o cosa deph circui ca evaluae he pariy

More information

LIMITS OF FUNCTIONS (I)

LIMITS OF FUNCTIONS (I) LIMITS OF FUNCTIO (I ELEMENTARY FUNCTIO: (Elemeary fucios are NOT piecewise fucios Cosa Fucios: f(x k, where k R Polyomials: f(x a + a x + a x + a x + + a x, where a, a,..., a R Raioal Fucios: f(x P (x,

More information

CSE 241 Algorithms and Data Structures 10/14/2015. Skip Lists

CSE 241 Algorithms and Data Structures 10/14/2015. Skip Lists CSE 41 Algorihms ad Daa Srucures 10/14/015 Skip Liss This hadou gives he skip lis mehods ha we discussed i class. A skip lis is a ordered, doublyliked lis wih some exra poiers ha allow us o jump over muliple

More information

Approximately Quasi Inner Generalized Dynamics on Modules. { } t t R

Approximately Quasi Inner Generalized Dynamics on Modules. { } t t R Joural of Scieces, Islamic epublic of Ira 23(3): 245-25 (22) Uiversiy of Tehra, ISSN 6-4 hp://jscieces.u.ac.ir Approximaely Quasi Ier Geeralized Dyamics o Modules M. Mosadeq, M. Hassai, ad A. Nikam Deparme

More information

TAKA KUSANO. laculty of Science Hrosh tlnlersty 1982) (n-l) + + Pn(t)x 0, (n-l) + + Pn(t)Y f(t,y), XR R are continuous functions.

TAKA KUSANO. laculty of Science Hrosh tlnlersty 1982) (n-l) + + Pn(t)x 0, (n-l) + + Pn(t)Y f(t,y), XR R are continuous functions. Iera. J. Mah. & Mah. Si. Vol. 6 No. 3 (1983) 559-566 559 ASYMPTOTIC RELATIOHIPS BETWEEN TWO HIGHER ORDER ORDINARY DIFFERENTIAL EQUATIONS TAKA KUSANO laculy of Sciece Hrosh llersy 1982) ABSTRACT. Some asympoic

More information

Some Properties of Semi-E-Convex Function and Semi-E-Convex Programming*

Some Properties of Semi-E-Convex Function and Semi-E-Convex Programming* The Eighh Ieraioal Symposium o Operaios esearch ad Is Applicaios (ISOA 9) Zhagjiajie Chia Sepember 2 22 29 Copyrigh 29 OSC & APOC pp 33 39 Some Properies of Semi-E-Covex Fucio ad Semi-E-Covex Programmig*

More information

SUMMATION OF INFINITE SERIES REVISITED

SUMMATION OF INFINITE SERIES REVISITED SUMMATION OF INFINITE SERIES REVISITED I several aricles over he las decade o his web page we have show how o sum cerai iiie series icludig he geomeric series. We wa here o eed his discussio o he geeral

More information

Online Supplement to Reactive Tabu Search in a Team-Learning Problem

Online Supplement to Reactive Tabu Search in a Team-Learning Problem Olie Suppleme o Reacive abu Search i a eam-learig Problem Yueli She School of Ieraioal Busiess Admiisraio, Shaghai Uiversiy of Fiace ad Ecoomics, Shaghai 00433, People s Republic of Chia, she.yueli@mail.shufe.edu.c

More information

Four equations describe the dynamic solution to RBC model. Consumption-leisure efficiency condition. Consumption-investment efficiency condition

Four equations describe the dynamic solution to RBC model. Consumption-leisure efficiency condition. Consumption-investment efficiency condition LINEARIZING AND APPROXIMATING THE RBC MODEL SEPTEMBER 7, 200 For f( x, y, z ), mulivariable Taylor liear expasio aroud ( x, yz, ) f ( x, y, z) f( x, y, z) + f ( x, y, z)( x x) + f ( x, y, z)( y y) + f

More information

Mean Square Convergent Finite Difference Scheme for Stochastic Parabolic PDEs

Mean Square Convergent Finite Difference Scheme for Stochastic Parabolic PDEs America Joural of Compuaioal Mahemaics, 04, 4, 80-88 Published Olie Sepember 04 i SciRes. hp://www.scirp.org/joural/ajcm hp://dx.doi.org/0.436/ajcm.04.4404 Mea Square Coverge Fiie Differece Scheme for

More information

The Moment Approximation of the First Passage Time for the Birth Death Diffusion Process with Immigraton to a Moving Linear Barrier

The Moment Approximation of the First Passage Time for the Birth Death Diffusion Process with Immigraton to a Moving Linear Barrier America Joural of Applied Mahemaics ad Saisics, 015, Vol. 3, No. 5, 184-189 Available olie a hp://pubs.sciepub.com/ajams/3/5/ Sciece ad Educaio Publishig DOI:10.1691/ajams-3-5- The Mome Approximaio of

More information

Convergence of random variables. (telegram style notes) P.J.C. Spreij

Convergence of random variables. (telegram style notes) P.J.C. Spreij Covergece of radom variables (telegram style otes).j.c. Spreij this versio: September 6, 2005 Itroductio As we kow, radom variables are by defiitio measurable fuctios o some uderlyig measurable space

More information

xp (X = x) = P (X = 1) = θ. Hence, the method of moments estimator of θ is

xp (X = x) = P (X = 1) = θ. Hence, the method of moments estimator of θ is Exercise 7 / page 356 Noe ha X i are ii from Beroulli(θ where 0 θ a Meho of momes: Sice here is oly oe parameer o be esimae we ee oly oe equaio where we equae he rs sample mome wih he rs populaio mome,

More information

Basic Results in Functional Analysis

Basic Results in Functional Analysis Preared by: F.. ewis Udaed: Suday, Augus 7, 4 Basic Resuls i Fucioal Aalysis f ( ): X Y is coiuous o X if X, (, ) z f( z) f( ) f ( ): X Y is uiformly coiuous o X if i is coiuous ad ( ) does o deed o. f

More information

F D D D D F. smoothed value of the data including Y t the most recent data.

F D D D D F. smoothed value of the data including Y t the most recent data. Module 2 Forecasig 1. Wha is forecasig? Forecasig is defied as esimaig he fuure value ha a parameer will ake. Mos scieific forecasig mehods forecas he fuure value usig pas daa. I Operaios Maageme forecasig

More information

DIFFERENTIAL EQUATIONS

DIFFERENTIAL EQUATIONS DIFFERENTIAL EQUATIONS M.A. (Previous) Direcorae of Disace Educaio Maharshi Dayaad Uiversiy ROHTAK 4 Copyrigh 3, Maharshi Dayaad Uiversiy, ROHTAK All Righs Reserved. No par of his publicaio may be reproduced

More information

Using Linnik's Identity to Approximate the Prime Counting Function with the Logarithmic Integral

Using Linnik's Identity to Approximate the Prime Counting Function with the Logarithmic Integral Usig Lii's Ideiy o Approimae he Prime Couig Fucio wih he Logarihmic Iegral Naha McKezie /26/2 aha@icecreambreafas.com Summary:This paper will show ha summig Lii's ideiy from 2 o ad arragig erms i a cerai

More information

LINEAR APPROXIMATION OF THE BASELINE RBC MODEL SEPTEMBER 17, 2013

LINEAR APPROXIMATION OF THE BASELINE RBC MODEL SEPTEMBER 17, 2013 LINEAR APPROXIMATION OF THE BASELINE RBC MODEL SEPTEMBER 7, 203 Iroducio LINEARIZATION OF THE RBC MODEL For f( xyz,, ) = 0, mulivariable Taylor liear expasio aroud f( xyz,, ) f( xyz,, ) + f( xyz,, )( x

More information

Math 2414 Homework Set 7 Solutions 10 Points

Math 2414 Homework Set 7 Solutions 10 Points Mah Homework Se 7 Soluios 0 Pois #. ( ps) Firs verify ha we ca use he iegral es. The erms are clearly posiive (he epoeial is always posiive ad + is posiive if >, which i is i his case). For decreasig we

More information

The analysis of the method on the one variable function s limit Ke Wu

The analysis of the method on the one variable function s limit Ke Wu Ieraioal Coferece o Advaces i Mechaical Egieerig ad Idusrial Iformaics (AMEII 5) The aalysis of he mehod o he oe variable fucio s i Ke Wu Deparme of Mahemaics ad Saisics Zaozhuag Uiversiy Zaozhuag 776

More information

B. Maddah INDE 504 Simulation 09/02/17

B. Maddah INDE 504 Simulation 09/02/17 B. Maddah INDE 54 Simulaio 9/2/7 Queueig Primer Wha is a queueig sysem? A queueig sysem cosiss of servers (resources) ha provide service o cusomers (eiies). A Cusomer requesig service will sar service

More information

On the Existence and Uniqueness of Solutions for Nonlinear System Modeling Three-Dimensional Viscous Stratified Flows

On the Existence and Uniqueness of Solutions for Nonlinear System Modeling Three-Dimensional Viscous Stratified Flows Joural of Applied Mahemaics ad Physics 58-59 Published Olie Jue i SciRes hp://wwwscirporg/joural/jamp hp://dxdoiorg/6/jamp76 O he Exisece ad Uiqueess of Soluios for oliear Sysem Modelig hree-dimesioal

More information

Principles of Communications Lecture 1: Signals and Systems. Chih-Wei Liu 劉志尉 National Chiao Tung University

Principles of Communications Lecture 1: Signals and Systems. Chih-Wei Liu 劉志尉 National Chiao Tung University Priciples of Commuicaios Lecure : Sigals ad Sysems Chih-Wei Liu 劉志尉 Naioal Chiao ug Uiversiy cwliu@wis.ee.cu.edu.w Oulies Sigal Models & Classificaios Sigal Space & Orhogoal Basis Fourier Series &rasform

More information

The Eigen Function of Linear Systems

The Eigen Function of Linear Systems 1/25/211 The Eige Fucio of Liear Sysems.doc 1/7 The Eige Fucio of Liear Sysems Recall ha ha we ca express (expad) a ime-limied sigal wih a weighed summaio of basis fucios: v ( ) a ψ ( ) = where v ( ) =

More information

BE.430 Tutorial: Linear Operator Theory and Eigenfunction Expansion

BE.430 Tutorial: Linear Operator Theory and Eigenfunction Expansion BE.43 Tuorial: Liear Operaor Theory ad Eigefucio Expasio (adaped fro Douglas Lauffeburger) 9//4 Moivaig proble I class, we ecouered parial differeial equaios describig rasie syses wih cheical diffusio.

More information

Convergence theorems. Chapter Sampling

Convergence theorems. Chapter Sampling Chaper Covergece heorems We ve already discussed he difficuly i defiig he probabiliy measure i erms of a experimeal frequecy measureme. The hear of he problem lies i he defiiio of he limi, ad his was se

More information

Lecture 3 : Random variables and their distributions

Lecture 3 : Random variables and their distributions Lecture 3 : Radom variables ad their distributios 3.1 Radom variables Let (Ω, F) ad (S, S) be two measurable spaces. A map X : Ω S is measurable or a radom variable (deoted r.v.) if X 1 (A) {ω : X(ω) A}

More information

Section 8 Convolution and Deconvolution

Section 8 Convolution and Deconvolution APPLICATIONS IN SIGNAL PROCESSING Secio 8 Covoluio ad Decovoluio This docume illusraes several echiques for carryig ou covoluio ad decovoluio i Mahcad. There are several operaors available for hese fucios:

More information

LINEAR APPROXIMATION OF THE BASELINE RBC MODEL JANUARY 29, 2013

LINEAR APPROXIMATION OF THE BASELINE RBC MODEL JANUARY 29, 2013 LINEAR APPROXIMATION OF THE BASELINE RBC MODEL JANUARY 29, 203 Iroducio LINEARIZATION OF THE RBC MODEL For f( x, y, z ) = 0, mulivariable Taylor liear expasio aroud f( x, y, z) f( x, y, z) + f ( x, y,

More information

Math-303 Chapter 7 Linear systems of ODE November 16, Chapter 7. Systems of 1 st Order Linear Differential Equations.

Math-303 Chapter 7 Linear systems of ODE November 16, Chapter 7. Systems of 1 st Order Linear Differential Equations. Mah-33 Chaper 7 Liear sysems of ODE November 6, 7 Chaper 7 Sysems of s Order Liear Differeial Equaios saddle poi λ >, λ < Mah-33 Chaper 7 Liear sysems of ODE November 6, 7 Mah-33 Chaper 7 Liear sysems

More information

A Change-of-Variable Formula with Local Time on Surfaces

A Change-of-Variable Formula with Local Time on Surfaces Sém. de Probab. L, Lecure Noes i Mah. Vol. 899, Spriger, 7, (69-96) Research Repor No. 437, 4, Dep. Theore. Sais. Aarhus (3 pp) A Chage-of-Variable Formula wih Local Time o Surfaces GORAN PESKIR 3 Le =

More information

David Randall. ( )e ikx. k = u x,t. u( x,t)e ikx dx L. x L /2. Recall that the proof of (1) and (2) involves use of the orthogonality condition.

David Randall. ( )e ikx. k = u x,t. u( x,t)e ikx dx L. x L /2. Recall that the proof of (1) and (2) involves use of the orthogonality condition. ! Revised April 21, 2010 1:27 P! 1 Fourier Series David Radall Assume ha u( x,) is real ad iegrable If he domai is periodic, wih period L, we ca express u( x,) exacly by a Fourier series expasio: ( ) =

More information

Applying the Moment Generating Functions to the Study of Probability Distributions

Applying the Moment Generating Functions to the Study of Probability Distributions 3 Iformaica Ecoomică, r (4)/007 Applyi he Mome Geerai Fucios o he Sudy of Probabiliy Disribuios Silvia SPĂTARU Academy of Ecoomic Sudies, Buchares I his paper, we describe a ool o aid i provi heorems abou

More information

Electrical Engineering Department Network Lab.

Electrical Engineering Department Network Lab. Par:- Elecrical Egieerig Deparme Nework Lab. Deermiaio of differe parameers of -por eworks ad verificaio of heir ierrelaio ships. Objecive: - To deermie Y, ad ABD parameers of sigle ad cascaded wo Por

More information

arxiv: v1 [math.pr] 16 Dec 2018

arxiv: v1 [math.pr] 16 Dec 2018 218, 1 17 () arxiv:1812.7383v1 [mah.pr] 16 Dec 218 Refleced BSDEs wih wo compleely separaed barriers ad regulaed rajecories i geeral filraio. Baadi Brahim ad Oukie Youssef Ib Tofaïl Uiversiy, Deparme of

More information

Big O Notation for Time Complexity of Algorithms

Big O Notation for Time Complexity of Algorithms BRONX COMMUNITY COLLEGE of he Ciy Uiversiy of New York DEPARTMENT OF MATHEMATICS AND COMPUTER SCIENCE CSI 33 Secio E01 Hadou 1 Fall 2014 Sepember 3, 2014 Big O Noaio for Time Complexiy of Algorihms Time

More information

7.1 Convergence of sequences of random variables

7.1 Convergence of sequences of random variables Chapter 7 Limit theorems Throughout this sectio we will assume a probability space (Ω, F, P), i which is defied a ifiite sequece of radom variables (X ) ad a radom variable X. The fact that for every ifiite

More information

Notes 5 : More on the a.s. convergence of sums

Notes 5 : More on the a.s. convergence of sums Notes 5 : More o the a.s. covergece of sums Math 733-734: Theory of Probability Lecturer: Sebastie Roch Refereces: Dur0, Sectios.5; Wil9, Sectio 4.7, Shi96, Sectio IV.4, Dur0, Sectio.. Radom series. Three-series

More information

Sampling Example. ( ) δ ( f 1) (1/2)cos(12πt), T 0 = 1

Sampling Example. ( ) δ ( f 1) (1/2)cos(12πt), T 0 = 1 Samplig Example Le x = cos( 4π)cos( π). The fudameal frequecy of cos 4π fudameal frequecy of cos π is Hz. The ( f ) = ( / ) δ ( f 7) + δ ( f + 7) / δ ( f ) + δ ( f + ). ( f ) = ( / 4) δ ( f 8) + δ ( f

More information

Integration by Parts and Quasi-Invariance for Heat Kernel Measures on Loop Groups

Integration by Parts and Quasi-Invariance for Heat Kernel Measures on Loop Groups joural of fucioal aalysis 149, 47547 (1997) aricle o. FU97313 Iegraio by Pars ad Quasi-Ivariace for Hea Kerel Measures o Loop Groups Bruce K. Driver* Deparme of Mahemaics, 112, Uiversiy of Califoria, Sa

More information

12 Getting Started With Fourier Analysis

12 Getting Started With Fourier Analysis Commuicaios Egieerig MSc - Prelimiary Readig Geig Sared Wih Fourier Aalysis Fourier aalysis is cocered wih he represeaio of sigals i erms of he sums of sie, cosie or complex oscillaio waveforms. We ll

More information

Estimating discontinuous periodic signals in a time inhomogeneous diffusion

Estimating discontinuous periodic signals in a time inhomogeneous diffusion Esimaig discoiuous periodic sigals i a ime ihomogeeous diffusio Reihard Höpfer ad Yury Kuoyas Johaes-Gueberg-Uiversiä, Maiz, ad Uiversié du Maie, Le Mas arxiv:93.56v2 [mah.st] 7 Mar 2 Absrac: We cosider

More information

MASSACHUSETTS INSTITUTE OF TECHNOLOGY 6.436J/15.085J Fall 2008 Lecture 19 11/17/2008 LAWS OF LARGE NUMBERS II THE STRONG LAW OF LARGE NUMBERS

MASSACHUSETTS INSTITUTE OF TECHNOLOGY 6.436J/15.085J Fall 2008 Lecture 19 11/17/2008 LAWS OF LARGE NUMBERS II THE STRONG LAW OF LARGE NUMBERS MASSACHUSTTS INSTITUT OF TCHNOLOGY 6.436J/5.085J Fall 2008 Lecture 9 /7/2008 LAWS OF LARG NUMBRS II Cotets. The strog law of large umbers 2. The Cheroff boud TH STRONG LAW OF LARG NUMBRS While the weak

More information

Unit - III RANDOM PROCESSES. B. Thilaka Applied Mathematics

Unit - III RANDOM PROCESSES. B. Thilaka Applied Mathematics Ui - III RANDOM PROCESSES B. Thilaka Applied Mahemaics Radom Processes A family of radom variables {X,s εt, sεs} defied over a give probabiliy space ad idexed by he parameer, where varies over he idex

More information

An Introduction to Malliavin calculus and its applications

An Introduction to Malliavin calculus and its applications An Inroducion o Malliavin calculus and is applicaions Lecure 5: Smoohness of he densiy and Hörmander s heorem David Nualar Deparmen of Mahemaics Kansas Universiy Universiy of Wyoming Summer School 214

More information

7.1 Convergence of sequences of random variables

7.1 Convergence of sequences of random variables Chapter 7 Limit Theorems Throughout this sectio we will assume a probability space (, F, P), i which is defied a ifiite sequece of radom variables (X ) ad a radom variable X. The fact that for every ifiite

More information

METHOD OF THE EQUIVALENT BOUNDARY CONDITIONS IN THE UNSTEADY PROBLEM FOR ELASTIC DIFFUSION LAYER

METHOD OF THE EQUIVALENT BOUNDARY CONDITIONS IN THE UNSTEADY PROBLEM FOR ELASTIC DIFFUSION LAYER Maerials Physics ad Mechaics 3 (5) 36-4 Received: March 7 5 METHOD OF THE EQUIVAENT BOUNDARY CONDITIONS IN THE UNSTEADY PROBEM FOR EASTIC DIFFUSION AYER A.V. Zemsov * D.V. Tarlaovsiy Moscow Aviaio Isiue

More information

Hadamard matrices from the Multiplication Table of the Finite Fields

Hadamard matrices from the Multiplication Table of the Finite Fields adamard marice from he Muliplicaio Table of he Fiie Field 신민호 송홍엽 노종선 * Iroducio adamard mari biary m-equece New Corucio Coe Theorem. Corucio wih caoical bai Theorem. Corucio wih ay bai Remark adamard

More information